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ABSTRACT 

Today, the digital implementation of the controllers is mainly preferred from re-
programmability point of view. Many important control problems can be effectively 
solved using a digital architecture in conjunction with analog-to-digital (ADC) and/or 
digital-to-analog conversion (DAC). Digital solutions offer two very attractive 
advantages: (1)-promise to shorten design cycles, and (2)-provide the freedom to 
reprogram the design in simple ways. This ease-of-change stands in sharp contrast to 
the great effort required to redesign a typical hard-wired analog implementation. 

However, depending on the complexity of the plant and the degrees of freedom 
(DOF) to be controlled, digital implementation of an algorithm may be demanding due 
to the high computational power requirement to run in real time. The necessity for the 
acquisition of the analog signals on the other hand requires ADC and DAC conversions 
that compel extra conditions on the system. Hence, multi-DOF systems may require 
either diminish in the systems operation frequency or additional hardware to run the 
algorithm in parallel for each DOF. 

This work aims to develop an analog motion controller for single input single 
output (SISO) plants of complex nature. As the control algorithm, Sliding Mode Control 
(SMC) like the well known robust nonlinear controller is selected as a design 
framework. Originally designed as a system motion for dynamic systems whose 
essential open-loop behavior can be sufficiently modeled with ordinary differential 
equations, Sliding Mode Control (SMC) is one of the effective nonlinear robust control 
approaches that provide system invariance to uncertainties once the sliding mode 
motion is enforced in the system. An important aspect of sliding mode is the 
discontinuous nature of the control action, which switches between two values to move 
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the system motion on so-called “sliding mode” that exist in a manifold and therefore 
often referred as variable structure control (VSC). The resulting feedback system is 
called variable structure system (VSS).  

The position tracking of the piezoelectric actuators (PEA) is selected as the test 
bed for the designed system. Piezoelectricity, the ability of the material to become 
strained due to an electric field, gives the possibility to user those materials as actuator 
in sub-micrometer domain for a range of applications. Piezoelectric effect is a 
crystalline effect, and therefore, piezoelectric actuators do not suffer from “stick slip” 
effect mainly caused by the friction between elements of a mechanical system. This 
property theoretically offers an unlimited resolution, and therefore piezoelectric 
actuators are already used in many applications to provide sub-micrometer resolution. 
Still the achievable resolution in practice can be limited by a number of other factors 
such as the piezo control amplifier (electronic noise), sensor (resolution, noise and 
mounting precision) and control electronics (noise and sensitivity to EMI). 

As a result of this work, we are aiming an analog controller for SISO systems and 
by the use of this controller, improvement on the tracking performance for the plant we 
are studying and decrease on the possible computational load on digital controllers is 
targeted. 
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ÖZET 

Denetim algoritmalarının sayısal olarak uygulanması temelde tekrar 
programlanabilirlik açısında tercih edilmektedir. Birçok önemli denetim problemi, 
analog-sayısal çevirici ve sayısal-analog çeviriciler ile salt sayısal yöntemler ve 
donanım kullanılarak çözülebilir. Sayısal çözümler iki temel avantaj vaat eder; (1) 
tasarım süreçlerini kısaltma ve (2) tasarımın yeniden programlanabilmesi. Bu kolay 
programlanabilirlik, klasik olarak tasarlanmış analog uygulamaların tekrar düzenlemesi 
için gerekli çalışma miktarı ile zıtlık gösterir. 

Ancak, denetlenecek sistemin karmaşıklığı ve denetlenecek serbestlik derecesi 
sayısına bağlı olarak, gerek hesaplama gücü ihtiyacı açısından, gerek algoritmaların 
gerçek zamanda çalışma ihtiyacı açısından, sayısal uygulamalar oldukça zorludur. 
Analog sinyallerin, analog-sayısal çeviriciler ile toplanması ve çıktıların sayısal-analog 
çeviriciler ile iletilmesi ise tüm sistem üzerinde fazladan sınırlamalar yaratmaktadır. 
Dolayısıyla, çok serbestlik dereceli sistemler ya genel çalışma frekansında yavaşlama ya 
da her bir serbestlik için farklı donanımda denetim gerektirmektedir. 

Bu çalışma, tek giriş tek çıkışlı (TGTÇ) dinamik sistemler için bir analog 
denetleyiciler tasarlamayı ve gerçekleştirmeyi amaçlıyor. Denetim algoritması için iyi 
bilinen, gürbüz ve performansını kanıtlamış, Kayan Kipli Denetim (KKD) tercih 
edilmiştir. Aslen, açık çevirim davranışları standart türevsel denklemler ile yeteri kadar 
modellenebilir sistemler için tasarlanmış olan KKD, sistem bir kez kayan kipe 
taşındığında, sistem parametreleri değişimi de dahil tüm dış etkilere karşı direnç ve 
gürbüzlük sağlar. KKD’in önemli bir özelliği de sistemi kayan kipe taşımak için, 
genelde iki farklı değer arasında anahtarlayan ve sürekli olmayan denetim hareketidir. 
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Tasarımı yapılan denetim sisteminin deneysel çalışmaları için piezoelektrik 
hareketlendiriciler test sistemi olarak seçilmiştir. Piezoelektrik özellik, maddenin bir 
elektrik alana maruz kalınca genleşmesidir. Bu özelliğe sahip malzemeler mikrometre 
ve altı hassasiyette hareket üreteci olarak kullanılabilirler. Piezoelektrik özellik, 
malzemenin kristal yapısının bir özelliği olup, sürtünme ve yapışma gibi mekanik 
etkilere maruz kalmadığından teoride sonsuz çözünürlükte hareket olanağı tanır. Ancak, 
uygulamalarda çözünürlük birçok etken yüzünden sınırlı kalır; piezo denetim güç 
yükselteci (gürültü miktarı), algılayıcı (geri besleme çözünürlüğü, gürültü, montaj 
hassasiyeti) ve denetim elektroniği (gürültü ve elektromanyetik etkileşim) birkaç 
örnekir. 

Bu çalışmanın sonucu olarak, TGTÇ sistemleri için bir analog denetleyici 
yaratılması planlanmıştır. Bu yolla, denetimi yapılan sistemin referans izleme 
performansının arttırılması ve karmaşık sistemlerde denetleyicinin sayısal alan dışına 
taşınarak, hesaplama gücü ihtiyaçlarının düşürülmesi hedeflenmiştir. 
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1 INTRODUCTION 

1.1 Motivation 

Today, mainly from re-programmability point of view, digital platforms are 

preferred for the implementation of the control algorithms. Digital solutions offer two 

very attractive advantages: (1)-promise to shorten design cycles, and (2)-provide the 

freedom to reprogram the design in simple ways. This ease-of-change stands in sharp 

contrast to the great effort required to redesign a typical hard-wired analog 

implementation.  

Many important control problems can be effectively solved using a digital 

architecture in conjunction with analog-to-digital (ADC) and/or digital-to-analog 

(DAC) conversions that compel extra conditions on the system. Data conversion 

requirement is not the only disadvantage of such systems; analysis and design methods 

are more complex for sampled data systems, sampling and resolution can affect the 

performance, computational delays limit the system bandwidth and degrade accuracy. A 

less commonly listed disadvantage of digital control is the “software development 

phase” which is tedious, error-prone, time consuming, and hence expensive. 

Looking from control systems perspective, depending on the complexity of the 

plant and the degrees of freedom (DOF) to be controlled, digital implementation of an 

algorithm may be demanding due to the high computational power requirement to run in 

real time or in the case of small systems, an excessive computational power due to the 

problems of scaling down the digital hardware. Thus, multi-DOF systems may require 

either diminish in the systems operation frequency or additional hardware to run the 

algorithm in parallel for each DOF. 

This thesis investigates the possibility of designing an analog motion controller 

for single input single output (SISO) systems of complex nature, based on non-linear 

control methodologies. Research is motivated by the need of a motion controller for a 
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14-DOF microassembly workstation [1, 2] designed and built in Sabanci University for 

experimental purposes.  

Due to the fact that Sliding Mode Controller (SMC) is claimed to result in 

superior system performance, which includes insensitivity to parameter variations and 

almost complete rejection of disturbances, SMC is selected as the controller design 

framework even though any other nonlinear control strategy could be used. Originally 

designed as a system motion for dynamic systems whose essential open-loop behavior 

can be sufficiently modeled with ordinary differential equations, SMC is one of the 

effective nonlinear robust control approaches that provide system invariance to 

uncertainties once the sliding mode motion is enforced in the system [3, 4]. An 

important aspect of sliding mode is the discontinuous nature of the control action, which 

switches between two values to move the system motion on so-called sliding mode that 

exist in a manifold and therefore often referred as variable structure control (VSC). The 

resulting feedback system is called variable structure system (VSS).  

As a test bed for the designed system, piezoelectric actuator (PEA), a nonlinear 

system with hysteresis as major nonlinearity, is selected. PEAs are used in many 

applications to provide sub-micrometer resolution since they theoretically provide 

unlimited resolution on a large band of frequency. However, strong hysteretic nonlinear 

behavior makes PEA control challenging. The previously mentioned microassembly 

workstation’s motion is also based on piezoelectric actuation. 

1.2 Objectives of the Thesis 

This research is application oriented and aims to develop necessary hardware for 

an analog nonlinear motion controller for SISO systems. The work naturally starts with 

the selection of an appropriate plant as a test bed and modeling of this plant. The 

selection of an appropriate nonlinear control framework is the key part of the work 

since the whole design will be based on this selection. Once the test-plant model is clear 

and a suitable control framework is known, the design and fine-tune of the controller 

should be studied by targeting analog application and production possibility. To be 

followed by the circuit design, the analog controller should be well analyzed to prove 

the added-value. Finally hardware implementation and real-world experiments should 

also be studied. 
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With the design and implementation of this analog controller, we hope to gain an 

understanding on how to apply analog techniques for system control purposes. Analysis 

results are generated to gain insight on the implementation. 

1.3 Structure of the Thesis 

The rest of the thesis is organized as follows; Section II describes the plant and 

selected model which constitutes a basis for the controller design. The Sliding Mode 

Controller design together with Disturbance Observer is presented in Section III where 

circuit application of the algorithm is also depicted with analyses. Section IV presents 

the experimental results while conclusions and areas for future research are presented in 

Section V. 
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2 MODELING AND CONTROL OF PIEZOELECTRIC ACTUATORS 

2.1 Piezoelectric Actuation 

Piezoelectric effect, or piezoelectricity in brief, is an electromechanical 

phenomenon which couples elasticity with electricity through the existence of pressure 

or induced electrical field. This phenomenon was first discovered by Jacques and Pierre 

Curie brothers in 1880 during their work on quartz crystals and named as the “(direct) 

piezo effect” where the word “piezo” is derived from the Greek word for pressure. [5]. 

Later Curie brothers also verified that, an electrical field applied to the crystal, 

leads to deformation of the material. This effect is referred as the “inverse piezo effect” 

(or some times converse piezo effect). Since then, research on piezoelectricity has 

received much attention. However, it took several decades to utilize piezoelectricity; the 

first commercial applications were ultrasonic submarine detectors developed in 1940’s 

during World War I, due to the discovery of the barium titanate (BaTiO3), a 

piezoelectric ceramic. After that, many researches are conducted on man-made 

piezoelectric materials, both on fabrication and use. 

The (direct) piezoelectric effect results the material to be electrically charged 

when subject to pressure. Due to this property, piezoelectric materials can be used to 

“convert” strain, movement, force, pressure, or vibration to electric signals and 

therefore are widely preferred as detector material. The inverse piezoelectric effect, the 

ability of the material to become strained due to an electric field, on the other hand, 

gives the possibility to use those crystals as “actuator” for a range of applications [6]. 

2.1.1 Daily Use of Piezoelectricity 

The piezoelectric effect is very often encountered in daily life both as actuator 

and/or sensor. The accelerometer for triggering the airbag of the cars during an accident 

is actually a piece of piezoelectric crystal [5]. In gas lighters, pressure by an impact is 

applied on a piezoelectric ceramic resulting electric field strong enough to produce a 
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spark that ignites the gas. Alarm clocks and phone rings often use a piezoelectric 

element that vibrates at the audible frequency [7].  

Piezoelectric materials do also find place in auto-focus cameras [8, 9] and sports 

materials: “Smart Skis” introduced in 1995, are high-tech snow skis from K2 in Vashon, 

Washington, with embedded computer controlled piezoelectric actuations damp out 

shocks and vibrations automatically to provide better stability to the skier [10]. Another 

application of the smart material technology is used on mountain bikes; ACX engineers 

used piezoelectric actuators to alter the flow of fluid through a shock bypass port. That 

way, shock setting provides the optimal damping for the continuously changing terrain 

and speed during the off-road riding of mountain bike [10]. 

During the past decade, this material has been extensively used for controlling 

vibration, noise [11, 12] and shape of a structural system [13]. As an example, in 

aerospace, the actuator is currently being used to alleviate tail buffeting in aircrafts by 

NASA [14] and to increase stability in helicopter rotors [12, 14].  

Due to the relatively small size and light weight, piezoelectric elements can be 

integrated in a complex actuator networks such as a robotic system [15]. “Miniman”, a 

miniaturized robot for micro manipulation by University of Karlsruhe, Germany, with 

its size 10x10x20mm, can “walk” in the environment by its piezo actuated legs and 

manipulate its tool holder in 3D space [16-18]. Similar approach is adopted by 

Kusakawa et al. [19]; their robot is 28mm diameter with a height of 16mm. This small 

robot of only 16 grams, uses three actuated piezo legs based on the elongation and 

contradiction of the piezoelectric actuators, while Miniman uses bending type 

piezoelectric actuators for motion. Another micro robot based on bending type actuators 

is the one developed by Aoyama et al. [20, 21] for micromachining systems. These 

robots with the size of 30mm in cubic are designed to carry parts to the micromachining 

stations like drilling, assembling etc. 

Other main applications of these ceramics is the scanning tunneling microscope 

(STM) and atomic force microscope (AFM) [22-24], commonly used in the field of 

material science for surface visualization at the resolution of atomic size. In those 

applications, the fixed tip on a system of piezoelectric actuators is supposed to move 

distances typically 50 Angstroms in parallel and perpendicular to the sample material. 
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Due to the limited stroke but high resolution of the piezoelectric actuators, they 

are sometimes used in combination with another actuator; one for coarse motion and 

piezoelectric actuator for fine motion. For example they act as secondary actuator in 

hard disk drive head to improve the alignment with data tracks on the disk which 

increases the data density [25, 26]. Even tough in such applications the primary actuator 

is generally a DC motor, different applications exist. For example Liu et al. worked on 

piezo-voice coil motor combination [27]. 

2.1.2 Piezoelectricity for Nanopositioning 

Piezoelectric effect is a crystalline effect and therefore piezoelectric actuators do 

not suffer from “stick slip” effect mainly caused by the friction between elements of a 

mechanical system. This property theoretically promises an unlimited resolution. 

However, the achievable resolution in practice can be limited by a number of other 

factors such as the piezo control amplifier (electronic noise), sensor (resolution, noise 

and mounting precision) and control electronics (noise and sensitivity to EMI) as will be 

discussed in further chapters. 

In naturally occurring piezoelectric materials, such as quartz, piezoelectric effect 

is too small to be of practical use. Modern man-made piezoelectric polycrystalline 

ceramics are much more suitable for actuator and/or sensor purposes. The most popular 

commercial piezoelectric materials are lead zirconate titanate (PZT), lanthanum 

modified lead zirconate titanate (PLZT) and polyvinylidene fluoride (PVDF) [6]. 

Today, the most often used material is PZT and actuators made of this ceramic are often 

referred as PZT actuators. 

To be able to exhibit piezoelectric effect, the crystal structure of the material must 

possess built-in dipoles that are highly oriented [28]. In other words the crystal structure 

must be asymmetric. Piezoelectric actuators are generally driven by applying voltage 

difference to the terminals, causing an electric field on the material which results in 

elongation or contradiction of the material depending on the polarization or 

depolarization level of the crystal. The maximum permissible electric potential 

difference is limited by the saturation level of the polarization and/or depolarization. 

Maximum allowed positive field strength is generally much higher than the permissible 

negative field strength meaning that the material can elongate more than it can contract. 
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2.1.3 Major Piezoelectric Actuator Types 

Piezoelectric materials have three basic deformation modes: axial, transversal and 

shear [28] creating three actuator types: the axial actuator, the transversal actuator and 

the shear actuator. Based on those deformation modes three main types of actuator 

developed: the bimorph actuator (transversal mode), the tube actuator (transversal 

mode) and the stack actuator (multilayer, axial mode). 

So called “bimorphs” actuators, consists of two piezoelectric plates bonded 

together and electroded so that their piezoelectric expansion/contradiction directions are 

opposing each another. This actuator will execute a bending motion of several hundred 

micrometers with the application of an electric field. 

The tube actuator consist of bulk ceramic disks, which are 0.4 to 1mm thickness, 

glued together to form a stack. In this type of actuators, no intermediate electrodes are 

used; therefore, the required voltage is much higher compare to the other types of 

actuators. 

The maximum electrical field that piezoelectric ceramics can survive is on the 

order of 1kV/mm. In order to keep the operating voltage within practical limits, some 

actuators are produced by serial thin layers of piezoelectric ceramic, with typical 

thicknesses of 20 to 100µm, that are stacked physically in series but are connected 

electrically in parallel (Figure 2.1) [29, 30]. So called the stack actuator is based on the 

axial mode of the material. The main advantage, beside low-voltage requirement, is the 

relatively large stroke: the total deformation for piezoelectric actuator is the sum of the 

expansions of the individual layers. 

 
Figure 2.1: Electrical connection of disks in a stack type piezoelectric actuator [7]. 
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Both tube and stack type of piezo actuators can be used in many applications: 

low-voltage actuators facilitate drive electronics design, but due to manufacturing 

technology, high-voltage ceramics can be designed with larger cross-sections suitable 

for higher-load applications. 

2.1.4 Features of Piezoelectric Actuators 

Until the last few decades the main actuation source used to be the electrostatic 

and electromagnetic actuators. However, the actuation by piezoelectric actuators gets 

more and more popular. Comparative properties of electrostatic, electromagnetic and 

piezoelectric actuators are summarized in Table 2.1 below will help to better understand 

the causes. 

Table 2.1: Comparison of typical actuator properties [31]. 

Actuator Type 
Property 

Electrostatic Electromagnetic Piezoelectric 

Volume power ↓ ↔ ↑ 
Area efficiency ↓ ↔ ↑ 
Volume efficiency ↔ ↓ ↑ 
Machinability ↑ ↓ ↔ 
Displacement ↓ ↑ ↔ 
Frequency response ↔ ↓ ↑ 
Displacement accuracy ↔ ↓ ↑ 
Legend: (↑) Good, (↔) moderate, (↓) not good. 

 

Main advantage of electromagnetic actuators is their high energy density. 

Centimeter sized motors can be fabricated without difficulty. Therefore electromagnetic 

actuators are the dominant ones in conventional use. However, on micro or nano 

actuation, the volume and weight are very large and the assembling process of 

permanent magnets is required in fabrication process. So that it is at disadvantage for 

miniaturization of systems [8]. 

Electrostatic type of actuators is most widely applied for MEMS (micro 

electromechanical systems) since the processing method of semiconductors can be used 

for their fabrication, which is their main advantage. Their energy density is quite small 

compare to electromagnetic energy density. Moreover, they have the disadvantages of 



9 

small displacement, necessity for careful insulation and design of structures with a very 

large number of comb probes. Therefore, they are also at disadvantage for 

miniaturization of the systems [8]. 

Between the scales of centimeters (electromagnetic actuators) and hundreds of 

micrometers (electrostatic actuators), the demand for powerful actuators can be fulfilled 

with piezoelectric actuators. At the present the most widely used piezoelectric material 

is PZT. With additives of doping or acceptor ions, PZT can be modified to be soft type 

or hard type. Soft PZT materials [Pb(Ti, Zr)O3] is the mixed solid solution of lead 

zirconate (PbZrO3) of ferroelectric (analogus to ferromagnetic) and lead titanate 

(PbTiO3) of anti-ferroelectric. [8, 29, 30]. 

Soft type piezoelectric materials are used to generate large strokes while hard type 

PZT actuators are used for resonance type actuators like ultrasonic motors. After all, 

hard type PZT’s energy densities is only one order of magnitude above of the soft type 

PZT’s. 

Beside the energy density property, piezoelectric actuators have many advantages 

over electromagnetic and electrostatic actuators. Repeatable nanometer and sub-

nanometer steps at high frequency can be achieved with piezoelectric actuators due to 

the motion derived through solid state crystal effects (molecular effects within the 

crystalline cells). There are no moving parts accordingly no “stick-slip” effect. 

Therefore managing displacements in the range of 10pm to 100μm ( m1210−  to m410− ) 

is theoretically possible. Due to the same reasons, piezoelectric actuators have also the 

following useful properties; no maintenance requirement, no lubrication requirement, 

high-oscillating frequency, less EMI influence and less noise and heat production. 

2.1.5 Disadvantages of Piezoelectric Actuators 

Along with the fast growing of precision manufacturing industry, high precision 

and high performance motion is becoming essential. Piezoelectric actuators, based on 

crystalline effects theoretically provide unlimited resolutions and therefore are widely 

used in commercial application to provide sub-micrometer resolution. Moreover their 

high speed, high bandwidth, high stiffness, high electrical-mechanical transformation 

efficiency and little heat generation properties make them more agreeable in the field.  

Although the piezoelectric materials possesses so many advantages, almost all 

piezoelectric materials are ferroelectric and as all ferroelectric materials they exhibit 
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fundamental hysteresis phenomena in the polarization versus the applied electric field, 

as well as in all the material properties coupled to the polarization [7, 23, 25, 26, 32-36]. 

 
Figure 2.2: Measures hysteresis curves for voltage/displacement and force/displacement 

relations. 

Hysteresis yields a rate-independent lag and residual displacement near zero input 

(Figure 2.2) [37]. Since the output depends on the input history, for a certain input there 

is no unique output. Hysteresis is nondifferential, multivalued, and is usually unknown. 

The existence of hysteresis often limits the performance of the piezoelectric actuator, 

leads to the severe inaccuracies (up to 10-15% of the traveling path) and causes 

undesirable oscillation or even instabilities when the piezo actuator is operated in an 

open-loop manner [38]. Achieving high speed, large-range precision positioning of 

piezo actuators is therefore challenging [39]. Hence how to design an effective 

controller for dealing with the hysteretic feature becomes a very important topic. 

Another undesired characteristic of piezoelectric actuators is the “creep effect” 

that can be observed when a step input voltage is applied to the input of the actuator 

[40, 41]. Figure 2.3 shows a step response of a general stack-type piezoelectric actuator. 

As seen in the figure, the displacement differs for the same input voltage levels, which 

clearly shows the hysteresis effect. In addition to hysteresis, we can see the creep effect 

in each step (magnified view in the circle). It has been known that the creep response 

has a logarithmic shape over time that can be represented by the following equation 

[40]: 
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where ( )tL  is the piezoelectric actuator’s displacement for any fixed input voltage, 0L  

is a nominal constant displacement value which is the displacement of 0.1s after 

applying the input voltage, γ  is a creep factor which determines the rate of the 

logarithm. Rates of creep γ  are different according to the input voltages. Moreover, 

even if the final applied voltages are the same, the value of the parameter γ  is still 

different from others according to the past applied voltages. 

 
Figure 2.3: Open-loop step response of the piezoelectric actuator. “d” is the displacement 

difference due to hysteresis. Creep effect is magnified in the circular view [40]. 

2.2 Piezoelectric Actuator Models 

Probably the most known piezoelectric actuator model is the one published by the 

standards committee of the IEEE in 1987 [42]. This description consists of two linear 

constitutive relations; the first one describes the mechanical behavior while the second 

one describes the electrical behavior of the material under constant electric field since 

the model is developed for quasistatic operation. 
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where ijT  is the stress component ( 2mN ), E
ijklc  is the elastic stiffness ( 2mN ), kije  and 

ikle  are the piezoelectric constants ( 2mC ), kE  is the electric field ( mV ), iD  is the 
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electric displacement ( 2mC ) and klS  is the strain component. In this set of equations 

the summations run according to Newton rule.  

Although this description is the most widely recognized one and still widely used, 

model derivation on the IEEE linear constitutive relations requires several assumptions, 

resulting in an oversimplified description that fails to describe the nonlinear behavior 

present in all piezoelectric ceramics. Yet, they do provide us the basic relationship 

among strain ( S ), stress (T ), electric field ( E ) and electric displacement ( D ) in a 

piezoelectric material. 

The work by Guan and Liao [43] on the other hand, is one of the rare equivalent 

circuits modeling research for piezoelectric actuators under loaded and unloaded 

conditions. The work disregards the mechanical domain and summarizes the behavior 

of the actuator near resonance by two lumped-parameter equivalent circuits in parallel; 

one representing the non-resonant part and other resonant part. The resonant part is a 

number of R-L-C (in series) layers placed in parallel (Figure 2.4). Depending on the 

resonance points obtained by the experiments the number of layer is varied and 

components of each layer are adjusted to match the frequency. 

 
Figure 2.4: Electrical equivalent circuit for piezoelectric actuators; equivalent circuit model for 

unloaded piezoelectric ceramics on the left and proposed circuit model for the piezoelectric 

structure on the right [43] 

In so called “quasistatic operation”, the operation up to few Hertz, the series 

resonant circuit ( mmm R,C,L ) which represents dielectric losses, is canceled out and the 

piezoactuator is mainly a capacitor [28, 42]. Therefore require very little power in 

quasistatic operation: just to balance the leakage of current through the internal 

resistance pR  which is typically on the order of ΩM10 , simplifying power supply 

needs [8]. Even when disconnected from the electrical source, the charged actuator will 
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not make a sudden move but will very slowly return to its uncharged position. Since in 

quasistatic operation, piezoelectric devices consume almost no energy, they produce 

virtually no heat. 

2.3 Hysteresis Models 

A hysteresis loop is defined as the stationary loop in the input-output plane for a 

quasistatic monotone oscillating input such as a small frequency sinusoid. In 

piezoelectric actuators, hysteresis effect depends on many parameters including input 

amplitude and frequency, and is known to be the dominant nonlinearity. Many 

researchers have proposed different hysteresis models for piezoelectric ceramics.  

Work done in this area can be grouped under two major categories; application of 

the ferromagnetic hysteresis models to piezoelectric actuators, like Jiles–Atherton 

model [44], and development of new models. 

New model developments are based upon mathematical and logical 

approximation of the input–output behavior of the material, as for example the Preisach 

model, the Duhem model, the Generalized Maxwell slip model, and the constant phase 

lag approximation [34, 37].  

Preisach model is constructed from the superposition of the outputs of a set of 

hysteretic relays. As generally accepted, the Preisach model that implies non 

recoverable nonlinearities, is superior to the others. However, it is quite long process to 

identify a Preisach model for a given piezoelectric actuator. A special set of inputs has 

to be applied to collect corresponding responses in order to calibrate model parameters. 

Moreover, the model is known to focus only on minor loops of hysteresis under 

operating voltage well-below saturation [45] and therefore ignores frequency-dependent 

behavior [46]. Duhem model on the other hand does not give a unique response for a 

given input, which requires additional algorithm to properly use it. Generalized 

Maxwell Slip model, first proposed by physicist James C. Maxwell in 1800s, requires 

many calculations during the control phase, making it computationally costly to apply. 
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2.4 Control of Piezoelectric Actuators 

The use of piezoelectric actuator requires a robust and well designed controller. 

Although many open-loop controllers based on the hysteresis and creep models are 

applied in different applications, closed loop control is known to provide better 

linearity, long-term position stability, repeatability and accuracy. 

Piezoelectric actuators can be driven with either of the two inputs: voltage input 

or charge input. In the early 1980’s it has been reported that, in case of charge drive, the 

hysteresis behavior is reduced [47]. However, we know that, in both driving method a 

charge is induced on the electrodes of the piezoelectric actuator, generating an electric 

field, causing the material to elongate or contradict which results a displacement. From 

this information we can conclude that the hysteresis is mainly formed by charge input 

that creates a voltage difference across the serial impedance to the actuator circuitry as 

summarized in Figure 2.5.  

 
Figure 2.5: Schematic representation of the different representations in a piezoelectric actuator. 

From the above information we can conclude that the charge control of the 

actuator does not avoid the hysteresis, but since this nonlinearity is between the voltage 

and charge it is now included to the control domain of the current source. 

Still some charge control methods are investigated by researchers; however, the 

difficulties in hardware directed most of the research to voltage steering: a charge drive 

configuration has to be able to apply the desired charge to the piezoelectric actuator 

independently from the actuator impedance that is changing. This is completely analog 

to a current drive configuration that applies constant current independently from the 

attached impedance [47, 48]. However, in piezoelectric actuators care must be taken 

since piezoelectric materials do have maximum and minimum voltage limits. Therefore 

the applied current should have dynamic limits to protect the crystal from damage. 

In [48], a current source is directly used for charge steering, while in [47] a simple 

configuration consisting of a voltage source, an operational amplifier, an external 
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capacitance, and a high voltage amplifier is proposed. It is known that these 

configurations have two apparent drawbacks: both sides of the piezoelectric actuator are 

floating with respect to ground and therefore is very sensitive to op-amp bias current 

[34].  

In voltage steering on the other hand, much effort is done to model the hysteresis 

with invertible functions that will be used for compensation purposes [23, 30, 34, 36, 

37, 46, 49]. The choice of open-loop control is generally shown as a must since the 

position change measurement in the orders of micrometers requires expensive devices 

such as LVDT’s, laser interferometers etc… However, open-loop techniques have been 

successful in providing results up to 2% error which is acceptable compare to the 15-

20% hysteresis error in the nature of the piezoelectric actuator. Due to the difficulties 

involved in modeling the actuator precisely, those techniques seem to approach the 

boundaries. 

In [25], disturbance compensation based on a hysteresis model is used. However, 

unmodeled disturbances required the addition of a robust ∞H  controller. A similar work 

is done by Tamer and Dahleh [24]. They tried both the ∞H  method with estimated 

velocity, based on position measurement, and the lead-lag compensation that improves 

the transient response and steady state error. It is shown that lead-lag control needs 

frequency dependent feedforward gain, limited by the maximum voltage of the actuator. 

Experimental results show that although the error boundaries decreased from 8% to 6%, 

hysteresis is still a problem even at low frequencies. ∞H  control on the other hand gives 

better tracking and eliminates the high frequency oscillations for the cost of rounding 

the corners of the triangular waves and noticeable delay increasing with frequency. 

In order to design a control scheme that will achieve successful tracking 

performance without precise dynamic modeling, some fuzzy logic and neural network 

solutions are presented in the literature. Due to the limited performance, this research 

area did not find much popularity [38, 50, 51]. 

Similar learning methods are used to estimate the hysteresis or the disturbance in 

general, in order to feedforward to the plant under simple PID controller [51-54]. 

Complexity of the hysteresis being major barrier, makes the design of the neural 

networks challenging. As a result the systems could barely perform better than model 

based feedforward controllers. 
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A similar idea with totally different approach is the hysteresis observer; in 

contrary to model inversion methods, hysteresis observers continuously predict the 

disturbance on the system and with a correction term, linearize the plant [55]. Many 

observers based on different plant and hysteresis models are investigated. Most recent 

works are by Shieh and Huang [33, 56, 57] and by Lin and Yang [58, 59].  

Sliding mode control (SMC) is one of the effective nonlinear robust control 

approaches. One of the most important aspect of SMC is the discontinuous nature of the 

control action which switches between two values to move the system motion on so-

called “sliding mode” that exist in a manifold. SMC provides system invariance to 

uncertainties once the system is in the sliding mode [3, 4] and originally designed as 

system motion for dynamic systems whose essential open-loop behavior can be 

sufficiently modeled with ordinary differential equations. The discontinuous control 

action is generally referred as variable structure control (VSC). The resulting feedback 

system, called variable structure system (VSS), is defined in continuous time domain 

and governed by differential equations with discontinuous right hand sides.  

Bonnail et al. applied VSC on piezoelectric actuated scanning tunneling 

microscope to precisely follow the sample surface with the feedback of the tunneling 

current [60]. Compare to the commercial PI controlled motion, their solution shows less 

oscillating tunneling current due to the better tracking of the surface. 

Abidi et al. used SMC in conjunction with the disturbance observer for both 

position and force tracking in piezoelectric actuators [61, 62]. In their work, they used 

the lumped parameter model of the piezoelectric actuator to estimate the external 

disturbances via disturbance observer. Feedforward application of the estimated 

disturbance improved the results. 

Woronko et al. used SMC to control additional degree of freedom added to tool 

position on conventional CNC turning centers to improve machining precisions [63]. 

Chiang et al. used adaptive discrete variable structure control to control the piezoelectric 

actuator mounted on the tip of a pneumatic cylinder. That is how they obtained a large 

stroke yet precise linear actuation system using adaptive discrete variable structure 

control. 
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2.5 Disturbance Observer 

A control scheme based on an observer is a highly effective method to improve 

the performance of the motion control due to its simple structure and it has been widely 

adopted in the various application areas. Instead of explicitly designing a nonlinear 

control law to compensate the nonlinearities in the plant, the nonlinearities are treated as 

disturbances to a linear plant. A disturbance observer (DO) is closed around the control 

loop to estimate and cancel these terms. Yet the DO is a helpful tool in the motion 

control system to reject not only the external disturbance but also all internal modeling 

parameter variations. This way the motion control performance can be greatly 

enhanced. Moreover the attractiveness of the DO based algorithms lie in their 

simplicity. 

In recent years, disturbance observers have been widely used in realizing high 

performance and precise motion control systems. Even tough there are various 

proposals to estimate the disturbance, this work uses the DO introduced by Ohnishi et 

al. [55] for the following reasons [64, 65]; 

• The amount of calculation is small: a disturbance observer allows for making 

estimates by considering parameter variation, nonlinear friction, and other 

disturbances together as one state variable. 

• A disturbance observer can be readily built with only a reverse system for the 

nominal plant and a low-pass filter. As a result, the physical meaning of the 

parameters of the structural elements can be readily understood. 

• A nominal system can be created by feeding back the estimated disturbance. 

• The sensitivity to disturbance can be decreased by simply making the 

disturbance observer of a higher order as necessary. 

The conventional motion control system simply consists of a position controller 

and a disturbance observer as shown in Figure 2.6. Note that this is a SISO system that 

is represented using the Laplace domain. The position controller, fC , is usually a PID 

controller, which is a cascaded form of position and speed controller. In order to 

enhance the control performance, the DO is adopted to compensate the disturbance. 
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Figure 2.6: Motion Control system with disturbance observer. 

P  represents the actual plant which is affected by variations in the parameters, r , 

y , u , and ξ  represent the reference input, the plant output, the control input and the 

observer noise respectively. The DO is the block surrounded by the dotted line; the 

disturbance d  is estimated from the output y  and the input u . Here, nP  is the nominal 

plant, all of whose parameters are known. A system for which nP  has mth order delay 

can be expressed as follows: 
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The coefficients ia  of the denominator in polynomial equation 2.3 are generally 

selected as follows; 
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G  is defined a the low-pass filter used to make the observer proper. The design of G  is 

shown in equation 2.5 for the disturbance model defined as in equation 2.6 
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Above equations show that the selection of filter G  merely depends on the order 

of the system and on the order of the estimated disturbance model. In general, the step 

function model, that is 1=k , is used. When a disturbance model with 1>k  is preferred, 

the order is higher than in the typical system and consequently called a higher-order DO 

[64]. 
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2.5.1 Reduced Order Luenberger Observer  

There are many possibilities to approach the disturbance estimation and our 

intention is not to exhaust all possible structures but, by discussing some, to select the 

most appropriate one to the problem in focus.  

The application of the Luenberger observer requires making some assumptions 

regarding the parameters of the system and the disturbance itself. First disturbance is 

assumed as bounded and can be modeled as the output of a linear system. Such an 

assumption allows writing reduced order Luenberger observer for a second order system 

represented by; 

2.7 FFxkxcxm ext =+⋅+⋅+⋅ &&&  2.7 

Assume disturbance force changes slowly relative to the mechanical time 

constant of the system and therefore the derivative of the disturbance is neglectable. 

That assumption together with system 2.7 leads to an augmented system; 
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&&&  2.8 

2.9 ( ) 0,, =txxFd &&  2.9 

Under assumption that velocity and input force are measurable, reduced order 

Luenberger observer can be designed by introducing the intermediate variable; 

2.10 xlFz d &⋅+= ,   0>= constl  2.10 

By taking into account the augmented system 2.8 the dynamics of xlFz d &⋅+=  can be 

written as; 

2.11 ( )xlzF
m
lxlFz d &&&&& ⋅+−⋅=⋅+=  2.11 

since 0=dF& . Now it is easy to design observer for z  just by taking the same structure 

as in 2.11; 

2.12 ( )xlzF
m
lz && ⋅+−⋅= ˆˆ  2.12 

By taking Laplace transformation of 2.12, one can easily find  
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2.13 ( )
( ) ( ) ( ) ( )sxlFsQsxlF

mls
mlz ⋅+⋅=⋅+

+
=

/
/ˆ ,   ( ) ( )

( )mls
mlsQ
/

/
+

=  2.13 

Where ( )sQ  is a low pass filter with corner frequency defined by design parameter 

ml / . Just by plugging 2.13 into 2.10, estimated disturbance can be expressed in the 

form 

2.14 ( ) ( )( ) sxsQlFsQFd ⋅−⋅−⋅= 1ˆ  2.14 

Under the condition gml ⋅=  the structure can be rearranged to the following form  

2.15 ( ) ( ) dd FsQxsaF
gs

gsxm
gs
sgF

gs
gF ⋅=⋅−⋅

+
=⋅⋅

+
⋅

−⋅
+

= 2ˆ  2.15 

The reduced order Luenberger observer is providing estimation of the disturbance 

extd FxkxcF +⋅+⋅= &  modified by simple first order filter ( ) gs
gsQ += . If one 

requires constant bandwidth of the low pass filter, then the gain of the observer must 

depend on the system inertia. If the system inertia is not known than this requirement 

cannot be met. 
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3 DESIGN AND IMPLEMENTATION 

This research mainly focuses on the analysis and control of piezoelectric actuators 

using Sliding Mode Controller for analog circuit application as a final target. The 

organization of the rest of the text is as follows; we will first study the plant and present 

the selected piezoelectric actuator model together with the nonlinearity model namely 

the hysteresis. Next we will present the Sliding Mode Control as it is applied in this 

work followed by the disturbance observer design. Analog application of the control 

and disturbance observer is studied; therefore the subsequent section will discuss the 

requirements, design criterion and application of the Sliding Mode Control algorithm in 

electronics. The last part summarizes the analysis used either in the design process or 

after the design has been established. 

3.1 Modeling Piezoelectric Actuator 

Discussed in previous sections, different models for piezoelectric actuators exists, 

with most based on IEEE standard [42]. Modeling strategies are bounded to fail if only 

the actuator displacement is taken into account and not the force. A complete model 

should include the coupled displacement and force variables of the actuator. In 1997, 

Goldfarb and Celanovic proposed a model that is completely based on physical 

principles and that uses Maxwell slip model for the hysteresis realization [36]. This 

model consists of an electrical and a mechanical domain, as well as the connection 

between the two domains. Even though this model describes well the linear dynamical 

aspects and the hysteresis nonlinearity, the hysteretic behavior description requires 

serious computation. Based on Maxwell slip model, the hysteresis calculation requires a 

serious number of slip elements to increase calculation accuracy. 

As a useful ability, the model allows simple means to include different 

nonlinearity models. The hysteresis model used by Adriaens et al. [34] and by Banning 

et al. [35] together with the electromechanical model proposed by Goldfarb and 

Celanovic is known to give good performance, even though it is mainly tested for 
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ferromagnetically soft materials by Coleman and Hodgdon [34, 35] in 1986. This 

combination is also used and validated by Abidi et al. [61, 62]. 

According to the Goldfarb-Celenovic model, the piezoelectric actuator consists of 

an electrical and a mechanical model connected to each other by an appropriate 

conversion constant called “the piezoelectric effect constant”. The model is summarized 

on Figure 3.1 where ( )qH  is the hysteresis effect as a function of charge q , h  the 

voltage due to this effect, T  is the piezoelectric effect conversion constant, C  

represents the capacitance, q&  is the total current flowing through the circuit ( q  may be 

seen as the total charge in the piezoelectric actuator), pq  is the transduced charge from 

the mechanical side, pu  is the voltage due to the piezo effect, u  is the total voltage over 

the piezoelectric actuator, pF  is the transduced force from the electrical side while extF  

is the externally applied force and finally x  is the elongation of the piezoelectric 

actuator. 

The mechanical relation between pF  and x  is denoted by M  that compromise 

equivalent mass m , spring k , and damping c . Note that we have equal electrical and 

mechanical energy at the ports of interaction, i.e. xFqu ppp ⋅=⋅ . 

 
Figure 3.1: Electromechanical model of the piezoelectric actuator. 

The lumped parameters of the piezoelectric actuator; m , c  and k  can be 

calculated in terms of the piezoelectric ceramic properties: elasticity modulus E , 
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viscosity η , mass density ρ  and physical properties like physical length L  and cross-

sectional area A  of the wafers as follows: 

3.1 ALm ρ=       
L
Ac η

=       
L

EAk =  3.1 

Parameters for the lead zirconate titanate (PZT) material are presented on Table 

3.1. Though, it will be safer to experimentally measure those values using FRF 

(Frequency Response Function) analysis, since due to the production phase, aging and 

operation temperature, some of the parameters may drift and/or differ. 

Table 3.1: Material properties for lead zirconate titanate (PZT), the piezoelectric crystal of the 

used actuator for the experiments in this work. 

Property Symbol Value 

Elasticity modulus E  210 /106.6 mN⋅  
Viscosity η  10mPa.s  
Mass density ρ  3/7800 mkg  

 

The complete electromechanical model, which can also be described by the block 

diagram given in Figure 3.2, is mathematically formulated by 6 equations; 

3.2 huu p −=  3.2 

3.3 )(qHh =  3.3 

3.4 pp quCq +⋅=  3.4 

3.5 xTq p ⋅=  3.5 

3.6 pp uTF ⋅=  3.6 

3.7 extp FFxkxcxm −=⋅+⋅+⋅ &&&  3.7 

System defined by equations 3.2 to 3.7 can be evaluated further for state space 

representation. First of all 3.3 is inserted in 3.2 that is also inserted in 3.6 to obtain; 

3.8 ( )( )qHuTFp −⋅=  3.8 

Then this equation must be replaced in 3.7. The resultant equation can be written as; 

3.9 ( )[ ] extFqHuTxkxcxm −−⋅=⋅+⋅+⋅ &&&  3.9 

This equation can easily be rewritten in state space form; 
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3.10 ( )

distu
m
Tx

m
cx

m
kxx

m
F

qH
m
Tu

m
Tx

m
cx

m
kxx

xxx

ext

−⋅+⋅−⋅−==

⎟
⎠
⎞

⎜
⎝
⎛ +⋅−⋅+⋅−⋅−==

==

212

212

21

&&&

&&&

&&

 3.10 

This is a second order time invariant single input single output (SISO) system 

with disturbance represented by the term ‘ dist ’. 

 
Figure 3.2: Block diagram representation of the electromechanical model. 

3.2 Hysteresis Model 

 
Figure 3.3: Example hysteresis loop and its characteristics [26]. 

Goldfarb-Celenovic model summarizes the electromechanical model of the 

piezoelectric actuator and includes the hysteresis as function of charge flowing to the 

actuator. For the modeling of this hysteresis effect we will use the model proposed by 
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Coleman and Hodgdon [34, 35] initially developed for magnetic hysteresis. It has been 

proven that the model is also suitable for describing the electrical hysteresis [61, 62]. 

According to the model, the relation between the hysteresis voltage h  and charge 

flowing to the actuator q  is given by; 

3.11 ( )( ) ( )hghqhfhq ⋅+−⋅⋅= && α  3.11 

where ( )hf  and ( )hg  are functions defining the shape of the hysteresis loop, shown in 

Figure 3.3, and α  is a constant. 

It has been shown that the center point of the hysteresis loop is given by 

( )hcc ufq = , where hcu  is the average voltage applied to the actuator by the sinusoidal 

input, and the average slope of the loop is given by ( )hcug , where cq  is corresponding 

average charge to hcu . 

Although piezoelectric actuators have a physical stroke limit, in practice the 

operation point is kept away from those boundaries. Accordingly, the hysteresis loop 

having the shape shown in Figure 3.3 can be defined by two shaping functions selected 

as; 

3.12 
( )
( ) bhg

hahf
=

⋅=
 3.12 

where a  and b  are constants. Then using the equation for the center point and the 

average slope, those two constants can be determined from the following equalities; 

3.13 
Abqq

haq

llur

c

2⋅=−
⋅=

 3.13 

where llq  and urq  are respectively the lower left and upper right points of the hysteresis 

loop and A2  is the maximum input amplitude.  

In order to determine the third parameter α  in the model of the hysteresis, a 

relation for the area of the hysteresis loop, ε , is derived for small amplitude of the 

sinusoidal input; 

3.14 ( ) 3

3
4 Aba ⋅⋅−⋅= αε  3.14 
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Remark that the hysteresis area represents the amount of energy spent by the 

system [35] and therefore ε  corresponds to the lost of the energy in the system. 

In order to find the values of the variables a , b  and α  one must analyze the 

behavior of the piezoelectric actuator for small amplitude, moderate frequency 

sinusoidal input: ( ) ( )tAuth ⋅⋅+= ωsin~  where u~  is the offset, A  is the amplitude and 

ω  is the angular frequency of the input. First of all u~  is slowly varied and cq  vs. u~  is 

plotted. The fitting of the line uaqc
~⋅=  will give the value for a . Similarly, varying A  

and plotting slope of the hysteresis loop vs. ( )th  will yield a line parallel to the 

horizontal axis whose value is equal to b . Finally the hysteresis area loop vs. ( )th  is 

plotted for various amplitudes A  and then α  is determined from the plot since a  and 

b  are known in equation 3.14. 

3.3 Model Parameters 

Model parameters are mainly defined from the datasheet of the piezoelectric 

actuator used in experiments and from previous work by Abidi et al. [61, 62] as 

the same actuator was used in that work. Some other parameters are determined 

with experiments and the values are refined by trial and error. Since robust control 

techniques will be used exact knowledge of parameters is not crucial. The used 

piezoelectric actuator is PSt 150/5/60 VS10 type from Piezomechanik SVR with 

datasheet information presented on Figure 3.4. Nominal values for plant 

parameters are presented on Table 3.2 as they are used in the next sections. 

Table 3.2: Nominal values for plant parameter used in this work [26] 

Parameter Nominal 
Value 

Nm  41024.9 −⋅  kg 
Nc  685 N.s/m 

Nk  6108 ⋅  N/m 
NT  3.9 N/V 

C  Fμ4.2  
a  5 
b  4.5 
α  1.8 
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Figure 3.4: Datasheet for the piezoelectric actuator: PSt 150/5/60 VS10. 

3.4 Sliding Model Control 

The Sliding Mode Control is an effective robust control to deal with parameter 

uncertainties and disturbance for nonlinear systems; it is widely used for the nonlinear 

control scheme. The major problem with the classical SMC is that the control input that 

shows high frequency oscillations, resulting in a problem known as chattering. The 

chattering involves extremely high control activity and increase power consumption. In 

addition, produces undesirable high frequency dynamics.  

One of the most common solutions to chattering problem is the boundary layer 

approach. The SMC with the boundary layer consists of a smooth function instead of 

the sign function. However this method has some side effects. First, the boundary layer 

thickness has the trade-off relation between control performance of sliding controller 

and chattering migration. Second, within the boundary layer, the characteristics of 

robustness and the accuracy of the system are no longer assured. Another method for 

cancelling the chattering problem is the high order SMC that requires complex 

calculation. 

When the continuity of input signals to the plant is an important design criterion, 

the classical method fails. For example, if the input to the system is current, a fast 

oscillating signal cannot be tolerated. Therefore a method which can assure continuous 

control signals becomes desirable.  

In this work, SMC design methodology is used to arrive a controller that has very 

small discontinuous component or in some cases no discontinuous component at all, if 

the exponential convergence to sliding mode manifold is acceptable. In addition, the 

structure is kept as simple as possible in order to allow analog implementation with 

limited hardware. The aim is in this later stage is to try to integrate a whole controller as 
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a part of the high voltage amplifier needed to supply the PEA. Using Lyapunov stability 

theorem, the stability of the control strategy is proven. 

3.4.1 Definitions 

In the controller design we will consider dynamical systems that can be 

represented as a class of nonlinear systems, linear with respect of control as described 

by the following equation; 

3.15 duxBxfx +⋅+= )()(&  3.15 

where nTx ℜ∈  is the state vector, mu ℜ∈  is the control vector, nxf ℜ∈)(  is an 

unknown, continuous and bounded nonlinear function, nxmxB ℜ∈)(  is a known input 

matrix whose elements are continuous and bounded and ( )( ) mxBrank
x
=

∀
, with 

nd ℜ∈  being an unknown, bounded external disturbance. It is assumed that both 
nxf ℜ∈)(  and nd ℜ∈  satisfy the matching conditions and all their components are 

bounded Mxf
xi ≤

∀
)(  and Ntd

ti ≤
∀

)( . Fully actuated mechanical systems belong to 

the class of systems described by 3.15. Such systems can be interpreted as m  

interconnected sub-systems ( ) ( ) ( )jiiiiiiiii ,xxgu,txbx,xhx +⋅+= &&& , ( )iii x,xh &  in general 

represents Coulomb friction term, ( )jii ,xxg  represents the interaction term and is 

regarded as a disturbance. 

The aim is to determine the control input [ ]Tmuuu ,...,1=  such that the system 

states )(),...,(1 txtx n  track the desired trajectories )(),...,(
1

txtx
ndd  while control error 

satisfies selected dynamic requirements. In other words, derive the states of the system 

into the set S  defined by; 

3.16 ( ) ( ){ }0,: ==−⋅= dd xxxxGxS σ  3.16 

where ( )dxx,σ  is the function defining the sliding manifold. 

3.4.2 Controller Design 

The controller will be designed in the SMC framework by firstly selecting a 

suitable sliding manifold S  that will ensure desired systems dynamics and then 

selecting control such that the Lyapunov stability conditions are satisfied. Selecting the 

Lyapunov function candidate in terms of the sliding function σ  is a natural way of 
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guaranteeing the sliding mode existence on the selected manifold and thus having 

desired closed loop dynamics. For a selected candidate Lyapunov function ( )σV , 

Lyapunov stability conditions are satisfied and therefore the equilibrium as the 0=σ  is 

globally asymptotically stable, if; 

• ( )σV  is positive definite,  

• ( )σV&  is negative definite,  

• ( ) ∞→σV  as ∞→σ  

Therefore the necessary control input should be selected such that the 

requirements of the Lyapunov stability criteria are fulfilled. 

3.4.2.1 Sliding Manifold 

For system 3.15 the natural selection of the sliding manifold is in the following 

form 

3.17 ( ){ }0,: =⋅== td eGxxxS σ  3.17 

where tracking error vector is defined as [ ] nT
nt eee ℜ∈= ,,1 K , idii xxe −=  and the 

sliding surface satisfies [ ] mT
mi ℜ∈= σσσ ,,K , mxnG ℜ∈ . 

3.4.2.2 Computation of the Necessary Control Action 

A Lyapunov Function candidate can be selected as 

3.18 σσ TV
2
1

=  3.18 

where, ℜ∈V , ( ) 00 =V . The time derivative of the candidate Lyapunov function V&  

should be negative definite. In order to use this condition in selection of the control, we 

may require that V&  satisfies some preselected form. Equating the time derivative of this 

function to a negative definite function like in 3.19,  

3.19 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅−=

σσ
σμσσ
T

T DV&  3.19 

where D  is a positive definite symmetric matrix and 0>μ  thus Lyapunov conditions 

are satisfied. By substituting 3.19 into 3.18, the following requirement is found; 
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3.20 0=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++⋅

σσ
σμσσσ
T

T D&  3.20 

Therefore, for 0≠σ , the control law can be calculated by satisfying the following 

equation; 

3.21 0=++
σσ

σμσσ
T

D&  3.21 

and the sliding mode conditions are satisfied. The discontinuous term can be selected as 

small in order to avoid chattering. It had been proven [66, 67] that in the discrete time 

implementation the sliding mode is guarantied with continuous control action. Since the 

analog application, with continuous signals, is targeted, the discontinuous term 

σσσμ T⋅  can be omitted and the control action that satisfies conditions 

( ) 0=+ σσ D&  can be determined. This will result in quazi-sliding mode behavior of the 

system with exponential convergence defined by selection of matrix D . If that 

convergence is fast enough, then the motion of the system will be in an ε -vicinity of 

the 0=σ  for most of the time and the reaching stage will be governed by the equation 

( ) 0=+ σσ D& . All further analysis can be easily adopted for application of expression 

3.21 if the term σD  is replaced with σσσμσ TD ⋅+ .  

Starting with the derivative of the sliding function and using 3.15; 

3.22 ( ) xGxGxxG d
r &&&&& −=−=σ  3.22 

3.23 ( ))()( tuuGBtGBu
GBu

GfxG eq

eq

d −⋅=−−=
43421

&&σ  3.23 

If ( ) 1−GB  exists, for system 3.15 with sliding mode manifold 3.16, the control that 

satisfies ( ) 0=+ σσ D&  can be determined as 

3.24 ( ) ( )( ) ( ) σσ DGBuDxdfGGBu eqd
11 −− +=−−+⋅−= &  3.24 

where [ ]
nddd xxx ,.....,

1
=  and equ  is so-called equivalent control obtained as a solution 

of the equation  

3.25 ( ) 0=−⋅= uuGB eqσ&  3.25 
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3.4.2.3 Equations of Motion 

By substituting equ  from this last equation 3.25 and from 3.24 into 3.15, the 

equations of motion of system 3.15 in and outside of the manifold 3.16 are obtained 

respectively; 

3.26 ( ) ( )
0

1

=⇒+=
+−+⋅⋅⋅−=

+⋅+=
−

σd

d

eq

xx
dxdfGGBBfx

duBfx

&&

&&

&

 3.26 

For the approaching of the sliding surface the following equation of motion can be 

obtained; 

3.27 

( )
( ) ( ) ( )
( )

( )

0

1

1

11

1

=+⇒
=−=−⇒

⋅=−=−−⇒

⋅⋅++=

+⋅⋅+−+⋅⋅⋅−=

+⋅⋅+⋅+=

−

−

−−

−

σσ
σσ

σ

σ

σ

σ

&

&&

&&

&

&

&

D
DeG

DGexx

DGBBx

dDGBBxdfGGBBf

dDGBBuBfx

d

d

d

eq

 3.27 

The role of the equation 3.27 is to drive the system states to the sliding surface 

0=σ . This will result in quazi-sliding mode behavior of the system with an 

exponential convergence defined by selection of matrix D . If that convergence is fast 

enough then the motion of the system will be in an ε -vicinity of the 0=σ  for most of 

the time and the reaching stage will be governed by the ( ) 0=+σσ &D . In the cases 

where asymptotic convergence is not acceptable, all above analysis can be easily 

adopted with the term σD  replaced by σσσμσ ⋅+ TD . Then the approach to the 

solution will be governed by equation σσσμσσ ⋅++ TD& . 

3.4.2.4 Discrete Time Implementation 

In equation 3.24, the resulting control action is continuous (the equivalent control 

is continuous and function ( )tx,σσ =  is continuous by assumption) and equu =  for 

0=σ . In the implementation of the algorithm 3.24, full information about system 

dynamics and external disturbances is required mainly for the equivalent control 

calculation and therefore this algorithm is not practical for application. Yet it is used 

here as intermediate result to show the procedure in the development of simpler and 
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more useful control strategies. From ( )equuGB −⋅=σ&  equivalent control can be 

substituted into 3.24 to obtain; 

3.28 ( ) ⎥⎦
⎤

⎢⎣
⎡ ++= −

dt
dDGBuu σσ1  3.28 

Even though the written form of this equation is not usual, it is very informative; 

it shows that in order to force the system to reach ε -vicinity of the selected sliding 

mode manifold S  and to stay within ε  boundary layer, the control input should be 

modified by the term ( ) ⎥⎦
⎤

⎢⎣
⎡ +−

dt
dDGB σσ1  at every instant of time. 

For a discrete time system with no computational delay, the relations between the 

measured and computed variables are depicted in Figure 3.5 below. T  shown on the 

figure is the sampling time of the digital system; kT  represents the current control 

cycle, TkT +  is the next cycle while TkT −  is the previous one. 

 
Figure 3.5: The relations between measured and calculated variables for discrete time systems 

without computational delay. 

The measurements are taken before the calculation of the new control value input 

and therefore are denoted as ( )−• kT . All variables immediately after the application of 

the new control input are denoted by ( )+• kT . Remark that for all continuous functions 

and variables ( ) ( )+− •=• kTkT . Then 3.28 can be rewritten as,  
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3.29 ( ) ( ) ( ) ( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
++=

−
−−−+

dt
kTdkTDGBkTukTu σσ1  3.29 

Control 3.29 is suitable for implementation since it only requires measurement of 

the sliding mode function and value of the control applied in the preceding step. 

Obviously, derived from the continuous time equations with discrete time 

approximations, above control law will introduce errors that must be analyzed carefully. 

3.4.2.5 Stability in Discrete Time Implementation 

The stability should be analyzed both at the moment the control input is applied 

and at the end of the corresponding sampling time interval. By calculating the derivative 

of function ( )tx,σ  at += kTt  one can obtain; 

3.30 ( ) ( ) ( ) ( ) ( ) ( )( )++
++++

⋅+⋅−
∂

∂
=

∂
∂
⋅

∂
∂

+
∂

∂
= kTuBkTfG

t
kT

t
x

x
kT

t
kT

dt
kTd σσσσ  3.30 

Replacing ( )+kTu  from 3.29 into 3.30 it follows; 

3.31 ( ) ( ) ( ) ( )[ ] ( ) ( )
dt
kTdkTD

dt
kTd

kTuBkTfG
t

kT
dt
kTd −

+

⎟
⎠
⎞

⎜
⎝
⎛ −

−+
++

−−⋅+⋅−
∂

∂
=

σσ

σ

σσ

444444 3444444 21
 3.31 

since both σ  and f  are continuous by assumption and therefore ( ) ( )+− = kTkT σσ  and 

( ) ( )+− = kTfkTf . 

3.32  ( ) ( )+
+

−= kTD
dt
kTd σσ  3.32 

This shows that at the moment immediately after new control is applied, in other 

words at the beginning of the sampling interval, the stability conditions are satisfied. 

For [ ]TkTkTt +∈ ,  the control input u  is constant. Similarly it can be proven that the 

maximum deviation from the sliding surface both at and between each sampling 

instance is on the order of sampling time square, ( )2TO . 

3.4.2.6 Continuous Time Implementation and Stability 

Implementation of the control 3.24 in continuous time domain on the other hand, 

requires information about the plant dynamics and external disturbances, which is hard 

to achieve. In addition, this solution needs the information on the equivalent control 



34 

thus may be applied for the plants when equ  is known or can be estimated with 

sufficient accuracy. In this work we will be using a fact proven in [68] that the solution 

of the differential equation  

3.33 ( )( )στ && ⋅−=+ −1GBuzz  3.33 

with small enough filtering time constant τ  is close to the equivalent control. In this 

work we will be using this result in order to avoid direct calculation of the equivalent 

control from ( ) ( )deq xdfGGBu &−+−= −1  but instead to use approximated result 

zueq = ; 

3.34 σs
gs

gKu
gs

gz ⋅
+

⋅−⋅
+

=      ( ) 1−= GBK  3.34 

The above equation could be used as it is, but it requires the calculation of the 

derivative for σ . The derivative operation is known to amplify the high frequency 

components existing in a signal which contains non-continuous elements, namely noise. 

Calculation of σs  will contain second derivative of the error, since σ  is already a 

function of the derivative of the error, and this operation will result in over noised 

signal. The calculation of σs  can be easily avoided by the use of a simple mathematical 

fact; 

3.35 
gs

g
gs

s
+

−=
+

1  3.35 

Now the above equation can be written as; 

3.36 ( ) σσ ⋅⋅−⋅⋅+⋅
+

= gKgKu
gs

gz  3.36 

Using zueq =  and 3.24 the applied control σ⋅+= KDzu  can be calculated; 

3.37 [ ] ( ) σσ ⋅+⋅−⋅⋅+
+

= DgKgKu
gs

gu  3.37 

Control 3.37 is suitable for analog implementation since it requires measurement of the 

sliding mode function and control, yet ideally gives stable motion in manifold 

( ){ }0,: ==⋅= dt xxeGxS σ . Design parameters D  and C  should be selected as high 

as possible in order to achieve fast transients. 
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3.4.2.7 Approximation Error 

The error ueqε  due to the approximation zueq =  can be directly calculated; 

3.38 

[ ] [ ]

[ ]

equeq

ueq

equeq

u
gs

s

DKu
gs

s

sKu
gs

gDKuzu

⋅
+

=

⋅⋅+⋅
+

=

⋅−⋅
+

−⋅⋅+=−=

ε

σε

σσε

 3.38 

For large g , the error in equivalent control due to the approximation mainly consists of 

the high frequency part of the un-approximated equivalent control. Using this result, it 

can be shown that the tracking error due to the control approximation error is bounded. 

For large g , the estimation error is small, yet as ∞→g  then ( ) 0→− zueq ; so the 

approximated system behaves close to the ideal.  

The effect of this calculation in tracking errors can be calculated using the 

equation of motion for the system under control σ⋅⋅+= DKuu eq  and 

σ⋅⋅+= DKzuapp . The derivation with the calculation of the error uε  between the 

approximated ( appu ) and un-approximated (u ) controls; 

3.39 ueqappueqappu uuuu εεε −=⇒=−=  3.39 

Then this control is substituted into 3.15 to calculate the equations of motion of system 

in manifold S can be obtained; 

3.40 ( )
( )σσε
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&&

&

+⋅=⇒

−+⋅⋅=⋅⇒

+⋅−⋅+=

DK

xxDKBB

dBuBfx

ueq

dueq

ueqapp

 3.40 

Therefore, as the system approaches the sliding surface, the effect of the 

approximation approaches zero, so the approximated system behaves close to the ideal: 

0=+ σσ D& . 

3.5 Estimation of Disturbance for PEA 

The accepted model for the PEA, as summarized in section 3.1, is a second order 

time invariant SISO system. The structure of the observer is based on 3.9 under the 
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assumption that all the plant parameter uncertainties, nonlinearities and external 

disturbances can be represented as a lumped disturbance. 

The possible parameter variations of the system presented in this equation can be 

written as •Δ+•=• N  (where •  represents the parameter, N•  its nominal value and 

•Δ  its deviation from N• ) and therefore be included into the disturbance term “ dist ”. 

3.41 

TTT
kkk
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N

N

N

Δ+=
Δ+=
Δ+=
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 3.41 

The displacement of the plant x  and the input to the plant u  are measurable or accepted 

to be known. Hence, the nominal structure of the plant is found as; 

3.42 
( ) ( ) ( ) extNNN

NN

FxkksxccxsmhuThT

uTxsm

−⋅Δ+−⋅Δ+−⋅Δ−−⋅Δ+⋅−

⋅=⋅
2

2

 3.42 

3.43 dNN FuTxsm −⋅=⋅ 2  3.43 

where; 

3.44 ( ) xksxcxksxcxsmuhThTF NNNd ⋅+⋅+⋅Δ+⋅Δ+⋅Δ+−⋅Δ+⋅= 2   3.44 

is the disturbance on the system. Now that the above equation matches the system 

defined by 2.3 and 3.15 we can proceed as proposed by section 2.5; the disturbance 

defined by 3.42 can be calculated as; 

3.45 xsmuTF NNd
2⋅−⋅=  3.45 

Then the estimated disturbance can be written as the inverse plant model multiplied by a 

low pass filter [55]; 

3.46 ( ) ( )xsmuTsGF NNd
2ˆ ⋅−⋅⋅=  3.46 

where dF̂  is the observed disturbance force, ( )sG  is the a filter of suitable order. Since 

x  and u  are measurable, û , the correction to be added to the control output of the 

controller to compensate for the disturbance, can then be calculated as 

3.47 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅== xs

T
musG

T
Fu

N

N

N

d 2
ˆ

ˆ  3.47 
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Equation 2.5 shows that for a system of second order ( 2=m ) with first order DO 

( 1=k ), a second order low pass filter is required. Yet second derivative for the position 

x  is required. To simplify the requirement we will be using the same fact 3.35 used in 

previous sections. This way it will be possible to use a first order filter. The efficiency 

will also be proven in this section.  

One can determine û  as; 

3.48 sx
gs

gsxu
gs

gu ⋅
+

⋅+⋅−⋅
+

= ααˆ  3.48 

where 
N

N
T

gm ⋅=α  and ( ) ( )gs
gsG += . In real applications the velocity is usually 

calculated from the position measurement using first order filter to obtain 

( ) x
gs
gs

xs
v

v ⋅
+
⋅

≈⋅ . That approximation leads to the calculation of disturbance as; 
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It is now clear that the filter ( )gsgG += could have higher corner frequency than the 

velocity measurement filter ( )vv gsgs + . 

For the implementation of the structure, the observer should be analyzed: plant 

and the control correction term can be rewritten as; 

3.50 dNN FuTxsm −⋅=⋅ 2  3.50 
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Since uuu ˆ0 +=  the following simplification will help in next steps; 

3.52 ( ) ( ) sxG
T

gmuGu
N

N ⋅−⋅
⋅

−=−⋅ 11 0  3.52 

Inserting this last equation into 3.45 one obtain,  

3.53 ( ) ( ) d
N

N F
G
uTgssxm −

−
⋅

=+⋅⋅
1

0  3.53 

Simplifying this equation and using ( )gsgG +=  yields; 
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3.54 
( ) ( ) ( )

( ) dNN
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FGuTxsm

FGuTGgssxm
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11
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Therefore the selection of filtering transfer function G  should be selected as close 

to 1 as possible in order to completely remove the disturbance. The observer 

implementation is best described by Figure 3.6. For the case where 1≈G , the positive 

feedback of û  would, ideally, force the system to behave close to an ideal system 

defined by  

3.55 ( )tuTxsm NN 0
2 ⋅=⋅  3.55 

where )(0 tu  is the control output from the Sliding Mode Controller. However, in reality 

the dynamics of the observer would lead to differences between the real disturbance and 

the estimated disturbance. 

 
Figure 3.6: Observer implementation. 

3.6 Reduced Order Luenberger Observer 

The disturbance estimation can also be proven by designing a modified version of 

the reduced order Luenberger observer as demonstrated in section 2.5.1. The 

calculations are not repeated in this section but modifications are presented. 

The reduced order Luenberger observer is providing estimation of the disturbance 

extd FxkxcF +⋅+⋅= &  modified by simple first order filter ( ) gs
gsQ += . If one 

requires constant bandwidth of the low pass filter then the gain of the observer must 

depend on the system inertia and if the system inertia is not known than this 

requirement cannot be met. In the plant model, the mass is assumed to be bounded but 
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unknown quantity expressed in the form mmm N Δ±=  where 0>Nm  stands for so-

called nominal value, mΔ  stands for bounded variation of the mass. Since only Nm  is 

known, the structure of the observer 2.12 in actual implementation should use Nm  

instead of mmm N Δ±= . Then 2.12 becomes 

3.56 ( ) ( )
( ) ( )sxlF

mls
ml

zxlzF
m
lz

N

N

N

⋅+⋅
+

=⇒⋅+−⋅=
/

/ˆˆˆ &&  3.56 

The structure of observer is not changed. Hence the estimated disturbance can be 

expressed in the same form ( ) ( )( ) sxsQlFsQFd ⋅−⋅−⋅= 1ˆ . By taking Nmgl ⋅= , 

inserting 3.56 and 2.8 into dFsxlz ˆˆ =⋅−  the output of the observer becomes as in 3.57 

3.57 
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) dextNd

Nd

FsQxsmFxksxcsQxsmFsQsF

sxsQmgFsQsF

⋅=⋅Δ++⋅+⋅⋅=⋅−⋅=

⋅−⋅⋅−⋅=
22ˆ

1ˆ
 3.57 

It appears that by changing the parameters of the observer, the proposed structure 

is able to estimate a linear combination of the disturbance and the parameter’s variation. 

Just by changing the convergence term mgl ⋅=  or Nmgl ⋅=  the output of the observer 

is either  

3.58 ( ) ( ) ( )extd FxksxcsQsF +⋅+⋅⋅=ˆ  3.58 

or 

3.59 ( ) ( ) ( )xsmFxksxcsQsF extd
2ˆ ⋅Δ++⋅+⋅⋅=  3.59 

respectively. 

Implementation of structure 3.58 or 3.59, under assumption that velocity is 

measured, can be rearranged to the form that does not require information on 

acceleration  

3.60 
( ) ( )( ) ( )
( ) ( )( ) ( )
( ) ( )xsmFsQ

gmsxgmsxFsQ
sxsQgmFsQF

N

NN

Nd

2       

       
1ˆ

⋅−⋅=

⋅⋅−⋅⋅+⋅=
⋅−⋅⋅−⋅=

 3.60 

The topology is already depicted in Figure 3.6 and is very widely used in the 

motion control systems literature [55]. This implementation is very simple and straight 

forward. For the case of piezoelectric actuator, if uTF N ⋅=  and x&&  are available then 
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just by applying filter ( )sQ  as depicted one can estimate the disturbance. In this 

structure the selection of filter ( )sQ  is not anymore limited by the structure of the 

observer. Assumption on slow change of disturbance with respect to the mechanical 

time constant (as it is in the case of reduced order Luenberger observer) is not required. 

Selection of filter may give a degree of freedom to adjust the behavior of the system. 

3.7 Design Considerations 

The controller design presented so far posses two inputs; one for reference and 

one for the actual position measurement and two outputs; the tracking error (for 

performance measurements) and the control input that will be connected to the plant 

trough the voltage amplifier. This controller is designed to operate at relatively high 

frequencies. Therefore the selection of the operational amplifiers, filtering elements and 

the power supply is crucial. 

The hearth of the circuit is the operational amplifier. Operational amplifiers (op-

amps) are highly stable, high gain DC difference amplifiers. Since there is no capacitive 

coupling between their various amplifying stages, they can handle signals from zero 

frequency (DC signals) up to a few MegaHertz. Their name is derived by the fact that 

they are used for performing mathematical operations on their input signal(s). 

Since the plant uses high voltage and op-amps generally runs on much lower 

voltages, another constraint in the design is to have appropriate signal levels for op-

amps and plant. This is achieved via having a computation stage running on low voltage 

power supply unit (PSU) and a separate high voltage amplifier (HVA) stage amplifying 

the previous stage’s output to the desired voltage level for the plant. Moreover this 

approach allows the controller to work with different plants that need different supply 

voltages by simply changing the high voltage amplifier. 

For mathematical operations, TLE074, a quad, low-noise JFET input op-amp by 

Texas Instruments, is used. The JFET-input operational amplifiers in the TLE07x series 

have low input bias and offset currents and fast slew rate. The low harmonic distortion 

and low noise make the TLE07x series ideally suited for high-fidelity applications. 

Main characteristics are presented in Table 3.3. 
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Table 3.3: TLE074 electrical characteristics [69]. 

 Parameter Min Typical Max Units 

VIO Input offset voltage  3 10 mV 

IIO Input offset current  5 100 pA 

IIB Input bias current  65 200 pA 

VICR Common-mode input voltage 

range 
-11…+11 -12…15  V 

AVD Large-signal differential voltage 

amplification 
25 200  V/mV 

B1 Unity-gain bandwidth  3  MHz 

ri Input resistance  1012  Ohm 

CMRR Common-mode rejection ratio 70 100  dB 

SR Slew rate at unity gain 5 13  V/us 

tr Rise-time overshoot factor  0.1  us 

Vn Equivalent input noise voltage

(f = 1 kHz) 
 18  HznV  

In Equivalent input noise current  0.01  HzpA  

THD Total harmonic distortion  0.003%   

VCC± = ±15 V, Ambient Temp 25oC (unless otherwise noted) 

 

For high voltage amplifier stage on the other hand, the MP108 by Apex 

Microtechnology is preferred. The 300kHz  power bandwidth and A10  current output 

of the MP108 makes it a good choice for piezo drive applications. This power op-amp is 

a surface mount constructed component built on a thermally conductive but electrically 

insulating substrate that can be mounted to a heat sink. Main characteristics are 

presented in Table 3.4 

Since the operation at relatively high frequencies is targeted, both the low voltage 

(or signal) PSU and high voltage (or driving) PSU should be able to supply enough 

current to drive the plant at the required frequencies. Moreover, since piezoelectric 

actuators are very sensitive to voltage oscillations, instead of high frequency switching 

supplies, transformer type power supplies should be preferred. 

 



42 

Table 3.4: MP108 electrical characteristics [70]. 

 Parameter Min Typical Max Units 

VIO Input offset voltage  1 5 mV 

IIO Input offset current   50 pA 

IIB Input bias current   100 pA 

VICR Common-mode input voltage 

range  
15

15

−+

+−

B

B

V

V
L  V 

 Open-loop gain @ 15Hz 96   dB 

B1 Unity-gain bandwidth  10  MHz 

 Power bandwidth  300   

ri Input resistance 1011   Ohm 

CMRR Common-mode rejection ratio 92   dB 

SR Slew rate at unity gain 150 170  V/us 

 Noise  10  RMSVμ  

VCC± = ±15 V, Ambient Temp 25oC (unless otherwise noted) 

 

3.8 Circuit Design 

Following the derivation in previous sections, the analog controller should 

calculate the control u  from the two inputs; desired trajectory dx  and the actual 

trajectory x . The implementation requires a manifold selection as a starting point; 
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where tracking error vector is defined as [ ] 2
21 ℜ∈= T

t eee  with xxee d −==1  and 

xxeee d &&&& −=== 12 . 

Now that the sliding surface is defined the control equation 3.37 must be broken 

to sub-equations that can separately be applied using op-amp circuits. In the application 

phase the inverting behavior of the op-amp topologies must also be taken into account. 

Therefore below sub-equations are formulated according to that requirement; 

3.62 ( )xxe d +−−=  3.62 
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3.63 ( )xxse d +−⋅−=&  3.63 

3.64 ( )eeC &+⋅−=−σ  3.64 

3.65 [ ] ( ) ( )[ ]σσϕ −⋅⋅+−
+

−=⋅⋅+
+

= gKu
gs

ggKu
gs

g  3.65 

3.66 ( )( ) ( )[ ]σϕ −⋅+⋅+−=− DgKu  3.66 

The addition of the DO can similarly be divided into sub-equations as shown 

below. With the addition of the DO, the sub-equation 3.66, that is calculating the 

control output to feed to the high voltage amplifier, is revised to include the control 

correction term û  form the DO. 
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α  3.67 

3.68 ( ) ( )[ ]ux
gs

g
−+⋅−⋅

+
−= &αψ  3.68 

3.69 ( ) ( ) ( )[ ]ψασϕ +⋅−+−⋅+⋅+−=− xDgKu &  3.69 

ϕ , x&⋅−α  and ψ  are used as intermediate signals to simplify the topology. Now each 

equation 3.62 to 3.69 can easily be applied using op-amp topologies.  

The operation of the structure and circuit design summarized in Figure 3.7 can be 

described as follows; the position measurement x  is subtracted from the desired 

position dx  using op-amp U1 to calculate the tracking error e . U2 has similar operation 

but it also includes a derivation behavior to calculate e& . Op-amp U3 is used to sum up 

those two signals with appropriate weights to calculate the sliding function σ− . In next 

stage, the signals u−  from the output is fed forward together with σ−  to U4 where 

they are summed and filtered to output an intermediate signal ϕ . 

In parallel, the first derivative of the position measurement is calculated using U6 

and the summation of this value with u−  is filtered in U7. As a final stage U5 sums up 

all calculated values with appropriate weight to form the control output u−  that is fed 

to the high voltage amplifier. 
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Figure 3.7: General scheme of the controller. 

Sections below discuss and analyze the scheme in detail. However, so-called 

“scaling” should be discussed prior to the circuit operations since it constitutes a key 

point in the application: in an analog circuit, all signals must fall within the full-scale 

voltage span of the used operational amplifiers; otherwise part of the signals might have 

been lost. This requires appropriate voltage scaling to assure that each variable utilizes 

the available voltage span effectively. The discussion starts with the analog scaling and 

since position measurement is important part of the controller, continues with the 

position measurement information. 

3.8.1 Analog Computing and Scaling 

An analog computer is a form of computer that uses electrical phenomena to 

model the problem being solved. Created in the years following World War II, analog 

computers were based on electronic versions of the mechanical differential analyzers. 

The heart of the analog computer is the operational amplifier (op-amp) and op-amps can 

be combined to solve linear differential equations with constant coefficients. The analog 

computer was once the leading-edge tool for dynamic simulation and vibration analysis. 

Analog computers produce continuous signals and there is no concept of sample-

rate. The computed variables are differentiable but not quantized. All computations take 

place simultaneously, continuously and in real-time; there are no operation sequence 

issues to be dealt with and therefore all variables are always current and available. 

These characteristics are very desirable in a simulation or modeling tool, as well as in 

control.  
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However, the analog computer has some severe restrictions on its computations. 

All computed variables must fall within the full-scale voltage span of the machine’s 

amplifiers. This requires appropriate voltage scaling to assure that each variable utilizes 

the available voltage span effectively. And the precision of any coefficient is ultimately 

determined by the tolerance of components within the computer.  

Due to the finite range of values which can be processed by an analog computer, it 

is necessary to scale the equations to be solved in order to avoid overloading the 

operational amplifiers and thus introducing erroneous terms. Coupled differential 

equations are normally quite difficult to scale since it is challenging to estimate 

maximum values for the variables.  

The output of each amplifier should be proportional to the problem variable that it 

represents. The constant K  relating the two is called the scaling factor. To determine an 

appropriate value for K , the maximum value of the problem variable is needed to be 

estimated. Assuming that this estimate is available, when the problem variable reaches 

its maximum value, then the amplifier output will be at its maximum value which is the 

supply voltage of the operational amplifiers. Therefore the scale factor K  is formally 

defined as; 

3.70 
VariableProblemtheofValueMax.

VoltageSupplyAmplifier
=K  3.70 

When maximum values are estimated and scale factors are selected, the next step 

is to make the computer circuit consistent with the original problem equations. An 

expression giving a scaled amplifier output in terms of the scaled inputs is called a 

“scaled equation”. To calculate the scaled equations of a problem, each and every 

equation is written down with the program variables replaced by the scaled variables 

multiplied by scales. For example the variable x  with estimated maximum value X  

should be written as [ ]XxX ⋅ . The term in the bracket represents the scaled variable. 

Solving the equations for the scaled outputs in terms of the scaled inputs will yield the 

scaled equations. 

3.8.2 Designed Control and Scaling 

The analog controller that is designed has strong similarities with the analog 

computers; even tough it is not designed to solve differential equations, it consists of 

operational amplifiers and therefore suffers from the same disadvantages. Therefore the 
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designed control’s equations needs to be scaled with the assumed maximum values for 

the signals and parameters that are presented on the Table 3.5. The scaling of the 

equations used in the controller is shown below. 

Table 3.5: Assumed maximum values for signals and parameters. 

Parameter Determined
Value Signal Assumed  

Max Value 
C  ~300 e  0.05V 
D  ~20 e&  1.00V 
K  ~0.2 σ , u , x&⋅α  1.00V 
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Above equations are equivalent to the previously stated equations since we have 

always substituted equivalent expressions. But it guarantees that the signals will be in 

the range of the amplifiers unless the expected maximum values are exceeded. To 

obtain problem variables, one must rescale those values according to the obtained 

equations. Equations missing in the above list are the ones that does not require scaling 

due to their expected maximum value falling in the full scale voltage span of the op-

amps. 

3.8.3 Position Measurement 

In this work, a PEA that consists of a piezo-drive integrated with a sophisticated 

flexure structure is used. The flexure structure is wire-EDM-cut and is designed to have 

zero stiction and friction. Flexure stages are also insensitive to shock and vibration. The 

piezoelectric actuator has two built-in strain-gages for position measurement. The 

working principles of the strain gage are presented on next section. 

3.8.3.1 Strain Gage  

Strain ε  is the amount of deformation of a body due to an applied force. More 

specifically, is defined as the fractional change in length L ; LLΔ=ε  and can be 
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positive (tensile) or negative (compressive). While there are several methods of 

measuring strain, the most common is with a strain gage. 

Strain gage is a long and very thin metallic strip arranged in a zigzag pattern on so 

called backing. When the shape of the backing changes due to the motion of the 

specimen it is mounted on, the resistance of the strip changes. It is very important that 

the strain gage be properly mounted onto the test specimen so that the strain is 

accurately transferred from the specimen, through the adhesive and strain gage backing, 

to the foil itself. 

 
Figure 3.8: An example strain gage. 

A fundamental parameter of the strain gage is its sensitivity to strain, expressed 

quantitatively as the gage factor GF : the ratio of fractional change in electrical 

resistance to the fractional change in length (strain); 

3.74 
ε

RR
LL
RRGF Δ
=

Δ
Δ

=  3.74 

If the nominal resistance of the strain gage is designated as R , then the strain-

induced change in resistance, RΔ , can be expressed as ε⋅⋅=Δ GFRR . Strain gages are 

commercially available with different nominal resistance values with 120, 350, and 

1000Ω  being the most common values.  

Ideally, the resistance of the strain gage is liked to change only in response to 

applied strain. However, strain gage material, as well as the specimen material to which 

the gage is applied, will also respond to changes in temperature. Manufacturers attempt 

to minimize thermal sensitivity by processing the gage materials. Other compensation 

methods exist. 
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To measure such small changes in resistance, strain gages are mounted in the 

same direction as the strain and often in groups of two or four to form a half or a full 

“Wheatstone Bridge” respectively. The general Wheatstone Bridge, illustrated in Figure 

3.9, consists of four resistive arms with an excitation voltage EXV , and the output 

voltage; 

3.75 EXO V
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3  3.75 

 
Figure 3.9: The Wheatstone Bridge. 

From this equation, it is apparent that when 
3

4

2

1
R

R
R

R =  the voltage output OV  

will be zero. Under these conditions, the bridge is said to be balanced. Any change in 

resistance in any arm of the bridge will result in a nonzero output voltage. Therefore if 

one of the resistances is replaced by a strain gage, any changes in the strain gage 

resistance will unbalance the bridge and produce a nonzero output voltage. The 

sensitivity to strain can be doubled by making both gages active in a half-bridge 

configuration. As an example, Figure 3.10 illustrates a bending beam application with 

one bridge mounted in tension ( RR Δ+ ) and the other mounted in compression 

( RR Δ− ). This half-bridge configuration, whose circuit diagram is also illustrated in 

Figure 3.10, yields an output voltage that is linear and approximately doubles the output 

of the quarter-bridge circuit. Finally, the sensitivity can further be increased by making 

all four of the arms of the bridge active strain gages in a full-bridge configuration. 
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Figure 3.10: (Left) Bending beam example with two strain gages installed. (Right) Bridge 

configurations for two gages measurements. 

The equations, given above, assume an initially balanced bridge that generates 

zero output when no strain is applied. In practice however, resistance tolerances and 

strain induced by gage application will generate some initial offset voltage. This initial 

offset voltage is typically nulled with a voltage shift circuit. 

3.8.3.2 Position Measurement for PEA 

The used PEA in this work has two built-in strain-gages for position 

measurement. Being installed in parallel, two strain gages allow doubling the 

measurement precision through half-bridge configuration shown in Figure 3.10. 

However, proactive strain gage measurement requires certain signal processing 

beside the simple Wheatstone Bridge configuration. Those include noise filtering, 

bridge balancing (offset nulling) and calibration. Therefore, instead of designing and 

building a so called strain gage amplifier, an industry standard compliant amplifier is 

used; SCM5B38-03 wide band strain gage amplifier from Dataforth Corporation. The 

amplifier has 100kHz signal bandwidth, 100dB common mode rejection ration and 

±0.03% accuracy according to the datasheet supplied by the manufacturer. 

As a result of the full stroke measurement experiments it is determined that, for 

the sample piezoelectric actuator, m17.96μ  (micrometers) elongation (or contradiction) 

corresponds to 1V of the strain gage amplifier reading, or in other words m1μ  position 

deflection results 55.68mV and m1n  (nanometers), V55.68μ . 
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3.8.4 Electronics Structure 

3.8.4.1 Error Calculation 

The application of the control algorithm starts with the equation 3.71 (the scaled 

version of 3.62) that calculates the error. The calculation is realized with well known 

commonly used, “inverting summing amplifier” with multiple inputs and one single-

ended output. The circuit adds the reference signal dx−  to the actual signal x  to 

calculate the error e−  due to the inversion of the amplifier. 

 
Figure 3.11: Calculation of the error. 

Analysis of the circuit shows that the transfer function of the summing amplifier is: 

3.76 
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where eV −=0  is the output voltage, •C ’s are the capacitor, •R ’s the resistance values 

and 11 CR ⋅=τ . If input resistors are equal 21 RR = , the output is a scaled sum of all 

inputs, whereas, if they were different, the output would be weighted linear sum of 

them. 

The capacitor 1C  is used to create a first order filtering behavior with corner 

frequency ( ) 1
112 −⋅⋅= CRf π , so that the possible input noise is limited. For 

experimental purpose kHzf 1≈  is considered to be high-enough corner frequency. In 

this circuit 4R  is used to balance the current trough the op-amp’s input branches and 

calculated as the equivalent resistance for 321 //// RRR . 
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3.8.4.2 Calculation of Error’s Derivatives 

Calculation of the e& , error’s first derivative, can be realized with a differentiator 

block that in the mean time sums the reference signal dx−  to the actual signal x . The 

scheme is presented in Figure 3.12. 

 
Figure 3.12: The differentiator block used to calculate the error’s derivative. 

The transfer function for the above circuit is; 
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where eV &−=0  is the output voltage. To simplify the calculations, 76 RR = , 76 CC =  

equalities are preferred. Resistors 6R  and 7R  are installed on purpose since the 

derivative circuit brings two challenges.  

First because the circuit is a high-pass filter by nature, it may amplify unwanted 

noise and disturbances causing unpredictable signals. To reduce this undesirable effect, 

resistors 6R = 7R  place a limit on the high frequency gain to 7565max /RR/RR ==G . To 

further cut the high frequency gain, many circuits include a feedback capacitor FC , 

with a value around 10/5CCF = , across 5R . With FC , the circuit begins to look like a 

low-pass filter at higher frequencies. 

The second challenge of the derivative circuit is keeping it stable. The classic op-

amp differentiator may oscillate if resistors 6R  and 7R  were missing. Those resistors 

reduce the phase-shift caused by 5R  and 6C , or by 5R  and 7C ,especially at high 

frequencies where it can threaten circuit stability. Capacitor FC  brings an added bonus 

of bringing stability to the differentiator. And finally, FC  helps the differentiator 

recover in case its output is overdriven to the supply rails. 



52 

Accordingly the response in time domain can be written as; 

3.78 
( )

dt
deCR

dt
xxd

CRV d ⋅⋅−=
−

⋅⋅−= 65650  3.78 

And the frequency response is; 

3.79 ( ) 65 CRjjK ⋅⋅−= ωω  3.79 

3.80 ( ) 65 CRjK ⋅⋅= ωω  3.80 

3.81 ( )
2
πωϕ +=  3.81 

The Bode plot for an ideal differentiator (missing 6R  and 7R ) has a constant slope 

of +20dB/decade, which is unrealistic since for a real circuit the gain cannot exceed the 

open-loop gain as shown in Figure 3.13. Apart from this, the gain increasing with 

frequency makes the circuit more sensitive to high-frequency noise and may result in 

instability. Existence of those problems approves the necessity to use resistors 06 ≠R  

and 07 ≠R , which reduces the gain at high frequencies. 

 
Figure 3.13: Bode plot for an ideal differentiator as in comparison to the open-loop gain. 

Now the differentiation only occurs at the frequencies Cωω ≤  where 

3.82 
66

1
CRC ⋅

=ω ,     CCf ωπ ⋅= 2  3.82 
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Another important point in the error’s derivative calculation is having coefficient 

1 through 65 CR ⋅  multiplication since this requires large capacitance 6C . Instead, one 

can calculate 100/e& , not e&  in this step, to reduce component values and then 

compensate for the difference in next steps by using 100×e&  instead of e& . 

3.8.4.3 Calculation of the Sliding Surface “σ ” 

Equation 3.64 summarizes the work required by the op-amp U3. Obviously an 

inverting summing amplifier, as discussed in section 3.8.4.1, can be used. This time 

filtering components are omitted (Figure 3.14). 

 
Figure 3.14: Calculation of the sliding surface. 

Analysis of the above circuit shows that the transfer function of this summing 

amplifier is: 

3.83 
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Input resistors 10R  and 11R  are selected in different values, so the output is weighted 

linear sum of the inputs. 

3.8.4.4 Calculation of the Intermediate Signal “ϕ ” 

The intermediate signal ϕ  is a weighted sum of the sliding surface σ  with the 

control output u  that is fed back to the system. The summation must also be filtered 

through a first order filter. Therefore equation 3.65 is applied exactly in the same 

manner with section 3.8.4.1 (Figure 3.15). 
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Figure 3.15: Calculation of the Intermediate Signal “ϕ ” 

Analysis of the circuit shows that the transfer function of this circuit is: 
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The capacitor 13C  is used to create a first order filtering behavior with corner 

frequency 1313/1 CRg ⋅==τ , so that the required low pass filter in the equation is 

applied. The balance resistor 16R  is selected as the equivalent resistance for 

151413 //// RRR . 

3.8.4.5 Calculation of the Intermediate Signal “ x&⋅α ” 

The intermediate signal x&⋅α , or more precisely x&⋅−α , is a signal required for 

the calculation of the control correction term û  form the DO. The α  coefficient in the 

signal represents a constant coefficient with value 
N

N
T

gm ⋅=α . Since the derivative of 

the position measurement x&  is required one must calculate sx
gs

g

v

v ⋅
+

 and multiply it 

with the α  coefficient to complete this step. Necessity for the first order filter 
v

v

gs
g
+

 is 

justified both in section 3.4.2.6 and in 3.8.4.2. Accordingly the circuit in Figure 3.16 is 

designed. 
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Figure 3.16: Calculation of the Intermediate Signal “ x&⋅α ” 

The transfer function for the above circuit is; 
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where vg  corresponds to ( ) 1
2424

−⋅= CRgv  and α=⋅ 2423 CR  is the necessary 

coefficient.  

3.8.4.6 Calculation of the Intermediate Signal “ψ ” 

The intermediate signal ψ  has the same structure with the intermediate signal ϕ  

(Figure 3.17).  

 
Figure 3.17: Calculation of the Intermediate Signal “ψ ” 

Analysis of the circuit shows that the transfer function of this circuit is: 
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3.8.4.7 Calculation of the Control Output “u ” 

 
Figure 3.18: Calculation of the Control Output “ u− ” 

The final step in the controller implementation is the summation to find the 

control output u− , to be fed to the high voltage amplifier (HVA) described in next 

section. The transfer function for this final circuit is; 
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3.8.5 High Voltage Amplifier 

Piezoelectric actuators require 150V60- K  for full range operation while the 

described circuit can handle only few volts. For this reason a high voltage amplifier is 

added to the circuit as a buffer between the calculation circuit and the actuator. This 

circuit is actually a simple inverting amplifier with constant gain with MP108 power op-

amp is used as the core, as presented in Figure 3.19. 

The input is protected with diodes D1 and D2, while the rest of the circuit is 

designed as suggested by the datasheet. The circuit is supplied by a dual supply with 

V150± , 1A per channel power supply. The gain is selected as 10−  to amplify the 

control u  to the necessary 150V150- K  range. No precaution is taken to prevent the 

output voltage to be less than V60− , which is defined as the breakdown level of the 

piezoelectric actuator. Therefore care must be taken with the input signals. This could 

also be achieve by limiting the negative input supply Vcc−  with V60− . 

The compensation capacitor cC  is selected to be pF10  allowing a slew rate of 

V170  per microsecond. The current limit resistor limR  is calculated as Ω65.0  according 
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to the formula given in the producer’s datasheet; limlim 65.0 IR =  where limI  is the max 

permissible current selected as 1A. 

 
Figure 3.19: High voltage amplifier as a final block of the circuit. 

Transfer function of this block can be written as; 

3.88 ( ) Uu
R
R

R
R

VV ff
i =−−=⋅−=

11
0  3.88 

where UV =0  is the output voltage fed to the piezoelectric actuator, uVi −=  is the 

control calculated from previous stages, •R ’s the resistance values with 

1021 fRRR == . 

According to the data given for MP108 amplifier, the open-loop gain of the 

amplifier at kHz15 at is typically 63095,796 ≈dB . Therefore for the used gain of 10, 

the influence of the closed loop behavior of the amplifier can be neglected. 

3.8.5.1 Power Limitation 

Due to the limitations on the power that the amplifier can supply, the maximum 

operation frequency of the piezoelectric actuator is limited. Note that the resonance 

frequency of the used actuator is 15kHz, well above the frequency set by the voltage 

amplifier. This second limit can easily be calculated; 



58 

3.89 
dt
dVC

dt
dQI

VCQ

AVRG ⋅==

⋅=
 3.89 

where AVRGI  is the average current required for the motion [28, 42]. On the other hand, 

the peak current PEAKI , required for the fast motion is defined as [28, 42]; 

3.90 AVRGPEAK II ⋅= π  3.90 

Knowing that the maximum current supplied by the voltage amplifier is A1 , and 

the capacitance of the actuator is nFC 2400= , we can calculate the maximum 

operation frequency as Hzf MAX 5.2k≈ , which is well above the targeted operation 

frequency. 

3.8.5.2 The Effect of HVA 

The disturbance observer as proposed in section 3.5 proposes that the control 

output is directly fed to the plant. However, the high voltage amplifier (HVA) 

constitutes an additional transfer function W  between the control u−  from the 

controller and control fed to the actuator U . 

3.91 ( )uuWuWU ˆ0 +⋅=⋅=  3.91 

The same disturbance observer proposed by Ohnishi et al., described and analyzed 

in section 3.5, can still be used [55], however the effect of the HVA must be studied. 

The derivation of the observer is as follows; from 3.45 the disturbance is; 

3.92 xsmUTF NNd
2⋅−⋅=  3.92 

As realized in previous sections the estimated disturbance can be defined as; 

3.93 ( ) ( )xsmUTsGF NNd
2ˆ ⋅−⋅⋅=  3.93 

where ⋅dF̂ is the observed disturbance force, G  is the a filter of suitable order. Since 

x , u  and U  are measurable, û , the correction to be added to the control output of the 

controller to compensate for the disturbance, can then be calculated as 

3.94 ( ) ⎟⎟
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⎝

⎛
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T
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N

N

d 2
ˆ

ˆ  3.94 

In fact, instead of the control u  the amplified control U  must be used in the 

above formula since U  is the real control input to the plant. However, since U  is a high 



59 

voltage signal, it is preferable to keep-it outside of the calculation part that consist of 

low voltage signals only. Besides, the HVA may depend on plant properties and have 

different dynamics for different plants. Isolating the control U  from the DO would 

simplify the application of the controller to different plants. 

The effect of this choice is analyzed below. We know that the control U  can be 

calculated by the following steps; 

3.95 

( )

( ) ( ) xs
T
m

G
GW

G
uWU

xs
T
mGW

UG
uWGuWuWuWU

N

N

N

N

20

2
00

11

ˆ

⋅⋅
−
⋅

−
−
⋅

=⇒

⋅⋅⋅−
⋅
⋅⋅+⋅=⋅+⋅= 43421

 3.95 

Inserting this last equation into the plant equation dNN FUTxsm −⋅=⋅ 2  one obtains,  
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which is the best rejection of the total disturbance, that may be achieved by this scheme. 

If the transfer function W  was unity, 1=W , then this last equation would yield; 

3.97 ( ) dNN FGuTxsm ⋅−−⋅=⋅ 10
2  3.97 

which is the same equation found earlier 3.54. 

Independently from the transfer function W , the discussed observer best performs 

when G  tends to 1;. the positive feedback of û  would, ideally, force the system to 

behave close to an ideal system defined by  

3.98 ( )tuTxsm NN 0
2 ⋅=⋅  3.98 

where )(0 tu  is the control output from the Sliding Mode Controller. However, in reality 

the dynamics of the observer would lead to differences between the real disturbance and 

the estimated disturbance. 

Equations 3.91 and 3.92 can also be used to determine the control correction term 

û  in few steps; 
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Note that û  tends to the disturbance force dF , if both G  and W  tend to 1. With 

those new additions, the observer implementation is different than the one previously 

shown and presented on Figure 3.20. 

 
Figure 3.20: Observer implementation with the addition of the HVA. 

3.9 Analysis 

This part of the text concentrates on the analysis of the plant, controller, DO and 

analog circuit. The analysis starts with the transfer function formation of the plant. 

Because transfer functions are complex-valued, frequency-dependent quantities, we can 

better appreciate a transfer function by examining the magnitude and phase for various 

input frequencies. 

The nonlinear behavior of the piezoelectric actuator, mainly dominated by the 

hysteresis, prevents us using liner system analysis tools for the investigation of the 

system. However, for this section we will assume that, for Sliding Mode Controller 

without observer, the plant is second order linear plant without hysteresis. On the other 

hand for the Sliding Mode Controller with disturbance case, we are assuming that the 

observer linearizes the plant and therefore linear analysis tool can be used. 
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Figure 3.21 below, demonstrates the block diagram of the full scheme composed 

of the Sliding Mode Controller (SMC), high voltage amplifier (HVA), plant, namely the 

piezoelectric actuator, and the disturbance observer (DO). The transfer function the 

Sliding Mode Controller is represented by ( )sC , high voltage amplifier by ( )sW , plant 

by ( )sP . The transfer function of the observer is a combination of the functions ( )sH1  

and ( )sH 2 . The signals dx , x , e , 0u , û , u , U , Nd TF /  represents the desired 

position, actual position, position tracking error, control output from SMC, observers 

correction term to the control, total control term, amplified control and disturbance 

force over nominal value of the piezoelectric effect conversion constant respectively 

 
Figure 3.21: The block diagram of the full control scheme. 

From the above diagram the following equations can immediately be written; 

3.100 xxe d −=  3.100 

3.101 ( ) esCu ⋅=0  3.101 

3.102 uuu ˆ0 +=  3.102 

3.103 ( ) usWU ⋅=  3.103 

3.104 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅=

N

d

T
F

UsPx  3.104 

3.105 ( ) ( ) xsHusHu ⋅−⋅= 21ˆ  3.105 

The next step in the analysis is the calculation of the required transfer functions 

for further analysis; ( )sC , ( )sP , ( )sW , ( )sH1  and ( )sH 2 . For this step the information 
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on the previous sections is used. The transfer function of the plant can be found from 

equations 3.6 and 3.7 for the nominal parameter definition given in equation 3.41; 

3.106 ( ) ( )
( ) NNN

N

kscsm
T

sU
sXsP

+⋅+⋅
== 2  3.106 

since, for Sliding Mode Controller without observer, the plant is assumed to be second 

order linear plant without hysteresis or other disturbance. 

The high voltage amplifier transfer function W  is already given in 3.88; 

3.107 ( ) 10
1

−=−=
R
R

sW f  3.107 

The used first order filter ( )sG  is; 
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From 3.105 one can easily conclude that; 

3.109 ( ) ( )sG
gs

gsH =
+

=1  3.109 

3.110 ( ) ( )( ) ssG
T
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N

N ⋅−⋅
⋅

= 12  3.110 

 
Figure 3.22: Analog Sliding Mode Controller block diagram. û  is used to mark the input point 

of the disturbance observer. 

To calculate ( )sC , the transfer function of the Analog Sliding Mode Controller, 

one must look at the controller scheme presented in Figure 3.22. Accordingly, for the 

ideal op-amp case, where the open-loop gain is assumed to be high enough, the transfer 

functions ( ) ( )sAsA 30 L , can be written as; 
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3.111 ( ) sCsA +=0  3.111 

3.112 ( ) gKsA ⋅=1  3.112 

3.113 ( ) ( )DgKsA +⋅=2  3.113 

3.114 ( ) ( )sG
gs

gsA =
+

=3  3.114 

Using the block diagram and those equations the calculation of the transfer function 

( ) eusC =  is straight forward; 

3.115 eA ⋅= 0σ  3.115 

3.116 ( ) eAAuAeAAAAuAAu ⋅⋅−⋅+⋅⋅⋅=⋅−+⋅⋅= 023013213 σσ  3.116 

3.117 ( ) ( )
( ) 3

02013

1 A
AAAAA

sE
sUsC

−
⋅−⋅⋅

==  3.117 

3.9.1 Plant Analysis 

3.9.1.1 Transient Response Analysis 

 
Figure 3.23: Transient response of the open-loop PEA plant to a unit-step input. 
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In many practical cases, the desired performance characteristics of control 

systems are specified in terms of time-domain quantities. Systems with energy storage 

cannot respond instantaneously and will exhibit transient responses whenever they are 

subjected to inputs or disturbances. To specify the performance of the open-loop PEA 

plant, transient response to a unit-step input is presented in Figure 3.23. The response is 

calculated for the standard initial conditions; the system is initially at rest with all 

outputs, inputs and related derivatives zero. 

The above plot demonstrates the rise time ( sμ185 ) and the settling time ( sμ331 ). 

Moreover, clearly the final settled value is nm487  and the response does not have any 

visible overshoot. Those numbers are important to show the performance of the 

controller since on later sections similar responses to unit-step inputs will be instigated 

for closed loop systems. 

3.9.1.2 Frequency Response Analysis 

The frequency response analysis refers to the steady state analysis of a system to a 

sinusoidal input. In frequency-response methods, the input signal frequency is varied 

over a certain range and the resulting response is studied as a bode plot that represents 

the response in terms of magnitude and phase plots. The frequency response analysis of 

the open-loop plant (PEA) is presented in Figure 3.24.  

Since the plant transfer function is a standard second order plant, we can use 

related information to study the transfer function; 
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Accordingly the gain K , the natural frequency nω  and damping factor ς  can be 

calculated as; 
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For the plant parameters used in this work, the natural frequency nω  can be 

calculated as Hzsradn
44 101.48/109.3 ⋅=⋅=ω . Another important aspect of the 
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analysis is that the model is linear below the frequency kHz1~ , then a roll-off of 

decdB /40  occurs. 

 
Figure 3.24: The frequency response analysis of the open-loop plant (PEA): wide frequency 

range on the left and closer view on the right. 

3.9.2 Controller Analysis 

The analysis of the Sliding Mode Controller requires the calculation of dxx  

which can be obtained from the above equations as follows; inserting 3.105 into 3.102; 
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1 H
xHu

u
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⋅−
=  3.120 

then using 3.103 and 3.104 one can obtain; 

3.121 ( ) 11 −− ⋅−⋅= WdistxPu  3.121 

where Nd TFdist = . Now using equations 3.100, 3.101 and 3.120 and collecting terms 

together the transfer function can be obtained. 
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If the transfer functions ( )sH1  and ( )sH 2  are assumed to be zero; 021 == HH , 

then the above equation reduces to the case where only the Analog Sliding Mode 

Controller is in action and the disturbance observer is removed. For this later case the 

transfer function reduces to; 

3.123 dist
CWP

Px
CWP

CWPx d ⋅
⋅⋅+

+⋅
⋅⋅+

⋅⋅
=

11
 3.123 

3.9.2.1 Frequency Analysis: Open Loop vs Closed Loop 

 
Figure 3.25: Open-loop vs closed loop frequency response plots for PEA. The closed loop does 

not contain disturbance observer information. 

The later transfer function, calculated in the previous section, supplies enough 

information to study the frequency response of designed analog SMC as a bode plot. 

Figure 3.25 shows the bode plots for the system transfer function dxx /  for open-loop 

plant and Analog Sliding Mode Controller without the disturbance observer (assuming 

zero disturbance; 0≈dist ). 

For the controlled plant, one can see that, the linear tracking is greatly enhanced 

and exact tracking can be obtained up to the frequencies like 10MHz. For the closed 

loop system, gain and phase margins are also calculated (Figure 3.26); the gain margin 
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for the Sliding Mode Controlled system is infinite while the phase margin is calculated 

as 0 rad/s. 

 
Figure 3.26: Gain and phase margins for closed loop system calculated by MatLab. 

3.9.2.2 Disturbance Observer Analysis 

Second parts of the equations 3.122 and 3.123 represents the reaction of the 

closed loop system to the disturbance, which contains parameter variations, damping c  

and springiness k  terms and external forces, by selection in this work. Using these 

terms, one can depict the frequency response of the system under analog SMC with and 

without the DO and observe the performance of the disturbance observer. According to 

the bode plots, the SMC with without DO performs almost identical for reference 

tracking (Figure 3.27 on the left). For the disturbance rejection on the other hand, the 

responses differ as expected; the attenuation is higher in the presence of the DO (Figure 

3.27 on the right). 

To further examine the DO behavior and performance, responses of disturbance 

rejection for different cases are plotted in Figure 3.28. In this part of the study the 

nominal plant parameters are selected as given in Table 3.2. But the actual parameters 

are selected to be in the %10±  range of them for all plots; 
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3.124 0.92m  m N ×=  3.124 

3.125 05.1N ×= bb  3.125 

3.126 90.0N ×= TT  3.126 

3.127 01.1N ×= kk  3.127 

Yet different filtering coefficients g  are used in the plots to demonstrate the 

effect on the observer. Values are summarized on Table 3.6. In this figure (Figure 3.28) 

the plots marked with plus signs and dots demonstrates the disturbance rejection 

performance increase added by the DO. On the other hand, the comparison of the three 

plots marked with dots, circles and crosses clarifies the effect of the corner frequency 

increase for the filter G  given in equation 3.94. As seen from the figure, increasing g  

coefficient increases the attenuation of the higher frequency disturbance as expected. 

 
Figure 3.27: Frequency response analysis for plant under control with and without the 

disturbance observer: the reference tracking analysis on the left and disturbance rejection 

analysis on the right. 
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Table 3.6: Parameters used in the disturbance rejection performance study. 

 Plot 
Marker

Disturbance 
Observer 

g  

Plot 1 + no 7.1785  
Plot 2 . yes 7.1785  
Plot 3 o yes 107.1785 ⋅  
Plot 4 x yes 2107.1785 ⋅  

 

 
Figure 3.28: Disturbance rejection performance comparison for different parameters by means 

of Bode plot. 

 

3.9.3 Circuit Simulations 

In the above sections the analysis of the designed controller and disturbance 

observer are investigated. However, before final analog application, the circuit design 

should also be examined at least by simulations. For this purpose Orcad Capture 

software from Cadence Design Systems is used (version 9.2).  

The plant is represented with a simple second order low pass filter designed in 

Sallen-Key topology (Figure 3.29). The circuit transfer function fits the plant transfer 

function with nominal parameters and since the filter is an inverting one, an inverting 

voltage follower is used for signal consistency. Much complicated equivalent circuits or 
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PEA circuit models from researchers could also be used. However, the purpose of this 

step is to understand the circuit behavior and not to simulate the plant. Therefore the 

used filter equivalent is considered to be enough for this work. 

The result of the circuit simulations is presented in Figure 3.30. The plot at the top 

is the control “ u− ” calculated by the designed circuit. The plot at the center 

demonstrates the reference and actual trajectories dx  and x  together with the tracking 

error e  which’s amplitude is neglectable compare to the other signals. 

 
Figure 3.29: Plant representation for circuit simulation purposes. 

 
Figure 3.30: Circuit analysis results. 



71 

The two signals presented at the bottom part of the Figure 3.30 are the error signal 

and its derivative. One can see from the figure that, the tracking of the reference 

( )txd ⋅⋅+= π4sin1010  results with about 2 microvolts error corresponding to 0.01%.  

The simulations are repeated for different input shapes and amplitudes but not all 

results are presented here. The result in Figure 3.30 is especially selected since it 

demonstrates the performance for small reference signals that can lead to very small 

signals in the calculations and therefore result with failure. Another trouble with the 

small signals is the signal to noise ratio that becomes large to deteriorate the 

performance. 
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4 EXPERIMENTAL RESULTS 

4.1 Experimental Setup 

For experimental purposes, the setup shown in Figure 4.1 has been constructed. 

The voltage amplifier is the circuit built by using MP108 power operational amplifier 

from Apex Microtechnology, PEA is the piezoelectric actuator with embedded strain 

gage for position measurement, PSt 150/5/60 VS10 from Piezomechanik SVR, and the 

strain gage amplifier is the SCM5B38-03 wide band strain gage amplifier from 

Dataforth Corporation. 

 
Figure 4.1: Piezoelectric actuator control setup. 

For different experiments, the block marked as “Controller” is replaced by the 

suitable algorithm on the suitable platform; it is replaced by the DSP controller in DSP 

experiments or by the Analog Circuit in Analog Controller experiments. 

The data is captured by Agilent Technologies 54622D digital oscilloscope. The 

reference and actual signals are generally presented without offset to have a better 

feeling on the tracking error. The third channel shown in some figures is the error 

signal. Peak to peak values are given at the image captions in metric correspondents: 

17.96um (micrometers) corresponds to 1V of the strain gage amplifier reading, or in 

other words 1um position deflection results 55.68mV and 1nm creates only 55.68uV. 

Figure 4.2 shows the actual version of the controller test bed unit that has been 

assembled as part of this research. Computer connections are not shown in the figure. 

The setup shown consists of; 
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• PEA: the piezoelectric actuator mounted inside a plastic box, together with the 

strain gage amplifier circuit, to mechanically isolate from outside effects,  

• HV PSU: high voltage power supply unit (±150V),  

• LV PSU: low voltage power supply (±15V),  

• HVA: the MP108 circuit mounted on a piece of aluminum cooler with fan,  

• SMC & DO: the Sliding Mode Controller and Disturbance Observer circuits 

connected to each other and to the plant as it is required, 

• Signal generator for reference input and oscilloscope for data connection. 

 
Figure 4.2: Actual photo of the experimental setup. 

4.2 Model Verification 

Most of the controller design and disturbance observer calculations is based on the 

selected plant model. Therefore the selected piezoelectric actuator model in this 

research must be compared with the real plant for model verification and parameter 

validity. The parameters used in the simulation are listed in Table 3.2 and the 

experimental part of the work is realized by Abidi [26]. 

SMC & DO 

Signal Generator & Oscilloscope 

HVA 

LV PSU PEA 

HV PSU 
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Figure 4.3: Real vs. simulated trajectory of the PEA for the input: u=40+40.sin(t) Volts 

presented with the corresponding modeling error. 

 
Figure 4.4: Real vs. simulated trajectory of the PEA for the input: u=15+15.sin(t) Volts 

presented with the corresponding modeling error. 

The described model was used to estimate the response of the PEA to two 

different sinusoidal inputs each having an offset equal to the amplitude of the signal to 
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ensure only positive motion of the actuator. The resulting outputs are depicted in Figure 

4.3 and Figure 4.4. From the work of Abidi [26], we can conclude that the selected 

model and calculated nominal plant parameters are able to estimate the PEA plant in 

focus quite satisfactorily especially for the residual displacement when the input tends 

to zero. The modeling errors are about 3.4% according to the experiments and we 

believe that the accuracy of the model is good enough to design a successful controller 

with disturbance compensation. 

4.3 Open Loop Actuator Control 

Since the selected model estimates the behavior of the actuator fairly well, as 

proven in the previous section, this model should be able to estimate the necessary input 

to the actual plant in order to follow a certain reference trajectory. This approach 

requires the inverse model calculation which is represented as a block diagram in Figure 

4.5. So-called open-loop technique based on inverse model is presented to further 

compare with the closed-loop performance and demonstrate the added value by the 

Sliding Mode Controller. 

 
Figure 4.5: Inverse plant model for the Goldfarb-Celanovic model. 

One point must be stressed; even tough it is possible, the inverse model does not 

include the external force since that would involve force measurement and possible 

complications. However, since in the final application, the externally applied force to 

the PEA is assumed as a part of the disturbance, above cited reduction is not totally 

unrealistic. 

Experimental tracking error is 6.7% as represented in Figure 4.6 which also shows 

the voltage control signal calculated by the inverse model. 
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Figure 4.6: Open-loop tracking error and input voltage for ( ) mtx μsin5.75.7d ⋅+=  

4.4 Position Tracking Experiments Using DSP 

DSP application of the control is realized on dSpace DS1102 platform which 

possesses TMS320C31 DSP chip running at 40MHz with 50ns cycle time. The platform 

has two 16-bit ADC (Input) ±10V and four 12-bit DAC (Outputs) ±10V. The algorithm 

runs at 10kHz, and the discritization is made based on Euler’s method.  

 
 

Figure 4.7: DSP tracking of 4.5um-pp 1Hz sinusoidal reference. The error is 110nm-pp (2.4%). 

Reference & Actual  
900nm/Div 

Error 
90nm/Div 
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The position tracking of 1Hz sinusoidal inputs is studied. First 4.5um peak to peak 

and then 10.8um peak to peak inputs are tested. The results are shown in Figure 4.7 and 

Figure 4.8. The errors for comparison are 110nm and 200nm, corresponding to 2.4% 

and 1.8% respectively. 

 
 

Figure 4.8: DSP tracking of 10.8um-pp 1Hz sinusoidal reference. The error is 200nm-pp 

(1.8%). 

4.5 Analog SMC Position Tracking Experiments 

Similar experiments are conducted for analog circuit realization of the SMC 

without the use of the disturbance observer. As can be seen on Figure 4.9 and Figure 

4.10, 4.5um peak to peak 1Hz sinusoidal (Figure 4.9, part A) and triangular (Figure 

4.10, part A) references are successfully tracked with 46.8nm and 44.8nm peak to peak 

tracking errors corresponding to 1.04% and 1.00% respectively. On the same figures, 

the tracking of 10.8um peak to peak 1Hz sinusoidal (Figure 4.9, part B) and triangular 

(Figure 4.10, part B) references are also presented. The corresponding tracking errors 

are 55.0 and 55.9nm peak to peak corresponding to 0.51% and 0.52% respectively.  

From all four experiments, together with the DSP experimental results from last 

section, we can resume that the tracking control of the analog implementation performs 

2 to 3 times better than DSP implementation of the same controller. 

Reference & Actual  
1800nm/Div

Error 
180nm/Div
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A/Reference and actual positions shown at top (900nm/div) and error at 
bottom (9nm/div). The error is 46.8nm-pp (1.04%). 

 

 
 

B/ Reference and actual positions shown at top (1800nm/div) and error at 
bottom (9nm/div). The error is 55.0nm-pp (0.51%). 

Figure 4.9: ASMC tracking experiments for 4.5 and 10.8um-pp 1Hz sinusoidal references. 

Reference & Actual 
900nm/Div 

Error 
9nm/Div 

Reference & Actual 
1800nm/Div 

Error 
9nm/Div 
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A/ Reference and actual positions shown at top (900nm/div) and error at 
bottom (9nm/div). The error is 44.8nm-pp (1.0%). 

 

 
 

B/ Reference and actual positions shown at top (1800nm/div) and error at 
bottom (9nm/div). The error is 55.9nm-pp (0.52%). 

Figure 4.10: ASMC tracking experiments for 4.5um-pp and 10.8um-pp 1Hz triangular 

references. 

Reference & Actual 
1800nm/Div 

Error 
9nm/Div 

Reference & Actual 
900nm/Div 

Error 
9nm/Div 
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4.6 Analog SMC with Disturbance Observer 

Same experiments are repeated for the Analog Sliding Mode Controller with the 

addition of the designed disturbance observer circuit. The tracking of a 4.5um peak to 

peak 1Hz sinusoidal reference resulted with 4.3nm peak to peak tracking error 

corresponding to only 0.10%. Compared to the 2.5% tracking error of the DSP 

implementation, this result is 25 times better (Figure 4.11). The same experiment 

repeated for 10.8um peak to peak sinusoidal input and the experiment resulted with 

4.85nm peak to peak error corresponding to only 0.045%. 

Triangular wave shapes experiments presented on previous section are repeated in 

the presence of a disturbance observer. Tracking of 4.5um and 10.8um peak to peak 

references succeeded with 4.52nm peak to peak (0.10%) and 4.95nm peak to peak 

(0.046%) errors respectively (Figure 4.12). Results are at least 10 times better compare 

to the just Analog Sliding Mode Controller case. 

 

 
 

A/ Reference and Actual positions shown at top (900nm/div) and error at 
bottom (0.9nm/div). The error is 4.52nm-pp 4.3nm-pp (0.10%) 

Reference & Actual  
900nm/Div 

Error 
0.9nm/Div 
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B/ Reference and Actual positions shown at top (1800nm/div) and error at 
bottom (0.9nm/div). The error is 4.85nm-pp (0.045%). 

Figure 4.11: ASMC with DO tracking experiments for 4.5 and 10.8um-pp 1Hz sinusoidal 

references. 

 

 
 

A/ Reference and Actual positions shown at top (900nm/div) and error at 
bottom (0.9nm/div). The error is 4.52nm-pp (0.10%). 

Reference & Actual 
1800nm/Div 

Error 
0.9nm/Div 

Reference & Actual 
900nm/Div 

Error 
0.9nm/Div 



82 

 

 
 

B/ Reference and Actual positions shown at top (1800nm/div) and error at 
bottom (0.9nm/div). The error is 4.95nm-pp (0.046%). 

Figure 4.12: ASMC with DO tracking experiments for 4.5 and 10.8um-pp 1Hz triangular 

references. 

To present the tracking of an abstract but continuous wave form, the tracking of a 

human beat signal is presented in Figure 4.13. For this waveform with peak to peak 

amplitude of 21.70um, the tracking resulted with 46nm peak to peak tracking error 

corresponding to 0.21%.  

 
 

Figure 4.13: Tracking of human hearth beat signal. The peak to peak reference signal is 

21.70um. The error is 46nm-pp (0.21%). 

Reference & Actual 
1800nm/Div 

Error 
0.9nm/Div 

Reference & Actual  
8.98um/Div 

Error 
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4.7 Summary of the Experimental Results 

Different position tracking experiments are performed for different controllers. To 

show the improvement of the work achieved in this research a comparison of the 

experimental results is presented on Table 4.1.  

Form the table we can conclude that the Analog Sliding Mode Controller, 

designed and built in this research, performs more than 2 times better than the DSP 

implementation, when not supported by the disturbance observer. In the presence of the 

disturbance observer, the trajectory tracking performance increases more than 20 times. 

For the triangular shape trajectory tracking, very similar results are obtained. 

Since for a perfect triangular wave, the derivative is not continuous, triangular 

trajectories constitutes important information. The non-continuous derivative may cause 

saturated signals and the circuit is expected to recover from the situation otherwise 

increase in the error may be observed. 

Another important result from the table is regarding the signal sizes; since the 

controller performs well and the measurable output signals are continuous, we can 

conclude that the used operational amplifiers are not saturated during experiments. This 

reaction is expected since the scaling process summarized in 3.8.2 is used to ensure this 

behavior. 

Table 4.1: Summary of the experimental results. 

Position Error  

for Reference Amplitude of 
Input Controller 4.5um-pp 

(250mV-pp) 

10.8um-pp 

(600mV-pp)

SMC implemented on DSP 110nm 
2.4% 

200nm 
1.8% 

SMC implemented on Analog 
Electronics 

46.8nm 
1.05% 

50nm 
0.14% 

1Hz 
Sinusoidal 

SMC with DO implemented on 
Analog Electronics 

4.5nm 
0.10% 

4.85nm 
0.045% 

SMC implemented on Analog 
Electronics 

44.8nm 
1.00% 

55.9nm 
0.52% 1Hz 

Triangular SMC with DO implemented on 
Analog Electronics 

4.52nm 
0.10% 

4.95nm 
0.046% 
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On the other hand, observing the experimental output signals, one can remark 

that, the error signal is a wide trace mainly due to the high frequency noise contained in 

it. To prove the existence and size of the noise on the error signal, an experiment 

requiring the tracking of a single sinusoidal pulse of period 1 second and peak to peak 

amplitude 35.60um as shown in Figure 4.14. Accordingly, the peak to peak error value 

is 54nm corresponding to 0.15% tracking error. But the important point in this 

experiment is that, the error before the pulse, namely for zero reference input, was 

already around 40nm. This error includes the high frequency noise that interferes from 

position measurement to the calculation of the control. Hence oscillations around the 

reference are also part of the error. 

The source of the noise does not require deep investigation to be discovered; the 

position measurement signal from the strain gage contains similar high frequency 

elements in it. Since the position measurement is relatively large signal, on the orders of 

few hundred millivolts, the SNR (signal to noise ratio) is high. However, since the error 

is expected to tend to zero, it is a small signal on the order of few millivolts, and 

therefore SNR is low. High SNR results with noisy signals that can still carry its 

characteristics but low SNR results with signal information loss since the signal 

magnitudes becomes comparable to the noise magnitude. 

 
 

Figure 4.14: Tracking of 35.60um-pp 1Hz sinusoidal reference. The error is 54nm-pp (0.15%). 

Filtering of the measurement signals may help to further increase the performance 

but in such a case the filtering may cause phase shifts, delay and/or other information 

loss. Therefore the filter should be adaptive and care must be taken in the design. The 

whole control algorithm is based on the error and its first derivative, therefore, instead 

Reference & Actual  
8.98um/Div 

Error 
90nm/Div 
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of filtering the measurement signal, cleaning the error signal and its derivatives may 

help more. 
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5 CONCLUSION AND FUTURE WORK 

In this research SMC design methodology is used to arrive to a controller that has 

very small discontinuous component or in some cases no discontinuous component if 

the exponential convergence to sliding mode manifold is acceptable. Furthermore, the 

controller is combined with a disturbance observer in order to improve the tracking 

performance. The structure is kept as simple as possible in order to allow analog 

implementation with limited hardware. The aim in the later stage is to try to integrate a 

whole controller as a part of the plant together with the high voltage amplifier and that 

way create a monolithic actuator-controller. So far, in this text, the design of the control 

strategy and disturbance rejection methods are presented together with the promising 

analyses results. Circuit design is also summarized and followed by comparative 

experimental work. The designed control circuitry is proven to perform 10 to 25 times 

better compare to the DSP implementation of the same algorithms. In this part of the 

text, the results will be further discussed with possible future works. 

5.1 Conclusions 

Even tough, controllers applied on digital systems, promise ease of re-

programmability, multi-DOF systems, with each axis motion independently measured 

and controlled, the application of the control requires high computational power and 

careful software implementation. 

This work aimed to move the controller outside of the digital domain and use the 

digital controllers only for reference generation. This way improvement on the tracking 

performance and decrease on the computational power necessity is targeted. Research 

is motivated by the need of a motion controller for a 14-DOF Microassembly 

Workstation [1, 2] designed and built in Sabanci University for experimental purposes. 

And therefore the piezoelectric actuator is selected as the experimental plant since it is 

the main actuation source in the cited and in many other microsystem applications with 

a wide range of industrial applications. However beside their potential unlimited 
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resolution possibility, precise control of piezoelectric actuators is a challenging task due 

to the dominant hysteresis and other non-linear behaviors. Besides, the position 

measurement methods are not mature enough and can only provide measurements 

signals of very small in amplitude. The solution requires well designed, robust yet large 

bandwidth controllers with capability of rejecting external disturbances. 

This thesis investigated the possibility of designing an analog motion controller 

for single input single output (SISO) systems of complex nature, based on non-linear 

control methodologies. The designed controller assures a quazi-sliding mode motion 

with exponential convergence to the selected sliding mode manifold. The combination 

of disturbance observer and the SMC based controller allows very compact analog 

electronics implementation. 

Experimental results proved that the analog implementation of the proposed SMC 

is acceptable and that the controller can track a reference signal with high accuracy. In 

comparison with DSP realization of the same algorithm, the realization in continuous 

time domain showed at least 2 times performance increase. The addition of the 

disturbance observer on the other hand, improved this result another 10 times. Resulting 

controller can track appropriate signals at around 0.05% tracking error corresponding to 

50nm for reference amplitude of 1um. Achieved performance is already well adequate 

for the Microassembly Workstation project that inspired this research. 

The system tracking performance is not as successful for smaller signals on the 

other hand. As it can be seen from Figure 4.14, the error signal is augmented by a group 

of high frequency signals. Part of the signal is caused by the high gain SMC, while 

majority is the noise introduced by the position measurement by the strain gage and 

amplified by the electronics. 

It is known that the piezoelectric crystals dissipate some heat even at low 

frequency operation since their impedance is close to a capacitor with certain internal 

resistance. Strain gage, being another piezoelectric crystal attached on the body of the 

actuator, is affected by this heat and therefore may generate extra noise. To prevent this 

situation, in many works expensive capacitive sensors with very high resolutions are 

used. In this research, for the price of large noise, inexpensive strain gage position 

measurements are preferred in purpose since the capacitive sensor placement in real 

applications like robotics introduces additional design constraints in mechanics domain.  
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Even though high frequency operations are targeted at the beginning of the 

research phase, mainly limited by filter and the introduced filters, the final products 

bandwidth is not large enough. We believe that miniaturization in the circuit design may 

help in noise reduction but the ultimate solution will be integrated circuit application as 

will be discussed on the later section. 

To sum up all, the Analog Sliding Mode Controller in the presence of a 

disturbance observer is promising. However, the development phase is very demanding. 

The work done in this research may be accepted as an introduction to the field where so 

far not much work exists. Yet we believe that the area shows potential and much work 

can be done. 

5.2 Recommendations and Future Work 

From the experience of this research, the following future works are suggested 

and are discussed in this part of the text; 

• Sensorless operation 

• IC design & application 

The implementation in this thesis consists of two piezoelectric materials; one is 

configured as a stack actuator while the other as strain gage for stroke measurement. It 

is possible to combine the sensor and the actuator into a single element called a self-

sensing actuator [71]. In that case, since the impedance of the piezoelectric actuator is 

essentially that of a capacitor, instead of resistive Whetstone Bridge for position 

measurement, capacitive Whetstone Bridge, a bridge structure with all elements being 

capacitors, can be used. The bridge supply voltage will also act as the control voltage of 

the actuator. By appropriate selection of the bridge capacitors one can make the output 

proportional to the position and that way may avoid large voltages of measurement. It is 

also possible to have configuration for force measurement. 

Another important future target would be on the integrated circuit (IC) 

implementation and production of this design. There is a continuous trend in 

miniaturization for current and future subsystems mainly for mobile ad autonomous 

applications. For electronics the state of the art miniaturization is IC applications. 

Application of the proposed control system design in microelectronics domain as a full 

monolithic integrated circuit, will supply many benefits to the user including saving 

from noise interactions and therefore much higher operation frequency. 
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For the circuit integration of sliding-mode controller, not much work exists in the 

area, to the best knowledge of the author. In particular, the only sliding-mode 

application specific integrated circuit reported so far is the work by Alarcon et al. [72]. 

Designed for switching converters of mass production, their implementation realized on 

an area of 0.33mm2 and features a bandwidth of 2MHz. 
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