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Abstract—This paper presents a state observer based on the
action reaction law of dynamics. The proposed observer allows
estimating states of single input flexible dynamical systems with
unknown or inaccessible outputs where the instantaneous system
reaction is utilized as a feedback like force/torque and used in
the design of a state observer. Necessary and sufficient conditions
for observability of this class of dynamical systems are investi-
gated. Robustness of the proposed state observer to parameter
uncertainties is further studied. The proposed observer makes it
possible to keep a class of single input flexible dynamical systems
free from any attached sensors while estimating their states.
Validity of the proposed action reaction based state observer
is evaluated experimentally.

Keywords—Action-reaction state observer, reaction force ob-
server, disturbances, motion control.

I. INTRODUCTION

Interest in state observers is ever-growing due to the physi-
cal flexibility they add to any control system. Technical limita-
tions such as measurements uncertainties, limited bandwidth
problems and the complicity of electronic setups associated
with each embedded sensor to the system are partially avoided
when proper state observers are designed and used. Therefore,
dynamical system state estimation is indeed an important task
in majority of nowadays motion control applications. The
well-known Luenberger observer provides a comprehensive
solution for the estimation problem where system states can
be observed along with disturbances that can be considered
as states providing that dynamical system model is known a
priori, input is known and outputs can be measured.

The purpose of the present work is to estimate dynamical
system states without taking any measurement from the system
side. Outputs of the system are assumed to be unknown or
inaccessible. In addition, system parameters are not accurately
identified.

At first sight, the previous claims would make it impos-
sible for the estimated states to converge to the actual ones
since system outputs are not measured. However, the output
measurement is replaced with a natural feedback, namely the
incident reaction force/torque on the point/plane of interface
between the dynamical system and an attached actuator. The
idea is simple and mainly based on realization of the action-
reaction law of dynamics through the well-known disturbance
observer. It is commonly believed that in order to perform

a motion control assignment, a dynamical system has to be
excited by the mean of at least one actuator. Hereafter, the
dynamical system instantaneously reacts on the actuator with
an equal force/torque to the applied one in the opposite
direction. Robustness of a motion control system requires
estimation of such reaction force/torque then generating an
additional control input to suppress them. Therefore, robust-
ness necessitates two control inputs, the first is a driving input
to excite the system, while the second is a compensation
input to suppress disturbances. Therefore, one can say with
no doubt that in any event a dynamical system will be excited
and the incident disturbances have to be realized for sake of
robustness. In this work, reaction force/torque is conceptually
considered as a natural feedback from the dynamical system
on the point/plane of interface between an actuator and a
dynamical system. Then this natural feedback is used to design
a state observer that does not require taking any measurement
from the dynamical system not including the actuator.

Much effort has been expended in the last decades in order
to estimate dynamical system states. Reaction force/torque
along with actuator force/torque ripple and actuator self-
varied mass/inertia are considered as disturbance in [1]-[2]-
[4]. Then a disturbance observer is used for the attainment of
robust acceleration control by identifying and suppressing the
total mechanical load and parameter variation [7]-[18]. The
previous observer can be considered as a state observer if
disturbances are conceptually defined as system states then
used to formulate an augmented state space equation. In
this case, the Luenberger observer is more general and can
be designed to estimate both system states and disturbances
[5]-[6]. The observer is very useful tool for estimating the
information of the internal variables of a system that are
unknown. However, the main challenge in this application
is that the observer is completely dependent on the plant
mathematical model accuracy and necessitates measuring the
system output that can be inaccessible or unknown. High-gain
observer was proposed by Khalil [22] that allows estimating
the unmeasured states along with asymptotically attenuating
disturbances. Robustness over a range of system uncertainties
was enhanced by sliding-mode observer presented by Utkin
[23] based on the sliding-mode approach. A non-linear ex-
tended state observer was proposed by Han [25] wfere the non-



linear model is treated as extended state. In addition, the non-
linear model along with its derivative are assumed unknown.
Thus, achieving inherent robustness as it is independent of the
plant mathematical model.

The previous observers differs from each other in the sense
of tracking error in transient and steady state, robustness to
plant mathematical model and sensitivity to the unknown
initial conditions. However, there exist a single feature that
they all have in common which is the necessity of measuring
system output. But what about if the system output is inac-
cessible or unknown for some reasons.

With the work of O’Connor [12]-[13]-[14] at which the
concept of natural feedback was presented and used to con-
trol motion and vibration of non-collocated lumped flexible
structures, one can find an answer or at least an idea to the
previous question. O’connor considered the mechanical waves
that propagate back and forth between an actuator and end
boundary condition as natural feedback from the system which
can be used to position a non-collocated point to a target
position. However, a measurement from the dynamical system
is taken along with ignoring the effect of interaction forces that
can adversely affect the performance of the control system.
Nevertheless, the natural feedback concept can be used as an
alternative for system output to design state observers.

This work is concerned with designing state observers for
systems with inaccessible outputs. Based on the action reaction
dynamical law, a natural feedback from any dynamical system,
namely the incident reaction forces/torques can be obtained
from the interface plane of the dynamical system with an
attached actuator. Thus, measurements can be focused on the
actuator whereas dynamical system can be left free from any
measurement whatsoever.

This paper is organized as follow. Problem formulation is
presented in Section II where dynamical system is splinted into
two portions, actuator and plant side. Output of the plant are
inaccessible or unknown therefore actuator is used to estimate
the incident reaction force from the plant on the actuator that in
turn used to design state observer. State observer is designed in
Section III which differs from the well-known Luenberger in
the sense of not measuring any of the system outputs. Then, an
example is introduced to test the performance of the outlined
state observer on a dynamical system with 3 degrees-of-
freedom under parameter uncertainties. Experimental results
are included in Section IV. Eventually, conclusions and final
remarks are included in Section V.

II. PROBLEM FORMULATION

The dynamical systems we consider can be expressed as

ẋ = Ax + Bu (1)
y = Cx + Du

where x ∈ Rn and y ∈ Rm are the state and measurement
vectors, respectively. A, B, C and D are the system matrix,
distribution vector of input, observation column vector and
feed forward matrix with appropriate dimensions, respectively.

Fig. 1. Reaction force observer.

It can be shown that system (1) can be written for a class of
single input multiple outputs flexible system as

ẋa = Aaxa + Baua + Breacfreac(x, ẋ) (2)

ẋp = Apxp + Bpfreac(x, ẋ) (3)

where xa and xp are actuator and plant state vectors, re-
spectively. The subscripts (a) and (p) denote the actuator
and plant. freac(x, ẋ) is the incident instantaneous reaction
force on the actuator, Breac is the reaction force distribution
vector. Figure 1 illustrates the class of dynamical system we
consider in this work, the plant states (xp) are inaccessible.
This is equivalent to situations at which measurement can not
be made or sensor utilization is costly or impractical, e.g.,
the dynamical system depicted in Fig. 1 can be considered
as dynamical system with inaccessible outputs if any of its
states (x1, · · · , xn) can not be measured. The reaction force
freac(x, ẋ) is conceptually considered as a feedback-life force
which can be used in the design of state observer for the
dynamical system (3). Since states of (3) are inaccessible,
the feedback-like force freac(x, ẋ) can be estimated from (2)
which can be written as follows

ẋa = (Aan + ∆Aa)xa + (Ban + ∆Ba)ua + Breacfreac(x, ẋ)
(4)

Aa = Aan + ∆Aa (5)
Ba = Ban + ∆Ba

∆Aa is a deviation of Aa and ∆Ba is the deviation of Ba

from the nominal values with the subscript n. Rewriting (3)

ẋa = Aanxa+Banua+
(
∆Aaxa+∆Baua+Breacfreac(x, ẋ)

)
(6)

The third term of (5) is well-known as disturbance (d) with
force or torque units [2]-[4]

d , ∆Aaxa + ∆Baua + Breacfreac(x, ẋ) (7)

Applying (6) on the following actuator motion equation

(man + ∆ma)ẍa + freac(x, ẋ) = (kfn + ∆kf )ia (8)

where ma, kf and ia are the actuator mass, force constant and
current. Disturbance force can be written as

d = ∆maẍa + freac(x, ẋ)−∆kf ia (9)

where the first and third terms of the right hand side of (9)
are the actuator self-varied mass and torque ripple. In order to



Fig. 2. Reaction force observer.

estimate the feedback-like force freac(x, ẋ), disturbance force
has to be estimated first. Figure 2 illustrates the second order
disturbance observer which requires measuring the actuator
position along with the its current input. Disturbance observer
is then followed by reaction force observer that is depicted in
Fig. 2 and can be expressed as

f̂reac(xa, ẋa) =
greac

s + greac
[greac∆̂maẋa+ia∆̂kf+d̂]−greac∆̂maẋa

(10)
greac is the reaction force observer positive gain. k1 and
k2 are the disturbance observer gains. ∆̂ma and ∆̂kf are
the identified actuator parameter deviations. A procedure to
determine ∆̂ma and ∆̂kf can be found in [29]-[30] through an
off-line experiment. The disturbance observer along with the
reaction force observer require measuring the actuator position
along with the on hand current reference. The incident reaction
forces from the dynamical plant are then estimated through
these observers and further used in the design of the following
action reaction state observer.

III. ACTION-REACTION STATE OBSERVER

In order to design state observer for the dynamical system
(3), the estimated reaction force is conceptually considered as
a feedback like force which can be injected onto the structure
of a Luenberger like state observer instead of the inaccessible
outputs or states. Therefore, the state observer can be written
as

˙̂x = Ax̂ + Bu + M
(
f̂reac(xa, ẋa)− f̂reac(x̂, ˙̂x)

)
(11)

the subscript (a) is used to indicate that the estimated reaction
force f̂reac(xa, ẋa) is determined through the actuator vari-
ables, whereas, f̂reac(x̂, ˙̂x) is model dependent which depends
on states of the overall system (1). M is the state observer
gain vector. Assuming that the actuator is attached to the
dynamical system through a flexible element with stiffness
k and an energy dissipating elements with damping c, ideally,
the estimated reaction force can be expressed as follows

f̂reac(xa, ẋa) = k(xa − xp
1) + c(ẋm − ẋp

1) (12)

which is written as explicit function of the actuator states since
we need actuator measurements only to estimate the reaction
force through (10). On the other hand, f̂reac(x̂, ˙̂x) depends
on the estimated states of system (3). Therefore, it can be
expressed as

f̂reac(x̂, ˙̂x) = k(xa − x̂p
1) + c(ẋa − ̂̇xp

1) (13)

subtracting (3) and (11), then after some algebraic manipula-
tions the following estimation error dynamics can be obtained

ė = (I− cML)−1(A + kML)e = Ae (14)

L = [1 0 · · · 0]

I ∈ Rn×n is identity matrix, M ∈ Rn×1, L ∈ R1×n. (14)
indicates that the estimation error will vanish if the matrix
(I − cML)−1(A + kML) is Hurwitz. Therefore, the action
reaction state observer vector gain has to be selected such that
(I − cML)−1(A + kML) is Hurwitz which can be achieved
through a regular pole placement procedure upon the required
behavior of the observer, in general, M has to be selected
such that the observer is at least twice faster than the control
system.

IV. EXPERIMENTAL RESULT

Fig. 3. Experimental setup.

In order to demonstrate the validity of the proposed state
observer, experiments are conducted on a single input dynam-
ical system with four degrees of freedom. The experimental
setup consists of a linear actuator attached to a flexible lumped
mass spring system with three degrees of freedom as shown
in Fig. 3. The lumped mass spring system is considered as a
plant with inaccessible outputs (3). Therefore, measurements
are only allowed to be taken from the actuator side, whereas,
plant is kept free from any attached sensors. Experimental pa-
rameters are included in Table.I. Actuator position is measured
and used as input to the second order disturbance observer
depicted in Fig. 2, reaction force is then decoupled out of the
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Fig. 4. Experimental states estimation results of a dynamical system with 3-dof (xp
1, xp

2, xp
3 and xp

4 represent plant first mass position, first mass velocity,
second mass position and second mass velocity, respectively).
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Fig. 5. Experimental states estimation results of a dynamical system with 3-dof (xp
1, xp

2, xp
3 and xp

4 represent plant first mass position, first mass velocity,
second mass position and second mass velocity, respectively).

disturbance force using the reaction force observer (10). The
estimated reaction force is then conceptually considered as a
feedback-like force which can be used in the design of the
state observer (11). Fig. 4 illustrates the difference between
the actual and estimated states obtained through (13). In this
experiment, the actuator has its own controller which is used
to impose arbitrary motions on the dynamical system (4) in
order to compare the actual and estimated states. Fig. 3(a)
and (b) illustrates the first mass position and velocity along
with their estimates. The position tracking error is depicted
in Fig. 4(f). Velocity and position of the second mass of the
lumped plant along with their estimated are shown in Fig. 4(c)
and (d). From the previous experimental results, estimated
states converge to the actual ones in approximately less than
0.2s. It is worth noting that this convergence time is not only
dependent on the state observer gain vector M, it also depends
on the other second order observer and reaction observer gains
k1, k2 and greac. Fig. 5 illustrates the estimation process when
arbitrary motion is imparted to the dynamical system with
different amplitudes and frequencies. The difference between
the estimated and actual states indicates that the action reaction
state observer is satisfactory estimating the dynamical system

states with at most 1.2% error of the peak to peak amplitude.
This indicates that the estimated states can be used in the
realization of motion control laws of this class of dynamical
systems since the state observer can be designed to be at
least twice faster then the control system. Experimentally,
the second order disturbance gains are adjusted such that
k1 = g2

dist and k2 = 2gdist, where gdist = 628 rad/s. The
reaction force observer used throughout the whole experiment
was greac = 628 rad/s,. Eventually, the observer gain vector
M can be obtained upon the required performance of the
observer. The observer gain vector utilized throughout the
whole experiment is

M = [0.3 0.1 0.3 0.3 0.1 0.2 3 3]
′

this yields a negative definite matrix (A) with the following
slowest eigenvalues

λ = −18.51± 1.92i

which indicates that the estimated states will exponentially
converge to the actual ones according to the error dynamics
(14) and can be shown from Fig. 4(f).



V. CONCLUSION

The problem of designing a state observer for a class
of linear dynamical system with single input and multiple
inaccessible outputs has been discussed. The incident reaction
forces from these dynamical systems can be observed from
their actuators then conceptually considered as feedback like
forces which can be used in the design of Luenberger like
state observer. The main difference between the proposed
observe and the Luenberger state observer lays in how the
estimation error is generated and injected onto the observer
structure. The error signal is generated by subtracting the
estimated reaction forces from the estimation based ones rather
using the actual states due to the inaccessibility of the plant
outputs. The proposed state observer allows keeping a class of
dynamical systems with single input and multiple outputs free
from any attached sensors while estimating their dynamical
states. However, due to the absence of system measurements
or outputs, a reduced order state observer can not be realized.
The convergence time of the proposed state observer depends
on the second order disturbance observer gains (k1 and k2),
reaction force observer gain (greac) and the action reaction
state observer gain vector (M) which have to be properly
selected such that the overall observer is kept twice faster than
the control system.
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