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We construct a unified semiclassical theory of charge and spin transport in chaotic ballistic and

disordered diffusive mesoscopic systems with spin-orbit interaction. Neglecting dynamic effects of spin-

orbit interaction, we reproduce the random matrix theory results that the spin conductance fluctuates

universally around zero average. Incorporating these effects into the theory, we show that geometric

correlations generate finite average spin conductances, but that they do not affect the charge conductance

to leading order. The theory, which is confirmed by numerical transport calculations, allows us to

investigate the entire range from the weak to the previously unexplored strong spin-orbit regime, where

the spin rotation time is shorter than the momentum relaxation time.

DOI: 10.1103/PhysRevLett.105.246807 PACS numbers: 73.23.�b, 72.25.Dc, 85.75.�d

At low temperatures, linear electric transport properties
of complex mesoscopic systems are statistically deter-
mined by the presence of a few symmetries only, most
notably time-reversal and spin rotational symmetry [1,2].
This character of universality is believed to be independent
of the source of scattering in the system, and to exist in both
ballistic chaotic quantum dots and diffusive disordered
conductors [3]. Universality in electric transport holds not
only for global properties such as the conductance, but also
for correlators of transmission amplitudes between individ-
ual channels. Thus, it is natural to expect that all transport
properties that depend solely on the scattering matrix are
universal as well. This conjecture has been theoretically
verified for all charge transport properties, under the sole
assumption that scattering generates complete ergodicity.
Inspired by Ref. [4], several recent theoretical works [5–7]
have further suggested that spin transport in mesoscopic
systems with spin-orbit interaction (SOI) also displays
universal random matrix theory (RMT) behavior. The
agreement between numerics on the spin Hall conductance
fluctuations in disordered systems [8] and the RMT pre-
diction [4] seems to corroborate this conclusion.

In this work, we go beyond the conventional semiclassi-
cal theory of transport and show that even when all require-
ments for universality are met and the fluctuations of the
spin and charge conductance as well as average charge
conductance remain universal, the average spin conduc-
tance (SC) is finite in disagreement with RMT [4,6,7].
This effect originates from the SOI through which the
electron spin perturbs the electron dynamics in such a
fashion that, certain dynamical correlations survive despite
the self-averaging nature of ergodic dynamics. These cor-
relations depend on the geometry of the system, namely, the
relative positions of the leads connecting the system to

external electronic reservoirs and the form of the SOI.
Focusing on a two-dimensional quantum dot with Rashba
SOI [9], we find that the average two-terminal SC G� in
direction � ¼ x, y, z is proportional to ðẑ�RÞ�. Here the
vectorR connects the two terminals and ẑ is the unit vector
perpendicular to the dot. This is illustrated in Fig. 1(a). The
polarization of the average spin current is thus determined
by the direction of the average electronic flow. In bulk
diffusive systems, when the mean free path ‘d is shorter
than the spin rotation length, this effect reduces to the
extraction of the current-induced spin accumulation

FIG. 1 (color online). Spin-dependent transmission coeffi-

cients T y0
21, Eq. (1), for (a) weak and (b) extended range of

SOI showing the crossover from cubic (green line) to linear (blue
line) behavior for the two-terminal chaotic quantum dot shown
in the inset of panel (a). (c) Spin current polarization angle

� ¼ arctanðT y0
21=T

x0
21Þ, for the system shown in the inset, where

the right lead encloses an angle of � with the x axis in the linear
(squares) and the cubic (circles) regimes.
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(CISA) and the spin Hall effect (SHE) [10–12] in finite
systems. We stress, however, that the consequences of these
geometric correlations have been considered in neither
charge nor spin transport in quantum dots. Moreover, our
calculations extend the existing theory for CISA and SHE
in finite diffusive systems to the strong SOI regime (i.e., ‘d
is longer than the spin rotation length). It is of practical
importance to point out that the process that leads to finite
SC is robust against temperature smearing or dephasing.
From the point of view of mesoscopic spintronics, this
opens up possibilities towards an electrically controlled
generation and detection of pure spin currents, since the
uncontrolled mesoscopic fluctuations of Refs. [4,6,7] are
suppressed by simply raising the temperature.

We consider a mesoscopic quantum dot with no particu-
lar spatial symmetry as sketched in the insets of Fig. 1. We
treat impurity and boundary scattering on equal footing
and consider diffusive as well as ballistic chaotic charge
dynamics. The dot is connected to two external leads. For
simplicity, we assume idealized reflectionless leads in
which the SOI vanishes. The realistic case of finite SOI
in the leads can then be obtained by combining the
scattering matrices of the realistic leads with that of the
quantum dot. This choice allows us to uniquely define
transport spin currents through a cross section of the leads
without the ambiguities that plagued bulk calculations
[13]. The leads are maintained at different electrochemical
potentials eVi, but have no spin accumulation. The scat-
tering approach to transport gives the two-terminal SC as

G� ¼ e
4�T

�0
21 . Here the spin-dependent transmission co-

efficients T ��
ij are obtained by summing over all transport

channels in leads i and j [4,7],

T ��
ij ¼ X

m2i;n2j

tr½tymn��tmn���; �;�¼ 0; x; y; z: (1)

Here, �� are Pauli matrices (�0 is the identity matrix) and

the trace is taken over the spin degree of freedom. The
transmission amplitudes in Eq. (1) can be expressed in
terms of the Green’s function [14]. Next, we obtain the
full Green’s function GRðr; r0Þ by either (i) the conven-
tional Born approximation for impurity scattering inside
the conductor or (ii) by a multiple reflection expansion
for boundary scattering [15,16]. In case (ii), GRðr; r0Þ is
expressed as an iterative solution of

GRðr; r0Þ ¼ GR
0 ðr; r0Þ � 2

Z
d�@GR

0 ðr;�ÞGRð�; r0Þ; (2)

where @GR
0 ðr;�Þ ¼ n̂� � rGR

0 ðr;xÞjx¼�, with n̂� the (in-

ner) unit normal vector at the boundary point�. Finally, we
evaluate the surface integrals in Eq. (2) asymptotically as
kFL ! 1, where kF is the Fermi wave number and L is the
linear size of the conductor [16]. We obtain

T �0
ij ¼

Z
i
dy

Z
j
dy0

X
�;�0

A�A
�
�0e

iðS��S�0 Þtr½V���V
y
�0 �; (3)

where the sums run over all trajectories � starting at y0 on a
cross section of the injection lead and ending at y on the

exit lead. The classical action of � is S� in units of @ and

its stability is given by A� which includes a prefactor

ð2�i@Þ�1=2 as well as Maslov indices. For the spin-
dependent part, we specialize to the Rashba SOI HR ¼
ð@k�=mÞðpx�y � py�xÞ, where k�1

� is the spin precession

length [9]. We then obtain

V� ¼ YN�

i¼1

Vi;� ¼ YN�

i¼1

Ui;�ð1þ 	Ui;� þ 
	Uhw
i;�Þ; (4)

	Ui;� ¼ k�
4kF

�
sinðk�jrijÞ
k�jrij � 1

�
� � r̂i; (5)

	Uhw
i;� ¼ k�

2kF

�
sinðk�jrijÞ
k�jrij � 1

��
� � r̂i � � � n̂i

cos�i

�

þ �z sin�i
2kFjrij cos�i ½1� cosðk�jrijÞ�: (6)

Here 
 ¼ 0 for a disordered system with weak, short-
ranged impurities and 
 ¼ 1 for a ballistic quantum dot
with hard-wall confinement or a disordered system with
strong, extended impurities. In both cases � consists
of segments ri ¼ ðxi; yi; 0Þ with i ¼ 1; 2; . . . ; N�, r̂i ¼
ri=jrij, n̂i is the (inner) unit normal vector and �i is the
angle of incidence at the ith reflection point, � ¼ ẑ� �
and Ui;� ¼ exp½�ik�� � ri=2� is the Rashba spin rotation

matrix along segment i. We note that there are also correc-
tions to A� which we have already ignored here, because

they do not contribute to the SC. The Eqs. (3)–(6) fully
describe spin and charge dynamics of coherent conductors.
The conventional semiclassical theory is obtained via

the approximation V� � QN�

i¼1 Ui;�, which leads to the

universal RMT predictions for charge transport [17,18].
We now show that this approximation also leads to RMT
results for spin transport. We first start from the diagonal

approximation, where � ¼ �0, and obtain tr½V���V
y
� � ¼ 0,

showing that the diagonal contribution to the spin current
vanishes. The next-order contributions within the conven-
tional semiclassical theory of transport are the loop correc-
tions, in which a self-crossing trajectory �, is paired with a
path �0 avoiding the crossing and going around the loop
in the opposite direction [19,20]. Along the loop, �0 is the
time-reversed of �, and the loop contributions are propor-
tional to htr½U�l

��U�l
�i , where U�l

gives the spin rotation

along the loop only. For a large SOI, U�l
is random, thus

averaging produces vanishing weak localization correction
to the SC. For a weaker SOI, we expand all spin rotation
angles to second order in k�L to obtain htr½U�l

��U�l
�i �

2i	�zhsinðk2�	A�l
Þi. The area difference 	A�l

is given

approximately by twice the directed area of the weak local-
ization loop. For a chaotic system, the areas are symmetri-
cally distributed around zero, thus the average vanishes.
We note that extending the semiclassical approach of
Ref. [21] to the calculation of the variance of the SC,
one reproduces the leading-order RMT results of Ref. [4].
Details of this calculation will be presented elsewhere [16].
We conclude that conventional semiclassical theory, which
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neglects effects of spin on the charge dynamics, only repro-
duces RMT predictions.

We next include the effects of SOI on the electronic
dynamics and consider a two-dimensional conductor
which can be either a ballistic quantum dot with hard-
wall confinement, or a disordered system with short-ranged
impurities. To do this, we go back to Eqs. (4)–(6) and
include the corrections to the amplitude A and the spin
matrix U to order Oðk�=kFÞ and Oð1=kFjrijÞ. We now
assume that different trajectory segments are uncorrelated

and define Ul;� ¼ QN�

i¼lþ1 Ui;� to obtain

htr½V�V
y
����i ¼

�XN�

l¼1

tr½Ul;�Vl;�V
y
l;�U

y
l;����

�
�
: (7)

We see that spin currents have contributions from every
trajectory segment, which are further rotated by the fluc-
tuating spin-orbit fields of the subsequent reflections. We
distinguish three different regimes that depend on the
balance between linear system size L, the mean distance
between (boundary or impurity) scatterings ‘ ¼ hjrlji, and
SOI length k�1

� : (i) the spin-ballistic small SOI limit k�L,
k�‘ � 1, (ii) the spin-diffusive limit k�‘ � 1 � k�L,
(iii) the spin-chaotic strong SOI limit k�L, k�‘ � 1. In
regimes (i) and (iii), the orbital dynamics can be chaotic
ballistic or diffusive depending on the ratio between ‘
and L. We will be focusing on long ergodic or diffusive
trajectories � for which we ignore the averages hsin�ii�
and hn̂ii� for all three regimes, save for the case of a

quantum dot in regime (i) (see below).
In the small SOI regime (i), we expand the right-hand side

of Eq. (7) to leading order in k�‘ settingUl;� ¼ 1 and 1�
sinðk�jrljÞ=k�jrlj ’ ðk�jrljÞ2=6 in Eqs. (5) and (6). We get

htr½V�V
y
����i � k3�ð1þ 2
Þ

6kF

�XN�

l¼1

jrljðẑ� rlÞ�
�
�
: (8)

We now perform the average h� � �i� over the set of trajecto-

ries �. Although individual ri are pseudorandom in length
and direction, being generated by the cavity’s chaotic
dynamics, they satisfy

P
ir

�
i � Rij, where Rij is the

�-independent vector connecting the injection and exit

terminal. We thus obtain htr½V�V
y
����i¼C½k3�‘ð1þ2
Þ=

ð3kFÞ�ðẑ�RijÞ�. Here C is a number of order one that

depends on geometric details of the cavity. This factor mul-
tiplies the independently averaged orbital terms in Eq. (3)
for � ¼ �0, which we compute as in, e.g., Ref. [20]. We
estimate ‘ ¼ hjrlji ’ �A=L for a chaotic dot of area A
and perimeter L, and ‘ ¼ ‘d for a diffusive system. We
finally obtain

hT �0
ij i ¼ C

k3�‘ð1þ 2
Þ
3kF

ðẑ�RijÞ�

�
( NiNj

NT
; ‘ * L;

kFW‘
L ; ‘ � L;

(9)

with the number Ni ¼ IntðkFWi=�Þ of channels in lead i,
NT ¼ P

iNi and W ¼ minWi the width of the narrowest

lead. In the ballistic limit, this formula has an additional

term
k3�‘

2
NiNj

3kFN
2
T

P
lNlðẑ� R̂lÞ�, where Rl is the average

momentum direction of electrons entering through lead l,
originating from nonzero hn̂ii� [16]. We see that the average

spin-dependent transmission, and thus the average spin
currents, are determined by the relative position of the
injection and exit lead and are proportional to the classical
conductance from j to i.
In the spin-diffusive case (ii), L � k�1

� � ‘, the spins
precess around randomly oriented SOI fields, thus relaxing
via the Dyakonov-Perel mechanism. In particular, we can
no longer set Ul;� ¼ 1 in Eq. (7). Instead, we assume that

� is a stochastic sequence of segments with random ori-
entations ’i, which determine the spin rotation Ui;�. The

sequence of rotations is computed by averaging over ’i.
For a general Pauli spin matrix s � � one has

Z d’i

2�
Ui;�s ��Uy

i;�

¼ cos2ðk�jrij=2Þs ��þðjrij2=2Þsin2ðk�jrij=2Þ
��ðs ��Þ�: (10)

This average is different for in-plane and out-of-plane
polarization, which is the origin of the anisotropy of the
Dyakonov-Perel spin-relaxation time. In our case, the gen-
erated spin is in-plane and the second term in Eq. (10)
vanishes [22]. We have

hV�V
y
� i � 1

1þ 2

� �

�XN�

l¼1

e�k2�‘vF�l
k�
2kF

k2�‘

6
� � rl

�
�
; (11)

where we used k�‘ � 1 � k�L, approximated jrij � ‘,
8 i and introduced the duration �l of the first l segments
of �. For each possible choice of l, the spin rotation thus
separates into a spin independent piece for segments
1; . . . ; l� 1, a spin generation piece on segment l, and
spin-relaxation pieces on segments lþ 1; . . . ; N�. Fixing

the endpoint rl of segment l and summing over all possible
� we obtain that the SC is proportional to a product of (i) a
diffusive probability Pðxl;xjÞ to go from the injection

lead to rl, (ii) a spin generation factor ð1þ 2
Þk3�‘� �
ðxl � xl0 Þ=12kF times the probability of ballistic propaga-
tion from xl to xl0 , (iii) a diffusive probability to propagate
from point xl0 to the exit lead times the probability that the
spin survives this diffusion. Thus we have

hT �0
ij i / �3��

k3�‘

kF

Z
dxidxjdxldxl0Pðxl;xjÞðxl � xl0 Þ�

� ð1þ 2
Þ e�jxl�xl0 j=‘

2�jxl � xl0 jPðxi;xl0 Þe�k�jxl0�xij:

(12)

Since the length scale characterizing Pðxl;xjÞ is L, we

evaluate the integrals above asymptotically in the limit
k�‘ � 1 � k�L. After some algebra we finally obtain
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hT �0
ij i / sgnðk�Þð1þ 2
Þ k

2
�‘

2W

L2
ðẑ�RijÞ; (13)

up to a factor of order unity depending on details of how
the leads (with width W) are attached to the cavity. Noting
that for our geometry Rij is in the direction of the current

flow and its magnitude is L, we obtain that the spin con-
ductivity is �s / ek2�‘

2 in agreement with the spin diffu-
sion equation calculations [10,12].

Spin chaos regime (iii).—Similar to regime (ii), we
average over uncorrelated direction angles �i but do
not Taylor expand sinðk�jrljÞ=k�jrlj � 1. We instead
take the average over the segment lengths jrji asQN�

i¼lþ1hcos2ðk�jrij=2Þi � 2N��l in a chaotic or stochastic

system with k�L � 1. Equation (11) is then replaced by

hV�V
y
� i � 1

1þ 2

¼

�XN�

l¼1

2l�N�
k�
2kF

�
sinðk�jrljÞ
k�jrlj � 1

�
� � r̂l

�
�
:

Averaging over � we see that the dominant contribution
is the last term. We thus approximate the sum by its last

term, and take k�jrN�
j ’ k�L � 1 to obtain hV�V

y
� i� ¼

1þ ðC0k�=2kFÞ� � R̂j. HereC
0 is (1þ 2
) times a constant

of order unity that depends on the details of the scattering
near the lead. We finally obtain the transmission coefficient

hT �0
ij i ¼C0 k�

2kF
ðẑ� R̂jÞ��

�
NiNj=NT ‘*L;
kFW‘=L ‘�L:

(14)

Equations (9), (13), and (14) are our main results. They
show how a finite SC emerges from classical geometric
correlations depending on the positions of the leads.
These equations can be straightforwardly extended to
Dresselhaus SOI by substituting ẑ�Q ! ðQx;�Qy; 0Þ
for Q ¼ Rij [Eqs. (9) and (13)] or Q ¼ Rj [Eq. (14)].

To check these predictions we performed quantum trans-
port calculations for a tight-binding Hamiltonian [23] with
Rashba SOI and evaluated the spin-resolved transmission
probabilities between two leads as defined in Eq. (1) for
both the chaotic and diffusive cases. We computed the
transmission for chaotic cavities, shown as insets in
Fig. 1, averaged over 2000 different configurations of the
Fermi energy and the position and orientation of the central
antidot. Panel (a) shows for the small � ¼ ak� regime (i)

that the numerically obtainedT y0
21 (circles) for the cavity in

the inset agrees verywell with the predicted cubic behavior,

Eq. (9), (solid line) for C ¼ 1. In panel (b) T y0
21 is depicted

for the same chaotic cavity (black circles) and for a square
cavity with Anderson disorder (violet triangles) for the
entire range from weak to strong SOI [regime (i) to (iii)]
demonstrating the crossover from cubic to linear behavior
according to Eqs. (9) and (14). In panel (c) we numerically
confirm the predicted direction of the in-plane spin polar-

ization � ¼ arctanðT y0
21=T

x0
21Þ for regime (i) [dashed line,

squares, Eq. (9)] and regime (iii) [solid line, circles,
Eq. (14)] by rotating the right lead around the semicircle
billiard shown in the inset.

In conclusion, we have presented a semiclassical calcu-
lation of spin transport in mesoscopic conductors which
incorporates next-to-leading order corrections to the semi-
classical Green’s function. We showed that in contrast to
RMT predictions, the average SC does not vanish, even if all
the conventional conditions for universality are met. Our
method, moreover, allowed us to investigate the strong SOI
regime for finite diffusive systems for the first time, Eq. (14).
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