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Abstract—This paper presents a novel functional
observer which can observe the velocity, acceleration
and disturbance information of a motion control system
with higher accuracy and less noise in comparison to
classical observers. The observer uses the input current
and position information and the nominal parameters
of the plant. The novelty of the observer is based
on its functional structure that can intrinsically es-
timate and compensate the un-measured inputs (like
disturbance acting on the system) using the measured
input current. The experimental results of the proposed
estimator verifies its success in estimating the velocity,
acceleration and disturbance with better precision than
classical observers.

I. INTRODUCTION

In recent years, realization of high level applications
of motion control systems are becoming more and more
desired. Research is being dominated by various applica-
tions of force feedback/control, haptics, bilateral control,
teleoperation and time delayed control systems. For any
kind of application related to those research areas, one
of the primary needs is to have a clear and accurate
measurement of position, velocity and even acceleration.

Generally in motion control systems, the measurements
available to the controller are the input current to the
system and position information from the encoder. The
problem to obtain the velocity and acceleration data with
high precision and low noise while maintaining a very
large bandwidth sits in the middle of all high level motion
control applications. The standard approach is to use the
first and second order derivatives of position information
of an incremental encoder and process the resulting data
through a low pass filter. However this approach brings
two disadvantages which are impossible to overcome si-
multaneously. With this classical structure, one either has
to acquire a fast but very noisy data, or has to have a
less noisy but sluggish data [1], [2]. The payoff between
those two cases is determined by the frequency of the
filter. In either case, the degradation in the performance
of controllers might be problematic.

Many researchers analyzed this problem and performed
to come up with fast and accurate estimators using dif-

ferent methodologies. In [3] Kalman Filter is used to
estimate the velocity and disturbance in low speed range.
Although this approach is a good way to clear the noise in
estimation, the computational cost might be problematic
for cases where fast response in estimation is desired. An-
other study, which relies on the use of Extended Kalman
Filter, implements the velocity estimation with current
and DC voltage inputs of an induction motor [4]. A more
recent example of Extended Kalman Filtering on velocity
estimation can be found in [15]. Some researchers used
the direct output of well known disturbance observer to
estimate the velocity. In [5] the disturbance torque and the
input current is used to observe the speed of the system.
A similar methodology is performed by implementing
disturbance observer based full state observer algorithm
to recover the dead time problem in estimation of low
speed motion [6]. However, although disturbance observer
is proven to be very useful for robust motion control [7],
the observer structure intrinsically requires the velocity
information of the plant which is again done by classi-
cal filtered differentiation. Besides, since the disturbance
observer gives non-zero value for a scenario where there
is non-zero current input and zero position change, this
kind of approach might give a non-zero velocity value
which can mislead the controllers using this information.
In their study, Patten et al. proposed a structure to observe
velocity based on optimal state estimation using input
torque and position information [8]. Their work basically
originates through closing the loop for velocity estimator.
This way, even though the estimation result is accurate
for low speeds, it is not fast enough to recover rapid
fluctuations in velocity. In a recent study by Berducat
et al. the speed information is obtained via an adaptive
two level observer using estimation of friction model [9].
In [10] a novel approach is tried and the authors used
adaptive fuzzy logic to realize the velocity observer. In
this method, the fuzzy controller adapts the disturbance
acting on the plant and hence it can perform very good
in annihilating the noise in the estimation. However, this
approach can lose reliability where there is rapid change
of disturbance acting on the system. [11] presents another
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speed estimation method based on a model reference
adaptive scheme that can recover mechanical inertia time
for changing load. More information about velocity and
acceleration estimators can be found in [12], [13], [14], and
[16].

II. PROBLEM DEFINITION

The aim of this paper is to construct a functional
observer that can be used to estimate the velocity, accel-
eration and disturbance information of a motion control
system. The objectives are both to achieve estimation
that is as accurate as possible and to provide bandwidth
that is as large as possible. The structure given in Fig. 1
represents a classical motion control system. Here, iref

Fig. 1. Structure of the system with ideal observers

is the current input and τdis stands for the disturbance
acting on the system. The feedback terms b(q, q̇) and g(q)
represent the viscous friction and gravity acting on the
system respectively. The torque input to the system can
be formulated by a simple gain;

τ(s) = W (s)iref (s) (1)

without loss of generality, one can lump the non-idealities
in the input torque formulation to the disturbance term
and come up with a constant gain. This way the system
input becomes,

τ(s) = Kniref (s) (2)

with Kn being the nominal torque constant that maps the
input current to the input torque. The second order plant
can be represented by,

P (s) =
1

a(q)s2
(3)

where, q is the generalized coordinate of motion and a(q)
stands for the plant inertia. The output of this structure
can be given as,

q(s) = P (s)
{
W (s)iref (s)− τdis(s)

}
(4)

where, P−1(s) = ans2 and an represents the nominal
inertia of the system. In order to acquire measurements
of the system, one has to incorporate the plant output,
q with a transfer function. In the structure shown in
Fig. 1, z is the variable of interest that is related to
the plant output by the ideal (not necessarily realizable)
transfer function WN (s), i.e; z = WN (s)q(s). If output z
cannot be directly measured, then WN (s) stands for the

ideal transfer function of the observer that needs to be
designed. However, a system as depicted in Fig. 1 may not
be physically realizable if WN (s) is an improper transfer
function like η1s

2 + η2s + η3 (i.e. a linear combination of
acceleration, velocity and position). For such cases, one
can utilize an approximate structure as shown in Fig. 2 and
come up with an estimate of the output z. In this second
structure, assuming that the error due to disturbance is
characterized by transfer function WL(s), one can write
the error due to unmeasured inputs as ∆z = WL(s)τdis(s).
In designing the observer, the main criteria is to select
the error in the estimated variable ẑ to have a desired
value of zero. Now the problem can be formulated as
follows: For the system given in Fig. 2, using the nominal
plant parameters and measurable outputs, find transfer
functions W1(s) and W2(s) that will best approximate the
variable of interest z.

Fig. 2. Structure of the system with observers

III. OBSERVER CONSTRUCTION

Using equations (2), (3), (4) and the structures shown
in Fig. 1 and Fig. 2, one can write the actual and the
estimated values of z as follows:

z(s) = WN (s)q(s) + WL(s)τdis(s)
z(s) = WN (s)P (s)

{
W (s)iref (s)− τdis(s)

}
+ WL(s)τdis(s)

(5)

ẑ(s) = W2(s)q(s) + W1(s)iref (s)
ẑ(s) = W2(s)P (s)

{
W (s)iref (s)− τdis(s)

}
+ W1(s)iref (s)

(6)

For simplicity of analysis, we can drop the s dependent
long expressions. From (5) and (6), one can write the error
in the estimation as follows:

z−ẑ = {PW (WN −W2)−W1} iref−{P (WN −W2)−WL} τdis

(7)
The difference between desired output z and its estimated
value ẑ, as expressed in (7) depends on both control input
and the disturbance. In order to push this estimation error
to zero, coefficients of both current (iref ) and disturbance
(τdis) should be imposed to have zero value. Letting those
coefficients be equal to zero and continuing further, one
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finds the following two equations for the transfer functions
W1 and W2;

W1 = WWL

W2 = WN − P−1WL (8)

The implicit assumption made in (2) saying that the
torque can be transmitted to the plant with a constant
gain (i.e. W (s) = Kn) results in W1(s) being equal to
a scaler multiple of WL(s). This result is very important
since it implies that the error due to disturbance is com-
pensated by the current input during estimation. In other
words, the observer, while using position information and
transfer function W2(s) to acquire the estimated value,
also uses the current information and transfer function
W1(s) along with the nominal parameters of the plant to
cancel the effect of disturbance in estimation.

In order to solve for W1(s) and W2(s) we can define a
generalized error for WL(s). Since the disturbance acting
on the system pass through a second order dynamics, we
can formulate this generalized error as follows;

WL(s) =
g2s(γs + δ)
an(s + g)2

(9)

where, an and Kn represent the nominal inertia and
nominal torque constant of the plant respectively. Using
this error, the expression for P from (3) and equation
(8), generalized forms for the transfer functions W1(s) and
W2(s) can also be defined;

W1(s) =
Kn

an

g2s(γs + δ)
(s + g)2

(10)

W2(s) = WN (s)− g2s3(γs + δ)
(s + g)2

(11)

In both of the equations (10) and (11), the coefficients g,
γ and δ should be selected in design process. In order to
design the parameters, we have to refer to the format of
the ideal transfer function WN (s). Let the ideal transfer
function be WN (s) = αs2 + βs or in other words let us
assume that a linear combination of velocity and accelera-
tion is to be estimated. Substituting WN (s) into (11), one
can obtain;

W2(s) = (αs2 + βs)− g2s3(γs + δ)
(s + g)2

(12)

Expanding further results in,

W2(s) =
C4s

4 + C3s
3 + C2s

2 + C1s

(s + g)2
(13)

where,

C4 = α− g2γ

C3 = 2gα− g2δ + β

C2 = 2gβ + g2α

C1 = g2β

Since for a physical system, the estimator will have at most
second degree derivative, we can set the coefficients of s4

and s3 terms (C4 and C3) be equal to zero, which gives;

α− g2γ = 0 (14)

γ =
α

g2
(15)

2gα− g2δ + β = 0 (16)

δ =
β + 2gα

g2
(17)

Substituting (15) and (17) into (10) and (11) gives the
following set of transfer functions:

W1 =
Kn

an

αs2 + (β + 2gα)s
(s + g)2

(18)

W2 = gs
(gα + 2β)s + gβ

(s + g)2
(19)

WN = αs2 + βs (20)

Now, the only design parameters are α and β which is
determined from the structure of the ideal observer WN .
The functional observer can be realized using just two
first order filters as depicted in Fig. 3. This structure

Fig. 3. Structure of the observer

mathematically imposes the following two equations.

W1 =
αs2 + (β + 2gα)s

an(s + g)2

= σ0

(
σ3 +

σ2g

(s + g)
+

σ1g
2

(s + g)2

)
(21)
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W2 =
(g2α + 2gβ)s2 + g2βs

(s + g)2

= µ0

(
µ3 +

µ2g

(s + g)
+

µ1g
2

(s + g)2

)
(22)

The values for gains σi and µi (i = 0, 1, 2, 3) can be found
by substituting the necessary numbers for α and β to the
ideal observer WN (s).

A summary of the coefficients for velocity, acceleration
and disturbance estimation is given in Table I

TABLE I
Parameters of the Functional Observer for Different

Configurations

WN 0s2 + s s2 + 0s Kniref − ans2

(ẑ) (q̇) (q̈) (τdis)

−−−−− −−−−− −−−−− −−−−−

σ0
Kn
gan

Kn
an

−Kn

σ1 −1 −1 −1

σ2 1 0 0

σ3 0 1 0

µ0 g g2 −ang2

µ1 1 1 1

µ2 −3 −2 −2

µ3 2 1 1

IV. EXPERIMENTS

The experimental setup consisted of a Hitachi-ADA
series linear motor and driver. The linear motor had
an incremental encoder with 1µm precision. MATLAB-
Simulink environment was used as the implementation
software and real time processing was enabled by a D-
Space DS1103 card. A picture of the experimental setup
is provided in Fig. 4. The verification of the proposed
estimator is done by different experiments for velocity,
acceleration and disturbance. The following subsections
discuss the details and results of the experiments for
different observer configurations.

A. Estimation of Velocity

In order to compare the velocity estimation results two
different sets of experiments are made. In the first set, a
constant velocity reference was imposed and this constant
reference was changed from 0.002m/s to 0.003m/s and
0.001m/s consecutively during motion. In the second set,
a trapezoidal velocity reference is imposed to the plant and
the response is recorded. The rising and falling edges of
the reference had a 0.005

3 m/s2 slope with a peak constant
velocity of 0.005m/s. The velocity estimation results for

Fig. 4. Picture of the Experimental Setup

those experiments are provided in Fig. 5 and Fig. 6 respec-
tively. In each figure, A-Type response is the response of
the proposed functional observer and B-Type response is
the response of classical first order differentiator used with
a low pass filter. The frequency for the low pass filters of
both the functional observer and the classical observer was
selected to be 500 Hz. As the graphs show, the performance
of the observer in estimating the velocity is much better
than the classical observer. The reduction in the noise level
and the rise in precision proves the success of functional
observer. Besides the graphical data, the statistical data
related to the experiments also provide insight about the
improvement of the method. The standard deviations in
the constant velocity region for the first experiment came
out to be σ1 = 0.0792 and σ2 = 0.1374 for functional
and classical observer outputs respectively. Similarly for
the second experiment, the standard deviations were σ1 =
0.0694 for functional observer and σ2 = 0.1306 for the
classical observer. From those results, is clear that the
proposed observer can estimate the same velocity with
almost half of the noise that can be measured in classical
observers.

B. Estimation of Acceleration
The acceleration estimation results are tested with a

different experiment. In acceleration experiment, consec-
utive positive and negative pulse references are given to
the system and the estimation responses are observed. The
amplitude of the pulse reference was selected to be 10m/s2

acting on the system for a period of 0.05s. The results
of the proposed observer are compared to the results
obtained from a double filtered second order differentiator
(i.e. classical acceleration observer). In order to have a
better comparison of the observed accelerations, one needs
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Fig. 5. Comparison of Velocities from Functional Observer (A) and
Classical Observer (B) Under Constant Velocity Reference
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Fig. 6. Comparison of Velocities from Functional Observer (A) and
Classical Observer (B) Under Trapezoidal Velocity Reference

the actual acceleration response of the system. For that
purpose, the position response of the same experiment is
double differentiated in an offline setting and put to the
same plot. For numerical differentiation, the three-point
estimation approach is used.

The acceleration estimates of the functional observer
and classical observer are given in Fig. 7 along with the
actual acceleration response. For both observers, the low-
pass filter gains are selected to be 200 Hz. When the
results are compared, it becomes obvious that the tracking
performance of the functional observer is much better
than that of the classical observer. Those graphs show

the effectiveness of the implemented methodology, namely
using current input in estimation to eliminate the un-
measured disturbances.
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Fig. 7. Comparison of Accelerations from Functional Observer (A)
and Classical Observer (B) Under Constant Velocity Reference

C. Estimation of Disturbance

For comparison of disturbance estimation responses, a
constant velocity reference tracking experiment is done.
During the experiment, output of classical disturbance
observer is compared to that of functional observer. Fig-
ure 8 show the disturbance estimation results for the
proposed functional observer and classical disturbance
observer respectively. Like the velocity observers, the func-
tional disturbance observer is capable of making the same
estimation with almost half of the noise obtained from
classical disturbance observer.

V. DISCUSSION

The performance of functional observer especially in
more accurate velocity estimation makes it preferable over
conventional filtered derivative. Smoother velocity estima-
tion bring the advantage of acquiring a better precision
in many systems involving motion control. Moreover, the
estimation in velocity is as fast as the classical estimator.
This means, although the noise in estimation is reduced
dramatically, the bandwidth almost remains the same,
which is also another advantage of the proposed structure.

Besides velocity, much faster acceleration estimation
can be made with the proposed functional observer in
comparison to filtered double differentiators. Although the
acceleration information is usually not directly used, in
many settings it is integrated to obtain a feed forward
term. Having faster response in acceleration estimation
would decrease the integration error resulting in a better
controller performance.
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Fig. 8. Comparison of Disturbances from Functional Observer (A)
and Classical Observer (B) Under Constant Velocity Reference

On the other hand, since the speed of the disturbance
observer is very crucial in the robustness of the sys-
tem, instead of using a double filtered estimation, the
use of classical disturbance observer might still perform
better in control loop. Smoothed disturbance estimation
from the observer can be a better candidate for external
torque/force reconstruction.

VI. CONCLUSION

In this paper, a functional observer is presented. The
observer is capable of estimating the velocity, acceleration
and disturbance information of a motion control system
only by a change in the configuration parameters. In addi-
tion to the position measurement, the estimator benefits
from estimating and eliminating the disturbance effects
by using the measured input current and plant’s nominal
parameters. The theoretical development of the estimator
has been validated through experiments.

Acknowledgment

This work is partially supported by SanTez project
number 00183.STZ.2007-2 and TUBITAK-Bideb.

References

[1] M. Bodson, J. Chiasson, and R.T. Novotnak, “Nonlinear Speed
Observer for High-Performance Induction Motor Control”, IEEE
Transactions on Industrial Electronics, Vol. 42, No. 4, pp. 337-
343, August 1995

[2] R.C. Kavanagh and J.M.D. Murphy,“The Effects of Quantization
Noise and Sensor Nonideality on Digital Differentiator-Based
Rate Measurement”, IEEE Transactions on Instrumentation and
Measurement, Vol. 47, No. 6, pp. 1457-1463, December 1998

[3] H.W. Kim and S.K. Sul, “A New Motor Speed Estimator Using
Kalman Filter in Low-Speed Range”, IEEE Transactions on
Industrial Electronics, Vol. 43, No. 4, pp. 498-504, August 1996

[4] Y.R. Kim, S.K. Sul and M.H. Park, “Speed Sensorless Vector
Control of Induction Motor Using Extended Kalman Filter”,
IEEE Transactions on Industry Applications, Vol. 30, No. 5, pp.
1225-1233, October 1994

[5] K. Kubo, M. Watanabe, F. Kozawa and K. Kawasaki, “Distur-
bance Torque Compensated Speed Observer for Digital Servo
Drives”, International Conference on Industrial Electronics, Con-
trol and Instrumentation (IECON), pp. 1182-1187, November
1990

[6] S.H. Song and S.K. Sul, “An Instantaneous Speed Observer for
Low Speed Control of AC Machine”, Applied Power Electronics
Conference and Ecposition (APEC), pp. 581-586, February 1998

[7] K. Ohnishi, M. Shibata, T. Murakami, “Motion Control for
Advanced Mechatronics”, IEEE/ASME Transactions on Mecha-
tronics (APEC), Vol. 1, No. 1, pp. 56-67, March 1996

[8] R.D. Lorenz and K.W.V. Patten, “High-Resolution Velocity Es-
timator for All-Digital, ac Servo Drives”, IEEE Transactions on
Industry Applications, Vol. 27, No. 4, pp. 701-705, July/August
1991

[9] R. Lenain, A. Robertsson, R. Johansson, A. Shiriaev and M.
Berducat “A Velocity Observer Based on Friction Adaptation”,
IEEE International Conference on Robotics and Automation
(ICRA), pp. 3365-3370, Pasadena, USA, May 2008

[10] F.C. Lin and S.M. Yang, “Adaptive Fuzzy Logic-Based Velocity
Observer for Servo Motor Drives”, Mechatronics, Vol. 13, No. 3,
pp. 229-241, April 2003

[11] K. Fujita and K. Sado “Instantaneous Speed Detection with
Parameter Identification for AC Servo Systems”, IEEE Trans-
actions on Industry Applications, Vol. 28, No. 4, pp. 864-872,
July/August 1992

[12] P. R. Belanger, “Estimation of Angular Velocity and Acceler-
ation from Shaft Encoder Measurements”, IEEE International
Conference on Robotics and Automation (ICRA), pp. 585-592,
Nice, France, May 1992

[13] R. H. Brown, S.C. Schneider and M.G.Mulligan, “Analysis of
Algorithms for Velocity Estimation from Discrete Position Versus
Time Data”, IEEE Transactions on Industrial Electronics, Vol.
39, No. 1, pp. 11-19, February 1992

[14] S.M. Yang and S.J. Ke, “Performance Evaluation of a Veloc-
ity Observer for Accurate Velocity Estimation of Servo Motor
Drives”, IEEE Transactions on Industry Applications, Vol. 36,
No. 1, pp. 98-104, January/February 2000

[15] M. Barut, S. Bogosyan and M. Gokasan, “Speed-Sensorless Es-
timation for Induction Motors Using Extended Kalman Filters”,
IEEE Transactions on Industrial Electronics, Vol. 54, No. 1, pp.
272-280, February 2007

[16] M. Comanescu,“An Induction-Motor Speed Estimator Based on
Integral Sliding-Mode Current Control”, IEEE Transactions on
Industrial Electronics, Vol. 56, No. 9, pp. 3414-3423, September
2009

389


