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1. Problem definition 

In this paper, a mixed integer programming model and heuristic solution approaches based on 

genetic algorithms (GAs) are proposed to attack the problem of project scheduling under risk. This 
problem has been relatively rarely addressed in the literature (Ulusoy, 2002). 

A set of risks is defined associated with each task (activity), where each risk has an impact and 

a probability of occurrence associated with it. Risks only affect the duration of the related task 

when they occur. A project manager can decrease the probability of occurrence and impact of each 

risk by taking some preventive measures at a predefined cost. The model has no resource 

constraints. It is assumed that the risks are independent and their impacts are additive at the 

activity level. It is further assumed that all the risks associated with an activity are identified and 

the risks are static throughout the project life. The problem is represented on an activity-on-node 

(AON) network with one starting and one ending node. 

 

Notation: 

{J}: Set of activities j=1,…,J; 
{Pj }: Set of immediate predecessors of activity j; 
{Lj}:  Set of resource types for activity j; 
{Nj}:  Set of risks n assigned to activity j; 
dj:  Duration of activity j with no risks involved; 
dj

’:  Expected duration of activity j under risk; 
Cp:  Unit penalty cost of being late; 
Co:  Unit cost of overhead; 
Clj:  Unit cost of resource type lj; 
Cjnk :  Cost of reducing the risk level from state 1 to state k for risk n at activity j; 
Kjn:  Number of states for the probability of occurrence of risk n on activity j; 
Pjnk:  Probability of the occurrence of risk n for activity j at state k; 
Ijnk:  Impact of risk n, if it occurs, for activity j at state k; 
Wlj: Number of workers of type lj assigned to activity j; 
Tplan: Due date set for the project; 
E(TC): Expected total cost; 
ESTj:  Earliest start time of activity j; 
EFTj:  Earliest finish time of activity j; 
EFTJ: Expected makespan of the project;   
y: Expected lateness of project; 
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This model aims to minimize expected total cost (1.1) of the project and the expected 

makespan (1.2). These two objectives are conflicting. The expected total cost is represented as the 

sum of four cost components: the penalty cost for lateness formulated as the product of unit 

penalty cost and lateness, the cost of risk reductions, the overhead cost formulated as the product 

of unit overhead cost and makespan, and the labor cost of the project. 
Equations 1.3 to 1.5 are the critical path method (CPM) equations for forward recursion. 

Equation 1.6 is used to calculate the expected duration of an activity by adding the additional risk 

related durations to normal activity duration. Equation 1.7 defines Cjn1. Equation 1.8 assures that 

one and only one state for each one of the risks is selected 

There are (
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j n k= = =
∑ ∑ ∑ ) number of 0-1 decision variables. Small sized problems can easily 

be solved by a mathematical programming solver. But for large problems, computational costs 

become prohibitive. Hence, heuristic approaches are proposed. 
Table 1 illustrates an activity for which there is only one risk involved with three states. TU 

and MU stand for time unit and monetary unit, respectively. The first state of the risks, named as 

the base case, has a zero cost. This corresponds to the real life situation of taking no preventive 

measures against a risk. Thus no cost is incurred. If necessary measures are taken to reduce the risk 

level from state 1 to 2, the expected duration of the activity becomes d’x= 20+0.6*0.5*20=26 TU. 

Table 1. Risk states for the example activity 

Activity X      Duration (d): 20 (TU)      1XL =        W1X = 3 

State 
Probability of 

Occurrence (Pjnk) 

Impact 

(Ijnk) 

Cost (MU) 

(Cjnk) 

1 0.7 0.5 0 

2 0.6 0.5 150 

3 0.6 0.4 300 

 

2. Solution approach 

Multiobjective optimization with posteriori preference articulation is a developing topic in the 

OR literature. GAs constitute a popular solution procedure for this group of problems; 



approximately 70% of the metaheuristic approaches suggested and published between 1991 and 

2000 are GAs (Jones et al., 2002). Since GA uses parallel search techniques and multiobjective 
optimization problems have several nondominated solutions, this problem class and the solution 

procedure make a good match. Two improvement heuristics are proposed for further improving 

the solutions found by the GA. They try to decrease the expected total cost while keeping the 

critical path fixed.  

2.1. The GA approach 

Direct representation is used for encoding a solution. Each gene corresponds to a risk. The 

number in the gene represents the state that will be chosen for the corresponding risk. An extra 

three-bit portion is added to the chromosome to display the expected makespan, expected total cost 

and fitness values.  

Roulette wheel selection is used as the selection mechanism. One point crossover is used to 

generate two offspring from two parent chromosomes. Bit mutation is used to replace the value on 

the randomly chosen gene of the chromosome with another randomly generated value. 
The first population is generated randomly. For generating the subsequent populations, 

crossover, mutation and reproduction operators are applied in a parallel fashion contrary to the 

serial application in traditional GAs. First an operator is chosen: crossover with a probability of Pc, 

mutation with a probability of Pm and reproduction with a probability of (1-(Pc+Pm)). Then the 

chromosome(s) is (are) chosen according to the operator. Finally, the chosen operator is applied to 

the chosen chromosome(s). 

Fitness is computed by the Formula (1.11). Ndom represents the number of individuals 

dominated by the current individual (chromosome) in the Pareto domination tournament involving 

the entire population. Npop is the population size. NNR (nearest neighbourhood radius) gives the 
ratio of nearest individual’s distance (dnearest) to the maximum distance in the population (dmaxpop). 

NNR behaves like a sharing function; if an individual is closer to its nearest neighbour, it is 
assumed that it is in a crowded region. By multiplying Rdom and NNR, fitness of an individual in 
the nondomination sense and the sharing concept are combined. 

Fitness = NNR * Rdom      (1.11) 

Rdom = (Ndom + 1) / (Npop+ 1)    (1.12) 

NNR = dnearest / dmaxpop              (1.13) 
Elitism is applied by transferring the nondominated individuals in each population to the next 

one. 

2.2. Improvement heuristics 

Improvement heuristics are applied to the solutions obtained by the GA. They aim to avoid 

investing more money than needed to the non-critical activities to reduce their risks, while not 

changing the risk structure of the activities on the critical path and hence the makespan.  

First a multi-mode project scheduling problem is formed by assigning every possible 

combination of states of all risks associated with an activity to different modes. For an activity 

with two risks having two states each, there will be four modes. A domination search over the 

modes is performed to eliminate the dominated modes. Within the modes of activities, the duration 

represents the expected durations when the corresponding risk states are chosen. The cost 

represents the sum of expected labor cost and the risk reduction costs, which constitute a local 
trade-off with the expected duration. The resulting problem is a discrete time/cost trade-off 

problem. A limit on expected project duration is specified, modes of activities on the critical path 

are fixed, and the expected cost is minimized while preserving the critical path. Exact solution 

approaches provided by Demeulemeester et al. (1996) may become computationally very costly, 
so heuristics are tried. 

In the continuous cost vs. duration model based (CCDM) improvement heuristic, a linear 
curve is tried to fit to the time/cost scatter of the nondominated modes. By doing so, the problem is 

transformed to a continuous project crashing problem, which is easier to solve. For the cases, 

where a linear approximation is not adequate, a continuous curve is fitted, which is then 

approximated by a piecewise linear function. GAMS is used to solve the models, and modes are 

assigned to noncritical activities using the durations given by the GAMS solution.  

In the GA results based (GAB) improvement heuristic, solutions provided by the GA 
themselves are used. If a solution involves dominated modes for noncritical activities, the 

nondominated mode with a lower duration is found.  



The starting point solution obtained by either one of the above methods is subjected to the 

improvement routine. For each noncritical activity, slacks and the earning per duration value that 
will result if the activity is performed at its next higher duration mode are computed. Starting with 

the highest earning per duration activity, the durations are expanded without violating the slacks 

until slacks diminish to zero or there is no further mode to expand to. The earning per duration 

ratio is the ratio of the expected cost decrease to expected duration increase between the respective 

nondominated modes of the activity. 

3. Computational study 

A performance metric, “extreme hyperarea ratio (EHR)” is developed based on the idea of 

hyperarea ratio. This metric is the ratio of the hyperarea of the front (Figure 1(a)) to the area 

bounded by the origin and the so-called reference point defined by the maximum values of the two 

objective functions (Figure 1(b)). 

 

 
 

 

 

 

 
 

 

 

This metric is used to compare GAs with different parameter settings in the finetuning process 

and to compare performances of different heuristic algorithms on test problems involving 15, 25 

and 35 jobs. 
To provide a comparison base, the true Pareto front is approximated by employing GAMS. 

The makespan objective is added to the model as a constraint to obtain a single objective cost 

minimization model to be repeatedly solved by GAMS. Limit on the makespan in the first such 

model is the maximum makespan. In a series of runs, the limit on the makespan resulting from the 

last GAMS run is decreased by increments of 0.01 until the minimum makespan is reached.  

Results from 60 GA runs are plotted together with the approximate Pareto front. For small 
problems with 15 activities, GA’s performance is very good. For larger problems with 35 

activities, the deviations are larger, and there is room for improvement. Indeed, the percentage of 

solutions improved by the application of improvement heuristics increases with problem size. But 

the average percentages of improvements in expected cost values are low. But this should be less 

of a concern, as the primary job of improvement heuristics is avoiding a trivially inferior solution. 

4. Ongoing and future research topics 

Other metaheuristic approaches may be tried. A priori and progressive preference articulation 

may be used, in case, real problem data and decision maker preference data are available. The 

problem may be recast in a form, where modes are to be decided upon rather than the risk states. 

The problem formulation may be made more realistic by allowing for dependent risks and/or 

resource constraints. The impacts and probability of occurrences of risks may be formulated using 

continuous functional forms. 
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