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ABSTRACT 

 

The viability of nanotechnology strongly depends on its ability to synthesize 

nanometer-sized building blocks and to position them precisely at a predefined location. 

In this study, the aim is to control the size and distribution of nanoparticles by polymer 

assisted fabrication through electrospun nanofibers. Electrospun polymeric nanofibers 

were chosen as template materials to tune the synthesis of nanoparticles. Synthesis of 

different polymer structures of block and random copolymers showed that the 

electrostatic interactions are one of the key parameters for size control. Electrospinning 

parameters were examined in detail and different reduction agents and heat treatments 

were applied to investigate the effect of processing conditions on nanoparticle 

generations. By selectively changing the process conditions, nanoparticles on the order 

of 2-5 nm at 600oC to 10-17 nm at 1000oC could be generated. The catalytic activities 

of metal nanoparticles on carbon nanofibers showed an electroactive active surface area 

of 34.6 m2/g for Pt and 22.4 m2/g for Pd. These results confirmed the feasibility of the 

use of metalized nanoparticles on carbonized nanofibers as catalysts for fuel cell 

applications. 
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ÖZET 

 

Nanoteknolojinin uygulanabilirliği, nanometre boyutundaki yapıların 

sentezlenebilirliği ve bunların önceden tanımlanmış yerlere doğru olarak 

yerleştirilebilmesine bağlıdır. Bu çalışmada amaç, elektrodokuma nano-lifler üzerinde 

polimer destekli olarak üretilen nanoparçacıkların boyut ve dağılımlarını kontrol 

etmektir. Nanoparçacıkların sentezini düzenlemek için elektrodokuma polimerik nano-

lifler kalıp malzemesi olarak kullanılmıştır. Bloksal ve rastgele yapıda sentezlenmiş 

olan kopolimer yapılar, elektrostatik etkileşimlerin boyut kontrolündeki önemli 

değişkenlerden biri olduğunu göstermiştir. Elektrodokuma süreç değişkenleri detaylı 

olarak incelenirken, farklı indirgenler ve ısıl muameleyle süreç değişkenlerinin 

nanoparçacık üretim metodu üzerindeki etkisi incelenmiştir. Süreç koşullarının seçici 

olarak belirlenmesiyle, 600oC’de 2-5 nm’den, 1000oC’de 10-17 nm’ye kadar farklı 

boyutta nanoparçacıklar üretilebilmiştir. Karbon nanolifler üzerinde üretilmiş olan metal 

nanoparçacıklar Pt için 34,6 m2/g ve Pd için 22,4 m2/g elektroaktif katalitik aktivite 

göstermiştir. Bu sonuçlar karbonize nanolifler üzerinde sentezlenmiş olan metal 

nanoparçacıkların yakıt pili uygulamalarında kullanabileceğini göstermiştir. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

The viability of nanotechnology strongly depends on its ability to synthesize 

nanometer-sized building blocks and to position them precisely at a predefined location. 

Up to now, various attempts to prepare metal nanoparticles on carbon-based materials 

have been reported in reference to their size dependent catalytic, optical, electronic and 

magnetic properties compared to those of bulk metals1-5 . Among many types of metals, 

palladium and platinum nanoparticles have attracted lots of attention due to their unique 

catalytic activity6-9 and high hydrogen sensing and storing ability10-12. Previous reports 

have usually generated a wide size distribution of metal particles and weak binding 

strength with supporting materials because metal particles were attached (or grown) on 

chemically active sites based on heterogeneous nucleation and growth mechanisms13, 14. 

This introductory chapter will lead the reader to gather the basic knowledge 

starting from the aspects of nanotechnology to the methodology that will be used in the 

thesis. Polymerization methods and electrospinning sections will elucidate the basic key 

points and literature review on past studies of electrospun metal-polymer 

nanocomposites will detail the up to day knowledge. The motivation section will 

enlighten the reader for the upcoming chapters for better understanding of the unique 

ideology of this research. 
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1.1 Nanotechnology 

 

 

1.1.1 Definition of Nanotechnology 
 

"The principles of physics, as far as I can see, do not speak against the possibility of 
maneuvering things atom by atom. It is not an attempt to violate any laws; it is 
something, in principle, that can be done; but in practice, it has not been done because 
we are too big". 

       Richard Feynman, Nobel Prize winner 

 

The idea of nanotechnology, the study of the control of matter on an atomic and 

molecular scale was expressed for the first time in the famous known speech of Richard 

Feynman at an American Physical Society meeting at Caltech on December 29, 195915. 

Nearly two decades later, at 1974 at the Tokyo Science University, Professor Norio 

Taniguchi came up with the term nanotechnology16. When K. Eric Drexler popularized 

the word 'nanotechnology' in the 1980's, he was talking specifically about building 

machines on the scale of molecules, a few nanometers wide motors, robot arms, and 

even whole computers, far smaller than a cell17. As nanotechnology became an accepted 

concept, the meaning of the word shifted to encompass the simpler kinds of nanometer-

scale technology. The U.S. National Nanotechnology Initiative (NNI) was created to 

fund this kind of nanotech: their definition includes anything smaller than 100 

nanometers with novel properties. NNI says that nanotechnology must involve all of the 

following: 

1. Research and technology development at the atomic, molecular of 

macromolecular levels, in the length scale of approximately 1 to 100  nm range 

2. Creation and use of structures, devices, and systems that have novel properties 

and functions because of their small and/or intermediate size 

3. Ability to control or manipulate on the atomic scale. 
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1.1.2 Classification of Nanomaterials 

 

All conventional materials such as metals, semiconductors, glass, ceramic or 

polymers can in principle be obtained with a nanoscale dimension. The spectrum of 

nanomaterials ranges from inorganic or organic, crystalline or amorphous particles, 

which can be found as single particles, aggregates, powders or dispersed in a matrix, 

over colloids, suspensions and emulsions, nanolayers and films, up to the class of 

fullerenes and their derivates. Also supramolecular structures such as dendrimers, 

micelles or liposomes belong to the field of nanomaterials. Generally there are different 

approaches for a classification of nanomaterials, some of which are summarized in 

Table 1.1-1.  

 

CLASSIFICATION EXAMPLES 

Dimension 

• 3 dimensions <100 nm 

• 2 dimensions <100 nm 

• 1 dimension <100 nm 

 

Particles, quantum dots, hollow spheres 

Tubes, filters, wires, platelets 

Films, coatings, multilayer 

Phase composition 

• Single-phase solids 

• Multi-phase solids 

• Multi-phase systems 

 

Crystalline, amorphous particles and layers 

Matrix composites, coated particles 

Colloids, aerogels, ferrofluids 

Manufacturing process 

• Gas phase reaction 

• Liquid phase reaction 

• Mechanical procedures 

 

Flame synthesis, condensation, CVD 

Sol-gel, precipitation, hydrothermal processing

Ball milling, plastic deformation 

Table 1.1-1. Classification of nanomaterials with regard to different materials 
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1.1.3 Properties of Nanomaterials 

 

 

The physical and chemical properties of nanostructured materials (such as optical 

absorption and fluorescence, melting point, catalytic activity, magnetism, electric and 

thermal conductivity, etc) typically differ significantly from those of the properties 

corresponding to bulk materials. A broad range of material properties can be selectively 

adjusted by structuring at the nanoscale (Table 1.1-2). 

 

Properties Examples 

Catalytic Better catalytic efficiency through higher surface-to-volume ratio 

Electrical Increased electrical conductivity in ceramics and magnetic 
nanocomposites, increased electric resistance in metals 

Magnetic Increased magnetic coercivity up to a critical grain size, 
superparamagnetic behavior 

Mechanical Improved hardness and toughness of metals and alloys, ductility and 
superplasticity of ceramic 

Optical Spectral shift of optical absorption and fluorescence properties, increased 
quantum efficiency of semiconductor crystals 

Sterical Increased selectivity, hollow spheres for specific drug transportation and 
controlled release 

Biological Increased permeability through biological barriers (membranes, blood-
brain barrier, etc.), improved biocompatibility 

Table 1.1-2. Adjustable properties of nanomaterials 

 

These special properties of nanomaterials are mainly due to quantum size 

confinement in nanoclusters and an extremely large surface-to-volume ratio to bulk 

materials and therefore a high percentage of atoms/molecules lying at reactive boundary 

surfaces. The increase in the surface to volume ratio results in the increase of particle 

surface energy, which leads to e.g.  a decrease in melting point or an increased sintering 

activity. It is stated that a large specific surface area of particles may significantly raise 

the level of otherwise kinetically or thermodynamically unfavorable reactions18. Even 
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gold, which is a very stable material, becomes reactive when the particle size is small 

enough19.  

 

 

1.1.4 Applications of Nanotechnology 

 

Despite the term of nanotechnology is first oriented in the second half of the 

1900’s, the use of nanoparticles dates back to ancient times.  A famous artifact from 

Roman Period (30BC-640AD) called Lycurgus cup resides in the British Museum at 

London which is made from glass and dates from the fourth century AD. What makes 

this cup unique is that its color changes from green to red. Transmission electron 

microscopy reveals that the glass contains nanoparticles of gold and silver. Surprisingly, 

the ruby color of some stained glass in churches build at medieval times (500-1450) is 

due to gold nanoparticles trapped in glass matrix, while the deep yellow color is due to 

silver nanoparticles. The size of metal nanoparticles produces these color variations. 

This example of the change in material properties at the nanoscale is a key component 

of nanotechnology.  

The range of applications is broad and growing with the current main uses as 

functional additives or precursors for emulsions, composites and coatings. While still 

only scratching the surface of their considerable commercial potential, nanomaterials 

have established an appreciable market presence -- $1 billion -- mainly in the United 

States, Western Europe and Japan. By 2011, world demand for nanomaterials is 

forecasted to reach $4.2 billion. In the longer term, the global market is projected to 

swell to $100 billion in 2025. The polymer properties that show substantial performance 

improvements include: mechanical properties (e.g., strength, modulus and dimensional 

stability), decrease in the permeability (to gases, water and hydrocarbons), thermal and 

UV stability and heat distortion temperature, flame retardancy and reduced smoke 

emissions, chemical resistance, surface appearance, electrical conductivity and optical 

clarity and increased resistance to solar degradation in comparison to conveniently filled 

polymers.  

A current status overview of a selection of recent uses of nanoparticles in various 

industrial sectors is presented in Table 1.1-3. 
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Industry 
sector 

Features added through 
Nanotechnology

Innovative product 
 

Plastics 
Industry 
 

Nano powder. Surface 
improvement, dispersion 
technology 

Thermal insulation, anti-UV, 
antibacterial, high fade resistant 
materials 

Man Made 
Fiber 
Industry 

Nano-function formulation 
technology 

High strength, anti-bacteria, abrasion 
resisting, electric conducting, low gas 
permeation, environmentally friendly 
packing materials 

Coating 
Industry 
 

Nano porous structure 
technology 

Abrasion resistant, antibacterial/UV, 
high temperature stable, flame retarding, 
nano-color paste/ink, high thermal 
conducting material 

Paper 
Production 
Industry 

Self-assembly process 
technology 

Food preservation bag, high quality 
printing paper, high-stiffness film 

Construction 
Industry 

Nano Interface processing 
technology 

Self-cleaning, thermal insulation, 
antifog 

Metal 
Industry 
 

Nanocrystal lattice control 
technology 

High strength steel aluminum alloy, 
abrasion resisting surface treatment 

Chemical 
Industry 
 

Nano-catalysts, sensor, high 
thermal; conducting 
materials, glass coating 

 

Table 1.1-3. Nanotechnology-Innovative products in materials 
 

 

1.1.5 Nanoparticle Production Methods 

 

The themes underlying nanoscience and nanotechnology are twofold: one is the 

top-down approach that is generation of nanoparticles from the size reduction of bulk 

materials, as articulated by Feynman. These approaches generally rely on physical 

processes, the combination of physical and chemical, electrical or thermal processes for 

their production. Bottom up approaches, where nanoparticles are generated from the 

atomic or molecular level, are predominantly chemical processes.  
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1.1.5.1 Top-down approaches 

 

There are a range of top-down processes that can be used to produce 

nanoparticles. The most significant of these physical methods are high energy milling, 

the combination of physical and chemical methods (chemical-mechanical milling) and 

vapor phase condensation (using laser ablation, electro-explosion, sputtering and vapor 

condensation using thermal methods). 

 

 

1.1.5.2 Bottom-up approaches 

 

Bottom up processes produce nanoparticles by combination to generate material 

from the atomic or the molecular level. The most common are chemical vapor 

deposition (CVD), sol-gel, and atomic or molecular condensation. These chemical 

processes rely on the availability of appropriate “metal-organic” molecules as 

precursors.  

 Because sol-gel processing differs from other chemical processes due to its 

relatively low processing temperature, sol-gel process is cost-effective and versatile. In 

spraying processes, the flow of reactants (gas, liquid in form of aerosols or mixtures of 

both) is introduced to a high-energy flame produced for example by plasma spraying 

equipment or carbon dioxide laser. The reactants decompose and particles are formed in 

a flame by homogeneous nucleation and growth. Rapid cooling results in the formation 

of nanoscale particles. 

 

 

1.1.6 Stabilization of nanoparticles 

 

With precise control of the size of particles, their characteristics can be controlled 

within certain limits. It is usually difficult to maintain the desired characteristics, 
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beyond the different manufacturing processes to the final product, because loose 

nanopowders tend to grow to larger particles already at room temperature and thus lose 

their nanospecific characteristics. Therefore it is necessary to select or develop suitable 

production processes and further refining/treatment processes to prevent or attenuate 

agglomeration and grain growth during generation, processing and during the use of 

nanomaterials.  

Scientists and engineers have spent much effort to overcome these difficulties. 

Analysis of the results of the numerous investigations published in thousands of papers, 

hundreds of review articles and tens of monographs have led to the conclusion that the 

most efficient and universal way to overcome these problems is to use polymer-assisted 

fabrication of inorganic nanoparticles and hybrid polymer–inorganic nanocomposites.  

Over the last two decades, polymer science has made much progress in 

developing novel methodologies of synthesis of a great variety of polymers with 

controlled macromolecular architecture and well defined morphology. Among these, 

first of all, it is important to note that controlled living ionic and radical polymerization 

and copolymerization20-23 stand forward. Today it seems possible to prepare copolymers 

of various architectures from virtually all kinds of vinyl monomers by ionic and free-

radical mechanisms by bulk, solution, suspension or emulsion processes. The ease of 

manipulating the fundamental characteristics of polymers (molecular weight, molecular 

weight distribution, chain topology, chain architecture and composition) by using 

different methods makes this approach attractive for nanoparticle engineering.  

These developments in polymer science, together with the latest achievements of 

inorganic chemistry, create a base from which to address the fundamental problem of 

increasing the sensitivity of nanoparticles to their environment, and to work out 

pathways for nanoparticle synthesis with controlled size, shape and other properties, 

and, as a result, to elaborate new advanced areas of application. 

Many different methods are used for the production of inorganic nanoparticles24-

27. For further manipulations, nanoparticles, usually existing as aggregates, are 

dispersed in a liquid or solid medium. Different mechanochemical approaches including 

sonication by ultrasound can be used for this purpose. However, the scope of such 

approaches for dispersing the nanoparticles is limited by re-aggregation of the 

individual nanoparticles and the establishment of an equilibrium state under definite 
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conditions, which determines the size distribution of the agglomerate of dispersed 

nanoparticles. Other limitations are related to temperature conditions and the limited 

stability of some types of inorganic nanoparticles to mechanical impacts. 

 Particles coated by a polymer shell are considerably more stable against 

aggregation because of a large decrease of their surface energy in comparison with bare 

particles. Such a polymer shell can be obtained by first synthesizing the inorganic 

nanoparticles in one way or another, and then dispersing them in a polymer solution. 

Finally the polymer coated inorganic nanoparticles are precipitated into a non-solvating 

phase. This is the so-called ex situ approach. Such a process of polymer shell formation 

on preformed inorganic cores can also be realized by polymerization of the desired 

monomer with organic nanoparticles dispersed in it. Finally a nanocomposite material is 

formed. The ex situ approach is the most general one because there are no limitations on 

the kinds of nanoparticles and polymers that can be used. The presence of such a shell 

increases the compatibility of the particles in the polymer matrix and makes it easier to 

disperse them. 

 In some cases, the process of protective polymer coating formation and 

nanoparticles preparation can be combined into one process or performed as a series of 

consecutive processes in one reactor (the in situ approach). This approach can be used 

also for the preparation of nanocomposites. In the in situ methods, nanocomposites are 

generated inside a polymer matrix by precursors, which are transformed into the 

desirable nanoparticles by appropriate reactions. In situ approaches are currently getting 

much attention because of their obvious technological advantages over ex situ methods. 

Traditionally polymer-nanocomposites have been prepared by in situ generation. 

The polymer matrix not only acts as a template for their synthesis but also imparts the 

necessary stability by providing a barrier against agglomeration of the metallic 

nanoparticles formed during and after the reduction process. A variety of different 

polymers (homopolymers, block copolymers and dendrimers) have been used to create 

ordered nanocomposites materials for various applications. 

Polymers provide stabilization for metal nanoparticles through the steric bulk of 

their framework, but also bind weakly to the NP surface through heteroatom that play 

the role of ligand. Poly(ethylene oxide)28, 29 and poly(vinyl pyrrolidone) (PVP) 30-34 
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have been mostly used for nanoparticle stabilization and catalysis, because they fulfill 

both steric and ligand requirements.  

The use of polymers to prevent particle aggregation during the reduction of the 

nanoparticles led Chen et al.35 to use PVP as a polymer template. It is found that Pt 

nanoparticles mediated by PVP were smaller than those obtained without PVP and had 

a narrower size distribution. The catalysts prepared with PVP mediation generally 

showed larger active specific areas than those prepared without PVP.  

Well dispersed silver nanoparticles are prepared by a chemical reduction method 

with PVP as a dispersing and reducing agent36. Silver particles with diameter shorter 

than 50 nm are protected by the coordination between silver and N in PVP, and for the 

bigger particles, with the diameter of 0,5-1µ , both N and O coordinated with the silver. 

Narayanan et al. 37 used PVP with the same proposed aim for  the Suzuki reaction 

between phenylboronic acid and iodobenzene catalyzed by PVP-Pd nanoparticle. He 

stated that the addition of excess PVP stabilizer to the reaction mixture seem to lead to 

the stability of the nanoparticle surface and size, due to the inhibition of the Ostwald 

ripening process.  

 

 

1.2 Solution Polymerization 

 

In solution polymerization, the monomer, the initiator, and the resulting polymer 

are all soluble in the solvent. Solution polymerization may involve a simple process in 

which a monomer, catalyst and solvent are stirred together to form a solution that reacts 

without the need for heating or cooling or any special handling. On the other hand, 

elaborate equipment may be required.   

Polymerization is performed in solution either batch wise or continuously. Batch 

reaction takes place in a variety of ways. The batch may be mixed and held at a constant 

temperature while running for a given time, or for a time dictated by tests made during 

the progress of the run. Alternatively, termination is dictated by a predetermined 

decrease in pressures following monomer consumption. A continuous reaction train, on 
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the other hand, consists of a number of reactors, usually up to about ten, with the earlier 

overflowing into the next and the later ones on control level, with transfer from one to 

the next by pump.  

As the reaction progresses, solution polymerization generally involves a 

pronounced increase in viscosity and evolution of heat. The viscosity increase demands 

higher power and stronger design for pumps and agitators. The reactor design depends 

largely on how the heat evolved is dissipated. A typical reactor has agitation, cooling 

and heating facilities, relief, temperature level, and pressure connections; and 

frequently, cleanout connections in addition to inlet and outlet fittings.  

Solution polymerization has certain advantages over bulk, emulsion, and 

suspension polymerization techniques. The catalyst is not coated by polymer so that 

efficiency is sustained and removal of catalyst residues from the polymer, when 

required, is simplified. Solution polymerization is one way of reducing the heat transfer 

problems encountered in bulk polymerization. The solvent acts as inert diluents, 

increasing overall heat capacity without contributing to heat generation by conducting 

the polymerization at the reflux temperature of the reaction mass, the heat of 

polymerization can be conveniently and efficiently removed. Furthermore, relative to 

the bulk polymerization, mixing is facilitated because the presence of the solvent 

reduces the rate of increase of reaction medium viscosity as the reaction progresses. 

Solution polymerization, however, has a number of drawbacks. The solubility of 

polymers is generally limited, particularly at higher molecular weights. Lower solubility 

requires that vessels be larger for a given production capacity. The use of an inert 

solvent not only lowers the yield per reactor volume but also reduces the reaction rate 

and average chain length since these quantities are proportional to monomer 

concentration. Another disadvantage of solution polymerization is the necessity of 

selecting an inert solvent to eliminate the possibility of chain transfer to the solvent. The 

solvent frequently presents hazards of toxicity, fire and other problems not associated 

with the product itself. Also, solvent handling and recovery and separation of the 

polymer involve additional costs, and removal of unreacted monomer can be difficult. 

Complete removal of the solvent is difficult in some cases. With certain monomers, 

solution polymerization leads to a relatively low reaction rate and low-molecular-weight 

polymers as compared with aqueous emulsion or suspension polymerization. 
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Solution polymerization has limited commercial utility in free-radical 

polymerization but finds ready applications when the end of the polymer requires a 

solution, as uncertain adhesives and coating processes. Solution polymerization is used 

widely in ionic and coordination polymerization.  High density polyethylene, 

polybutadiene, and butyl rubber are produced this way. Table 1.2-1 shows the diversity 

of polymers produced by solution polymerization.  

Monomer Product Solvent Catalyst Temperature 
(oF) 

Conjugated diene Synthetic 
rubber 

Hexane, 
heptanes, 
benzene etc.  

Coordination, or 
alkyllithium 

50 

Isobutylene+ isoprene Butyl rubber Methyl chloride AlCl2 -140 

Ethylene Polyethylene Ethylene Peroxygenic 210-48 

Propylene Polypropylene Hexane Anionic type -60 to 160 

Vinyl acetate Polyvinyl 
acetate 

Alcohol, ester, or 
aromatic 

Peroxygenic Precipitation 

Bisphenol A+ phosgene Polycarbonate 
resin 

  To 104 

Acrylamide+acrylonitrile Resin Water Ammonium 
persulfate 

165-175 

Acrylate Adhesive 
coating 

Ethyl acrylate Free-radical 
initiator 

Refluxing temp. 

Etyhlene + propylene + 
diene 

EPT rubber Hydrocarbon Coordination 100 

Table 1.2-1 Typical Solution polymerization processes 

 

 

1.3 Copolymerization 

 

The polymerization of organic compounds was first reported about the mid-19th 

century. However, it was not until about 1910 that the simultaneous polymerization of 

two or more monomers (or copolymerization) was investigated when it was discovered 

that copolymers of olefins and dienes produced better elastomers than either poylolefins 

or polydienees alone. The pioneering work of Staudinger in the 1930s and the 
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development of synthetic rubber to meet wartime needs opened the field of 

copolymerization.  

Copolymers constitute the vast majority of commercially important polymers. 

Compositions of copolymers may vary from only a small percentage of one component 

to comparable proportions of both monomers. Such a wide variation in composition 

permits the production of polymer products with vastly different properties for a variety 

of the end uses.  

The general copolymerization equation is: 

Equation 1.3-1 2
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Equation 1.3-2 
21

22
2

12

11
1 ,

k
k

rand
k
k

r ==  

and F1 represents the mole fractions monomers M1 and M2 in the monomer feed by f1 

and f2.  

By definition, r1 and r2 represent the relative preference of a given radical that is 

adding its own monomer to the other monomer. The physical significance Equation 

1.3-1 can be illustrated by considering the product of the reactivity ratios, 

Equation 1.3-3 
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The quantity r1r2 represents the ratio of the product of the rate constants for the 

reaction of a radical with its own kind monomer to the product of the rate constants for 

the cross sections. Copolymerization may therefore be classified into three categories 

depending on whether the quantity r1r2 is unity, less than unity, or greater than unity. 

a) r1r2 = 1; it is the case for ideal copolymerization, where each radical displays the 

same preference for adding one monomer over the other. Therefore, the 

sequence of monomer units in an ideal copolymer is random. 

b) r1 = r1 = 0; perfect alteration occurs when both r1 and r2 are zero. As the quantity 

r1r2 approaches zero, there is an increasing tendency toward alternation. 
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c) r1 > 0, r2 > 0; if r1 and r2 are both greater then unity, then each radical would prefer 

adding its own monomer. The addition of the same type of monomer would 

continue successfully until there is a chance addition of the other type of 

monomer and the sequence of this monomer is repeatedly added. Thus the 

resulting polymer is a block copolymer. 

 

1.4 Electrospinning 

 

As the broad field of nanotechnology gained widespread recognition in the 1990s, 

electrospinning has been extensively used as a powerful technique which provides a 

route to the creation of sub-micron to nano-scale fibers through an electrically charged 

jet of polymer solution/melt.  

 

The term “electrospinning” is technically derived from “electrostatic spinning”, in 

which electrical charges are employed in the process to produce filaments. Although the 

term “electro-spinning”, was used recently in 1990s, its fundamental idea dates back 

more than 70 years earlier. From 1934 to 1944, Formhals38-41  obtained a series of 

patents, for a process capable of producing micron level monofilament fibers using the 

electrostatic forces generated in an electrical field for a variety of polymer solutions.  

 

In 1969, Taylor42 fundamentally studied the shape of the polymer droplet at the tip 

of the needle and demonstrated that it is a cone and the jet is ejected from the vertex of 

the cone, referred as the “Taylor Cone”. Baumgarten43, in 1971, produced electrospun 

acrylic fibers with diameters in the range of 500-1100 nm. He reported that the diameter 

of fibers was dependent on the viscosity of polyacrylonitrile /dimethylformamide 

(PAN/DMF) solution, and the diameter of the jet became larger with increasing electric 

fields as well. Larrondo and Manley44-46 studied the relationships between the fiber 

diameter and melt temperature of polyethylene (PE) and polypropylene (PP) in the melt 

state. They found that the diameter decreases with increasing melt temperature and 

showed that the fiber diameter was reduced by 50% when the applied voltage was 

increased two-fold.  
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In the early 1990s, several research groups demonstrated that many organic 

polymers could be electrospun into nanofibers. Since then, the number of publications 

about electrospinning has been increasing exponentially every year47, 48. The very basic 

nature of the nanofibers such as very large surface area to volume ratio, flexibility in 

surface functionality, and superior mechanical performance compared with any other 

known form of the material, excites researchers’ interests. 

 
 

1.4.1 Fundamental Aspects of Electrospinning 

 

Electrospinning is recognized as a fast and simple process for making continuous 

submicron to nano size fibers, when compared with other conventional methods such as 

drawing, template synthesis, phase separation, and self-assembly. The drawing process 

requires a viscoelastic material that is suitable for high stresses and deformations during 

pulling into a single strand of very long nanofiber. In the template synthesis, a 

nanoporous metal oxide membrane is utilized as a template to make nanofibers either in 

tubular (hollow) or fibril (solid) form. However, this fabrication method cannot produce 

continuous fibers in single-strand form. The phase separation takes a long period of 

time to obtain the nano-porous fibers since it involves many steps like dissolution, 

gelation, extraction, freezing, and drying to complete the process. Similarly, the self-

assembly, a technique in which pre-existing chemicals rearrange themselves into 

desired patterns and functions, although it s easy to for obtaining smaller nanofibers, the 

complexity of the process limits the use.  

 

Figure 1.4-1 Schematic of an electrospinning setup, courtesy of NovaComp INC 
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The basic feature of an electrospinning process is depicted in Figure 1.4-1. 

Typically, one electrode is inserted into the polymer solution/melt and the other 

attached to a grounded collector. As high voltage is applied, the charge repulsion on the 

surface of the fluid causes a force directly opposite to the surface tension of the fluid 

itself. When the electric field is increased, the hemispherical surface of the fluid at the 

tip of the pipette deforms into the conical shape named as “Taylor cone”. When the 

electric field strength at the tip of this cone exceeds a critical value, a jet of fluid will 

erupt from the apex of the Taylor cone and proceeds to the collection plate. A whipping 

characteristic of the discharged polymer jet is observed during the spinning process. 

Solvent evaporation takes place from the charged polymer fibers on the way to the 

collector, leaving behind a non-woven fiber mat. 

 
 

1.4.2 Parameters of the Electrospinning Process 

 

While the electrospinning setup and process itself may be relatively simple, the 

variables involved in producing a nano-sized diameter, fiber mesh with relative 

uniformity are numerous. Mainly electrospinning depends on the complex interplay of 

surfaces, shapes, rheology, and electrical charge, so both solution and process 

parameters must be considered.  

 

Solution parameters49, 50 include choosing the best solvent for a polymer, 

viscosity, and conductivity. Process parameters51, 52 include electric field strength, flow 

rate, distance from the capillary to the collector, shape and movement of the collector, 

room temperature, and humidity.  

 
 

1.4.2.1 Polymer Solution Parameters 

 

The properties of the polymer solution have the most significant influence in the 

electrospinning process and the resultant fiber morphology. The surface tension has a 

part to play in the formation of beads along the fiber length. The viscosity of the 

solution and its electrical properties will determine the extent of elongation of the 
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solution. This will in turn have an effect on the diameter of the resultant electrospun 

fibers. 

 
 

1.4.2.1.1 Polymer-solvent relationship: 

 

Numerous polymers have been electrospun by an increasing number of 

researchers around the world. Examples of some of the polymers that have been 

successfully spun are shown in Table 1.4-1 and Table 1.4-2. Solvents of varying pH, 

polymers with molecular weights ranging from 10,000 to 300,000 and higher have been 

electrospun.  

 

 

No Polymer Solvent 
1 Cellulose acetate Acetone 
2 Polyacrylic acid, PAA Ethanol 
3 Polyacrylonitrile, PAN DMF 
4 Polyamide-6 85% v/v formic acid 
5 Poly(benzimidazol), PBI N,N-Dimethyl acetamide (DMAC) 
6 Polycarbonate Dichloromethane, Chloroform, DMF, THF
7 Poly(ε-caprolactone) 85% DMF: 15% Methylene Chloride 
8 Poly(ethylene oxide), PEO Water 
9 Poly(ethylene terephtalate), PET Trifluoroacetic acid 
10 Polyether urethane DMAc 
11 Poly (2-hydroxy ethyl methacrylate) Formic acid and ethanol 
12 Poly lactic acid, PLA Chloroform 
13 Poly-L-lactide, PLLA Dichloromethane 
14 Poly (methyl methacrylate) Toluene and DMF 
15 Polystyrene, PS Chlorobenzene, Chloroform, DMF, THF 
16 Styrene-Butadiene-Styrene (SBS),  75% THF : 25% DMF 
17 Polysulfone, Bisphenpol A 90% DMAC : 10% acetone 
18 Polyurethane, PU DMF and THF 
19 Polyvinyl alcohol, PVA Water 
20 Polyvinyl chloride, PVC 60% THF : 40% DMF  
21 Poly(vinyl pyrrolidone), PVP 65% Ethanol : 35% DMF 
22 Poly(vinylidene fluoride), PVDF DMAC, DMF, acetone 

Table 1.4-1: Summary of polymers and solvents used to produce electrospun fibers in 
the solution form 
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No Polymer Material details 
 

Processing temperature
(oC) 

1 Polyethylene (PE) HDPE, Mw = 1.35 x 105 200-220 
2 Polypropylene (PP) Isotactic-PP, MI = 0.5 220-240 
3 Nylon 12 (PA-12) Mw = 3.5 x 104 220 
4 Polyethylene terephthalate

(PET) 
Mw = 4.6 x 104 270 

5 Polyethylene naphthalate 
(PEN) 

Mw = 4.8 x 104 290 

6 PET-PEN blends 75/25, 25/75 (wt%) 290 
Table 1.4-2 Summary of polymers electrospun in the melt form 

 

1.4.2.1.2 Viscosity 

  

The viscosity of the solution has a profound effect on electrospinning and the 

resultant fiber morphology. Since the polymer length will determine the amount of 

entanglements of the polymer chains in solvent, the molecular weight of the polymer is 

directly related to the viscosity of the solution and hence on the resultant fiber 

morphology.  

 

At lower viscosity where generally the polymer chain entanglements are lower, 

polymer jet breaks up into small droplets and results in beads formation. When the 

polymer concentration increases, thus the viscosity, there is a gradual change in the 

shape of the beads from spherical to spindle like until a smooth fiber is obtained53. With 

increased viscosity, the diameter of the fiber also increases. 

 

Gupta et al.54 found that, for  Simultaneous electrospinning of two polymer 

solutions poly (vinyl chloride)/segmented polyurethane (PVC/Estane(R)) and poly(vinyl 

chloride)/poly(vinylidiene fluoride) (PVC/PVDF), the fiber diameter was directly 

proportional to the polymer concentration. Deitzel et al.55 showed that, the solution 

concentration has been found to most strongly affect fiber size, and fiber diameter had a 

power law relationship with increasing solution concentration according. As Demir et 

al56 stated a cubic relationship for polyurethaneurea copolymer , Hsu et al57 found a 

parabolic relation between the fiber diameter and polymer concentration for  

poly(epsilon-caprolactone)  case. 
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1.4.2.1.3 Surface tension: 

 

Surface tension is another important solution parameter that determines the 

resulting electrospun fiber morphology. Surface tension is the intermolecular attraction 

of solution molecules that causes the surface solution to behave as an elastic sheet. In 

order to initiate electrospinning, the force of the surface tension must be overcome to 

form the polymer jet. Likewise, solution viscosity plays an important role in 

determining the effects of surface tension. If a particular solution has a high viscosity, 

then solvent molecules spread more evenly over the entangled polymer. This in turn 

reduces the probability of solvent molecules to merge together, thus reducing surface 

tension. Therefore, a reduction in surface tension reduces the beading of an electrospun 

fiber58. Solvents such as ethanol has a lower surface tension thus they can be added to 

enhance the formation of smooth fibers53.  

 

Since the electrospinning involves stretching of the solution caused by repulsion 

of the charges at its surface, if the conductivity of the solution will increase, more 

charges could be carried by polymer jet. Therefore when a small amount of salt or 

polyelectrolyte is added to the solution, the increased charges carried by the solution 

will increase the stretching of the solution. As a result, smooth fibers with smaller 

diameters will yield59. Addition of 1 wt% salt addition in biodegradable poly-l-lactic 

acid polymer solution, nanofibers become bead-free, with relatively smaller diameters 

in the range of 200-1000 nm. Seo et al60 showed that addition of additives increased the 

conductivity which in turn the fiber diameter decreased.  

 

Kim61 examined the fabrication of gelatin nanofibers by electrospinning using the 

TFEA/W co-solvent system. They found that no beads-on-string structure was formed 

for the solution containing ionic salts. Fallahi et al62 discovered that, adding 0.1% 

surfactant reduced the solution surface tension and resulted in smaller beads and higher 

fiber diameters. By increasing the amount of surfactant to 0.3%, big beads and thinner 

fibers were produced. 
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1.4.2.2 Processing Conditions 

 

Another important parameter that affects the electrospinning process is the various 

external factors exerting on the electrospinning jet. This includes the voltage supplied, 

distance between the needle tip and the feedrate. These parameters have a certain 

influence in the fiber morphology although they are less significant than the solution 

parameters. 

 

 

1.4.2.2.1 Voltage: 

 

Voltage in the electrospinning process can be compared to the effect that gravity 

has on a waterfall. High voltage contributes to the electrospinning process by creating 

the necessary electrostatic force in conjunction with the electric field to overcome 

solution surface tension. The higher the applied voltage, the more the columbic 

repulsive force will be present within the polymer jet causing greater stretching and 

enhance fiber formation63. 

 

For the polyethylene oxide-water system, it was observed that the fiber 

morphology changed from a defect free fiber at an electrical potential of 5.5 kV to a 

highly beaded structure at 9.0 kV55. Megelski et al. determined the dependence of the 

fiber diameter of polystyrene fibers on voltage, and showed that the fiber size decreased 

more or less from 20 nm to 10 nm without a dramatic change in the pore size 

distribution when the voltage was increased from 5 kV to 12 kV64. 

 
 

1.4.2.2.2 Capillary tip to collector distance 

 

  The gap distance between the capillary tip and the collector influences the fiber 

deposition time, the evaporation rate, and the whipping or instability interval, which 

subsequently affect the fiber characteristics. When the distance between the tip and the 

collector is reduced, the jet will have a shorter distance to travel before it reaches the 
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collector plate. Since the electric field strength will also increase at the same time, it 

will increase the acceleration of the jet to the collector. As a result, there may not have 

enough time for the solvents to evaporate when it hits the collector. Gupta and Wilkes 

found an inverse relationship between applied voltage and fiber diameter but they also 

stated that bead formation density decreases with increasing distance54.  

 

However, there are also cases where at a longer distance, the fiber diameter 

increases. This increase is due to the decrease in the electrostatic field strength resulting 

in less stretching of the fibers65, 66. When the distance is too large, no fibers are 

deposited on the collector. Therefore, it seems that there is an optimal electrostatic field 

strength below which the stretching of the solution will decrease resulting in increased 

fiber diameters. 

 
 

1.4.2.2.3 Polymer flow rate 

 

The flow rate of the polymer from the syringe is an important process parameter 

as it influences the jet velocity and the material transfer rate. In the case of PS fiber, 

Megelski et al.64 observed that the fiber diameter and the pore diameter increased with a 

boost in the polymer flow rate. As the flow rate increased, fiber had pronounced beaded 

morphologies and the mean pore size increased from 90 to 150 nm.  

 
 

1.4.2.2.4 Temperature  

 

The research indicates that two major parameters depend on temperature and have 

their influence on the average fiber diameter. A first parameter is the solvent 

evaporation rate that increases with increasing temperature. The second parameter is the 

viscosity of the polymer solution that decreases with increasing temperature67. When 

polyurethane is electrospun at a higher temperature, the viscosity of the solution 

decreases and the produced fibers have a more uniform diameter showing less beading 

behavior56. 
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1.4.3 Applications of Electrospinning 

 

Nanomaterials have been attracting the attention of global materials research these 

days primarily due to their enhanced properties required for application in specific areas 

like catalysis, filtration, NEMS, nanocomposites, nanofibrous structures, tissue 

scaffolds, drug delivery systems, protective textiles, storage cells for hydrogen fuel 

cells, etc. The broad applications of electrospinning technology are summarized in 

Table 1.4-3. A quick analysis of nanofibers use for advanced functional applications 

over the past 10 years indicates that their impact is substantial. A brief discussion on 

some of the applications of nanofibers and related nanomaterials is given in this section. 

 

Sector Holy Grail Applications 
Electronics  

Precise positioning & control 
of nanofibers geometry 
 
Production of quantum wires 
 

Nanofibers mediated 
functions of cells and tissues 
 

Increase in election 
conduction property 
 

Functionalization of organic 
molecules onto inorganic 
fibers 
 

Green electrospinning 
 

Industrial scalability, mass 
production 

Super capacitors 
Biological and healthcare • Biosensors 

• Tissue engineering 
• Medical devices 
• Wound dressing 
• Cables for implantable 
• Neutral prostheses 
• Drug coated stents 
• Artificial heart value 

Energy • Photovoltaics 
• Fuel cells 
• Battery separator 
• Printable electronics 
• Hydrogen storage 

Biotechnology and Environment • Separation membranes 
• Affinity membranes 
• Water filters 
• Air filters 

Others • Gas turbine filter 
• Engine filter 
• Personal protective mask 

Table 1.4-3. Foresights on the broad applications of electrospinning 

 

With their outstanding properties such as large surface to volume ratio, high 

density of pores and excellent surface adhesion, electrospun nanofibers are suitable to 

be made into filtering media, and also can be used as protective clothing because the 

highly porous membrane surfaces help in moisture vapor transmission, increase fabric 

breathability and enhance toxic chemical resistance, all of which are essential properties 

of protective clothing68-70. 
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Electrospun nanofiber membranes have great potential for applications in 

supercapacitors, lithium cell, transistors and so on. A non-woven web obtained from 

electrospinning is used to produce activated carbon nanofibers which possess a high 

specific surface area and a low electrical resistivity through stabilization, carbonization-

activation processes71. These webs are particularly useful for supercapacitor electrodes 

without the addition of binders which normally degrades the performance of 

supercapacitors72. Kim and co-workers73 demonstrated the potentiality of PAN-based 

activated carbon nanofiber web as a novel electrode material for an electric double-layer 

supercapacitor. 

  

For fuel cell applications Pt nanoparticles are dispersed on to the polyaniline 

(PANI) nanofibers, which will enhance the stability and uniformity. The large surface 

area in the nanofiber mat has enabled the dispersion of catalyst particles with less time 

for the deposition of Pt particles74. The electrocatalytic performance of methanol 

oxidation for PANI nanowires supported Pt composite has been found to be much 

higher than at bulk Pt electrodes. Electrospinning also breakthroughs a major wall on 

the idealization of fuel cell technology, hydrogen storage problem. Since the hydrogen 

uptake is proportional to surface area, pore volume nanostructured carbon materials 

such as carbon nanotubes and carbon nanofibers can device different alternatives for 

high hydrogen storage capacity74, 75.  

 

Nanostructured polymer systems of natural or synthetic origin-in the form of 

nanofibers, hollow nanofibers, core– shell nanofibers, nanotubes, or nanorods—have a 

multitude of possible applications in medicine and pharmacy Electrospun polymer 

nanofibers have potential application in medical prostheses, orthopedics, plastic 

surgery, drug delivery, wound dressing and bone repair, etc.  
 

Kim et al. developed a biomimetic nanocomposite with a novel nanofibrous 

structure by employing electrospinning76. These nanocomposite fibers improved the 

bone-derived cellular activity significantly compared to the pure gelatin equivalent. This 

method of generating a nanofiber of the biomimetic nanocomposite was effective in 

producing a biomedical membrane with a composition gradient, which will have 

potential application in the field of guided tissue regeneration. Khil et al. prepared a 
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strands of electrospun PCL porous filaments with diameters ranging from 0.5 to 12 μm 

and used the three-dimensional fabrics as scaffold matrices77.  

 

Fine fibers of biodegradable polymers can be directly sprayed/spun onto the 

injured location of skin to form a fibrous mat dressing, which can make wounds heal by 

encouraging the formation of normal skin growth and eliminate the formation of scar 

tissue which would occur in a traditional treatment. Katti et al. also reported that 

poly(lactide-co-glycolide) (PLAGA) nanofibers showed potential as antibiotic delivery 

systems for the treatment of wounds78. 

 
 

1.4.4 Literature review of electrospun metal-polymer nanocomposites 

 

After Doshi and Reneker79 re-highlighted the use of electrospinning as a 

conventional method for the production of nanocomposite materials, the burgeoning 

interest of researchers lead the scientific focus to this technique.  

Drew et al.80 is one of the first pioneers that use the synergy of metals 

nanoparticles with electrospinning. They fabricated of novel metal oxide-coated 

polymeric nanofibers using the electrospinning technique. The electrospun PAN 

nanofibers of 100 nm were immersed in an aqueous solution of metal halide salts and 

halogen scavengers at room temperature to apply the metal oxide coating. An 80-200 

nm thick coating of tin dioxide and titanium dioxide were both successfully applied by 

this method.  

At year 2003, Yang81 et al. prepared PAN nanofibers containing Ag nanoparticles 

by electrospinning form an Ag-Sol/PAN solution, which was obtained through an in-

situ synthetic method. They found that the conductivity of Ag/PAN nanofiber is raised 

from 10-14 S/cm to 10-7 S/cm.  

Reneker and Hou82 produced electrospun nanofibers of polyacrylonitrile, 

containing an iron compound, and  converted to carbon nanofibers, with iron particles 

on their surfaces. The iron particles catalyzed the growth of carbon nanotubes with iron 

tips. A mechanically strong and electrically conducting path existed between each metal 
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particle and the supporting nanofiber network, which extended to macroscopic 

dimensions. 

The use of nanocomposite materials for antimicrobial purposes is very diverse. 

Silver as the most prominent, had been used extensively in literature. Melaiye et al83. 

used electrospinning to enhance the antimicrobial activity of a silver complex which 

encapsulated into a Tecophilic polymer fiber mat. The fiber mats released nanosilver 

particles, which in turn sustained the antimicrobial activity of the mats over a long 

period of time.  

Demir et al.84, worked on catalytic palladium (Pd) nanoparticles on electrospun 

copolymers of acrylonitrile and acrylic acid (PAN-AA) mats which were produced via 

reduction of PdCl2 with hydrazine. He investigated the effects of copolymer 

composition and amount of PdCl2 on particle size. The results showed that, Pd particle 

size mainly depended on the amount of acrylic acid functional groups and PdCl2 

concentration in the spinning solution. Increasing acrylic acid concentration on polymer 

chains led to larger Pd nanoparticles. In addition, Pd particle size became larger with 

increasing PdCl2 concentration in the spinning solution. 

As Demir et al. showed, the increase in metal concentration led to change in fiber 

diameters. Li et al85. demonstrated that by varying the molar ratio of silver nitrate to 

PAN, the diameters of the monodisperse single-crystal Ag NPs could be adjusted from 

3.5 to 10 nm. Similarly, Zhang et al86. showed, the average diameters of the ultra-fine PI 

fibers with different amounts of AgTFA decreased with respect to metal concentration. 

Besides they found that the number of Ag nanoparticles in the ultra-fine PI fibers 

increased as the amount of AgTFA increased. Xiongli also came up with the same 

results. It is observed that the silver nanoparticles with 9-20 nm average diameters were 

generated on the surface of the gelatin nanofibers. The size of the silver particles could 

be adjusted by changing the content of AgNO3. With increasing the amount of AgNO3, 

the average diameters of fibers decreased. Roso’s work also showed that spraying TiO2 

nanoparticle suspension at higher concentrations from 0.5% (w/v) to 1.25% (w/v), 2% 

(w/v) and 5% (w/v) resulted in an increase of cluster number and dimensions87. 

The literature work on different applications depending on the used metal 

precursors, size dimensions and used nanoparticle generation technique is summed up 

in Table 1.4-4. 
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Metal Polymer Reducing 
agent 

Size 
(nm) 

Use Reference 

Ag Celluse acetate 
(CA) 

NaBH4 2.8  Antimicrobial Luong, N. D 88 

Ag CA UV-
irradiation 

21  Antimicrobial Son, W. K 89 

Ag Gelatin fiber UV-
irradiation 

9-20  Antimicrobial Xu, X. L 90 

Ag Polyacrylo-
nitrile (PAN) 

DMF 5.8  Catalysis Lee, H. K91 

Ag PAN Hydrazine 10   Wang, Y.Z 92 
Ag Poly(L-lactide) H2 30  Antimicrobial Xu, X. 93 
Ag PVA UV-

irradiation 
11   Wound dressing Hong, K. H. 94 

Ag Silica Heat 73  Antimicrobial Min, K. D 95, 
Fe PAN Heat+H2 10-20 Carbon fiber 

production 
Hou, H. Q 82 

Gold Polyoxy-
etyhlene 

NaBH4 4   Kim, G. M 96 

Magnetite 
nP 

Polystyrene-b-
polyisoprene 

  4.1  Super 
paramagnetic 

Kalra, V 97 

MgO Polysulfone Aero gel 
method 

2.7-
3.3  

Warfare agent Sundarrajan 98 

MnO2 PAN Heat >50  Catalysis Oh, G. Y 99 
MnO2 PAN Heat 10  Lithium-ion 

batteries 
Ji, L. W100 

PbS PVPYR H2S 5   Lu, X. F. 101, 
Pd Chitosan H2 2-3  Catalysis Peirano, F102 
Pd PAN Heat 5-40  Catalysis Chen, L. P 103 
Pd PAN-co-

styrene 
DMF 30-35 Catalysis Yu, J. X.104 

Pd P-EDOT Electro-
chemical 

5-10  Biosensor Santhosh, P 105

Pd Poly(vinyl) 
Alcohol (PVA) 

Citrate 
reduction 

8-23  Catalysis Roy, P. S 106 

Pt Polyimidazole Heat 3  Catalysis Xuyen, N. 
T.107 

Pt PVPYR Polyol 
reduction 

2-5  Catalysis Formo, E 108 

ZnS:Cu PVA H2S 3.4  Semiconductor Wang, H. Y109 
 
Table 1.4-4. Electrospun metal composite nanofibers and usage areas 

 

Table 1.4-4 shows us that there are multiple ways for nanoparticle synthesis for 

ex-situ or in-situ approaches. The ex-situ approaches produce nanoparticles in narrower 
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and smaller dimensions88, 98, 106, 108, but with applied heat generation or repeated use of 

the synthesized structure, particles tend to aggregate 82, 99, 100, 107. The reduction method 

had a direct influence on the particle sizes. As uv-induced89, 90, 94 and reductive gas93, 101, 

102, 109 involved in-situ methods produce smaller particles, depending on the generation 

technique and temperature, particle size may agglomerate several times of its initial 

dimensions95, 99, 103, 104. 

Literature studies on thermally treated nanoparticles show a wide distribution of 

particles sizes. Kim et al.110 prepared carbon nanofibers containing palladium 

nanoparticles by electrospinning a polymer solution containing palladium chloride and 

the subsequent thermal treatment in argon. In the air-stabilization step, palladium 

cations entrapped in the electrospun PAN based nanofibers surely acted as a 

stabilization accelerator and they were converted to palladium oxide nanoparticles 

below 10 nm (Figure 1.4-2). 

 

Figure 1.4-2. TEM images of and thermally treated carbon nanofibers at 300oC, 
courtesy of Kim et al.110 
 

Chen et.al. prepared Pd-carrying composite carbon nanofibers based on 

polyacrylonitrile by electrospinning and carbonization process103. Heat treated PAN 

nanofibers even at 550oC showed an average particle size of 40 nm (Figure 1.4-3). 
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Figure 1.4-3. TEM images of Pd-NP/CENFs, courtesy of Chen at al103. 

 

Yu et al.104 produced a fibrous catalyst containing palladium nanoparticles via 

electrospinning of poly(styrene-co-acrylonitrile) (Figure 1.4-4). The fibrous catalyst 

was characterized by scanning electron microscopy and transmission electron 

microscopy respectively.  The results showed that the diameter of fiber was about 200 

nm and the palladium (Pd) nanoparticles were in the range of 30-40 nm rim on RT. 

 

 

Figure 1.4-4. TEM pictures of Pd nanoparticles, courtesy of Yu et al.104 
 
 

Zhang et al., synthesized Carbon-supported Pd–Co alloy electrocatalysts for the 

purpose of the fuel cell cathode oxygen reduction reaction (ORR) in which sodium 

borohydride is used as a reducing agent. Heat treatment of synthesized catalysts showed 

an increase in particle size with a rise in temperature111. 8.9 nm diametric nanoparticles 

synthesized at 300oC agglomerated to 13.8 nm at 700oC. 
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Lai et al.112 produced carbon nanofibers with Pd nanoparticles by carbonizing 

electrospun polyacrylonitrile (PAN) nanofibers including Pd(Ac)2. Heat treatments 

showed the reduction of Pd and aggregation into tiny particles inside the nanofibers. 

The diameter of the Pd particles was less than 5 nm, as shown in the TEM image 

(Figure 1.4-5-a). Following further heating and annealing at 600oC, the Pd nanoparticles 

grew to a size of 15 nm. Some particles were found to aggregate on the nanofiber 

surfaces (Figure 1.4-5 (b)). At the 800oC stage, the Pd particles grew to a size of 30 

nm and almost all the particles aggregated onto the fiber surfaces. When heated to 

1100oC and annealed at this temperature for 1 h, the Pd particles continued to grow on 

the fiber surfaces. The final diameter of the Pd particles was between 50 and 350 nm. In 

this case, the diameters of most Pd particles were larger than that of the carbon 

nanofibers (Figure 1.4-5 (d)). 

 

 

Figure 1.4-5. TEM images of Pd nanoparticles of varying size in/on the carbonized 

electrospun nanofibers with the process temperature: (A) 400oC, (B) 600 oC, (C) 800 oC 

and (D) 1100 oC, courtesy of Lai et al.112 

  

 Huang et al.113 synthesized palladium nanoparticle-loaded carbon nanofibers 

(Pd/CNFs) by the combination of electrospinning and thermal treatment processes. 
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 During the reduction treatment and carbonization process, Pd2+ in the polymer 

nanofibers was reduced to Pd0 and aggregates into Pd NPs. Pd NPs were deposited on 

the surface of CNFs or completely embedded in CNFs. Transmission electron 

microscopy (TEM) image (Figure 1.4-6) showed that spherical Pd NPs with a mean 

diameter of about 73 nm were well-dispersed on the CNFs.  

 

 

Figure 1.4-6 TEM image of Pd/CNF nanocomposites, courtesy of Huang et al.113 
 

 

1.5 Use of metal nanoparticles/CNF for Fuel Cell application 

 

Among the various types of fuel cells, Proton Exchange Membrane Fuel Cells 

(PEMFCs) possess a series of highly advantageous features such as a low-operating 

temperature, sustained operation at high-current density, low weight, compactness, 

potential for low cost and volume, long stack life, fast start-ups and suitability for 

discontinuous operation114-116. These features have elevated PEMFCs as the most 

promising and attractive candidate for a wide variety of power applications ranging 

from portable and stationary power supplies to transportation. Therefore, fuel cell and 
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automotive companies over the past few years have announced several new 

technologies or prototype vehicles adopting PEMFC’s117-123.   

In conventional fuel cells, electrodes are typically constructed by binding catalyst-

loaded carbon particles (e.g., Vulcan XC-72 carbon black- supported Pt) with Nafion®, 

in which carbon particles facilitate electron transport. A high catalyst loading in these 

electrodes is typically required because they cannot ensure a simultaneous access of the 

catalyst to the fuel, electron-conducting diffusion layer and proton-conducting 

electrolyte. As a result, the cost of precious metallic or alloyed catalysts will be a 

significant barrier to widespread commercial use of fuel cells. 

The limited supply and high cost of the Pt used in PEMFC electrocatalysts 

necessitate a reduction in the Pt level124, 125. In addition, the U.S. Department of Energy 

has set long-term goals for PEMFC performance in a 50 kW stack that includes 

operation with cathode loadings of 0.05 mg/cm2 or less126, 127 . 

Replacing carbon particles with one-dimensional carbon nanomaterials, such as 

carbon nanotubes (CNTs) and carbon nanofibers (CNFs) can provide effective long 

range electron transfer in electrodes, thereby resulting in improved catalyst utilization 

and lower catalyst loading. Researches is being conducted on the deposition of noble 

metal such as Pt nanoparticles onto CNTs128-130, but little has been done on CNFs. Due 

to the fascinating structure and thermal/electrical/mechanical properties, CNFs are of 

special interest recently because they can be synthesized in different graphene sheets by 

cheap and readily available methods131.  

Li et al. used the cyclic voltammogram method to deposit Pt particles onto CNFs, 

but the diameters of deposited Pt nanoclusters were too large (50–200 nm) for practical 

fuel cell applications132. Lin et al. reported on the preparation and characterization of 

Pt/carbon composite nanofibers (Pt/CNFs) by the electrodeposition of smaller Pt 

nanoparticles (≤55 nm) onto electrospun CNFs under different potentials133. 

It is important to obtain catalysts with smaller particle sizes evenly distributed on 

CNF surface, which can exhibit increased catalytic activities concomitant with a lower 

necessary loading.  
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1.6 Motivation 

 

The need for novel nanoparticles is a wide concern of scientific community. But 

the ways of producing of these extraordinary properties is another concern. Different 

methodologies and processing techniques are used for manipulating the properties of 

nanoparticles in atomic dimensions. Most of them came with the same conclusion: 

“It is obligatory to prevent the agglomeration of nanoparticles for size control 

and distribution.” 

The most efficient and universal way to overcome these problems is to use 

polymer-assisted fabrication of inorganic nanoparticles and hybrid polymer–inorganic 

nanocomposites. Electrospinning is a versatile method that will satisfy the primary 

needs for the in situ synthesis of nanoparticles within a polymer matrix. The very basic 

nature of the nanofibers produced by electrospinning i.e. very large surface area to 

volume ratio, flexibility in surface functionality, and superior mechanical performance 

compared with any other known form of the materials makes it the best choice for 

maneuvering nanoparticle properties. 

In this study, the aim is to control the size and distribution of nanoparticles by 

polymer assisted fabrication through electrospun nanofibers. 

Electrospun polymeric nanofibers are chosen as template materials to tune the 

synthesis of nanoparticles. Polymer chemistry will mediate to understand the interaction 

between metal atoms and assisting polymers. Alternatively selected monomer couples 

will guide for the best the choice of polymer as the template material. 

Electrospinning parameters will be examined in detail and different reduction 

agents and heat treatments will be applied to investigate the effect of processing 

conditions on nanoparticles generations.  

The viability of nanoparticle processing technique will be proved by cyclic 

voltammetry analysis by evaluating the performance of nanoparticles as catalyst species 

for fuel cell applications aiming the improvement of catalyst utilization and lowering 

catalyst loading by uniformly distribution of metal nanoparticles on carbonized 

nanofibers. 
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CHAPTER 2 

 

2 EXPERIMENTAL 

 

This chapter details the experimental methodology for the synthesis of 

nanoparticles supported on carbonized electrospun nanofibers. Polymer synthesis and 

characterization, electrospinning, reduction of metal salt, carbonization cycle and 

nanoparticle characterization methods will be thoroughly discussed in this section. 

 
 

2.1  Materials 

 

Acrylonitrile (AN, MW = 53.1 g/mol) was kindly supplied by Aksa Akrilik Kimya 

Sanayi A.Ş (Yalova). It was purified first by washing with dilute H2SO4 (Riedel-de-

Haen), than dilute Na2CO3 (Fluka), and distilled water. These followed by drying with 

anhydrous Na2SO4 (Merck), and finally fractional distillation over CaH2 (Merck) under 

nitrogen atmosphere.
 
The purified AN was kept at 2

o
C in refrigerator. 2-acrylamido-2-

methylpropane sulfonic acid (AMPS, MW=207,244 g/mol) was kindly supplied from 

Lubrizol and used after recrystallization in acetone. Vinyl phosphonic acid (VPA, MW= 

108,03 g/mol) was supplied from Clariant, GMBH and used after passing through a 
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silica column and acrylic acid (AA, MW = 72. 06 g/mol) and n-vinyl pyrrolidinone 

(VPYR, MW=111,14 g/mol), which were supplied from Sigma-Aldrich. 

 Azobisisobutyronitrile (AIBN, Fluka) was used as addition polymerization 

initiator after crystallization in acetone. HPLC-grade N,N-dimethylformamide (DMF, 

Aldrich) was used as solvent during the reactions and electrospinning processes. 

Palladium (II) chloride (PdCl2, MW = 177.33 g/mol, 99.9 % metal basis) and platinum 

(II) chloride (PtCl2, MW = 265.99 g/mol, 99.9 % metal basis) were obtained from Alfa 

Caesar. Sodium borohydride (NaBH4, MW = 37.83 g/mol) was purchased by Alfa 

Chemicals, while hydrazine (N2H4, MW = 32.05 g/mol) was taken from Merck. 

 

 

2.2  Polymer Synthesis 

 

 

 The solution copolymerization of acrylonitrile (AN) with different monomers was 

accomplished in N,N-dimethylformamide (DMF) at 800C for 24 hours. Monomer feed 

ratios at the solutions were selected according to the reactivity’s of monomers to 

achieve the intended composition in the final polymer backbone. 2,2’-azo-

bis(isobutyronitrile) (AIBN) was used as a radical initiator in 1 ‰ mol ratio with 

respect to the total monomer moles. The resulting product was precipitated in an 

appropriate solvent and dried in vacuum oven at 60oC until stationary weight. Polymer 

structures are given at Figure 2.2-1. 
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Copolymer Chemical Structure 
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Figure 2.2-1. Synthesized polymers chemical structures 
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2.3 Polymer Characterization 

 

 

2.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 

 

 Fourier Transform Infrared (FT-IR) studies were carried by using Bruker Equinox 

55 instrument with Attenuated Total Reflectance (ATR) attachment. Samples were 

analyzed between 4000 cm-1 and 600 cm-1. OPUSTM software was used for the 

evaluation of resulting spectrums. 

 

2.3.2 Nuclear Magnetic Resonance 

 

 Structural characterization of the materials was carried out with 1H, 13C-NMR 

spectroscopy utilizing Unity Inova 500 spectrophotometer (Varian). Deuterated 

dimethylformamide (DMF-d6), or dimethylsulfoxide (DMSO-d6) were used as locking 

solvent. 

 

 

2.3.3 Differential Scanning Calorimetry (DSC) 

 

 The thermal properties of copolymers and electrospun films were carried out 

using a Netzsch Phoenix DSC 204 differential scanning calorimeter (DSC) with 

aluminum sample pans. Samples were heated at a rate of 10oK/min at LN2/N2 

atmosphere. Initial heating cycles were carried out from RT to 200oC, and then a 

cooling step is introduced. These thermal cycles were repeated twice. Isothermal steps 

were included between the heating-cooling sequences, in order to ensure stabilization. 

The first heating was performed to eliminate the thermal history of the samples.  
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2.3.4 Thermogravimetric Analysis 

 

 Thermogravimetric analyses of the samples were carried out using a Netzsch STA 

449 C Jupiter Simultaneous thermal analyzer. Samples were heated up to 1200oC at 

10oK/min at N2 atmosphere using Al2O3 crucibles.  

 

2.4 Electrospinning 

 

 

There are multiple parameters affecting the process electrospinning. Polymer 

concentration, weight percentage of metal salt in the solution, applied voltage and tip to 

collector distance are directly influencing fiber morphology and dimensions including 

nanoparticles distribution within the fibers.  

Firstly a polymer sample was dissolved in DMF and then metal salt was added at 

a predetermined ratio by weight with respect to the polymer. Solutions were 

continuously stirred until the metal salt completely dissolves.  

At a typical electrospinning experiment, 10kV DC voltage was applied to 

grounding collector which was 10 cm apart from the tip of glass pipette. The 

electrospun fibers were collected on a 10 cm x10 cm aluminum mesh. A summary of 

the electrospinning conditions are illustrated in Table 2.4-1. 

Parameters Range 

Applied voltage 10-25 kV 

Tip to collector distance 10-20 cm 

Concentration of polymer 8-20% by weight 

Concentration of metal 0.5-20% by weight wrt. polymer weight 

Table 2.4-1. Summary of the electrospinning working condition 
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2.5 Reduction of metal salt 

 

 In order to zero valent metal particles, electrospun metal salts within the 

polymeric fibers were reduced using strong reducing agents (aqueous hydrazine 

solution or sodium borohydride). The preferably used one was hydrazine. Previous 

studies reveal that hydrazine can work as a reducing agent even if attached covalently to 

the fiber surface84. 

Equation 2.5-1 N2H4(aq)+ PtCl2 (s), PdCl2 (s)  → N2(g) + Pt0(s) , Pd0(s) + 4HCl 

Equation 2.5-2 NaBH4(s) + H2O(l) → NaBO2(aq) + H2 (g) 

Equation 2.5-3 PtCl2 (s), PdCl2 (s) + H2 (g) → Pt0(s), Pd0(s) + H+
(aq) 

 

Oxidation of hydrazine reduced the metal nanoparticles on the surface of polymer 

fibers (Equation 2.5-1, Equation 2.5-2 and Equation 2.7-1). Electrospunned fibers were 

put on diluted or concentrate reducing agents for predetermined times. Metallic 

nanoparticles appeared after several hours of reaction time in the immersed state. The 

change of the color of the film to dark gray indicated that the Pd2+ ions are reduced to 

Pd0 metal particles (Figure 2.5-1). The intensity of the color depended on the amount of 

metal used. When the metallization process was completed, electrospun mat was treated 

with distilled water for the removal of excess reducing agent. After the washing process 

fiber mats were dried at vacuum oven at 50oC for 24h. 

 

Figure 2.5-1. Reduction reaction: The change of the color of polymeric fiber mat and 
evolution of N2(g), before and after. 
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2.6 Carbonization Cycle 

 

 

After the reduction process electrospun nanofiber mats were heat treated on 2 

different cycles (Figure 2.6-1). First heating cycle involves the oxidation and 

stabilization of the polymeric fibers by heating at 5oC/min form RT to 200oC at O2(g) 

atmosphere and a 30 min isotherm at that temperature. Second heating cycle started 

with a 10 min isothermal step at 200oC at N2(g). The carbonization process began from 

200oC to 600oC, 800oC, 1000oC and 1200oC with various heating rates at, 5, 20 and 

40oC per minute. Heat treatments were conducted by Netzsch 449C Jupiter TGA 

instrument, which had 0.1oC sensitivity. 

 

 

Figure 2.6-1. Heat treatment cycle, 40K/min heating rate for carbonization cycle 
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2.7 Nanoparticle Characterization 

 

 

2.7.1 X-ray Diffraction (XRD) 

 

XRD was a non-destructive tool to characterize the samples by determining the 

material's crystal structure and the various phases. XRD patterns of scattered x-ray 

photons showed peaks as specific angles for crystalline materials. Peak patterns were 

specific to individual materials. Peaks could be analyzed to determine average crystal 

size using the Debye-Scherrer equation: 

Equation 2.7-1   
( ) B

K

B
L

θ
λ

θ

α

cos
9,0

2

l×
=

 

 
where L was the average crystal size, B was the full width half maximum (FWHM) of 

the peak, θ was the diffraction angle and λ was the wavelength of the x-rays, that was 

fixed at 1.5406 Å for Cu-Kα. 

Crystal structure and size of the nano metal particles were studied with X-ray 

powder diffractometer (Bruker AXS-D8, Karlsruhe, Germany). The measurements were 

performed in the 2θ range of 300-900 at 40kV and 40 mA. The step size was 0.040 and 

step time was adjusted to 20 sec in each step. A typical measurement for the main 

crystalline (111) peak was adjusted from 350 to 450. 

 
Peak analysis was performed with the help of Diffrac Plus EVA software. 

Analysis of the (111) peak scans allowed for curve fitting and background noise 

subtraction. With a curve fit, the software could calculate the FWHM of the peak, and 

state the error of the fit. This was then put into the Scherrer formula (Equation 2.7-1) to 

calculate average crystal size. 
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2.7.2 Optical Characterization 

 

The electrospun fiber morphologies and nanoparticle dimension were examined 

via optical characterization techniques. 

 

 

2.7.2.1 Optical microscopy 

 

During electrospinning, optical microscopy (Nikon Eclipse ME600) was used as 

the first step for the control of fiber morphology and dimensions according to tip to 

collector distance and applied voltage. 

 

 

2.7.2.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray 

Spectroscopy (EDXS) 

 

 
The electrospun fibers were investigated using scanning electron microscope 

(Supra Gemini 35 VP Field Emission SEM, Leo). Fiber diameters and nanoparticle size 

dimensions are measured from the TIF images captured during investigation of samples. 

For a representative measurement, an average of 100 counts per sample was taken using 

image processing programs (IMAGE J version 1.36b and Image-Pro Plus version 

4.5.0.29). 

Elemental analysis of samples was performed using the Energy Dispersive X-ray 

detector (XFlash Silicon Drift Detector) attached to SEM instrument by Quantax 

software. An extracting voltage of 20kV used for analyzing the samples. 
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2.7.2.3 Transmission Electron Microscopy (TEM) 

 
The size of the nanoparticles could be analyzed via TEM that allowed much 

higher resolution than the SEM. Jeol 2100 and FEI Super Twin FE-TEM Transmission 

Electron Microscopy was used (TEM) for particles that was less than 10 nanometers. 
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CHAPTER 3 

 

3 RESULTS & DISCUSSION 

 

This chapter of the thesis illustrated the results obtained throughout the research. 

Characterization of synthesized polymers was discussed in detail to better understand 

the polymer morphology and to guide to explain the electrostatic interaction between 

the polymer and metal couple. NMR, FT-IR and thermal characterizations were used for 

polymer characterizations. 

Electrospinning processing conditions and solution parameters showed different 

nanofiber morphologies. Appropriate choice of reduction agents was discussed.  

Characterizations of nanoparticles were performed via SEM, TEM and XRD 

techniques. The effect of heat treatment, the type of copolymer with changing co-

monomer concentration and the effect of increasing concentration of metal precursor 

were investigated. 

 Cyclic voltammetry showed the feasibility of the use of nanoparticles on 

fuel cell applications. Cyclic voltammetry experiment results supported the aim of the 

improvement of catalyst utilization and lowering catalyst loading by uniformly 

distribution of metal nanoparticles on carbonized nanofibers. 

 



44 
 

3.1 Poly(acrylonitrile-co-acrylic acid), P(AN-co-AA) 

 

 

3.1.1 Polymer Characterization 

 

 Poly(AN-co-AA) copolymer was synthesized by solution polymerization of AN 

with AA in DMF solvent at 80oC for 24h. 5, 10 and 20 mole % AA containing reactions 

were run. AIBN was used as addition polymerization initiator at a concentration of 0.1 

mol % relative to total mol number of AN and AA (Table 3.1-1).  

 

Copolymer 
Comonomer in 

feed 

(% mol) 

Comonomer in polymer 
backbone 

(% mol) 

Reactivity 
ratio 

(r1/r2) 

Yield

(%) 

P(
A

N
-c

o-
A

A
) 

2.5 5 
AN/AA 

= 

0.51/3.84 

45.8 

5.2 10 24.5 

10.8 20 36.2 

Table 3.1-1. Synthesis of Poly(AN-co-AA) 

 

The product was precipitated at acetone and the yield changed from 24.5% to 

45.8%. The monomer feed in AA is selected according to the reactivity ratios calculated 

from NMR characterization results of the prior syntheses. The results obtained were in 

accordance with the results at Moghadam’s134 work obtained by Kelen-Tudos method.  
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3.1.1.1 FT-IR characterization 

 

 

Figure 3.1-1 FT-IR spectrum of P(AN-co-10%AA) and P(AN-co-10%AA)-5%Pd 

 

FT-IR spectrum (Figure 3.1-1) analysis showed the characteristic vibration of       

–CN at 2243 cm-1. Carbonyl –C=O vibration at 1725 cm-1 showed that AA moiety was 

inserted into the backbone of AN.  
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3.1.1.2 NMR characterization 

 

%10 AA

%5 AA

ppm (t1)
1.502.002.503.003.50

%20 AA

-CH2- of AN

-CH2- of AA

 

Figure 3.1-2. 1H NMR spectrums of P(AN-co-AA) at different AA concentrations from 
5%, 10% and 20% from top to bottom respectively 

1H NMR spectrums (Figure 3.1-2) were the second steps for the verification of 

polymer structure. The shifts at 2.01 ppm represented the methylene group of AA in the 

polymer backbone, whereas the peak at 2.23 ppm represents AN. The strong absorption 

at 2.91 ppm and 2.73 ppm were the d6-peaks for DMSO. The revealed integration data 

from 1H NMR spectrums helped to calculate the ratio of AA to AN in the polymer 

backbone. The calculated reactivity ratios (0.51/3.84; AN/AA-Table 3.1-1) showed that 

the polymer structure was mainly a blocky-copolymer.  

 

3.1.1.3 Thermal characterization 

 

Thermal investigations of P(AN-co-AA) showed the glass transition of polymer 

shifts from 97.3oC to 116.9oC as the AA concentration increased within the polymer 

backbone (Figure 3.1-3). Thermogravimetric analysis of P(AN-co-AA) showed that as 

the AA content in backbone increased, polymer lost the high temperature stability 
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(Figure 3.1-4). The start of the degradation process shifted from 349oC to 157oC, 

suggesting that the cyclization process for the nitrile side chain in AN backbone was 

catalyzed by the loss of acidic group in AA structure. Early decomposition of polymeric 

integrity hardened the use of P(AN-co-AA) nanofibers for CNF applications. 

[#] Instrument 
[1.5] DSC 204
[2.5] DSC 204
[3.5] DSC 204

File
P(AN-20%AA)22.2.2006-2.sdd
P(AN-5%AA)22.2.2006.sdd
P(AN-10%AA)22.2.2006-2.sdd

Date
2006-03-22
2006-03-20
2006-03-22

Identity
P(AN-20%AA)22.2.2006-2
P(AN-5%AA)22.2.2006
P(AN-10%AA)22.2.2006-2

Sample
P(AN-20%AA)22.2.2006-2
P(AN-5%AA)22.2.2006
P(AN-10%AA)22.2.2006-2

Mass/mg
5.200
10.000
7.100

Segment
5/9
5/9
5/9

Range
-50.0/10.0(K/min)/175.0
-50.0/10.0(K/min)/175.0
-50.0/10.0(K/min)/175.0

Atmosphere
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---

Corr.
800
800
800

0 20 40 60 80 100 120 140 160
Temperature /°C

0.25

0.30

0.35

0.40

0.45

DSC /(mW/mg)

Main    2009-07-16 21:59    User: Burak Birkan aa-sta.ngb

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

107.7 °C
118.1 °C
116.9 °C
125.9 °C

0.311 J/(g*K)

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

82.1 °C
118.0 °C

97.3 °C
128.0 °C

0.248 J/(g*K)

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

101.3 °C
115.7 °C
113.1 °C
125.3 °C

0.290 J/(g*K)
[1.5]

[2.5]

[3.5]
↓  exo

 

Figure 3.1-3 DSC analysis of P(AN-co-AA) at different AA concentrations. 

[#] Instrument 
[1] STA 449 C
[4] STA 449 C
[6] STA 449 C

File
P(AN-5%AA)22.2.20.ssu
PAN-AA-10.ssu
PAN-AA-20.ssu

Date
2006-03-21
2005-08-11
2005-07-28

Identity
P(AN-10%AA)22.2.20
PAN-AA-10
PAN-AA-20

Sample
P(AN-10%AA)22.2.2006
PAN-AA-10
PAN-AA-20

Mass/mg
17.830
27.690
33.050

Segment
1/1
1/1
1/1

Range
25.0/10.0(K/min)/1000.0
25.0/10.0(K/min)/750.0
24.0/10.0(K/min)/750.0

Atmosphere
N2/--- / Dry Air/50 / N2/---
N2/50 / Dry Air/0 / N2/---
N2/60 / Dry Air/60 / N2/---

Corr.
---
---
TG:300

100 200 300 400 500 600 700
Temperature /°C

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

DTA /(uV/mg)

40

50

60

70

80

90

100

TG /%

Main    2009-07-17 11:38    User: Burak Birkan

% Temp. Search
52.11 %

749.6 °C

Residual Mass: 48.25 % (749

Residual Mass: 40.38 % (74

Onset: 349.4 °C

Onset: 295.5 °C

Onset: 157.2 °C

Mass Change: -48.81 %

Mass Change: -51.60 %

Mass Change: -58.89 %

[1]

[1]

[4]

[4]

[6]

[6]

↓  exo

 

Figure 3.1-4 TGA analysis of P(AN-co-AA) at different AA concentrations. 
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3.1.2 Electrospinning characterization 

 

Copolymer Functional 
monomer %1 

Metal Metal 
%2 

Polymer 
%3 

Fiber diameter 
(nm) 

P(
A

N
-c

o-
A

A
) 5 

Pd 

0.5 19.8 867±71 

1 19.8 548±52 

5 

19.8 440±56 

10 12.5 153±23 

20 12.7 214±18 

Table 3.1-2. Electrospun P(AN-co-AA) polymer fiber diameter. 1: Functional monomer 
in polymer backbone 2: Metal weight percentage with respect to polymer weight in 
electrospinning solution 3: Polymer weight percentage in electrospinning solution  

 

P(AN-co-AA) copolymer samples were electrospun at 10kV voltage difference 

between the tip and the collector which were 15 cm apart from each other. Table 3.1-2 

showed that as the metal concentration in the electrospun solution increases, an increase 

in fiber diameters is observed for P(AN-co-5%AA). Since the viscosity of the solution 

was high enough to overcome the surface tension to form a stable fiber jet, the increased 

conductivity of the solution led to the formation of more uniform and thinner fibers. 
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Figure 3.1-5. SEM pictures for P(AN-co-5%AA) at different Pd loadings a)0.5% b)1% 
c)5% respectively 

 

Figure 3.1-6. SEM pictures for P(AN-co-AA)-5%Pd at different AA concentrations 
a)10%, b)20% respectively 

 

The electrospun polymeric fiber mats were metalized after reduction of Pd metal 

into its zero valent in dilute hydrazine solution in 1h reaction. SEM analyses of fibers 

showed metal nanoparticles were formed within the fiber surface. The sizes of the metal 

nanoparticles were found to be on the order of couple 10 nm’s. The change in the 

acrylic acid content within the polymer backbone from 10% to 20% increased the 

particle size from 65±6.4 nm to 96±8.3 nm, as the AA content in the polymer (Figure 

3.1-6). This result was in accordance with Demir’s84 work. The electrostatic interaction 

between Pd cation and the acrylic acid carboxylic group might have affected the size 

and the distribution of the metal within the polymeric fiber. The increase in particle size 

might be attributed due the effect of the blocky nature of the copolymer, where the 

nucleation of metal particles took within the size domain of AA groups in the reduction 

reaction.  
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3.2 Poly(acrylonitrile-co-vinyl phosphonic acid), P(AN-co-VPA) 

 

 

3.2.1 Polymer Characterization 

 

Copolymer 
Comonomer in 

feed 

(% mol) 

Comonomer in polymer 
backbone 

(% mol) 

Reactivity 
ratio 

(r1/r2) 

Yield

(%) 

P(AN-co-
VPA) 

2.8 5 
AN/VPA 

= 

0.49/2.55 

33.3 

5.5 10 33.7 

9.6 20 38.5 

Table 3.2-1 Synthesis of Poly(AN-co-VPA) 

 

Poly(AN-co-VPA) copolymer was synthesized by solution polymerization of AN 

with VPA in DMF solvent at 80oC for 24h. 5, 10 and 20 mole % VPA containing 

reactions were run. AIBN was used as addition polymerization initiator at a 

concentration 0.1 mol % relative to total mol number of AN and VPA. The product was 

precipitated at acetone and the yield changed from 33.3% to 38.5% (Table 3.2-1). The 

monomer feed in VPA was selected according to the reactivity ratios calculated from 

NMR characterization results of the prior syntheses.  

 

 

3.2.1.1 FT-IR characterization 

 

FT-IR spectrum (Figure 3.2-1) analysis showed the characteristic vibration of       

–CN at 2243 cm-1. The bands at around 1200 cm-1
 were developed from -P=O 

symmetric and antisymmetric stretching vibrations. Also, the P-O-(H) stretching 

vibrations can be found at 1053 cm-1. As the Pd concentration in the polymer fiber 
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increased from 0.5% to 5%, the intensity of the 1174 cm-1 peak shifted to 1220 cm-1. 

The shift in the group stretching frequency of the –P=O group suggested an electrostatic 

interaction between Pd metal with the phosphonic side chain.  

 

 

Figure 3.2-1. FT-IR spectrum of P(AN-co-5%VPA) electrospun fibers at different Pd 
metal content, 0.5%, 1% and 5% from top to bottom. 
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3.2.1.2 NMR characterization 

 

Figure 3.2-2 showed the 1H NMR spectrums for P(AN-co-VPA) at different VPA 

content in polymer backbone from 5% to 20% from top to bottom respectively. The 

base peak at 2.03 ppm and 2.1 ppm represented the methylene group of AN and VPA in 

the polymer backbone. The strong absorption at 2.91 ppm and 2.73 ppm were the d6-

peaks for DMSO. Since the integration was hardly difficult due to the overlap of two 

methylene groups, the phosphonic acid hydrogen’s were used to calculate the ratio of 

AN to VPA in the polymer backbone. The calculated reactivity ratios (0.49/2.55; 

AN/VPA-Table 3.2-1) showed that the polymer structure was mainly a blocky-

copolymer.  

 

%5VPA

%10VPA

%20VPA

-PO3 ︵H2 ︶

-CH2- of AN

ppm (t1)
2.03.04.05.0  

Figure 3.2-2 1H NMR spectrums of P(AN-co-VPA) at different VPA concentrations 
from 5%, 10% and 20% from top to bottom respectively 
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3.2.1.3 Thermal characterization 

 

DSC analysis of P(AN-co-VPA) copolymers showed a decrease in glass transition 

with respect to increased VPA content in the polymer backbone from 5% to 20%. Tg 

values changed from 122.5oC to 99.9oC (Figure 3.2-3). The degradation mechanism for 

copolymers showed a delayed degradation temperature for the polymer backbone from 

381oC to 392oC which was associated with the cyclization of nitrile chain in the 

polymer backbone (Figure 3.2-4). The flame retardancy properties of phosphonic acid 

groups within the polymer chain retarded the cyclization reaction. The increased 

thermal properties of the polymer showed a residual mass of 54.4% for 20%VPA in 

copolymer which was considered to be almost 1.5 times for P(AN-co-20%AA). But the 

increased rate of decomposition at the early stages of decomposition mechanism 

prevented the stabilization reactions for further carbonization reactions. 

[#] Instrument 
[1.9] DSC 204
[2.9] DSC 204
[3.9] DSC 204

File
P(AN-VPA)-5%.sdd
PAN-VPA-10.sdd
PAN-VPA-20-2.sdd

Date
2006-01-19
2005-08-02
2005-08-05

Identity
P(AN-VPA)-5%
PAN-VPA-10
PAN-VPA-20

Sample
P(AN-VPA)-5%
PAN-VPA-10
PAN-VPA-20

Mass/mg
12.000
5.500
10.900

Segment
9/9
9/9
9/9

Range
-50.0/10.0(K/min)/350.0
-50.0/10.0(K/min)/350.0
-50.0/10.0(K/min)/350.0

Atmosphere
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---

Corr.
300
300
300

60 80 100 120 140
Temperature /°C

0.20

0.25

0.30

0.35

0.40

0.45

0.50

DSC /(mW/mg)

Main    2009-07-20 01:12    User: Burak Birkan

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

36.9 °C
113.1 °C
122.5 °C
135.5 °C

0.361 J/(g*K)
Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

101.6 °C
113.5 °C
117.3 °C
125.9 °C

0.281 J/(g*K)

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

83.6 °C
106.3 °C
99.9 °C

118.6 °C
0.240 J/(g*K)

[1.9]

[2.9]

[3.9]

↓  exo

 

Figure 3.2-3 DSC analysis of P(AN-co-VPA) at different VPA concentrations from 5%, 
10% and 20% from top to bottom respectively. 
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[#] Instrument 
[1] STA 449 C
[2] STA 449 C
[3] STA 449 C

File
PAN-VPA-5.ssu
PAN-VPA-10.ssu
PAN-VPA-20.ssu

Date
2005-08-17
2005-07-27
2005-08-05

Identity
PAN-VPA-10
PAN-PVPA-5-STA
PAN-VPA-20

Sample
PAN-VPA-10
PAN-PVPA-5-STA
PAN-VPA-20

Mass/mg
17.230
92.590
43.820

Segment
1/1
1/1
1/1

Range
26.0/10.0(K/min)/750.0
25.0/10.0(K/min)/750.0
25.0/10.0(K/min)/750.0

Atmosphere
N2/50 / Dry Air/0 / N2/---
N2/60 / Dry Air/60 / N2/---
N2/60 / Dry Air/60 / N2/---

Corr.
---
TG:800
TG:300

100 200 300 400 500 600 700
Temperature /°C

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

DTA /(uV/mg)

55

60

65

70

75

80

85

90

95

100

TG /%

Main    2009-07-17 11:40    User: Burak Birkan aa-sta.ngb

Onset: 381.9 °C

Residual Mass: 61.71 % (74

Onset: 389.9 °C

Residual Mass: 60.10 % (749

Onset: 392.0 °C

Residual Mass: 54.42 % (749

Mass Change: -37.02 %

Mass Change: -37.62 %

Mass Change: -41.75 %

[1]

[1]

[2]

[2]

[3]

[3]

↓  exo

 

Figure 3.2-4 STA analysis of P(AN-co-VPA), 5%, 10% and 20% respectively 

 

3.2.2 Electrospinning characterization 

 

Copolymer Functional 
monomer %1 

Metal Metal 
%2 

Polymer 
%3 

Fiber diameter 
(nm) 

P(
A

N
-c

o-
V

PA
) 

5 

Pd 

0.5 20 289±36 

1 20 255±40 

5 

20 230±26 

10 17.9 321±56 

20 13.7 290±35 

Table 3.2-2 Electrospun P(AN-co-VPA) polymer fiber diameter. 1: Functional 
monomer in polymer backbone 2: Metal weight percentage with respect to polymer 
weight in electrospinning solution 3: Polymer weight percentage in electrospinning 
solution 

 

The beaded structure of the electrospun P(AN-co-5%VPA)-0.5%Pd was enhanced 

by adding up to 5% Pd in the electrospinning solution where more uniform and thinner 
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fibers could be obtained (Table 3.2-2). Average fiber diameters reduced from 289 nm to 

230 nm and finer fibers were obtained (Figure 3.2-5).  

 

 

Figure 3.2-5. SEM pictures for P(AN-co-5%VPA) at different Pd loadings a)0.5% b)1% 
c)5% 

 

As VPA content in polymer was increasing the fibers become thicker and 

although dilute solutions were used, after metallization of fibers via reducing the salt, 

porous fiber structure and the texture deformed from uniformity and fibers merged 

together (Figure 3.2-6). The same problem was encountered again during the heat 

stabilization of fibers (Figure 3.2-7). The melting of fibers at 200oC changed the 

morphology and rather than a fiber net, a film of fibers was obtained.  

Average particle size of metal nanoparticles also tended to increase within the 

increasing VPA content of the polymers. Particle size rose from 62±7.9 nm to 75±8.6 

nm and 87±9.4 nm as the VPA concentration increased from 5% to 20%. Metal 

nanoparticles seemed to agglomerate and cluster of nanoparticles rather than single 

crystals were obtained. The conclusion for AA case could also be thought for VPA case. 
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 The electrostatic interaction of the phosphonic acid moiety within the block 

copolymer nature of the polymeric fiber with the Pd atom might have centralized the 

nanoparticle formation on the VPA domain.   

 

 

Figure 3.2-6 SEM pictures for P(AN-co-VPA)-5%Pd at different VPA concentrations 
a)5% b)10% and c)20% respectively 

Figure 3.2-7. SEM pictures for P(AN-co-5%VPA) fibers before and after heat treatment 

at 200oC  
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3.3 Poly(acrylonitrile-co-2-acrylamido-2-methylpropane sulfonic acid),        

P(AN-co-AMPS) 

 

 

3.3.1 Polymer Characterization 

 

Copolymer 
Comonomer in 

feed 

(% mol) 

Comonomer in polymer 
backbone 

(% mol) 

Reactivity 
ratio 

(r1/r2) 

Yield

(%) 

P(
A

N
-c

o-
A

M
PS

) 3.5 5 
AN/AMPS 

= 

0.88/5.96 

78.2 

7.0 10 80.6 

12.0 20 70.4 

Table 3.3-1 Synthesis of Poly(AN-co-AMPS) 

 

Poly(AN-co-AMPS) copolymer was synthesized by solution polymerization of 

AN with AMPS in DMF solvent at 80oC for 24h. 5, 10 and 20 mole % AMPS 

containing reactions were run. AIBN was used as addition polymerization initiator at a 

concentration of 0.1 mol % relative to total mol number of AN and AA. The product 

was precipitated at methanol and the yield changed from 70.4% to 80.6% (Table 3.3-1). 

The monomer feed in AMPS was selected according to the reactivity ratios calculated 

from NMR characterization results of the prior syntheses.  

 

 

3.3.1.1 FT-IR characterization 

 

FT-IR spectrum (Figure 3.3-1) analysis showed the characteristic vibration of       

–CN at 2243 cm-1. The strong absorption bands at round 1540 cm-1 and 1659 cm-1 

confirmed the amide groups of the AMPS unit in the host polymer. In addition, two 
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sharp peaks at 1109 cm-1 and 1209 cm-1 verifying the S-O stretching typical of the 

sulfonate groups were clearly observed. 1610 cm-1 and 1420 cm-1 bands were due to      

–NH2 stretching and deformations bands associated to AMPS side chain.  

 

 

Figure 3.3-1 FT-IR spectrum of P(AN-co-AMPS) electrospun fibers at different Pd 
metal content, 0,5%, 1% and 5% from top to bottom  
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3.3.1.2 NMR characterization 

 

-CH2- of AN

-CH2- of-AMPS

-CH3 of AMPS

%20 AMPS

ppm (t1)
1.502.002.503.003.50

%5 AMPS

%10 AMPS

 

Figure 3.3-2 1H NMR spectrums of P(AN-co-AMPS) at different AMPS concentrations 
from 5%, 10% and 20% from top to bottom respectively 

 

The 1H-NMR spectrum (Figure 3.3-2) analysis of P(AN-co-AMPS)  showed 

methine  protons of AN and AMPS at around 3.00 to 3.50 ppm and methylene  protons 

of AN at the backbone at 2.04 ppm and 1.72 ppm for AMPS at the backbone. The 

methyl groups of AMPS at the side chain were shown at 1.43 ppm. The integral of the 

methyl groups with respect to AN methylene groups was used to calculate the content 

of AMPS within the polymer. The calculated reactivity ratios (0.88/5.96; AN/AMPS-

Table 3.3-1) showed that the polymer structure was mainly a blocky-copolymer.  
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3.3.1.3 Thermal Characterization 

 

Thermal analysis (Figure 3.3-3and Figure 3.3-4) of the polymer showed a broad 

glass transition around 89.3°C and shifting to 100.1°C as AMPS content in the polymer 

was increasing. Fast decomposition of AMPS side chain begun at after losing of water 

in sulfonic acid which fallowed by the cyclization of nitrile chain and breakage of 

amide linkage in AMPS side chain led to a fast decomposition up to 270°C from 312°C 

as AMPS content in the polymer is increasing. It continued sharply to about 560°C by 

the loss of up to 57% of total mass to that temperature. The residual mass was 

decreasing to 40% at 750°C with P(AN-co-20%AMPS). This early decomposition of 

copolymer nature lacks the suitability for the formation of stabile CNF’s. 

[#] Instrume...
[1.9] DSC 204
[2.9] DSC 204
[5.9] DSC 204

File
P(AN-AMPS)-%20-11-11.sdd
P(AN-AMPS)-%10-ace-11-11.sdd
P(AN-AMPS)-%5-28-12-aceto.sdd

Date
2005-12-15
2005-12-16
2006-01-04

Identity
P(AN-AMPS)-%20-11-11
P(AN-AMPS)-%10-ace-11-11
P(AN-AMPS)-%5-28-12-aceto

Sample
P(AN-AMPS)-%20-11-11
P(AN-AMPS)-%10-ace-11-11
P(AN-AMPS)-%5-28-12-aceto

Mass/...
6.200
8.800
7.200

Segm...
9/9
9/9
9/9

Range
-50.0/10.0(K/min)/350.0
-50.0/10.0(K/min)/350.0
-50.0/10.0(K/min)/350.0

Atmosphere
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---

Co.
800
800
800

40 60 80 100 120 140
Temperature /°C

0.20

0.25

0.30

0.35

0.40

0.45

0.50

DSC /(mW/mg)

Main    2009-07-16 23:16    User: Burak Birkan aa-sta.ngb

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

85.7 °C
101.7 °C
100.1 °C
112.1 °C

0.428 J/(g*K)

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

78.6 °C
95.1 °C
90.7 °C

104.5 °C
0.262 J/(g*K)

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

75.6 °C
89.1 °C
89.3 °C

103.3 °C
0.334 J/(g*K)

[1.9]

[2.9]

[5.9]

↓  exo

 

Figure 3.3-3 DSC analysis of P(AN-co-AMPS) at different AMPS concentrations  
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[#] Instrum...
[1] STA 449 C
[2] STA 449 C
[3] STA 449 C

File
P(AN-AMPS)-%20-11-11.ssu
P(AN-AMPS)-%5-28-12-aceto.ssu
P(AN-AMPS)-%10-ace-11-11.ssu

Date
2005-12-15
2006-01-04
2005-12-16

Identity
P(AN-AMPS)-%20-11-11
P(AN-AMPS)-%5-28-12-aceto
P(AN-AMPS)-%10-ace-11-11

Sample
P(AN-AMPS)-%20-11-11
P(AN-AMPS)-%5-28-12-aceto
P(AN-AMPS)-%10-ace-11-11

Mass...
59.272
24.331
68.705

Se...
1/1
1/1
1/1

Range
26.0/10.0(K/min)/850.0
25.0/10.0(K/min)/750.0
28.0/10.0(K/min)/850.0

Atmosphere
N2/--- / Dry Air/50 / N2/---
N2/--- / Dry Air/50 / N2/---
N2/--- / Dry Air/50 / N2/---

Corr.
TG:300
TG:300
TG:300

100 200 300 400 500 600 700
Temperature /°C

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

DTA /(uV/mg)

40

50

60

70

80

90

100

TG /%

Main    2009-07-20 17:24    User: Burak Birkan

% Temp. Search: 
39.74 %

749.8 °C

Mass Change: -57.81 %

% Temp. Search: 
56.00 %

749.0 °C

Mass Change: -42.86 %

% Temp. Search: 
50.35 %

749.3 °C

Mass Change: -47.67 %Onset: 270.8 °C

Onset: 280.0 °C

Onset: 312.4 °C

[1]

[1]

[2]

[2]

[3]

[3]

↓  exo

 

Figure 3.3-4 TGA analysis of P(AN-co-AMPS) at different AMPS concentrations from 
5%, 10% and 20% from top to bottom respectively 

 

 

3.3.2 Electrospinning characterization 

 

Copolymer %Functional 
monomer 1 

Metal Metal 
%2 

Polymer 
%3 

Fiber diameter 
(nm) 

P(
A

N
-c

o-
A

M
PS

) 

5 

Pd 

0.5 19.5 457±27 

1 18.7 445±72 

5 

15.5 423±52 

10 16.3 170±27 

20 17.8 233±32 

Table 3.3-2 Electrospun P(AN-co-AMPS) polymer fiber diameter. 1: Functional 
monomer in polymer backbone 2: Metal weight percentage with respect to polymer 
weight in electrospinning solution 3: Polymer weight percentage in electrospinning 
solution 
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Electrospinning of P(AN-co-AMPS) polymer solutions produced fibers of 

different diameters. As the fiber diameter was reduced with the increasing metal in the 

solution, thinner fibers were obtained (Figure 3.3-5). With increasing AMPS 

concentration it was also possible to handle thinner fibers (Table 3.3-2).  

 

 

Figure 3.3-5 SEM pictures for P(AN-co-5%AMPS) at different Pd loadings a)0.5% 
b)1% c)5% 

 

The surprising nature of P(AN-co-AMPS) electrospun mats was revealed during 

the detailed SEM analysis of fibers. Previous electrospun copolymer yielded 

nanoparticles on few tens of nanometers. But the nanoparticles produced on the surface 

of AMPS copolymers showed a distinct different behavior where particles on 5nm 

dimensions were observable (Figure 3.3-6).  
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Figure 3.3-6 SEM pictures Electrospun P(AN-co-%5AMPS)-5%Pd, reduced 
nanoparticles 
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Figure 3.3-7 TEM pictures of P(AN-co-5%AMPS) at different Pd loadings a)0.5% 
b)1% c)5% 

TEM analysis of P(AN-co-5%AMPS) copolymeric fibers at different Pd loading 

were shown at Figure 3.3-7. The lowest doped fibers showed a nanoparticle diameter of 

7.7±2.6 nm but the particles were agglomerated. As the metal concentration increased to 

1%, we saw a uniform distribution of nanoparticles on the order of 10.7±2.3 nm. The 

increase in metal concentration to 5% resulted in bimodal distribution of 7.7±1.3 nm 

and 32.2±3 nm particles. The small domain of nanoparticles showed us the nanoparticle 

distribution increased with metal loading. The increase in the concentration of the Pd 

within the polymeric fibers led the nanoparticles to distribute uniformly at the surface 

and also the electrostatic interaction with the polymer backbone resulted in bigger 

particles within the fibers due to the blocky-copolymer nature of the polymers as in the 

case for AA and VPA.  
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Figure 3.3-8 SEM pictures for Carbonized P(AN-co-5%AMPS)-5%Pd electrospun 
fibers at 600oC, different magnifications 

 

Carbonized samples of electrospun fibers for P(AN-co-5%AMPS)-5%Pd at 600oC 

showed a uniform distribution of nanoparticles (Figure 3.3-8). But with the increase in 

temperature agglomeration of particles could not be prevented. The resulting 

distribution via SEM analysis showed a 36.3±7.2 nm particle size. Tough a bimodal 

particle size distribution was observed for virgin untreated samples, a one dimensional 

increase in particle size was encountered due to the sintering of nanoparticles on high 

temperatures.  

Coarsening is a process that occurs due to the difference in free energy between 

curved surfaces. In a system of dispersed particles having a range of sizes in a medium, 

if there is a appreciable solubility or vapor pressure the smaller particles dissolve and 

the larger particles grow 135. The relation is given as Thompson-Freundlich equation: 

Equation 3.3-1 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

21
0

11exp
rrRT

V
cc mγ

 

Where c is the solubility, c0 the equilibrium solubility, γ surface energy (reversible 

work), Vm the molar volume, r is the particle diameter. 

The thermodynamic driving force of sintering is the reduction of the total 

interfacial energy. However, in terms of kinetics, the differences in bulk pressure, vapor 

pressure and vacancy concentration due to interface curvature induce material transport. 

The diffusion mechanism is related to the movement of atoms under a difference in 

vacancy concentration. Atom movement itself may be interpreted physically in two 
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ways: namely, atom movement as a result of vacancy diffusion under a difference 

(gradient) in vacancy concentration and movement of the atoms themselves under a 

difference (gradient) in stress. 

In terms of vacany movement, the vacancy flux, Jvac, is expressed as  

Equation 3.3-2 ( )
L

P
RT

VCD
J mvv

vac
1'

, Δ−= ∞  

Where Dv is the vacancy diffusion coefficient, Cv the vacancy concentration per unit 

volume, Cv,∞ the equilibrium vacancy concentration in the material with a flat surface, 

and L the diffusion distance. In terms of atom movement, the atom flux Jatom is 

expressed as 

Equation 3.3-3 ( )vaaaatom BCJ μμ −∇−=  

Where Ca is the atom concentration per unit volume, Ba the atom mobility, µa the 

chemical potential of the atom and µv the chemical potential of the vacany 
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3.4 Poly(acrylonitrile-co-n-vinyl pyrrolidinone), P(AN-co-VPYR) 

 

 

Previously synthesized polymers were all tend to template the nanoparticle 

production within the polymeric fibers. Generated nanoparticles were seen within the 

polymer surface on the order of different nanometer scales. As P(AN-co-20%AA) fibers 

provided Pd metal particles up to 96±8.3 nm, we could reduce the particle size to 

87±9.4 nm with VPA copolymers. FT-IR spectrum of electrospun P(AN-co-VPA) 

copolymers showed shift of phosphonic acid group stretching bands which were thought 

to be due to the electrostatic interaction with Pd metal nanoparticles. The increased 

thermal properties of VPA copolymers with respect to AA copolymers also implied to 

use these fibers on high temperature applications, but the melting behavior of fibers on 

stabilization cycles during the heat treatments prohibited their use. As we moved 

towards we obtained at least sub 10nm particles with AMPS copolymers. TEM pictures 

revealed particles on 7nm range but increasing with Pd concentration. Heat treatment 

also boosted the particle size from a 2 dimensional distribution of 7.7±1.3 nm and 

32.2±3 nm to a 1 dimensional 36.3±7.2 nm on 600oC.  

The search for a polymer, which could enhance the particle synthesis on 

nanometer scale by preventing agglomeration and providing uniformity, had been a 

continuing issue. Literature studies showed PVP was used for inhibiting agglomeration 

and control of nanoparticle size35-37. 

This section of this thesis shows the function of Poly(acrylonitrile-co-n-vinyl 

pyrrolidinone) copolymer for the use of nanoparticle synthesis. Starting from the 

polymer characterization, electrospinning and nanoparticle characterization were 

discussed in detail.  

Cyclic voltammetry showed the feasibility of the use of nanoparticles for fuel cell 

applications on aim of the improvement of the catalyst utilization and lowering the 

catalyst loading by uniformly distribution of metal nanoparticles on carbonized 

nanofibers. 
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3.4.1 Polymer Characterization 

 

Copolymer 
Comonomer in 

feed 

(% mol) 

Comonomer in polymer 
backbone 

(% mol) 

Reactivity 
ratio 

(r1/r2) 

Yield

(%) 

P(AN-co-
VPYR) 

2.5 5 
AN/VPYR 

= 

0.46/0.06 

48.7 

5.5 10 51.6 

13 20 66.4 

Table 3.4-1 Synthesis of Poly(AN-co-AMPS) 

Poly(AN-co-VPYR) copolymer was synthesized by solution polymerization of 

AN with VPYR in DMF solvent at 80oC for 24h. 5, 10 and 20 mole % VPYR 

containing reactions were run. AIBN was used as addition polymerization initiator at a 

concentration of 0.1 mol % relative to total mol number of AN and AA. The product 

was precipitated at methanol and the yield changed from 66.4% to 48.7% (Table 3.4-1). 

The monomer feed in VPYR was selected according to the reactivity ratios calculated 

from NMR characterization results of the prior syntheses.  

 

3.4.1.1 FT-IR characterization 

 

Previously FT-IR analyses showed if there was an electrostatic interaction of 

polymer with metal ion, it could be noticed from the change in the absorption 

frequencies of the interacting groups within the side chain. For VPYR copolymers 

Figure 3.4-1 demonstrated the change in the stretching frequency of the –C=O- carbonyl 

group at the side chain of VPYR copolymer. After PdCl2 addition the band at 1673 cm-1 

shifted to 1667 cm-1 and after reduction of salt to metallic Pd the peak restored to 1670 

cm-1. The case was almost the same for PtCl2 (Figure 3.4-2). With the increase in metal 

concentration within the polymer, carbonyl band shifted from 1673 cm-1 to 1659 cm-1. 

As the metal concentration increased to 20%, carbonyl band broadened and shifted to 

smaller wavenumbers for reduced metallic fibers.  
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Figure 3.4-1. FT-IR spectrums of P(AN-co-10%VPYR)-5%Pd, before and after 
reduction of PdCl2 

 

 

Figure 3.4-2 FT-IR spectrums of P(AN-co-10%VPYR)-Pt, increasing Pt concentration  
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3.4.1.2 NMR characterization 

 

 

 

Figure 3.4-3. 1H NMR spectrums of P(AN-co-VPYR) at different VPYR concentrations 
from 5%, 10% and 20% from top to bottom respectively 

 

1H NMR spectrum was fully representative that the reactions occurred 

successfully. The signals were assigned as shown in Figure 3.4-3. The characteristic 

proton peaks for P(AN-co-VPYR) in 1H-NMR (recorded in DMSO-d6) were 4.50 ppm 

(-CH2-CH(N)-CH2-), 3.3 ppm (-CH2-CHCN-CH2), 2.9 ppm (-N-CH2-CH2-), 2.2 ppm 

(-CHCH2-CH-). Reactivity ratios were in well agreement with Brar’s work136. They 

determined the composition of the copolymers using NMR spectra by Kelen-Tudos 

method. The calculated reactivity ratios (0.46/0.06; AN/VPYR-Table 3.4-1) showed 

that the polymer structure was mainly a random copolymer.  
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3.4.1.3 Thermal Characterization 

 

DSC analysis of VPYR copolymers showed an increase in glass transition 

temperatures Tg from 115.5oC to 121.5 oC as the VPYR content within the polymer was 

increasing (Figure 3.4-4).  

[#] Instrument 
[1.9] DSC 204
[2.9] DSC 204
[3.9] DSC 204

File
P (AN - 5% VPYR)-251206.sdd
P (AN - 10% VPYR)-251206.sdd
P (AN - 20% VPYR)-2-2512.sdd

Date
2006-12-25
2006-12-25
2006-12-26

Identity
P (AN - 5% VPYR)-251206
P (AN - 10% VPYR)-251206
P (AN - 20% VPYR)-2-2512

Sample
P (AN - 5% VPYR)-251206
P (AN - 10% VPYR)-251206
P (AN - 20% VPYR)-2-2512

Mass/mg
7.400
7.700
8.100

Segment
9/9
9/9
9/9

Range
-50.0/10.0(K/min)/350.0
-50.0/10.0(K/min)/350.0
-50.0/10.0(K/min)/350.0

Atmosphere
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---
N2/20 / Dry air/0 / N2/---

Corr.
800
800
800

20 40 60 80 100 120 140 160 180
Temperature /°C

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

DSC /(uV/mg)

Main    2009-07-22 01:05    User: Burak Birkan

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

109.2 °C
118.2 °C
115.5 °C
123.1 °C

0.356378 mVs/(gK)
Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

112.0 °C
117.9 °C
118.7 °C
124.2 °C

0.645658 mVs/(gK)

Glass Transition: 
Onset:
Mid:
Inflection:
End:
Delta Cp*:

113.5 °C
122.2 °C
121.5 °C
129.0 °C

1.33529 mVs/(gK)

[1.9]

[2.9]

[3.9]

↓  exo

 

Figure 3.4-4 DSC analysis of  P(AN-co-VPYR) at different VPYR concentrations 

 

The detailed thermal analysis of electrospun fibers prior reducing the metal salt 

and also after metallization of fibers was also performed. Table 3.4-2 showed that after 

spinning of polymer solutions Tg values showed a decrease with respect to 10% and 

20%VPYR copolymers. For both Pd and Pt metal doped samples the same trend was 

observed. By increasing the metal concentration Tg values approached back to its initial 

values. The decrease in Tg suggested that there was an increase in the segmental 

mobility of the polymer chains within the nanofibers137, 138.  

But after reducing the nanoparticles electrospun fibers Tg values showed a sharp 

rise with increasing metal concentration. The metalized electrospun fibers became 

composite hardened and the produced metal nanoparticles hindered the flow of 
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polymeric fibers on top of each other and restrained mobility of polymer chains, 

therefore an increase in Tg was observed.   

 

% 
Copolymer 

Metal 
content 

Tg of VPYR 
copolymer (oC) 

Tg after spinning 
(oC) 

Tg after 
reducing (oC) 

%10 VPYR 

5%Pd 

118.7 

97.1 121.9 

10%Pd 110.1 124.5 

20%Pd 114.5 125.1 

5%Pt 111.3 125.5 

10%Pt 115.3 135.9 

20%Pt 118.3 141.5 

%20 VPYR 

5%Pd 

121.5 

101.7 126.5 

10%Pd 111.2 127.8 

20%Pd 115.5 130.2 

5%Pt 113.3 127.9 

10%Pt 115.9 137.3 

20%Pt 119.1 144.7 

Table 3.4-2 Glass transition temperature analyses for VPYR copolymers 

 

Thermogravimetric analysis of samples shows that P(AN-co-VPYR) copolymers 

were thermally stable up to 278oC. The delayed degradation temperature with 

increasing VPYR concentration enabled a perfect stabilization and carbonization 

mechanism for P(AN-co-VPYR) copolymers for the production of CNF’s (Figure 

3.4-5).  

Stabilization process which was carried out in air (oxidative stabilization) 

constituted the first and very important operation of the conversion of the PAN fiber 

precursor to carbon fiber139-142. During stabilization, the precursor fiber was heated to a 

temperature in the range of RT-200oC. Because of the chemical reactions involved, 

cyclization, dehydrogenation, aromatization, oxidation and crosslinking might occur 

and as a result of the conversion of C≡N bonds to C=N bonds a fully aromatic cyclized 
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ladder type structure formed (Figure 3.4-6). This new structure was thermally stable. 

Also, it had been reported that during stabilization, -CH2 and -CN groups disappeared 

while C=C, C=N and =C–H groups formed143. 

[#] Instrument 
[1] STA 449 C
[2] STA 449 C
[3] STA 449 C

File
20vpyr.ssu
10vpyr.ssu
5vpyr.ssu

Date
2009-07-24
2009-07-23
2009-07-24

Identity
20vpyr
10vpyr
5vpyr

Sample
20vpyr
10vpyr
5vpyr

Mass/mg
37.630
26.202
27.630

Segment
1/1
1/1
1/1

Range
32.0/10.0(K/min)/1200.0
32.0/10.0(K/min)/1200.0
32.0/10.0(K/min)/1200.0

Atmosphere
N2/150 / air/190 / N2/---
N2/150 / air/190 / N2/---
N2/150 / air/190 / N2/---

Corr.
TG:300
TG:300
TG:300

200 400 600 800 1000
Temperature /°C

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

DTA /(uV/mg)

30

40

50

60

70

80

90

100

TG /%

Main    2009-07-25 16:45    User: Burak Birkan

Residual Mass: 25.36 % (119

Residual Mass: 30.72 % (119

Residual Mass: 39.61 % (119

Onset: 278.6 °C Onset: 339.3 °C Onset: 367.8 °C

Mass Change: -50.17 %

Mass Change: -59.93 %

Mass Change: -66.40 %

[1]

[1]

[2]

[2]

[3]

[3]

↓  ex

 

Figure 3.4-5. TGA analysis of P(AN-co-VPYR) at different VPYR concentrations from 
5%, 10% and 20% from top to bottom respectively 

At the same time the color of precursor fiber changes gradually and finally turned 

black when carbonized. Research showed that optimum stabilization conditions led to 

high modulus carbon fibers. Too low temperatures led to slow reactions and incomplete 

stabilization, whereas too high temperatures could fuse or even burn the fibers.  

It was believed that during the early stages of carbonization at 500°C or lower, the 

stabilized nanofibers probably underwent further cyclization in the uncyclized portion, 

forming ladder structure, crosslinking, and some chain-scission reaction, while evolving 

hydrogen, water, carboxylic acids and other volatiles. When the temperature was 

between 500°C and 700°C, the carbon basal planes from the aromatized structure in the 

stabilized nanofibers began to form and increase in size. As these reactions and 

structure rearrangements occurred within the nanofibers, consolidation and densification 

occurred. When the temperature was over 700°C, condensation reactions between 

heterocyclic rings and the resulting evolving gases of HCN, N2 etc., were dominant144.  
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Figure 3.4-6. Diagram of the molecular changes occurring during the chemical process 
of stabilization and carbonization of PAN, (a) the stabilization step, which occurs 
between 180-300°C in air environment. (b) The carbonization step. Shown in (b) is the 
mechanism of intermolecular cross-linking between 600-1500°C through oxygen-
containing groups, however, dehydrogenation is a possible mechanism as well145. 
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3.4.2 Electrospinning  

 

During the electrospinning of P(AN-co-VPYR) polymer solutions were prepared 

to get maximum fiber density and minimum fiber diameter during the process. The 

spinning parameters were optimized via applied voltage, concentration of the solution 

and tip to metal collector distance. Throughout electrospinning process, different fiber 

diameters and morphologies were attained due to different solution viscosities, surface 

tensions and conductivities. 

Fiber diameters of P(AN-co-VPYR)  were illustrated in Table 3.4-3. In general, 

fiber diameters were changed via copolymer type and ratio, solution viscosity 

(concentration) and metal ratio. As the weight percentage of metal increased for the 

same concentration, the fiber diameter decreased. Higher metal salt concentration 

enhanced the solution conductivity (also viscosity) which led thinner fiber formation55. 

Xiongli Xu found that the average diameters of the ultra-fine gelatin fibers electrospun 

with increasing AgNO3 wt% in the solution from 0.1% to 4%, decreased from 150 nm 

to 90 nm, respectively, which are dependent on the conductivity of the gelatin solutions 
90. Qian Zhang came up with the same result in ultra-fine polyimide (PI) fibers 

containing Ag nanoparticles. The average diameters of the PI fibers with different 

amounts of AgTFA, in which Ag were 0, 1, 2, and 7 wt.%, were 200, 190, 180, and 60 

nm, respectively86. 
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Copolymer %Functional 
monomer 1 

Metal Metal 
%2 

Polymer 
%3 

Fiber 
diameter 

(nm) 

P(
A

N
-c

o-
V

PY
R

) 
5 

Pd 

0.5 20 238±41 

1 20 505±110 

5 20 853±137 

10 12 451±113 

20 10 358±73 

10 

0.5 20 185±21 

1 20 210±19 

5 20 302±54 

10 15 199±32 

20 12.4 143±42 

20 

0.5 20 269±42 

1 18.8 145±21 

5 20 451±97 

10 15 183±30 

20 15 209±51 

5 

Pt 

5 15 412±26 

10 15 352±44 

20 15 284±73 

10 

5 13.5 222±21 

10 15 330±36 

20 15 204±24 

20 

5 13.5 205±27 

10 15 187±34 

20 15 177±29 

Table 3.4-3 Electrospun P(AN-co-VPYR) polymer fiber diameter. 1: Functional 
monomer in polymer backbone 2: Metal weight percentage with respect to polymer 
weight in electrospinning solution 3: Polymer weight percentage in electrospinning 
solution. 
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Depending on polymer solution concentrations, average fiber diameters were 

obtained in different diameter from 150 nm to 850 nm (Figure 3.4-7). It was confirmed 

that the change in fiber diameter is related to the solution concentration146. However, 

lower solution concentration, in other words, lower solution viscosity, led the formation 

of beads53. In order to get smooth connected fiber, bead formation was undesired in this 

research so, the polymer solution concentration was controlled in the range of 12 to 20 

% weight percentage. 

 

  

 

Figure 3.4-7. SEM pictures for P(AN-co-5%VPYR), different solution concentrations, 
20%, 15% and 12% respectively.  
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3.4.3 Reduction of metal salts 

 

Two strong reducing agent, hydrazine and sodium borohydride were compared as 

mentioned in section 2.5 for reducing metal salts electrospun with polymers. XRD and 

EDX analysis showed that metal precursors could be successfully reduced into metallic 

forms and no excess metal salt remained after carbonization cycles. If same 

concentrations were used, smaller metal crystalline sizes could be obtained by using 

dilute hydrazine as a reducing agent. In Figure 3.4-8 XRD spectrum of P(AN-co-

5%VPYR)- 5%-Pt was depicted for evaluation of the reducing agent effect. Wider 

peaks indicated smaller diameter particles and the crystalline size of the particles were 

measured quantitatively by Debye-Scherrer formula as described before in section 2.7.1. 

Reducing agent effect for P(AN-co-5%VPYR)-5%Pt
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Figure 3.4-8 XRD analysis for P(AN-co-5%VPYR)-5%Pd, different reducing agents 

Comparisons of the reduction agents were tabulated in Table 3.4-4 for polymers 

P(AN-co-5%VPYR)- 5%-Pd and P(AN-co-5%VPYR)-5%-Pt. It could be seen that by 

using hydrazine as a reducing agent smaller nanoparticles could be obtained rather than 

NaBH4. Moreover, concentrated reducing agent solutions enlarged the nanoparticle 

crystalline size. Therefore, dilute hydrazine solutions were used in all reducing reactions 

for Pd and Pt. 
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Metal Reducing 

agent 

Time 

(h) 

Concentration Fwhm 

(θ) 

Nanoparticle crystal size 

(nm) 

Pd 
Hydrazine 

1h 

Concentrated 0.325° 26.01 nm 

Dilute 
0.379° 22.31 nm 

NaBH4 0.327° 25.85 nm 

Pt 
Hydrazine 

1h 

Dilute 

0.721° 11.72 nm 

24h 0.625° 13.53 nm 

NaBH4 1h 0.457° 18.49 nm 

Table 3.4-4. XRD spectrum analyses for different reducing agents 

 

3.4.4 Nanoparticle characterization 

 

Polymer Temperature 
(°C) 

Heating 
rate (°C) 

Isothermal 
(min) 

Fiber 
diameter 

(nm) 

Average 
particle size 

(nm) 

P(
A

N
-c

o-
%

5-
V

PY
R

), 
5%

Pd
 

600 0.1 30 390 
5.1±0.8 

38.8±11.5 

600 1 30 450 
4.8±1.1 

32.7±6.07 

600 1 - 475 
4.7±0.8 

28.6±4.9 

600 5 - 540 
<4 

21.2±3.2 

1200 1 30 415 36.6±10.2 

1200 1 - 420 24.7±5.0 

1200 10 - 430 17.1±5.1 

Table 3.4-5 Heat treatment effect on particle size for P(AN-co-%5-VPYR), 5%Pd 
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In section 3.3.2 it was stated that the heat treated P(AN-co-5%AMPS)-5% 

nanoparticles were agglomerating with heat treatment. Therefore a detailed 

investigation of the heat treatment cycle on different temperatures with changing 

heating rates and isothermal times were needed for better understanding the thermal 

behavior of nanoparticles.  

Sintering was the main reason for the agglomeration of metal nanoparticles within 

the fiber support. Reduction of the active surface area was provoked via agglomeration 

and coalescence of small metal crystallites into larger ones with lower surface-to-

volume ratios. Two different but quite general pictures had been proposed for sintering 

of supported metal catalysts, i.e. the atomic migration and the crystallite migration 

models (Figure 3.4-9). In the first case, sintering occurred via escape of metal atoms 

from a crystallite, transport of these atoms across the surface of the support (or in the 

gas phase), and subsequent capture of the migrating atoms on collision with another 

metal crystallite. Since larger crystallites were more stable (the metal-metal bond 

energies were often greater than the metal-support interaction), small crystallites 

diminished in size and the larger ones increased. The second model visualized sintering 

to occur via migration of the crystallites along the surface of the support, followed by 

the collision and coalescence of two crystallites147. 

Figure 3.4-9. Two conceptual models for crystallite growth due to sintering by A) 
atomic migration or B) crystallite migration (courtesy of Barthalomew148) 

 

From Table 3.4-5 we could see that by increase in carbonization temperature, 

particle sizes increased and SEM analysis showed that on the expense of smaller 

crystals larger nanoparticles were nucleating on the surface (Figure 3.4-10, Figure 
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3.4-11 and Figure 3.4-12). Similarly, the enlargement of the particle sizes by the change 

from two dimensional distributions to one dimensional distribution could also be seen.  

For different heating rates, we could say that the nucleation mechanisms for 

nanoparticles within the fibers were faster at increased temperatures. If carbonizations 

were processed at higher temperatures particle sizes almost double for a tenfold change 

in heating rate, whereas at lower temperatures smaller particle diffusion was limited and 

only a change in bigger dimensioned particles  was seen. With the increase in 

isothermal waiting time particle sizes were also increasing. 

Figure 3.4-10 P(AN-co-%5-VPYR)-%5Pd-heating treatment effects-TEM analyses a) 
600°C-0,1°C/min-30min (5.1 nm average particle size)  b) 600°C -1°C /min-30min (4.8 
nm average particle size)  c) 600°C -1°C /min (4.7 nm average particle size) 

 

If we look at the fiber diameters we saw almost the same behaviors with 

nanoparticles. With increase in temperature and decrease in heating rate, fibers shrunk 

due the degradation of polymers within the cyclization and carbonization mechanism. 

 

Figure 3.4-11. SEM pictures of P(AN-co-5%VPYR)-5%Pd, carbonized at a)600°C -1°C 
/min b) 600°C -1°C /min-30min 
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Figure 3.4-12 SEM pictures of P(AN-co-5%VPYR)-5%Pd, carbonized at a) 600°C -5°C 
/min b)1200°C -1°C /min c) 1200°C -1°C /min-30min d) 1200°C -10°C /min 

 

Table 3.4-6 showed a detailed SEM analysis result for different VPYR copolymer 

doped with Pd and Pt and heated to 600oC at different heating rates. For a representative 

measurement during the SEM analysis, an average of 100 particles per sample was 

taken into account by using image processing programs. SEM analysis showed that 

there was an increase in particle sizes as metal concentration within the fiber increases. 

We could say that for Pd nanoparticles, a rise in metal concentration led to an 

enlargement in particles sizes. The sintering mechanism did not change since the 

bimodal distribution still persisted. But the increase in the bigger domained particles 

was more obvious since the probability of nucleating nanoparticles was higher if we 

considered a steady state diffusion mechanism. According to Fick’s first law of 

diffusion (Equation 3.4-1) an increase in concentration that meant the mass, increased 

the diffusion flux, meaning an increase in nucleating mechanism might lead to a bigger 

particle growth. 
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Equation 3.4-1 
dt
dCD

dt
dM

A
J −==

1  

where J is the diffusion flux (kg/m2-s), M is the mass, A is the area and C is the 

concentration and D is called the diffusion coefficient. 

Table 3.4-6. SEM analysis results for P(AN-co-VPYR) electrospun nanoparticles 

 

If SEM analyses results were investigated, we saw that there was a discrepancy 

with XRD results in Table 3.4-7. By the visual analysis of samples actually the particle 

VPYR 

Monomer (%) 
Metal 

Metal 

(%) 

Fiber diameter 

(nm) 

Heating rate 

(°C) 

Average particle 

size (nm) 

5 

Pd 

5 540±59 

5 

<4 

21.2±3.2 

10 451±113 
6.2±0.9 

24.1±6.1 

20 358±73 
6.3±1.0 

28.6±4.9 

10 

5 

302±54 7.4 

20 451±97 
<4 

29.3±2.9 

5 Pt 

5 412±26 <4 

10 222±21 
6.4±0.7 

20 4.3±0.6 

20 205±27 
5 7.9±0.6 

20 5.1±0.6 
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sizes were tabulated during SEM analyses. But XRD analysis results showed the 

crystalline size of particles. The discrepancy was that for samples with smaller particles 

and having a dimensional distribution, XRD results deviated and overestimated the 

values since the resolution of Debye-Scherer formula for particles below 4-5 nm was 

limited149, 150 due to the overlapping of peaks and although less in number, 

agglomerated nanoparticles may dominate in accumulated average particle size. The 

case for bigger particles was vice-versa. Since bigger particles might built up by smaller 

crystals, this time XRD might have underestimated results. Although having these 

difficulties in commenting on the results, the easy use of, ability of collecting 

reproducible results through a nondestructive analysis method, XRD was still a 

powerful technique on the characterization of nanoparticles. 

 

%Polymer
Temperature

(oC) 
Heating

rate (oC)

Crystal size (nm) 

Weight % of Pd Weight % of Pt

5% 10% 20% 5% 10% 20%

%5VPYR 

600 
5 5.6 7.2 10.0 6.9 10.9 13.2

40 5.2 5.6 9.8 6.1 9.7 9.8 

1000 
5 18.9 31.1 33.8 11.0 18.7 28.5

40 13.8 20.4 24.3 10.7 14.3 17.6

%10VPYR

600 
5 7.4 7.7 10.4 8.8 12.8 16.7

40 5.6 7.0 8.7 8.2 11.5 11.4

1000 
5 22.2 27.9 35.6 13.7 21.5 29.3

40 16.6 23.3 25.2 12.1 17.6 19.8

%20VPYR

600 
5 7.4 8.4 10.3 10.7 13.6 19.7

40 6.6 7.8 8.9 6.4 13.1 17.8

1000 
5 26.6 31.0 37.7 17.3 24.4 30.5

40 16.8 23.9 32.0 15.5 18.6 26.3

Table 3.4-7 XRD analysis results for heat treated VPYR copolymer 

Table 3.4-7 represented the detailed analysis of crystalline sizes for different 

VPYR containing copolymers. Copolymers were electrospun with different metal 
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concentrations and heat treated at two selected temperatures by two different heating 

rates.  

Previous results in sections 3.1, 3.2 and 3.3 showed us by increasing metal 

concentration within the polymer solution resulting crystalline size increase. For both 

Pd and Pt cases at different VPYR copolymers, an increase in metal concentration from 

5% to 20% enlarged crystalline sizes (Figure 3.4-13). At higher metal concentrations, 

nanoparticles became irregular and non-spherical which was attributed to the massive 

metal migration and aggregation. The migration and aggregation of nanoparticles were 

driven largely by the instability of metal atoms due to their high surface free energy. 

Their aggregation would produce thermodynamically stable particles with bigger sizes. 

 

P(AN-co-20%VPYR)-different Pd concentration
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Figure 3.4-13 XRD spectrum of P(AN-co-VPYR)-5%Pt, different Pd content 

 By the rise in carbonization temperature, an increase in the crystalline sizes was 

observed. A shift of temperature from 600oC to 1000oC affected nanoparticles sizes 

differently. For Pd metal nanoparticles the change in size was dramatic with respect to 

Pt case (Figure 3.4-14 and Figure 3.4-15). Particles sizes almost tripled from sub 10 

nm’s whereas for Pt the growth rate was slower.  
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P(AN-co-20VPYR)-20%Pd, different carbonization cycles
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Figure 3.4-14 XRD spectrum of P(AN-co-20%VPYR)-20%Pd-effect of different 
carbonization cycles on crystalline size 

 

P(AN-co-10%VPYR)-20%Pt-different carbonization cycyles
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Figure 3.4-15 XRD spectrum of P(AN-co-10%VPYR)-20%Pt-effect of different 
carbonization cycles on crystalline size 
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The increase in crystalline size could be explained by the higher diffusion 

constants at higher temperatures due to the decreased activation energy. Equation 3.4-2 

stated that the diffusion coefficient was temperature dependent. 

Equation 3.4-2  ⎟
⎠
⎞

⎜
⎝
⎛−=

RT
Q

DD dexp0  

Where, Do is a temperature independent preexponential (m2/s), Qd is the activation 

energy for diffusion (J/mol or eV/atom), R is the gas constant and T is the temperature 

The difference between Pd and Pt cases resulted from their difference in melting 

points. The melting temperature for Pd is 1552oC and 1772oC for Pt. The activation 

energy was smaller and thus diffusion coefficient was larger in Pd nanoparticles rather 

than Pt nanoparticles due to lower melting point. Since the crystalline growth was a 

diffusion controlled process therefore a higher rate of increase in Pd particles size with 

increasing temperature was expectable. 

One of the other main points in Table 3.4-7 was that, for the nanoparticles at low 

temperatures, at 600oC, Pt nanoparticles were larger than Pd nanoparticles. This 

situation could not be described by governing diffusion mechanism proposed at high 

temperatures. During the reduction step, the localization of Pd particles within the 

electrostatic interaction of polymer side chain thought to be more effective than the case 

for Pt particles, due to the better stabilization of interfacial energy. That meant that the 

surface energy of Pd atoms might had been more delocalized and thus smaller particles 

could be formed rather than those of Pt nanoparticles.  

Blocky copolymer based polymeric fibers, synthesized at previous sections in this 

thesis, resulted in formation of larger nanoparticles with respect to random copolymer 

of P(AN-co-VPYR). The interaction between metal nanoparticles with polymer side 

chain was thought to be more effective in random copolymer nature of VPYR. FT-IR 

and XPS (X-ray Photoelectron Spectroscopy) results showed that the interaction of 

carbonyl group of VPYR was interacting with Pd and Pt nanoparticles110, 151-153. 

Carbonyl oxygen could donate its lone-pair electron from occupied 2p orbitals to empty 

s orbitals of metal ions to form δ-bond, so the back-donation of electron density from 

occupied d orbitals of metal ions into the empty ∏*-2p antibonding orbitals of carbonyl 

oxygen might led to the formation of ∏-bonds. The coordination between carbonyl 

group and metal ion would make P(AN-co-VPYR) an ideal carrier of metal atoms, 
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which provided an excellent precursor to synthesize in situ metal nanoparticles. Since 

metal ions were coordinated with side chains, nanoparticles could be prevented from 

aggregation in the process of reduction in hydrazine aqueous solution and dispersed 

very homogeneously in electrospun fiber. Furthermore, such a small size of metal 

nanoparticle prepared in P(AN-co-VPYR) nanofibers supports the idea that the 

coordination of metal ion with side chain might play an important role in particle size.  

RANDOM COPOLYMER

BLOCKY COPOLYMER

 AA, AMPS, VPA, VPYR,

AN

Pd2+

Cl-
Pd

reducing agent (hydrazine)

reducing agent (hydrazine)

Figure 3.4-16 A schematic of nanoparticle synthesis on random and blocky copolymers 

 

It was also seen that the increase in concentration of VPYR throughout the 

polymer, resulted in the formation of bigger nanoparticles. Like the case in blocky 

copolymers, as the interacting species, copolymer side chain and metal, were confined 

in a concentrated geometry the resulting mechanism led to agglomeration of 
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nanoparticles (Figure 3.4-16). Similar results were obtained in the literature. Li et al. 

showed that by increasing degree of sulfonation in SPEEK polymers silver particles 

tend to coarsen in size154.  

 

 

Figure 3.4-17 13C-NMR spectrums of P(AN-co-5%VPYR), copolymer, after e-spinning 
and carbonization at 600oC and 1000oC 

 

For P(AN-co-AA), P(AN-co-VPA) and P(AN-co-AMPS), an increase of particle 

sizes could not be controlled due to fast loose of polymeric integrity through 

degradation. But for P(AN-co-VPYR) the delayed degradation temperature with 

increasing VPYR concentration enabled a perfect stabilization and carbonization 

mechanism for P(AN-co-VPYR) copolymers. As we examined the 13C-NMR 

spectrums, we saw that with increasing temperature polymer structure changed from sp3 

hybridized carbons (27.1 ppm) at low temperatures to sp2 hybridized carbons atoms at 

high temperatures (90-175 ppm) (Figure 3.4-17). At 600oC we saw that sp2 hybridized 

carbon atoms of –C=C- (128 ppm) formed in lieu to formed pyrrole rings (151 ppm) by 

the cyclization of cyano groups of acrylonitrile at low temperatures. With the increase 
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of carbonization temperature from 600oC to 1000oC, polymeric structure shifted to a 

graphitic one where –C=C- bonds dominated (121 ppm).  

Noble metals, both in zerovalent and in ionic states, was stated to be prone to 

form stable ∏-complexes with multiple -C-C- bonds of organic compounds155. The 

stability of the complexes was increased if the ligand contained electron acceptor 

groups in close to proximity of the –C=C- bond. As at low temperatures the ligation of 

metal atoms with carbonyl atoms were more effective with increasing carbonization 

temperature, this time the interaction of metal atoms with –C=C- bonds became viable 

for inhibiting particle coalescence. A ∏-complex might had been formed between an 

occupied 4d orbital of the metal atom and an unoccupied molecular ∏*-orbital of –C=C- 

fragment. The prevention of sintering of nanoparticles could then be attributed to the 

formation of favored interaction with carbonaceous polymeric structure.   

The confinement of nanoparticles within the polymeric matrix, restrained the 

diffusion of nanoparticles at high temperatures as being a suppressing blanket for the 

migration of atoms trough the surface of fibers since part of the nanoparticles were 

adsorbed by the surface of polymeric fibers through hydrophobic steric interaction.  

Physical characteristics of polymeric fiber support namely porosity and specific surface 

area had been understood to play a key role in stabilizing active components of the 

catalysts in dispersed state156. They reflected topological properties of the fiber surface, 

namely the nature and quantity of traps (potential wells for atoms and metal particles), 

which might have behaved as sites of hindrances (potential barriers) for migration of 

these atoms and particles. An increase in the specific surface area and the micropore 

volume might have resulted, in a decrease in the size of supported metal particles. The 

most effective mechanical trapping of a metal particle at a micropore mouth could be 

achieved at a rather higher temperature as a result of metal flowing into the pore. 

Through the carbonization, metal nanoparticles could have dug small pits in the carbon 

support surface, which they might have been then trapped157, 158. With increasing 

temperature the degradation of polymer chain might have led to the weakening of 

chemical and physical interactions of metal atom with the polymer. The stabilized 

surface energy of the nanoparticle might be weakened on the fiber which in turn might 

led to the loss of the effect of delocalization energy and therefore the stabilization 

through sintering mechanisms could have been favored.  
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Among the other alternatives in literature, this thesis work showed the best results 

at advanced temperatures (Table 3.4-8). Particle sizes of 5 nm at 600oC and 13.8 nm at 

1000oC were not within to reach by the literature work. 

Nanoparticle/Support Particle Size 
(nm) 

Temperature (oC) Reference 

Pd/PAN 10 300 Kim et al.110 

Pd/PAN 40 550 Chen et al.103 

Pd/(Poly(styrene-co-
acrylonitrile) 

30-40 RT Yu et al.104 

Pd-Co/Carbon 8.9-13.8 300-700 Zhang et al111

Pd/PAN 5, 15, 30, 50, 
150 

400, 600, 800, 
1100 

Lai et al.112 

Pd/CNFs 73 1100 Huang et 
al.113 

Pt/CNF 50-200 RT Li et al132 

Pt/CNF 10-55 RT Lin et al133 

Table 3.4-8 Literature examples for supported metal nanoparticles 

 

Studies showed that the diffusion coefficients of metal atoms on carbon 

nanofibers were one order of magnitude lower than those of metal nanoparticles 

supported by graphite, which also meant that the catalyst nanoparticles in CNF were 

more stable to aggregation159, 160. The use of nanoparticles assisted CNF instead of 

metal doped carbons will be dominating in the future work.  
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3.4.5 Proof of concept: Catalyst nanoparticles for Fuel Cell Applications 

 

There are mainly two problems related with electrodes in the PEMFC that should 

be overcome: The price of the electrode materials, and efficiency of the catalysts. 

Loadings of 0.1 to 0.4 mg Pt/cm2 are typically found in PEMFC electrodes but it is still 

around 100$/kW, so it is not economically superior. In addition, the oxygen reduction 

reaction at the cathode is primarily the cause of the cell voltage losses, catalyst 

utilization become crucial part at MEA. This carbon matrix has poor structural, 

electrical and thermal properties compared to PAN-precursed carbon fibers161, 

therefore, more active, better structured and at the same time cheaper catalyst supporter 

systems are required. Electrospun Pt or Pd nanoparticles including carbon nanofibers 

have strong potential to solve many of these challenges. 

Throughout this thesis, it was shown that the control of the size and distribution of 

nanoparticles was viable with applied methodology. This section was an example for 

the use of synthesized nanoparticles on fuel cell applications as catalyst nanoparticles 

generated on carbonized polymer nanofibers. 

 

 

3.4.5.1 Electrochemical Analysis of Pt including fibers 

 

The electroactivity of the nanoparticles was determined both qualitatively and 

quantitatively by cyclic voltammetry. Cyclic voltammograms of all electrospun fibers 

that including nano Pt, Pd particles were recorded in 0.5M H2SO4 with various scan rate 

at room temperature and N2 atmosphere. 

 
The scanning was started from -0.25 V (SCE) and ended at 1 V (SCE) which is 

the commonly used range for fuel cell catalysts researches. Typical cyclic 

voltammogram of Pt catalysts was shown in Figure 3.4-18. The first peak was at -0.2V 

(SCE), corresponded hydrogen desorption (Equation 3.4-3).  

Equation 3.4-3 −+ +→ eHHads  
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Sweeping to, a higher voltage, oxide formation (of PtO) was encountered. This 

peak could be represented with the following chemical reaction: 

Equation 3.4-4 −+ ++→ eHOOH ads 222  

The oxide formation region could be divided into two peaks that are often 

distinguishable. At around 0.5 V SCE, the following reaction occurred: 

Equation 3.4-5 −+ ++→+ eHPtOHOHPt 2  

 

Figure 3.4-18. Cyclic voltammogram of P(AN-co-5%VPYR)-10%Pt-1000oC-40oC 

 

A second small bump was seen around 0.8 V SCE. The second peak in the oxide 

formation region corresponded to the following reaction: 

Equation 3.4-6 −+ ++→ eHPtOPtOH  
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The voltage sweep then reached its set maximum of 1.0V and reversed direction. 

At around 0.45 V SCE in Figure 3.4-18, the oxide reduction region was reached. Here, 

PdO was reduced and the following general reaction occurred: 

Equation 3.4-7 OHeHOads 222 →++ −+  

 

At oxide 0.45 V SCE where the reduction peak occurred, both reactions in 

Equation 3.4-5 and Equation 3.4-6 occurred in reverse. 

 
Finally, the cathodic hydrogen region peaks occurred at the same potential as the 

hydrogen desorption peaks from the reaction in Equation 3.4-3. The hydrogen 

adsorption reaction was: 

Equation 3.4-8 adsHeH →+ −+  

 
The shape of the cyclic voltammogram was the same as the polycrystalline 

platinum35, 162. Hydrogen adsorption-desorption peaks were clearly seen in the 

voltammogram at the potentials between -0.2-0.05 V (SCE). Qualitatively, the 

voltammogram showed the catalytic activity. For quantitative measurement, usually the 

charge under the hydrogen adsorption peak was used to calculate electrochemically 

active surface area (Equation 3.4-9)35. In some case, CO oxidation also is used in order 

to determine the active area163 

 

Equation 3.4-9 Electroactive Surface Area = ESA = ( )PtPt mQ
Q
×

 

where, Q is the  hydrogen adsorption charge obtained from CV, QPt: Charge for 

monolayer hydrogen adsorption on Pt (210 μC/cm2) [60], mPt: Pt amount that used in 

CV analysis 
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Figure 3.4-19 Cyclic voltammogram of P(AN-co-5%VPYR)-20%Pt-600oC-5oC 

The shape of the cyclic voltammogram in Figure 3.4-19 was alike hydrogen 

oxidation peak was observed at -0.2V. Peak was associated with the weak bond of 

hydrogen in (111) Pt crystal direction. 

 

Table 3.4-9 Summary of electrochemical results for Pt including fibers 

 

Highest electroactivity value 34.6 m2/g was achieved by 20% Pt including P(AN- 

5%VPYR) that was carbonized at 600o C-40oC/min. The electroactive surface area of 

commercial Pt catalyst used in a PEMFC is around 70 m2/g164. Commercial Pt particle 

Platin Amount 
Carbonization 

cycle 
Electroactive Surface Area 

Average Particle 

Size from SEM 

%5Pt 1200°C -5°C/min 21.4 m2/g 10.1nm 

%10Pt 1000°C -40°C/min 31 m2/g 5.2 nm 

%20Pt 600°C -5°C/min 34.6 m2/g 3.6 nm 

%20Pt 1000°C -40°C/min 36 m2/g 9.4 nm 
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sizes did not exceed 4 nm165. As the size of the platinum particles increased relative to 

the optimum particle size, the fraction of platinum atoms on the particle surface 

decreased and thus the number of sites available for surface reactions also decreased. 

This resulted in a reduction in specific catalytic activity (activity per unit mass of 

catalyst). Due to agglomeration of Pt nanoparticles, the achieved electroactive surfaces 

area was respectively lower. Furthermore, nanoparticles embedded within the fibers 

could not show electroactivity. It was possible platinum particles deposit into pores in 

the carbon host and these pores were not wetted by electrolyte during analysis. This 

would render the platinum in the pores inactive. However, the electroactive surface area 

calculation was not only tool to qualify the catalysts. In order to evaluate the real 

performance of the nanocatalysts, real condition fuel cell testing was crucial. 

 

3.4.5.2 Electrochemical Analysis of Pd including fibers 

 

The peaks at Figure 3.4-20 corresponded to the electrochemical activity. For a 

positive sweep voltage starting from -0.25V (SCE) moving higher potential, the first 

peak after -0.2V(SCE) was the hydrogen desorption peak (Equation 3.4-10) 

Equation 3.4-10 −+ +→ eHHads  

 

If the surface of the electrode was very smooth multiple peaks could be 

distinguished for desorption of monolayer. While sweeping higher voltage oxide 

formation of PdO was encountered at around 0.39 V(SCE) (Equation 3.4-11). 

Equation 3.4-11 −+ ++→ eHPdOPdOH  
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Figure 3.4-20. Cyclic voltammogram of P(AN-co-5%VPYR)-5%Pd-1200oC-5oC 

 

At around 0.75V (SCE) oxide reduction region was reached after reverse 
sweeping was started (Equation 3.4-12). Here PdO was reduced and the second reaction 
was reversed (Equation 3.4-13). 

 

Equation 3.4-12 OHeHOads 222 →++ −+  

Equation 3.4-13 PdOHHPdO →+ +  

 

Finally cathodic hydrogen - adsorption peaks occurred at -0.1V (SCE) (Equation 
3.4-14). 
 
 
Equation 3.4-14 −+ +→ eHHads  

 

Different heating rates and heating temperature gave different voltammograms. If 

the Pd concentration increased the current density dramatically became greater. It was 

obvious that, as the Pd content per cm2
 area was higher on changing from 5% to 20% 

with respect to polymer weight, more electro active sites were available; as a result, 
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more current can be obtained (Figure 3.4-21.) Also, the carbonization rate of the carbon 

fiber based Pd nanoparticles was directly related with the obtained current. Rapid 

carbonization prevented agglomeration of Pd particles as low currents for the samples 

heated to 600oC at a rate between 0.1oC /min to 5oC /min were seen. Figure 3.4-22 

confirmed this fact. 

Electroactive surface area can be calculated via either hydrogen adsorption or 

oxide reduction166 peak at the cyclic voltammogram for Pd nanocatalysts. In this study, 

the oxide reduction peaks were investigated. Because, for Pd catalysts hydrogen 

molecules were not only adsorbed but also absorbed. Electrochemical activity resulted 

for Pd catalysts were shown in Table 3.4-10. 

 

 

Figure 3.4-21 Cyclic voltammogram of P(AN-co-5%VPYR), different Pd% 
concentration 
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Figure 3.4-22 Cyclic voltammogram of P(AN-co-5%VPYR)-5%Pd, different heating 
rates  

 

Table 3.4-10 Summary of electrochemical results for Pd including fibers 

 

Lower activity values were obtained from Pd including carbon nanofibers 

comparing Pt including carbon fibers. Indeed, Pt nanocatalysts are more active than Pd 

nanocatalysts. Pt catalysts or Pt-M binary catalysts were used currently in a PEMFC 167. 

Palladium Amount 
Charge 

(μC/cm2) 
Electroactive Surface Area(m2/g)

Average particle 

size from SEM (nm)

%5Pd 
1287 

μC/cm2 
22.37 m2/g <4; 28; 6±4.9 

%10 Pd 
5507  

μC/cm2 
12 m2/g 6.2±0.9; 14.9±1.8 

%20 Pd 
1260  

μC/cm2 
5.48 m2/g 6.3±1.0; 19.2±3.2 
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CHAPTER 4 

 

4 CONCLUSION and FUTURE WORK 

 

The precise control of particle size and the distribution of nanoparticles was the 

heart of this thesis. The aim of this work was to suggest an alternative way for 

synthesizing nanoparticles through the electrospinning process. By maneuvering the 

macromolecular architecture of chosen polymers, we mediated to the controlled 

synthesis of nanoparticles. 

Electrospinning parameters were discussed in detail throughout this thesis. The 

change of polymer concentration and solution conductivity affected resulting fiber 

diameters. As polymer concentration increased so did the fiber diameters and addition 

of extra metal salts into polymer solutions favored in the formation of more uniform and 

thinner fibers. 

 By appropriately choosing reduction solvent and heat treating cycles, enhanced 

control of nanoparticle sizes at different reduction mediums and temperatures was 

achievable on different processing conditions. 

From the beginning of this work it was shown that choosing an appropriate 

polymer template would determine the size and distribution of nanoparticles. 

Synthesized blocky-copolymers of acrylonitrile with acrylic acid, vinyl phosphonic acid 

2-acrylamido-2-methylpropane sulfonic acid yielded agglomerated nanoparticles. The 
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change of polymer architecture to a random structure poly(acrylonitrile-co-n-vinyl-

pyrrolidinone), the size of nanoparticles could be reduced to several nanometers. 

Effective control of macromolecular design by altering the copolymer structure enabled 

the size tuning for nanoparticle crystals.  

Another success of this thesis lies in the confinement of nanoparticles in sub 

10nm’s with uniform distributions throughout the fiber structures even at elevated 

temperatures. Rather than other literature findings, nanoparticles could be generated 

even at order of 2-5 nm at 600oC, and 10-17 nm at 1000oC, which were the smallest 

among the similar researches. 

The catalytic activities of metal nanoparticles on carbon nanofibers showed an 

electroactive active surface area of 34.6 m2/g for Pt and 22.4 m2/g for Pd. These results 

confirmed the viability of use of metalized nanoparticles on carbon nanofibers as 

catalysts for fuel cell applications. 

These results proved the concept of this research that by selectively choosing the 

processing conditions and the production techniques, generation of nanoparticles in 

uniform and smaller dimensions was possible.  

 

 

 . 
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CHAPTER 5 

 

5 FUTURE PLANS and SUGGESTED ACTIONS 

 

The results of this work suggest that by appropriately chosen polymer 

morphology and architecture, nanoparticles can be generated at different sizes. For a 

future work different polymerization techniques e.g. living anionic polymerization or 

controlled radical polymerization, can be used for synthesizing alternative structures. 

By choosing different copolymers the interaction between metal nanoparticles with 

polymer side chain can be investigated more in detail. A XPS study for the investigation 

of the interaction between polymer backbone and metal nanoparticle will be effective. 

 For the reduction of nanoparticles different methods can also be applied. The 

change in the reduction mechanism will favorably affect the resulting particle size and 

morphology.  

 For characterization of nanoparticles, XRD was used for determining crystalline 

sizes after heat treatment cycles and the comments were given on the obtained spectrum 

results. If an in-situ observation can be made during the heating step, the growth 

mechanism of the nanoparticles can be more distinctively evaluated and the kinetics and 

governing factors behind this mechanism can be revealed.  

 Catalytic activities of synthesized nanoparticles were investigated for PEM fuel 

cell reactions. Methanol or formic acid based electrochemical investigations should also 

be made, including real fuel cell operations. 
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