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ABSTRACT

Endoplasmic reticulum (ER) stress has been implicated in many diseases and cancer therapy.
The unfolded protein response (UPR) is activated in the face of ER stress to alleviate it. The
survival elements pertaining to the UPR are being investigated for a more effec tive death-
induction in cancer cells that have adapted to chronic ER stress and display resistance to
treatment. Mitogen-activated protein kinase (MAPK) JNK is implicated in cell pr oliferation,
survival and death. JNK is activated during the UPR .

We report in this study that the inhibition of the JNK  pathway has different outcomes;
depending on the phase of the ER stress response  in HCT116 colon carcinoma cells treated
with the asparagine-linked glycosylation inhibitor tunicamycin (TM). Both outcomes indi cate
a cytoprotective role for JNK activity during ER stress -related cell survival and death. TM
treatment at 1 µg/ml induced cell cycle arrest at the G1 phase. Cell cycle arrest can be
interpreted as a cytoprotective response that conserves energy as an a daptation strategy to ER
stress. Inhibition of JNK by the small molecule SP600125 led cells bypass this arrest
compared to TM-treated HCT116 cells. Cell proliferation in response to JNK -inhibition was
observed by light microscopy. Accordingly, p21CİP1 pro tein, a cyclin-dependent kinase
inhibitor (CKI) that causes cell cycle arrest at the G1 to S transition was elevated in TM -
treated cells, whereas JNK inhibition abrogated this upregulation. It has been reported that
JNK activity stabilizes p21CİP1, which h as short half-life of 20 – 60 min.



v

TM-induced apoptosis involved caspase-3 and -8 activation and cells were  partially rescued
from death by the administration of the pan -caspase inhibitor z-VAD-fmk. Initiation of
apoptosis coincided with the increase in p21CİP1 levels in JNK-inhibited TM-treated cells
after 24 h of treatment. JNK inhibition caused a 2 -fold increase in apoptosis in TM -treated
cells after 24 h, after which the effect of JNK inhibition did not increase cell death. Inhibition
of the MAPKs p38 and ERK did not effect the cell cycle distribution of TM -treated cells and
there was no change in the apoptotic response after 24 h of treatment. p38 and ERK inhibition
sensitized HCT116 cells to ER stress -related apoptosis after 40 h of treatment. In thi s
experimental model, JNK and p38 and ERK differed temporally in their prosurvival roles,
presumably due to the condition of the cell and the availability of affected substrates.
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ÖZET

Endoplasmik retikulum (ER) stres birço k hastalık ve kanser tedavisiyle  ilgildir. ER stresli
hücrelerde bu durumu gidermek  ve homeostaz koşullarına geri dönmek için "Katlanmamış
Protein Cevabı" mekanizması aktive olur. Kronik ER strese "Katlanmamış Protein Cevabı"
aktivasyonu ile adapte olmuş ve tedaviye cevap vermeyen kans er hücrelerinde daha etkili  bir
sonuç verecek ilaç uygulaması içi n "Katlanmamış Protein Cevabı"nda hücreyi hayatta tutan
öğeler araştırılmaktadır. MAP kinazlardan JNK, hücre çoğalması, hayatta kalması  ve ölümle
ilişkili bir proteindir. JNK "Katlanmamış Protein Cevabı" sürecinde aktive olur.

Bu çalışmada tunikamisin (TM) ile ER stres kondisyonu yaratılmış HCT116 kolon karsi noma
hücrelerinde JNK inhibisyonunun ER stres cevab ının farklı fazlarında, farklı sonuçlar
yarattığını gördük. Bu iki tip netice de  ER stres sırasında JNK aktivitesine sitoprotektif bir
görev atamaktadır. 1 µg/ml TM uygulaması hücrelerin  hücre döngüsünün G1 fazında
kalmasına yol açtı. Hücre döngüsünden bu kaçış sitoprotektif bir cevap  olarak düşünülebilir
çünkü hücre bölünmesini engelleyen bu döngüden kaçış  hücreye enerji tasarruf ettirir  ve ER
strese adaptasyonu kolaylaştırır. SP600125 isimli ufak molekülle JNK’ı n inhibe edilmesi, bu
hücrelerde hücre döngüsünün devam etmesine  yol açtı. Ayrıca bahsi geçen JNK inhibe
edilmiş ER stresli hücrelerde hücre çoğalması optik mikroskop altında takip edildiğinde
hücrelerin çoğalmaya devam ettiği gözlenmiştir. Buna paralel olarak, p21CİP1, G1 fazından  S
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fazına geçişi engelleyen siklin-bağlı kinaz engelleyici protein miktarı TM uygulanmış
hücrelerde artış gösterirken, JNK inhibisyonu bu artışı engellemiştir. Daha ö nceki
çalışmalardan JNK aktivitesinin, yarı ömrü 20 - 60 dk olan p21CİP proteinini stabilize ettiği
bilinmektedir.

TM uygulanan hücrelerde gözlenen apoptozda kaspaz -3 ve -8 rol oynamıştır. Bu hücrelere
genel-kaspaz inhibitorü olan z-VAD-fmk uygulandığında hücreler apoptozdan kısmen
kurtulmuştur. TM uygulanmış ve JNK inhibe edilmiş hücrelerde apoptoz başlangıcı p21CİP1
proteininin artışıyla paralellik göstermiştir. JNK inhibisyonu  24. saatin sonunda bu hücrelerde
apoptozu, sadece TM uygulanmış hücrelere gö re iki kat artırmıştır. 40. saatte bakıldığında ise
sadece TM uygulanmış hücreler ile  hem TM uygulanmış hem de JNK inhibe edilmiş
hücrelerin  apoptoz oranlarında bir fark gözlenmemiştir.  TM uygulanmış hücrelerde, p38 veya
ERK MAP kinazlarının inhibisyonu hücre döngüsü dağılımını değiştirmedi. Ayrıca 24. saatte
bu hücrelerin apoptotik tepkisinde TM uygulanmış hücrelere göre bir farklılık
gözlenmemiştir. Fakat 40. saatte p38 ve ya ERK inhibe edilmiş hücrelerde apoptoza duyarlılık
gelişmiştir. Bu durumda deneysel modelimizde, JNK ve ayrı bir grup olarak p38 ve ERK
kinazlarının ER stresli hücrelerdeki hayatta kalmayı destekleyici rollerinde zamansal farklılık
gözlenmiştir. Bunun olası sebebi hücrenin durumu ve hücre içinde bu proteinlerin (ERK, p38,
JNK) etkileyebileceği substratların mevcudiyeti  olabilir.
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INTRODUCTION

1.1 The Endoplasmic Reticulum

The endoplasmic reticulum is a membrane -bound labyrinth-like cellular compartment in the

cytoplasm of eukaryotic cells. It is an organelle essential for the translation, maturation,

modification, and delivery of nascent polypeptides to be secreted outside of the cell or that are

destined to function at  the plasma membrane and other intracellular organelles . All secretory

proteins traverse the ER in order to enter the secretory pathway [1], making up approximately

one third of the proteins synthesized in the cell [2].

Here, polypeptide chains fold into their native states in a chaperone -mediated process.

Chaperones use the energy from ATP hydrolysis to promote folding and prevent aggregation

of proteins within the ER [2]. Nascent proteins get subjected to disulfide bond formation

catalyzed by disulfide isomerases [3].The oxidizing environment of the ER is necessary for

the formation of disulfide bonds and the proper folding of nascent polypeptide chains [4].

Asparagine-linked glycosylation of proteins takes place in the ER [5]. Glucose not only

provides the metabolic energy for protein folding  and modification but directly participates in

glycoprotein folding, as a component of the oligosaccharide structures added to consensus

asparagine residues of the maturing glycosylated proteins  in their polypeptide chain state .

With the addition of the ol igosaccharide core, the three terminal glucose residues are cleaved

by glucosidases. The ER administers tight quality -control systems for the recognition of

unfolded/misfolded proteins. In the case of glycoslyation, UDP -glucose:glycoprotein

glucosyltransferase (UGGT) recognizes the misfolded protein and reglycosylates the core

oligosaccharide structure. The reestablishment of the glucose -α(1,3)-mannose glycosidic

linkage in this manner ensures the retaining of the unfolded protein within the ER lumen by

promoting its binding to ER-resident protein chaperones calnexin and calreticulin [6].

The ER has other quality-control mechanisms, which collectively assure that only those

proteins that are properly folded leave the organelle. Proteins are kept in the lumen until they

reach their native conformation or are translocated to the cytosol for their degradation by the

26S proteasome [7].
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The ER, apart from this prodigious task of protein folding is the primary storage organelle for

cellular Ca2+. The high concentration of Ca2+ is retained in the ER through the activity of Ca 2+

ATPases. Molecular chaperones and foldases  that are necessary for protein folding require

Ca2+ to aptly function [8].

1.2 Homeostasis at the ER and its Antagonist, the Unfolded Protein Response (UPR)

Proper functioning of the ER is crucial for a healthy operating cell.  The ER lumen maintains

an extremely high concentration of proteins, estimated at 100mg/mls [9]. Protein synthesis

rate in the ER for secretory cells is especially high ranging between approximately 2.6 million

secretory proteins for hepatocytes to  13 million for exocrine cells per minute. The translation

and modification of copious amounts of proteins at the ER is thermodynamically unfavorable;

therefore, a large amount of energy is required to accomplish the  task [10]. The ER

homeostasis is prone to many insults due to this colossal undertak ing. The ability of the cell to

sense, respond and overcome the stress is essential for maintaining homeostasis and

remaining viable. Highly specific signaling pathways ensu re that the ER does not lose its

homeostatic balance and that its protein-folding capacity is not inundated.

The pathways activated to keep the ER at homeostasis against certain stress conditions are

collectively named the unfolded protein respon se (UPR). The stress that activates the UPR

can be due to many different factors  related to the proper working conditions and

undertakings of the ER, such as perturbations in calcium concentration and redox status,

increased protein synthesis, expression of mutated proteins, impairment of protein transport to

the Golgi, glucose deprivation, and unsuccessful glycosylation [11]. ER stress brings about

the accumulation of misfolded/unfolded proteins in the ER lumen, which activates the UPR.

During the UPR certain evolutionarily conserved cellular pathways are activated resulting in a

decrease in ER’s protein load, an increase of its folding capacity and the degredation of

misfolded proteins. The measures are taken to bring back the conditions of homestasis to the

ER. There are conditions where the UPR works as an adaptive mechanism to  chronic stress

and is always active to maintain cellular balance. The outcome of persistent ER stress may be

the death of the cell in a way related to UPR activity.
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1.2.1 ER stress in the sick and healthy body

There are physiological conditions  of the body, in which ER protein folding capacity  is

exceeded. The outcome of the stress may be acute (transient), with recovery  on the order of

minutes to hours or chronic (persistent). Acute stress is relieved best by an immediate

reduction in the protein load of the ER. On the other hand, chronic stress requires long term

adjustments to cellular function . Chronic ER stress may be due to genetic, environmental,

pathogenic or developmental factors [12].

In development, the differentiation of B lymphocytes into antibody -secreting plasma cells

results in massive ER expansion. ER chaperones in these cells are upregulated as a

consequence of UPR activation [13]. Active UPR maintains homeostasis  in these cells upon

an increase in secretory protein production. Other examples to chronic stress are mutations in

genes encoding secretory or transmembrane proteins, such as α1 antitrypsin and insulin,  and

viral infections such as hepatitis C [14]. It is to note that in the case of adaptive UPR, it  would

be interesting to understand the factors that lead cells bypass the potentiality of demise and

adapt to chronic ER stress.

Hypoxia is a common feature of malignant and resistant solid tumors resulting from

deregulated growth and vascular abnormalities associated with the tissue.  Hypoxia in cells

activates the UPR to adapt to the low -oxygenated environment [15].

Conformational diseases are diseases caused by the misfolding and aggregation of proteins

[16]. The accumulated unfolded or misfolded proteins in the ER form aggregates in the ER

lumen and the cytosol [17]. The cause of many neurodegenerative diseases is the death of

cells with accumulated unfolded proteins, as an outcome of UPR.

UPR is also activated in cells faced with altered metabolic conditions, such  as glucose

deprivation, hyperhomocysteinemia and ischemia [15].

UPR activity has also been detected in cells that are considered unstressed. The basal UPR

activity was implicated in nutrient sensing and control o f cellular responses to fluctuations in

nutrient levels. This extends the physiological functions of the UPR [1].
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1.2.2 Induction of ER stress by Pharmacological Agents

Commercial pharmacological agents that mimic ER stress are available for experimental use

[16]. These pharmacological agents inhibit certain functions of the ER that are essential for

proper protein maturation.

One group of pharmacological ER stressors  comprises asparagine-linked glycolysation

inhibitors that disrupt asparagine-linked glycolysation of proteins at the ER lumen. 2-Deoxy-

D-glucose and tunicamycin (TM) [18] are of this kind.

Another group of ER stressors disrupts the Ca 2+ metabolism at the ER. ER lumen re quires

high concentrations of Ca2+ for the ER chaperones (such as GRP74/BiP)  and foldases to

properly function. Ca2+ ionophores such as A23187 and the Ca2+ pump inhibitor, thapsigargin

(TG) elicit ER stress.

A third group comprises reducing agents disrup ting the oxidative environment of the ER

lumen that is required for the formation of disulfide bonds between the cysteine residues of

nascent peptides for folding into their tertiary and quaternary structures. Dithiothreitol and 2 -

mercaptoethanol are of this kind of pharmacological ER stressors.

Much of the knowledge about the UPR, its activation and regulation, comes from cultured

cells treated with these ER st ress-inducing agents. It should be noted that this kind of

experimentation bares a shortfall in  its nature that it fails to imitate the UPR under milder and

persistent assault, which is often the case in the physiological condition. There are cases,

where cells, when faced with chronic stress activate the UPR in an adaptive form and escape

death in a scale ranging from days to years. Treatment with these agents severely assaults the

cells under investigation and eventually activates the death mechanism linked with the UPR.

In vitro experimentation, therefore, may not be the equivalent of the physiolo gical UPR or

more precisely, the problem with this methodology is that it circumvents the question of how

cells escape death and adapt to ER stress [15].
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1.2.2.1 Tunicamycin

Tunicamycin is an antibiotic produce d by Streptomyces lysosuperificus . Tunicamycin (TM)

induces ER stress by inhibiting N -linked glycosylation of proteins in the ER lumen by

preventing UDP-GlcNAc-dolichol phosphate GlcNAc-phosphate transferase activity [18].

Tunicamycin activates the ER stress response in a variety of cell types.

Figure 1.1 [19] The basic pathways of the UPR mediated by the three ER -transmembrane proteins
functioning as ER-stress sensors.

Each sensor protein activates a pathway in a time-phase dependent fashion. An example
pertaining to the time-phase characteristic of the response is that  for the full-fledged activation
of the IRE1 pathway, the transcription factor ATF6 must be processed (cleaved) to produce
the precursor XBP1 mRNA that is a substrate of IRE1 ’s. This makes sure that the downstream
response of ATF6 is induced earlier than the downstream response of IRE1-XBP1. Positive
and negative feedback loops within the same or different pathways ensures continious or
transient response patterns within cross -talking pathways.The green and red dashed lines
represent the positive, and negative feedback loops, respectively.  The specific UPR pathways
are not mutually exclusive as depicted in the figure  in terms of gene activation. Some genes
require the concurrent activaton of duplicate or multiple sensing pathw ays.
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1.3 A Closer Look at the UPR Execution Pathways

As a summary: ER stress results in the accumulation and aggregation of misf olded proteins in

the ER lumen. The cell responds to it by activating precise and evolutionarily conserved

intracellular mechanisms in order to bring the ER back to the homeostatic conditions. This

fundamentally cytoprotective response is called the unfolded protein response (UPR) . Figure

1 shows the basics of the UPR mechanism that is maintained upon the accumulation of

misfolded proteins. Distinct components (pathways) of the UPR depicted in the figure will be

covered in terms of protein activity, gene regulation and their consequences with an emphasis

on the time shift property of the progress of the response.

The cell employs the activation of the UPR subpathways in a time-dependent fashion [20].

The precedent response comprises the blockage of global protein translation. Translational

attenuation serves a brilliant role in reducing the protein load of the semi-functional ER, thus

diminishing damage to the organelle. Next is the increase in the folding capacity of the ER

through upregulation of ER-resident molecular chaperones [21], foldases (enzymes including

protein disulfide isomerase (PDI) and peptidyl -prolyl isomerase) and increase in the size of

the ER [22].

What comes after the response to augment of ER folding capacity  in the “time-dependent

phase-shift response” is the ER-associated protein degradation (ERAD) [20] pathway is the

primary degradation mechanism for handling misfolded prot eins that cause the stress response

[23]. ERAD includes the transcriptional induction of ER degrada tion-enhancing α-

mannosidase-like protein (EDEM) to eliminate the misfolded proteins in the ER via the 26S

proteasome [24]. EDEM is critically involved in the quality control of proteins in the ER by

targeting misfolded glycoprote ins to ERAD.

If the stress persists despite of the activated stress response, apoptotic machinery takes over to

eliminate the ER stress-damaged cells [25].

For the cellular machinery to respond to ER stress  and activate the UPR; however, it first and

foremost must sense it. Sensing the stress is the responsib ility of ER-resident chaperones and

the three ER transmembrane proteins, PERK, ATF6 and IRE1.
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1.3.1 ER-resident Chaperone BiP Interacts with the ER-transmembrane Proteins

To form secondary and tertiary structural elements in which residues far apart in the amino

acid sequence interact, preceding residues mu st be kept in a folding-competent state while the

polypeptide chain grows. In the ER, ER-resident chaperones takeover the task  of proper

protein folding. Bip/GRP78 (immunoglobulin heavy chain -binding protein/glucose-regulated

protein of molecular weight 78  kDa) is the ubiquitously expressed chaperone in the ER. BiP

belongs to the heat-shock protein (Hsp70) family. It contains an ATPase domain at its N-

terminus and a substrate binding domain at its C-terminus, binding to the hydrophobic

residues of folding intermediates. In its ADP-bound form, it has high affinity for  its protein

substrates. BiP binding to its substrate stimulate s its ATPase activity. Exchange of ADP with

ATP brings BiP to its low affinity state for its substrates [26]. Subsequent ATP hydrolysis

returns BiP into its ADP-bound form. Folding polypeptide chain thus requires and consumes

ATP. Co-chaperones are in action for nucleotide exchange and ATP -hydrolysis.

Conformations that interact with molecular chaperones are considered unfolded.

The regulatory signaling proteins at the ER membrane that respond  to the accumulation of

unfolded or misfolded proteins in the ER lumen act through an interaction with BiP.  These

transmembrane proteins initiate the stress response signaling [2] that will either result in the

restoration of ER homeostasis or death of the cell [27].

In mammals, the three ER transmembrane proteins that sense and mediate the UPR are  the

pancreatic ER kinase (PKR)-like ER kinase (PERK), activating transcription factor (ATF6),

and inositol-requiring enzyme 1 (IRE1) (Figure 2). These sensor proteins associate with BiP

under non-stress conditions at their ER-lumenal domains. The hypothesis is that as unfolded

proteins accumulate in the ER upon stress, BiP dissociates from these UPR transducers and

preferentially binds to the unfolded/misfolded proteins [28].

BiP associates with the lumenal domain of IRE1α, possibly at multiple sites with a

hydrophobic character. The domains required for signaling , oligomerization and BiP-binding

of IRE1α partially overlap. Therefore, an assumption is that BiP-binding inhibits IRE1α

oligomerzation to keep it in its inactive state [29].
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The lumenal domain of PERK is interchangeable with IRE1’s . It is highly probable that BiP

binds to PERK’s luminal domain in a similar fashion. However, the oligomerization and BiP-

binding domain of PERK are distinct. Therefore, in this case, BiP might interfere with PERK

oligomerization through inducing a conformational change in PERK’s oligomerization

domain [30].

In ATF6, BiP binds to one (GLS1) of the two independent and redundant Golgi localization

sequences (GLS1 and GLS2) of ATF6.  In the absence of BiP binding, GLS2 res ults in the

translocation of ATF6 to the Golgi and c auses its subsequent activation [31].

The three sensors of the UPR are activated simultaneously under severe ER stress conditions.

However, under various physiolo gical conditions, selective UPR subpathways are activated.

One example is that, the activation of B -cell differentiation in response to the UPR results in

the activation of only the IRE1 pathway [13].

The pathways activated by the three sensors are distinct and these three UPR subpathways

require unique and important lag times before they are full -fledged. The most rapid response

is the result of PERK activation.
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Figure 1.2 [32]. The three ER-stress sensors, IRE1, PERK and ATF6.

Orange bars are the regions for signal transduction and oligomerization. Blue bars are the
regions for BiP binding. The black box at the terminal domain is the signal peptide. Hatched
boxes are the regions of limited homology between IRE1 and PERK. IRE1 and PERK
oligomerization domains partially overlap.
Abbreviations are: bZIP – basic leucine zipper, GLS1 and GLS2 – Golgi localization
sequences 1 and 2, TAD – transcriptional activation domain, TM – transmembrane domain.
Note: Drawings are not to scale.

1.3.2 PERK

PERK is an ER-resident type I transmembrane serine/threonine protein kinase [22]. Upon its

release from BiP, PERK oligomerizes, autophosphorylates and becomes an active kinase [28].

PERK, once activated, phosphorylates the Ser51 residue of eIF2 α. [22] causing the

attenuation of global protein translation. The activity of PERK in protein translation

attenuation is a key element in the survival mechanism triggered by the UPR. Mouse

embryonic fibroblasts (MEF) with a homozygous mutation on eIF2α at Ser51 are sensitive to

ER stress [33]. perk-/- cells can be partially rescued from early death by translation inhibitors,

such as cycloheximide, when subjected to ER stress [34].

The PERK arm of the UPR is activated most rapi dly because its substrate eIF2α is a direct

substrate of PERK. PERK, once activated phosphorylates eIF2α without a requirement for
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nuclear translocation or translation or transcription. This rapid response prevents further

influx of nascent proteins into the ER.

Phosphorylation of eIF2α attenuates the general translation rate, while i t allows for

preferential translation of mRNAs encoding upstr eam open reading frames (uORFs) (Figure

3). The transcription factor ATF4 is one example. Proteins carrying a uORF like ATF4 are

transcribed more efficiently when  eIF2α is inactive due to phosphorylation [35].

ATF4 mRNA is found at the cytoplasm and is rapidly translated upon this global translational

attenuation. The notable target genes of the ATF4 transcription factor are CHOP/GADD153

and GADD34 [35], [36]. ATF4 is also responsible for activating  genes that are involved in

amino acid import, glutathione biosynthesis and resistance to oxidative stress [34].

The activation of HSP40 co-chaperone p58IPK by ATF6 and GADD34 later in the response is

a negative feedback mechanism to  reestablish global translation through dephosphorylation of

eIF2α. GADD34 and p58 IPK expression is induced later in the ER stress response [37].

In the case of translational attenuation, short -lived proteins are eliminated from the cell.

Cyclin D1 is one noteworthy example. The loss of cyclin D1 results in the arrest of

mammalian cells in the G1 phase of the cell cycle [38]. The significance of cyclin D1 loss

will be discussed in more detail in Chapter 1.5.
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Figure 1.3 [39] Mechanism of  eIF2α phosphorylation during stress

When eIF2-GTP level is high protein translation continues. eIF2α phosphorylation by PERK
during the UPR leads to low levels of eIF2-GTP complex, causing attenuation of global
protein translation, while bringing about an increase in the translation of mRNAs with
upstream open reading frames (uORFs). The ATF4 mRNA is depicted as a line with the
coding region as a box. The uORFs are numbered as 1 and 2. During stresss, low eIF2 -GTP
level facilitates the bypass of the inhibitory uORF2 enhancing the translation of ATF4
mRNA. The targets of the transcription factor ATF4 are genes that regulate stress response
such as ATF3 and CHOP. In addition, the activity of ATF3 and CHOP can be regulated by
the mitogen-activated protein kinase (MAPK) pathways.

1.3.3 ATF6

ATF6 is a type II ER transmembrane  protein with two forms, ATFα and ATF6β. With the

activation of the UPR, ATF6 translocates to the Golgi from the ER membrane [28], where it

is cleaved by site-1 and site-2 proteases (S1P and S2P) [40].

Upon cleavage, ATF6α and ATF6β, comprised of an N-terminal cytosolic domain containing

the bZIP transcription factor motif translocate to the nucleus, where they bind the cis-acting

ER stress response element (ERSE),  ERSE-I and ERSE-II consensus sequences 5’-CCAAT-

N9-CCACG-3’ and 5’-ATTGG-N-CCACG-3’, respectively as a homo- or a heterodimer.



12

Transcription factor NF-Y is required for their binding to ERSE-I [41]. The ERSE consensus

sequences are necessary for the induction of the GRP genes [42]. Using the ERSE sequence

as a probe, Yoshida et al. cloned the transcription factor ATF6.

Important target genes of ATF6 are BiP, XBP-1, CHOP [43], and p58IPK [44].

1.3.4 IRE1α and IRE1β

IRE1 is a type I ER transmembrane protein with a cytosolic serine/threonine kinase and a site -

specific endoribonuclease domain and a lumenal  (ER) dimerization domain [45], [46]. IRE1α

and IRE1β have been identified as the two mammalian homologs of yeast IRE1p that rel eases

stress signals from the ER resulting in the activation of the UPR [45]. IRE1 arm of the UPR is

the only arm yeast possesses. The IRE1 pathway is the oldest pathway since it is conserved

throughout the eukaryotes.

The two mammalian forms IRE1α and IRE1β are  expressed ubiquitously in all cells and

specially in intestinal epithelial cells, respectively [47].

IRE1 is activated by oligomerization  and autophosphorylation via its kinase domain w hen the

ER lumen chaperone BiP/GRP98 dissociates from its luminal domain . The RNase domain of

IRE1 serves to cleave a 26-nucleotide intron of XBP1 mRNA  to cause a translational

frameshift that yields XBP-1’s bZIP transcription factor activity once translated [48].

As mentioned above, target genes of the UPR share specific consensus sequences in the ir

gene promoters: the cis-acting ER stress response element (ERSE) [42]. Apart from the ERSE

sequence, XBP-1 binds to the unfolded protein response element (UPRE) with the

transcription factor NF-Y [11]. Both ERSE and UPRE promoters are activated by bZIP-

containing transcription factors.

XBP1-mediated response provides both the transcription of the ER chaperone genes via

ERSE-mediated transcription and also EDEM via UPRE -mediated transcription to degra de

unfolded proteins through ERAD [20]. EDEM is an ER-resident type II transmembrane

protein that binds to misfolded glycop roteins to enhance their degradation [49]. The ERAD
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mechanism represents the third step of the UPR, along with attenuation  of translation and

expansion of the ER folding capacity.

Response of the IRE1 arm of the UPR , thus the activation of ERAD, is slower compared to

the other subpathways because of the fact that XBP1 mRNA is expressed in low levels in

nonstressed cells. Expression of the XBP1 mRNA is upregulated by ATF6 once the response

initiates [48]. However, once it is activated, XBP1 activation is more sustain ed than ATF6’s

because XBP1 carries an ERSE sequence in its promoter region to transactivate its own

transcription with positive feedback unlike ATF6.

One point about the common features of the three arms of the UPR is that they directly or

indirectly activate a complex network of bZIP transcription factors. Another level of control

in the ER stress response comes from the engagement of bZIP proteins in crosstalk and

activity regulation through homo and/or heterodimerization [32].

1.3.5 Markers of the UPR

The characterization of the mammalian unfolded protein response is realized by the

transcriptional increase in genes that encode the ER molecular chaperones, such as

BiP/GRP78 and a non-chaperone, C/EBP homologus protein CHOP/GADD153. Increase in

the mRNA or protein levels of Bip/GRP78 and CHOP are typically used as markers of the

UPR [50].

1.4 Prolonged ER Stress Leads to Apoptosis

If the UPR cannot overcome the stress, or if the stress is prolonged, signaling for the demise

of the cell takes over [27]. ER stress not only activates the apoptosis  machinery but another

death-related mechanism as well, which is autophagy. Next section will primarily deal with

the activaton of apoptosis machinery as a result of stressed ER.
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1.4.1 Apoptosis

The basic tenets of the apoptosis pathway are  conserved in all metazoans. Its operation is vital

to embryonic development in terms of organogenes is and the formation of tissues. Controlling

the death of cells along with division seems necessary for the vitality of a developing embryo.

Apoptosis also operates in adult organisms and its malfunction causes serious problems.

Insufficient apoptosis in an adult organism manifests itself as cancer or autoimmunity,

whereas excess apoptosis results in degenerative diseases, immunodeficiency and infertility

[51].

Studies in apoptosis took an edge with the start of use of C.elegans as a model organism. In

C.elegans, the same 131 cells out of 1090 die during development. The cloning of genes

responsible for the death of these cells marked the boosting of the field.  By mutagenizing C-

elegans, the genes ced-3, ced-4 were found to be absolutely required for cell death. ced -9, the

worm homolog of the mammalian Bcl -2 oncogene, was first identified as preventing cell

death. The findings brought Brenner, Horvitz and Sulston the Nobel Prize in 2002.

ced-3 or ICE (interleukin 1 beta converting enzyme) became the first member of the caspase

family, caspase-1. Caspases are a family of proteases dependent on their cysteine residues to

cleave aspartic acid motifs. Caspases are inactive zymogens consisting of a large and smal l

subunit preceeded by an N-terminal prodomain before they are cleaved to function as active

proteases.

Apoptosis is considered as Type I programmed cell death. Ty pe II cell death requires the

participation of lysosomes. Distinction of death types is discussed in the Extras chapter, with

an emphasis on activated autophagy in response to stress signaling. Programmed cell death

was first coined to define the process o f the consistent changes of a failing cell with the

possibility of experimentally preventing this phenomenon [52]. Today, it means that cells

possess genes that can bring about their own destruction and that almost all physiological and

most pathological cell deaths are managed, rather than disordered [52].

Apoptotic cell death depends on the breakdown of the cell by the eventually activated

caspases. Caspases can be activated through two  distinct apoptotic pathways. One pathway

fires out with the oligomerization  of cell surface death receptors in respons e to the binding of
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their corresponding ligand at the extracellular space. This pathway is denoted as the extrinsic

apoptotic pathway of apoptosis. The intrinsic pathway involves the mitochondria and

cytochrome c release from it to form the apoptosome to a ctivate the executioner caspases.

The hallmarks of apoptotsis are membrane blebbing, chromatin condensation, nuclear

fragmentation, DNA degradation into a distinct ladder form and cleavage of cellular proteins,

such as protein kinase C-δ (PKC-δ) and PARP [53], [54].

There are critical proteins in the apoptotic pathway that regulate the life and death decisions

of the cell. Bcl-2 family member proteins are of great importance.

Figure 1.4 [55] The caspase cascade of the extracellular and intracellular apoptosis pathways.

Extracellular apoptosis pathway merges with the mitochondrial pathway in many cases , most
likely through BH3-only members of the Bcl-2 protein family. In this figure, signals from the
stressed ER constitute the third pathway of apoptosis. In rodents, caspase -12 is activated in
response to ER stress. A homolog of caspase -12 is non-functional in humans. Active caspase -
12 activates caspase-9 for the execution of apoptosis. The solid arrows are the known
pathways, question marks are unconfirmed interactions and pathways.
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1.4.1.1 Bcl-2 Family Proteins and the Intrinsic (Mitochondrial) Apoptosis Pathway

Members of the Bcl-2 family have distinct response pat terns to specific death stimuli. They

have specific subcellular localizations and developmental expression [56].

Mammals possess the entire family  of Bcl-2 proteins that include proapoptotic and

prosurvival members. The first Bcl-2 family member protein identified is Bcl -2. The first

proapoptotic member is Bax, which was identified by its interaction with Bcl -2 [57]. There is

a delicate balance of proapoptotic and prosurvival factors in the c ells to keep them in viable

[58]. The ratio of proapoptotic and prosurvival mole cules such as Bcl-2 and Bax constitutes a

threshold for susceptibility of the cell to die. However, the mechanism of keeping this balance

is far from being direct. There are man y factors and pathways involved.

A noteworthy reminder is that it is good to keep in mind that molecules that play a role in the

life-death decision of the cell are tended to be attributed  prosurvival or prodeath depending on

how they affect the fate of the cell in controlled experimental setups. Bcl-2 is one of the

proteins that is labeled as prosurvival. However, recent evidence suggests that in certain

conditions, abiding by the dichotomy of prosurvival/death classification, Bcl-2 acts as a

prodeath protein depending on its subcellular localization. There are other examples of similar

paradoxical observations. However, I will mention about these proteins  adhering to their

generic attribution unless I speak of their non-canonical ways of functioning.

Bcl-2 family proteins are generally divided into three types based on their homology of the

possible four major domains (BH1 – BH4). This classification also corresponds to their role in

the death process, prosurvival or proapoptotic. Prosu rvival Bcl-2 family proteins possess all

four BH domains. Bcl-2, Bcl-XL, Mcl-1 belong this group. The crystal structure of the Bcl-

XL monomer reveals that its BH1, BH2 and BH3 domains are in close proximity to create a

hydrophobic pocket which can bind  the BH3 domain of proapoptotic members of the family

[59].

Proapoptotic members, such as Bax and Bak lack the BH4 domain. These members require an

activation event to be able to interact with Bcl -XL or Bcl-2. Cells deficient in both Bax and

Bak proteins are resistant to death stimuli that stimulate  the intrinsic apoptotic pathwa y. Bax

and Bak function together at the mitochondria as the  gatekeepers of the intrinsic apoptotic
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pathway [60]. Bax and Bak also reside at  the ER [61] with a rather different function, which

will be discussed in the Bcl-2 proteins at the ER Membrane section.

Upon a death signal, Bax inserts into the mitochondrial outer membrane (MOM) as a

homooligomerized multimer. Inactive Bak also undergoes a conformational change and

oligomerizes. These changes bring about the permeabilization of the MOM and the release of

mitochondrial intermembrane space proteins into the cytosol. The precise mechanism of this

membrane permeabilization is of yet unclear. Cytochrome c is one significant protein  to the

apoptotic machinery released from the mitochondria.

Another group of Bcl-2 family proteins consists of the single BH3 domain proapoptotic

members. From now on, this type will be referred to as “BH3 -only proteins”. They serve as

upstream sentinels that respond to specific dea th stimuli and survival signals [51]. The

activity of BH3-only proteins is transcriptionally and/or posttranscriptionally controlled  upon

death stimuli.

Bid, for example, is posttranslationally controlled by cleavage. It is a substrate of active

caspase-8 that is activated by the extrinsic pathway. Cleaved and activated Bid is called tBid.

Active tBid targets the mitochondria to trigger the oligomerization of Bax  or Bak [60], [62] to

promote the release of cytochrome c , thus connecting the extracellular death pathway to the

intracellular apoptosis machinery.

Noxa and Puma are controlled transcriptionally by the transcription factor p53  in response to

DNA damage [63].

Bad is regulated by phosphorylation in response to growth and survival factors [64].

BH3 proteins have a proapoptotic effect on Bax and/or Bak , thus stimulating cytochrome c

release from the mitochondria in direct or indirect ways. It is known that in the absence of

Bax and/or Bak, BH3-only proteins are incapable of evoking this release. There are possible

ways of how BH3-only proteins activate the prosurvival Bax and Bak.

One model proposed for the activities of BH3 -only proteins functionally categorizes them into

two subgroups, activators or sensitizers [65]. In this scenario, activator BH3-onlys (Bid, Bim,
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PUMA) are thought to activate Bax and Bak directly. Sensitizer BH3-only proteins (Bad,

Noxa) free the activators by competing to bind to the prosurvival Bcl -2 proteins.

The result of Bax and/or Bak activation through homooligomerization is the release of

cytochrome c from the mitochondria interme mbrane space. Cytochrome c helps to form a

complex called the apoptosome. The  main components of the apoptosome complex are

cytochrome c, caspase-9 and Apaf-1 (Figure 5). The apoptosome, once formed initiates a

caspase cascade, where the effector caspases (caspase-3) are activated in an exponential

fashion resulting in cell’s death. This scene roughly describes the intrinsic apoptotic pathway.

Mitochondrial membrane potential and subsequent mitochondrial membrane permeabilization

that release mitochondria l proteins perpetuates the apoptotic response. Loss in the

mitochondrial membrane potential is thought to mediate intrinsic and extrinsic apoptosis

pathways in response to anticancer drugs, irradiation, growth factor deprivation, etc [66].

Overexpresion of Bcl-2 or Bcl-Xl inhibits the loss of mitochondrial membrane potential and

membrane permeabilization inhibiting apoptotic cell death [67].

1.4.1.2 Other Molecules in the Apoptosis Pathway

IAPs (Inhibitors of apoptosis): IAPs inhibit caspase -3, -7 and -9 [68], [69]. Binding of IAPs to

caspases block the access of the substrate to caspases. Smac /DIABLO and HtrA2/Omi are

released from the mitochondria intermembrane space as well as cytochrome c. They  bind

IAPs to inhibit their prosurvival function [70]. The IAP binding domain of caspase -9 is

released upon its cleavage by caspase-3. The cleaved part binds to XIAP to keep it inactive

[71]. The significance of IAPs for being a checkpoint for apoptosis processing varies among

different organisms.

1.4.1.3 Extracellular Apoptosis Pathway and MAP Kinases

The cell receives death and survival signals from the extracellular environment. TNF receptor

gene family consisting of Fas, TNF receptor I, DR3 play s a significant role in relaying death

signals from outside of the cell.
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The death domain (DD) is the conserved intracellular domain of the death receptor family

members [72]. Upon mitogen (TNFα) binding to the TNF receptor, the receptor trimerizes,

the three death domains come together to recruit TRADD (TNF receptor I -associated death

domain protein), which mediates the recruitment of the adaptor molecule, TRAF2 (TNF

receptor-associated factor 2) [73]. TRAF2 recruitment activates the MAP kinases JNK, p38,

and also the transcription factor NF-kB (nuclear factor for k chain gene in B cells) through  the

recruitment and activation of  MAPKKK ASK1. A kinase-inactive mutant of ASK1 inhibits

the TNFα and TRAF2-induced JNK activation. ASK1 associates wit h endogenous TRAF2 in

a TNFα-dependent manner [74], [75].

TRADD also recruits FADD (Fas -associated death domain-containing protein) [76] and RIP

(receptor interacting protein). FADD recruits caspase -8, initiating the apoptotic cascade. RIP

recruitment activates NF-kB. FADD can also recruit RAIDD (RIP-associated ICH-1/CED-3-

homologous protein with a death domain), which then recruits caspase -2.

Fas/CD95 is another member of the death receptor family. Fas /CD95 ligand activation of

Fas/CD95 results in the recruitment of FADD, and the activation of caspase-8 follows. ASK1

also associates with the active Fas trimer through the adapter protein Daxx [77].

The extrinsic pathway uses the mitochondria to amplify the death signaling through the

cleavage of Bid by active caspase-8 [78].

1.4.1.4 Cell engulfment, How is the Apoptotic Cell Removed?

The noninflammatory nature of apoptosis is due to the engulfment of the organism’s apoptotic

cell bodies by phagocytic cells. Phagocytes recognize the surfac e or the dying cell exposing

an “eat me” signal [51], which is phosphatidylserine (PS) residues [79]. Phosphatidylserine

residues that reside in the cytosolic side of the cell membrane flip to the extracellular side

during apoptosis.
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1.4.2 Apoptosis and ER Stress

The relationship of ER stress and apoptosis can be thought as  the quality of the synthesized

proteins serving as a checkpoint for cell death. There are many critical control steps in the

intrinsic apoptosis pathway that are localized to the surface of cellular organelles [51].

The cell eventually triggers cell death mechanisms when  the UPR is unable to compensate for

the damage the stress exercises on the cell. The mechanisms by which ER stressed cell

switches from the survival response to promote demise  (typically apoptosis) are not free of

doubt. There are multiple potential participants of this switch from survival to death. The

dominating factors are also thought to differ by cell type.

Several reports have shown the role of mitochondria in the activated apoptotic pathway due to

ER stress. In the study of Hacki et al., 2000, it has been revealed that there exists a crosstalk

between the ER and mitochondr ia, where ER stress triggers cytochrome c release and

subsequent apoptosome formation leading  to caspase-dependent apoptosis [80].

It remains a question how the signaling from the ER is carried to the mitochondria. Is it that

BH3-only proteins are activated at the face of prolonged UPR, are the ER stress sensor

proteins IRE1, PERK, ATF6 necessary for this crosstalk, do the regulation of MAPK play a

role, is calcium release from the ER a signal carrier?

Several mechanisms have been propose d for linking ER stress to cell death.

These mechanisms include the direct activation of proteases, kinases, transcription factors and

Bcl-2 family proteins [81]. The pathways and their intricate relations  will be discussed below.

The bZIP transcription factors activated by the UPR are mainly responsible for the execution

of the survival response. They activate the ‘adaptation genes’ for survival [81]. IRE1, on the

other hand, in addition to activating the adaptive response, also activates the genes that alarm

the cell in the case of possible nonsuccess of the survival response. In this sense, it is not

surprising that IRE1 shares many common molecular functions with the members of the TNF

receptor family. TNF receptor family is activated in the face of viral infections that are

associated with massive glycoprotein production. One commonality of the TNF receptor and

IRE1 is their binding to TRAF2. TRAF2 activates the protein kinases implicated in immunity

and inflammation. ASK1 is one substrate of TRAF2, which activates JNK and other kinases

linked to NF-kB activation [82]. Therefore, IRE1 takes part in all the response mechanisms
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during stress, XBP-1 for survival, NF-kB through TRAF2 for alarm, and JNK and p38

through ASK1 for death. This is not surprising in the light o f the fact that IRE1 is the sole

UPR arm in lower eukaryotes.

Figure 1.5 The involvement of Bcl-2 proteins in ER stress conditions.

ER stress leads to the activation of JNK through the IRE1 -TRAF2-ASK1 pathway. CHOP is
induced by all three arms of the UPR. JNK inhibits the prosurvival Bcl -2 by phosphorylating
it. CHOP blocks the expression of Bcl -2. JNK also phosphorylates Bim, a BH3 -only protein
found bound to the cytoskeletal dynein in stress -free condition. Calcium release from the ER
may be a factor relaying the death signal from the ER to the mitocho ndrial intrinsic apoptosis
pathway. Blue labels represent the inactive proteins. Red labels represent active proteins.
Round molecules are prodeath and rectangular molecules are prosurvival members. In
rodents, caspase-12 have been shown to associate with  IRE1 for activation [83]. Homolog of
caspase-12 in mammals is nonfunctional [84].

1.4.2.1 ASK1

Intracellular signaling via phosphorylation  (by kinases) and dephosphorylation (by

phosphatases) is a common regulatory control of cellular events. Protein kinases take part in

signaling that regulate life and death decisions  (reference). Mitogen-activated protein (MAP)

kinase cascade is evolutionarily well-conserved in eukaryotic cells and they function as

mediators of cellular stress [85].They enable cells to respond to extracellular stimuli and cell

stress [86]. The typical cascade is comprised of MAP kinase kinase kinase (MAPKKK) ,

MAP kinase kinase (MAPKK) and MAP kinase (MAPK). Regulation is carried out at each
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level. The MAPK family is large. The three members of the MAPK  family are JNK (c-Jun N-

terminal kinase), p38 and ERK (extracellular signal -regulated kinase).

ASK1 (apoptosis signal-regulating kinase 1) is a MAPKKK that activates both the

MEKK4/MEKK7-JNK and MKK3/MKK6-p38 pathways and induces apoptosis in various

cell types [75], [87], [88]. Constitutively active ASK1 mutant induces cytochrome c release

from the mitochondria and it fails to induce caspase -3 activation in caspase9-/- cells [89].

Apart from ER stress, JNK and p38 are known to be activa ted by stresses such as osmotic

shock, UV radiation, heat shock, oxidative stress, protein synthesis inhibitors and Fas

stimulation [90], [91].

ASK1 is reported to be required for TRAF2 -dependent JNK activation in the extracellular

apoptosis pathway [75]. Later on Nishitoh et al. in 2002 reported that during ER stress

induced by expanded polyglutamine repeats , ASK1 associates with TRAF2 for its activation

and that ask1-/- primary neurons are resistant to ER stress-induced JNK activation and

apoptosis. However, it is possible that ASK1 may be mediating the survival -death response

through not only JNK but other paths [92].

1.4.2.2 A Downstream Effector of ASK1, c-JUN terminal kinase (JNK)

JNK family of MAP kinases arise from three genes, Jnk1, Jnk2, and Jnk3. Alternative splicing

at the mRNA level can give rise to 10 different JNK isoforms differing at their C -termini and

substrate binding and tissue distribution [93]. IRE1-TRAF2-ASK1 pathway phosphorylates

and activates JNK during the UPR. Active JNK leads to the phosphorylation and activation of

most notably the transcription factor c-JUN (at residues Ser63 and Ser73) and ATF2 [94],

[95].

JNKs have a role in apoptosis, but they have also been reported to promote cell survival and

proliferation. The contradictory observations for the effect of JNK activation ha ve been

attributed to its ability to activate a large number of different substrates based on  specific

stimulus, cell type, and the temporal availability of substrates [96]. It is also argued that JNK1

and 2 isoforms selectively target specific transcription factors.  JNK1-/- and JNK2-/- mice

show very different patterns of gene expression [97]. jnk1 or jnk2 deficient mice survive
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normally, whereas the absence of both JNK1 and JNK2 causes the early embryonic death of

mice associated with neuronal apoptosis defects and exencephaly [98], [99].

jnk-null MEFs do not exhibit defective Fas /CD95-induced apoptosis; however, they do

exhibit defects in stress-induced apoptosis, such as UV radiation, translational inhibit or

anisomycin and to DNA alkylating agent methylmethanesulfonate. These cells are defective

in mitochondrial depolarization and the release of cytochrome c, required for the formation

of the apoptosome and subsequent caspase activation [100].

Constitutive JNK basal activity has been reported to be elevated in some cancers. The

constitutive biologic function of JNK is thought to promote cell survival and growth [101].

Wang et al. examined breast cancer and normal hum an breast tissues, and observed that the

expression of JNK1, but not JNK2 w as markedly increased in cancerous tissues [102].

In some tumor cells, inhibition of JNK2 expression by antisense oligos suppressed growth and

induced apoptosis in a p53-dependent manner [103]. However, JNK function may also differ

by cancer type. JNK1 may act as a tumor suppressor in skin cancer cells, whereas JNK2 may

act as a suppressor in lymphomas [96].

Xia et al investigated the gastrointestinal cancer cell lines, SW1116, HT29, COLO205, BCG -

823, MKN-45 and AGS for JNK activity [104]. In general, for these cells JNK2 expression

was found to be stronger than JNK1 both at mRNA and protein levels. In all of these cell

lines, cell viability decreased in a time-dependent manner with the administration of the JNK

inhibitor SP600125. Apoptosis increased in COLO205, AGS, BCG -823 and MKN-45.

Apoptosis was not the mechanism of deat h in SW116 and HT29 cell lines.

However, Du et al argue that the JNK inhibitor SP600125 has a cytostatic rather than a

cytotoxic effect meaning that cells that are inhibited in growth would eventually succumb to

apoptosis [105].

JNK expression increases upon stress, cytokines and many anti -cancer drugs [106]. Ventura et

al. argue that the time course of JNK activation and the physiological context determine the

effect of JNK activation in cells, reporting that early transient JNK activation corresponds to

survival, whereas a late more sustained JNK activation mediates the apoptotic signaling [107].
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There are several reports connecting JNK activity to the activation of the intrinsic apoptotic

pathway. Co-expression of ASK1 and JNK is known to phosphorylate  and inactivate the

prosurvival Bcl-2 protein [108]. Moreover, Bim, a proapoptotic BH3-only member of the Bcl-

2 family, is induced by the JNK- c-JUN pathway [109]. Phosphorylation and activation of

Bim by JNK is important for sympathetic neuronal cell death [110]. However, JNK is also

known to phosphorylate the proapoptotic BAD to inhibit apoptosis [111].

Phosphorylation and inactiva tion of the prosurvival Bcl-2 by JNK, upregulation of

proapoptotic Bim expression through the c -JUN pathway, reduction of UV radiation-induced

apoptosis in jnk1/2-/- cells all indicate a prodeath role for active JNK. A proapoptotic role for

JNK has been described in apoptosis induced by vinblastine, doxorubicin and etoposide [112,

113].

An example to cell type specificity of JNK activity is t he study of Kuntzen et al on CD95/Fas-

induced apoptosis. They have also shown that JNK inhibition increases CD95 /Fas-induced

apoptosis in liver cells, Chang hepatoblastoma cells, HT29 colon carcinoma cells, and T -

lymphoblastoid cell line Jurkat. However, JNK inhibition did not increase death in CD95 -

induced Huh7 or Hep3B liver carcinoma cells [114].

.
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Figure 1.6 [27]. CHOP protein is induced by all three arm s of the UPR.

During ER stress, the transcriptional induction of CHOP is regulated by at least four cis -
acting elements, AARE1, AARE2, ERSE1 and ERSE2.

1.4.2.3 CHOP/GADD153

CHOP/GADD153 is a 29 kDa protein with 169 amino acid residues in humans and 16 8 in

rodents. It is a member of the CCAAT/enhancer binding protein (C/EBPs) family. C/EBPs are

a group of transcription factors that regulate cell differentiation and proliferation. CHOP has

two known functional domains. One is the N -terminal transcriptional activation domain and

the other is the C-terminal basic leucine zipper (bZIP) domain [115].

Non-stressed cells don’t express CHOP or express at low levels [116]. CHOP mRNA contains

a uORF sequence in its 5’ untranslated region (5’UTR), which represses its tr anslation during

normal cell condition [117].

CHOP is highly induced during ER stress [118], [35]. The chop gene promoter contains at

least two ERSE and two AARE motifs. The ERSE motifs show homology with the other ER

stress activated genes, such as BiP , GRP94, PDI, and calreticulin (CRT) [119].
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CHOP gene is induced by all three arms of the UP R, ATF4 through PERK [35], ATF6 and

IRE1 through XBP-1. ATF6 overexpression can induce the chop gene; however, CHOP

induction is not observed in perk-/- cells. Therefore, it can be said that the  PERK/eIF2α

signaling and ATF4 is dominant in the induction of CHOP during  ER stress [35]. However,

for maximal induction of CHOP, ATF6, IRE1/XBP1 and PERK are  all necessary.

Overexpression of CHOP leads cells to growth arrest and apoptosis [120], [121]. CHOP has

been reported as a protein involved in ER stress -induced apoptosis. Overexpression of BiP

reduces CHOP induction (because it reduces PERK, ATF6,  IRE1 activation) and reduces ER

stress-induced apoptosis [122]. chop-/- mice are resistant to ER stress -induced apoptosis [27],

[123].

CHOP is known to regulate the expression of Bcl -2 family genes [116]. Overexpression of

CHOP leads to a decrease in Bcl -2 proteins and CHOP-induced apoptosis is blocked by

overexpressing Bcl-2 prosurvival family members [124] . Overexpression of CHOP also

causes the translocation of Bax from the cytosol to the mitochondria [124]. However, it is not

known that the effect of CHOP on Bcl-2 proteins is direct or indirect.

GADD34 promotes the restart of the global translation [125]. CHOP appears to promote

protein synthesis partly through the induct ion of GADD34 [126]. Therefore deleting the chop

gene may be promototing cell survival through continued translational attenuation. GADD34

null animals have been shown to be protected from ER -stress related death similar to CHOP

null animals [127].

1.4.2.5 Bcl-2 Protein Family at the ER Membrane

Apart from their roles as initiators/protectors of the intrinsic apoptotic pathway, Bcl -2 family

proteins have recently been found to function actively in non -canonical roles at the ER

membrane. Bcl-2 proteins are localized, at least partially in the ER membrane and periphery

as well as the mitochondria [128].
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1.4.2.5.1 Bax and Bak

bax-/- and bak-/- double knockout mice are resistant to ER stress-induced death [60]. This

may show that the apoptotic response upon ER stress includes Bax and Bak as executioners.

Bax and Bak have a role at the ER membrane for the homeostasis of ER Ca+2 [61]. In

addition to being resistant to ER stress -induced death, bak-/-bax-/- double knockout mice are

also defective in calcium homeostasis at the ER.

XBP-1 expression (related to IRE1) in bax-/-bak-/- cells was impaired consistent with

tunicamycin injection. IRE1->TRAF2->ASK1->JNK pathway was also impaired like in the

phenotype observed in ire1-/- cells. This phenomenon is likely not related to the imbalance of

prosurvival and proapoptotic proteins since the reverse of the case was not observed in bcl-2-

/- cells. In accordance with the observations with the effect of the absence of BAX and BAK

on the IRE1 pathway activation, an alternative role for these proteins is to modulate the

amplitude of IRE1 activation by cont rolling its autophosphorylation and oligomeriation [129].

In this case, BAX and BAK contribute to the survival adaptations of the cell during early

signaling. Hetz and Glimcher speculate that the disruption of th e IRE1 and Bax/Bak

interaction might be a switch for the UPR survival response and BH3 -only proteins might

have a role in disrupting the interaction.

1.4.2.5.2 BH3-only Proteins

BH3-only PUMA and NOXA are strongly induced at transcriptional level in ER  stressed

cells. In SY-S5N neuronal cells, a finding by microarray analysis reveals that PUMA is the

only BH3-only protein expressed during ER stress [130]. In a global RNA-interference screen

for ER-stress-mediated apoptosis related genes, PUMA and NOXA  have been implicated to

be upregulated [131]. Accordingly, puma-/- and noxa-/- cells are partially resistant to ER

stress-induced apoptosis [132].

BH3-only BIM is found in the dynein motor complex of the microtubule cytoskeleton in

nonstressed cell conditions. Following ER stress, BIM translocates to the ER [133].  How

BIM functions at the ER is unknown. BIM mRNA has fo und to be upregulated by CHOP.
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bim-/- mice are resistant to ER stress -induced apoptosis in vivo, in a way similar to chop-/-

mice [126].

The upregulation of BH3-only proteins may function to direct  the signals from the damaged

ER to the intrinsic (mitochondrial) apoptosis  pathway [56].

1.4.2.5.3 Bcl-2

The prosurvival effect of Bcl-2 may be different depending on its localization. One group

reported that Bcl-2 directed to the mitochondria is more protective against death than Bcl -2

localized at the ER when the cell is disturbed with serum withdrawal and etoposide, whi ch are

known to trigger slow mitochondrial disruption and cytochrome c release [134].

Activation (dephosphorylation) of Bcl -2 by the serine/threonine phosphatase PP2A [135] and

inactivation (phosphorylation) of Bcl -2 by JNK regulates its functioning at the ER membrane.

1.4.2.6 Role of Calcium

One of the main functions of the Bcl -2 family proteins at the ER is controlling the calcium

homeostasis. Calcium release/uptake of  the ER happens through the ryanodine receptor and

the inositol triphosphate receptor ( IP3R). Bcl-2 and Bcl-xl form a protein complex with IP3R

modulating its on-off state [136].

Calcium released from the ER can be taken up by the mitochondria  through a low-affinity

uniporter, acting like a buffer for calcium signals [137]. In this sense, in addition to the

upregulation of BH3-only proteins, modifications of Bcl-2 by JNK, induction of the apoptosis

moderator CHOP during ER stress; calcium may act as a mediator of the ER -mitochondria

crosstalk to relay the apoptotic signals. Calcium uptake by mitochondria induces the

mitochondrial membrane permeabilization and opening of the permeability-transition pore

(PTP) and cytochrome c release.



29

Calcium activates cytoplasmic proteases such as calpains that can cleave caspases [138].

Calcium/calmodulin-dependent phosphatase can dephospho rylate and activate the

proapoptotic BH3-only protein BAD.

The balance between the prosurvival and pro apoptotic Bcl-2 family proteins and post -

translational modifications as such at the ER membrane may regulate the calcium release

from the ER. Accordingly, calcium release from the ER is triggered by the overexpression of

BH3-only proteins [139].

Calcium released from the ER can regulate functions such as cell cycle entry, proliferation,

differentiation and cell death . 2003 paper by Scorrano et al. argue for regulation of calcium by

bax and bak as the candidate for control point of apoptosis [61].

1.4.2.7 ERK MAPK

ERK1/2 MAPK phosphorylates and activates various transcription factors and other protein

kinases. ERK1/2 plays a role in cell survival, differentiation and cell cycle -regulation. ERK is

a MAP kinase not activated by ASK 1 unlike JNK and p38.

The study by Arai et al., 2004 connects ER stress in SH -SY5Y neuroblastoma cells with MAP

kinase signaling through ERK. SH -SY5Y neuroblastoma cells treated with thapsigargin , the

major MAPK that was phosphorylated in response w as found to be ERK-1 and -2, with its

peak activation occurring around 30 min to 1hr. There was no significant increase in the

phosphorylation of JNK or p38 in these neuroblastoma cells [86].

Inhibition of ERK phosphorylation by the MEK inhibitors U0126 and PD98059 made cells

resistant to thapsigargin induced -cell death in a dose-dependent manner, measured by the

release of LDH (lactate dehydrogenase) into the m edium. However, pre-treatment with U0126

did not decrease the levels of cleaved caspase -3 or the caspase substrate PARP. Pre-treatment

with the pan-caspase inhibitor Z-VAD-FMK decreased the levels of cleaved caspase and

PARP and LDH release into the medium. However, death was not fully inhibited [86].

Inhibition had a protective role in these cells, caspase -3 activation was not diminished. What

can be concluded is that ERK activation contributes to cell death either in a caspase -

independent fashion or at least downstream of caspases in this cell line.
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Lawrence et al have examined ERK1/2 effect on CHOP expression in response to the ER

stressors thapsigargin and tunicamycin in pancreatic Beta -cells. They have observed that

ERK1/2 inhibitor U0126 inhibited CHOP expression in duced by thapsigargin. The activity of

CHOP 5’ promoter was markedly inhibited by ERK1/2 inhibition in response to thapsigargin

treatment, and partially inhibited in response to tunicamycin treatment [140].

Classically, ERK activation belongs to the group that promotes cell survival [141]. An

example is the prevention of apoptosis by ERK activation in cerebellar neurons and PC12

cells upon growth factor withdrawa l [142]. However, ERK activation was deleterious after

excitotoxic, traumatic and ischemic insults in neurons and the brain in vivo in some studies

[143].

The contribution of ERK activation to cell death seem s to be cell type and stimulus-specific.

1.4.2.8 PI3K/Akt Pathway in General and in ER Stress

PI3K is a pathway that promotes  cell survival by withstanding apoptotic insults [144]. An

important functioning for the PI3K pathway is inhibition of apoptosis. Akt is a

serine/threonine protein kinase that is mainly regulat ed by PI3K.

Akt is identified as being a protective element that responds to apoptotic stimulus in favor of

cell’s survival. Akt protects cells from different kinds of apoptotic insults, such as growth

factor withdrawal, Fas-induced apoptosis, oxidative stress, UV irradiation, DNA damage, etc

[145], [146].

Akt is known to inactivate proapoptotic elements in the cell, as discussed below.

A pro-survival effect of Akt is the inhibition of Bax conformational change that promotes the

release of cytochrome c [147].

Akt is known to phosphorylate the pro apoptotic BH3 only protein BAD on Ser136,

neutralizing its proapoptotic effect [148]. Active, nonphosphorylated Bad functions as a

proapoptotic protein. It binds and neutralizes the prosurvival Bcl-2.
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However, Akt can protect cells even in cells lacking BAD expression.

Akt phosphorylates and inhibits ASK1 [149], inactivates Forkhead transcription factors [145],

and caspase-9.

In the study by Hu et al., Akt is activated in response to ER stress in MCF -7 breast cancer

cells, H1299 human lung cancer cells and PC -3 human prostate cancer cells [150]. A

speculation is that PI3K is activated as a response to increased intracellular calcium induced

by ER stress. Inhibition of Akt activity by the PI3K inhibitor LY294002 sensitizes MCF -7

and H1299 cells to tunicamycin and thapsigargin -induced cell death.

MAPK ERK was also induced in response to tunicamycin and thapsigargin treatment in

MCF-7 and H1299 cells and the inhibition of ERK by U0 126 increased cell death induced by

ER stress.

Akt inhibition caused a decrease in the levels of phopshorylated ERK, the reverse of the case

was not observed.  It is possible that the activation of ERK is dependent on active Akt.

In the same study, two proteins cIAP-2 and XIAP that belong to the IAP family of caspase

suppressors are found to be upregulated during ER stress in relation to the PI3K/Akt pathway.

The inhibition of PI3K by the inhibitor LY294002 or by dominant -negative Akt decreased the

levels of these IAPs, making cells more prone to cell death. This is sensible since IAP family

proteins have survival functions, presumably by through inhibiting  caspase activity.

Treatment of cells with caspase inhibitors decreased cell death to an extent; t herefore, the

levels of significant proteins in caspase -dependent cell death are assayed. The study shows

that there is no translational difference of the Bcl -2 protein family memberns such as Bax,

Bak, Bid, Bim and Bcl-2. However, the ablation of IAPs inc rease sensitivity to cell dea th and

this scenario is does not hold true  when caspases are inhibited.

The hypothesis tested in this study is that in parallel to the activation of UPR, stress activates

cell survival mechanisms that c ounteract apopototic signals to facilitate the cytoprotective

function of the UPR and that survival elements directly counteract ER  stress-induced

apoptotic signaling. They show that ERK and Akt are activated in the face of ER stress and
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their inactivation sensitizes cells to ER stress and that the upregulation of caspase suppressor

IAPs by ER stress are in part mediated by Akt.

1.5 Cell Cycle Regulation

The activity of regulatory cyclins and their catalytic partners, the cyclin -dependent kinases

(CDKs) are required for cel l cycle progression. CDKs are activated by cyclins. Cyclin -

dependent kinases (CDKs) are necessary for orderly transition between these stages.

Progression through the G1 phase initially depends on holoenzymes composed of D type

cyclins (D1, D2 and/or D3) in association with either CDK4 or CDK6. CDK4 is activated

during mid-G1. CDK4 activity depends on proteins of the cyclin D family. For cells to

undergo the G1-> S transition, the retinoblastoma tumor suppressor protein (pRB) must be

inactivated. The inactivation of pRB is achieved by CDK4 -mediated phosphorylation.

The ability of pRB to suppress G1 to S transition is related to pRB sequestration of the

sequence-specific transcription factor E2F. When pRB is phosphorylated and inactivated by

CDK4 and CDK6, E2F is released. E2F and DP1 (DRTF1 polypeptide -1) promotes gene

expression required for the G1 to S transition. These genes include cyclin E (induced late in

G1). Cyclin E binds and activates CDK2 as cells approach the G1/S transition [151]. The

sequential activation of cyclin -dependent kinases promotes the continuity of the cell cycle.

Mitogen deprivation or anti -proliferative cytokines stop the cell -cycle through the degradation

of unstable cyclin subunits by specific post -translational modifications of the CDK subunits,

or via association of active CDKs with polypeptide CDK inhibitors (CKIs).

CKIs are upregulated in response to anti -proliferative signals. P16 INK4A is an inhib itor of

cyclin D - CDK4 complexes. It prevents the inactivation of pRb.

Cip/Kip CKIs (including p21Cip1, p27Kip1, and p57Kip2) are potent inhibitors of cyclin E -

CDK2 and cyclin A - CDK2 complexes. They positively regulate cyclin D – CDK complex

when bound to it [152, 153]. p27KİP1 inhibits the cyclin E – CDK2 complex. p27KİP1 is

degraded by the ubiquitin/proteasome pathway. If not, cells cannot transit out of late G1. The
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ubiquitin aided degradation of p27KİP1 depe nds on its phosphorylation by the cyclin E -

CDK2 complex.

p21CİP1 is induced by p53-dependent (due to DNA damage) [154] and p53-independent

(due to stress response or differentiation) [155] pathways. It inhibits both CDK4/6 and CDK2

[156] complexes by binding them causing cell cycle arrest at the G1 phase.

p21 can be regulated posttranscriptionally [157]. p53-independent regulation of p21 depends

on MAPKs. p21 has a short-half life of about 20 to 60 minutes in most cells . p21 is also

degraded by the ubiquitin/proteasome pathway [158]. p21 was shown to be upregulated by

p53. Liu et al have shown that regulation of p21 in response to mitogenic stimulation is not

dependent on p53 [159].

Another study showed that it has an inhibitory ef fect on cyclin B – CDK2 complex and plays

a role in G2-M transiton [160].

Mitogen withdrawal inhibits cyclin D1 transcription, which accelerates the turnover of the

short-lived protein causing the disassembly of cyclin D – CDK complexes. The disassembly

releases the Cip/Kip proteins associated with the complexes. Free CKIs now can inhibit cyclin

E - CDK2 and cyclin A - CDK2. This kind of inhibition prevents S phase entry and results in

G1 phase arrest [161]. Enforced ectopic expression of cyclin D proteins in this context

resequesters the Cip/Kip proteins and enables S phase entry .

1.5.1 Cell Cycle Arrest During ER Stress

Even though the CKIs break the cyclin A - CDK2 and cyclin E - CDK2 complexes, they

positively regulate the cyclin D - CDK(4/6) complexes [153]. Cyclin D is essential during the

early timepoint of G1 to S transition. The UPR halts protein translation via the

phosphorylation of the elongation factor eIF2α by PERK. PERK links the stress in the ER to

the cell-cycle regulation program [162]. The decrease in the rate of overall protein synthesis

effects the translation of cyclin D1 mRNA and causes the disassembly of the cyclin D1 –

CKD4/6 complex.
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The free CİP/KİP proteins that bind the cyclin D1 - CDK2 complex are now free to inactivate

the cyclin E – CDK2 and cyclin A – CDK2 complexes [162]. This process contributes to the

G1 arrest observed during the UPR.

Tunicamycin treatment of NIH 3T3 fibroblasts causes a block of cyclin D1 translation (due

to an arrest in global translation) and decline in cyclin D- and E-dependent kinase activities.

G1 phase arrest is observed upon TM treatment. The loss of the cyclin D1 in cell treated with

tunicamycin isattributed to toinhibition of translation via the phosphorylation of eIF2α [38].

PERK overexpression fails to arrest cell cycle that overexpress the proteasome resistant cycli n

D1 mutant or in Rb-/- MEFs that do not require cyclin D1 for proliferation [162].

For a complete cell cycle arrest at G1 phase, it is required that cyclin A - and E-CDK2

complexes are inactive as well. Cyclin E and cyclin A protein amounts are not as much

reduced as cyclin D1 upon overexpression of PERK or TM  treatment. However, p21Cip1

protein that is freed upon cyclin D loss (cyclin D1 - CDK4 complex loss) binds to cyclin A

and E-CDK2 complexes, inhibiting their activity. The level of p21 Cip1 protein that

coprecipitates with CDK2 increses with overexpressio n of wild-type PERK or tunicamycin

treatment [162].

Overexpression of cyclin D1 causes maintenance of cyclin D and E dependent kinase

activities. By overexpressing cyclin D1, ER -stressed cells can be kept in cycle although a

fully-activated UPR is taking place.

Overexpression of wt cyclin D1 or mutated cycli n D1 (alanine to threonine substitution at

codon 286. phosphorylation of Thr -286 by glycogen synthase kinase-3Beta (GSK-3Beta)

triggers the ubiquitination and proteasomal degradation of cyclin D1, the mutant cyclin D1 is

highly stable) in serum-starved cells that is associated with mitogen loss does not render cells

resistant to cell cycle arrest. However, the overexpression of both wt and mutant cyclin D1 in

cells treated with tunicamycin leads the cells pass the G1 phase. There is a general role for

cyclin D1 loss in the UPR for cell cycle arrest.

Control of cell cycle is performed at the G1 -to-S transition, G2 and M phases.
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1.5.2 MAPK’s in Cell Cycle

The activity of the extracellular signal -regulated kinases 1 and 2 (ERK1 and ERK2) is

required for cyclin D1 expression in NIH 3T3 cells. Serum starvation (mitogen loss) in these

cells causes the dephosphorylation of ERK1 and ERK2 MAP kinases.

For cell cycle to progress, sequential activation of cyclin -dependent kinases (CDKs) is

necessary. p21 WAF1/CIP1 protein inhibits cell cycle progression via interacting with cyclin -

CDK complexes [156]. p21 has a half-life of 20-60 minutes in most cells [163].

JNK is a MAPK with a role in cell cycle. There are studies showing JNK both playing a role

in cell cycle progression and cell cycle arrest. In human T -lymphocytes JNK1 activation

correlates with JNK1’s dissociation from the p21/JNK1 complex [164].

JNK is known to stabilize p21 by phosphorylating it at Ser130 both in vivo and in vitro [165].

Study by Fan et al. show through overexpression and inhibition studies that JNK does not

affect the translational regulation of p21 that overexpression of JNK1 inhibits the

ubiquitination of transfected p21. They conclude that p21 expression levels is regulated post -

transcriptionally by JNK activity [166]

Does ERK stabilize p21? In A431 JNK inhibition during As2O3 treatment increases the le vels

of p21. Conversely, it is ERK inhibition that causes attenuation in p21 protein levels.

Inhibition of ERK also decreases the number of cells in in sub -G1 phase (apoptotic), wherease

JNK inhibition increases the percentage of apoptotic cells [167].
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2. AIM OF THE STUDY

- Investigating the effect of ER stress in terms of cell cycle regulation and cell death in

HCT116 colon carcinoma cells.

- Making the distinction of the survival and de ath phases of HCT116 cells upon ER

stress.

- Assessing the role of MAP kinase JNK in ER stress-related cell cycle arrest and cell

death in HCT116 cells in comparison with the p38 a nd ERK pathways.

- Understanding the mechanisms by which HCT116 cells die upon ER stress.



37

3. MATERIALS AND METHODS

3.1 Materials – Chemicals, Antibodies, Kits, Equipment

All chemicals, antibodies, and specialty material such as membranes, protein markers used in

this study are listed in Appendix A.

All kits used are listed in Appendix B.

All equipment used for general laboratory procedures is listed in Appendix C.

3.1.1 Buffers and Solutions

10X PBS: 80 g NaCl, 2.25 g KCl, 23.27 g Na2HPO4.12H2O and 2.05 g KH2PO4 in 1 L
ddH2O, pH 7.4.

1X PBS-T: 10X PBS was diluted, 0.2% Tween20 was added.

Annexin V-FITC Incubation Buffer:  10 mM Hepes, 140 mM NaCl, 2.5 mM CaCl2 in 500
ml ddH2O.

PI Solution: 2 ml PBS, 12 µl TritonX100, 10 µl RNase A, 20 µl PI added to 1 ml of solution
for 10 samples.

2.1.2 Buffers for SDS Polyacrylamide Gel Electrophoresis  and Western Blotting

Running Buffer (10X): 250 mM Tris base, 1,92 M Glycine, 1% SDS in 500 ml, pH adjusted
to 8.5.

Transfer Buffer (10X):  15.41 g Tris, 72.1 g Glycine in 500 ml.

Transfer Buffer (1X): 10X transfer buffer was diluted, 20% methanol was added prior to
use.

Mild Stripping Buffer: 15 g Glycine, 1 g SDS, 10 ml Tween20 in 1 L. pH adjusted to 2.2.
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3.2 Methods

3.2.1 Cell Culture

wt and puma-/- HCT116 colon carcinoma cells were cultured in McCoy’s 5A medium

supplemented with 10% heat -inactivated FBS, 100 IU/ml penicil lin and streptomycin, and

2mM glutamine. Cultures were maintained in 37°C in a humidified 5% CO 2 atmosphere. For

experiments cells were seeded in 6 -well culture plates (200,000 cells/well), 12-well culture

plates (100,000 cells/well), 60 mm culture dishes (400,000 cells/well) or 96 -well culture

plates (10,000 cells/well). The cells were treated at about 60 -70% confluency for death assays

and protein isolation and at 40% confluency for cell-cycle assays. DMSO (= 0.1% v/v) was

added to all control wells in each experiment. For cyropreservation, cells were trypsinized and

resuspended in 1 ml 10% DMSO in heat -inactivated FBS (freezing medium). The cells

collected in cyrovials were frozen at -80°C for 24 hours and then stored in liquid nitrogen

until thawing.

3.2.2 Total Protein Isolation

Treated and control HCT116 cells were harvested, washed in ice -cold PBS and lysed on ice in

a solution containing 20mM Tris -HCl (pH 7.5), 150 mM NaCl, Nonidet P-40 0.5% (v/v), 1

mM EDTA, 0.5 mM PMSF, 1 mM DTT and protease inhibitor cocktail (Roche, Mannheim,

Germany) and phosphatase inhibitors (Phosphatase inhibitor cocktail 1 and 2 Sigma,

Darmstadt, Germany). After lysing the cells for 30 minutes on ice, cell debris was removed by

centrifugation for 10 min at 13,200g. Protein concentrations were determined with  Bio-Rad

Dc Protein assay.

3.2.3 Immunoblots

Proteins (30 μg) were separated on a 10 or 12% SDS -PAGE and blotted onto PVDF

membranes. Membranes were blocked with 5% (w/v) dried milk in 1X PBS -Tween20 (0.2%)

and incubated with primary antibody in antibody buffer containing 5% (w/v) dried milk in 1X
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PBS-Tween 20 (0.2%) overnight at 4°C. After primary antibody incubation, membranes w ere

washed for 3 * 5 min in 1X PBS-T. Secondary antibody incubation (horseradish peroxidase

(HRP)-conjugated from Cell Signaling) was done in antibody buffer containing 5% (w/v)

dried milk in 1X PBS-T for either 2 hours at room temperature or overnight at 4°C.

Membranes were washed 3 * 5 min before proteins were analyzed using an enhanced

chemiluminescence detection system (ECL -Advanced, Amersham Pharmacia Biotech,

Freiburg, Germany) and exposed to Hyperfilm -ECL (Amersham Pharmacia Biotech,

Freiburg, Germany).

3.2.4 Apoptosis and Cell Death Assays

3.2.4.1 MTT Assay

Cell death was determined using an MTT kit (Roche, Mannheim, Germany)  according to the

manufacturer’s protocol. Briefly , HCT116 cells were seeded in 96 -well plates and treated. 10

μl of MTT labeling reagent was added to each well and incubated for 4 hr. Cells were then

incubated in 100 μl of the solubilization solution for 12 hr. The absorbance was measured

with a microtiter plate reader (Bio-rad, CA, USA) at a wavelength of 550 nm and a reference

wavelength of 650 nm. Percent viability was calculated as OD of drug -treated samples/OD of

control samples * 100.

3.2.4.2 Tryphan Blue Method

Cells were seeded onto 12-well plate. After treatments, cells were trypsinized and

resuspended in complete medium to an approximate concentration of 100,000 -200,000

cells/ml. 0.5 ml of cell suspension and 0.1 ml of 0.4% Trypan blue dye were mixed and

incubated for 5 min at room temperature. 10 µl of the solution was transferred to an

haemocytometer, and counted under a light microscope. Blue cells identify the dead cells. The

percentage of death was calculated by taking the ratio of blue cells to all cells counted.
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3.2.4.3 Annexin-V Binding Assay

Cells were seeded on 12-well plates (100,000 cells/well) and treated with tunicamycin after

24 h. After incubation, cells were detached by trypsinization, transferred to flow -cytometer

tubes and centrifuged at 300g for 5 min. The supernatant wa s removed and cells were washed

with 1 ml of 1X PBS. Cells were centrifuged for a second time. PBS was discarded and the

pellet was resuspended in staining solution of 100 ul incubation buffer and 2 ul Annexin V -

FITC. Cells were incubated in the solution f or 15 min in dark at room temperature. In order to

slow down the reaction, 500 ml of incubation buffer was added to each tube after 15 min.

Cells were then analyzed by FACS.

3.2.4.4 Propidium Iodide (PI) Cell -Cycle Analysis

Cell cycle analysis was performed by PI staining using the flow cytometer. Cells to be

analyzed were seeded on 12-wll plates (100,000 cells/well). Cells were treated after 24 h with

tunicamycin and various MAPK inhibitors. After incubation, cells were detached by

trypsinization, and washed with 1X cold PBS. The supernatant was discarded and the pellet

was gently vortexed. 5 ml of 70% pure grade ethanol was added and kept at 4C. After the

collection of all samples, cells were left at room temperature for 15 min, spinned down at

300g for 5 min. Cells were then washed with 1X cold PBS, supernatant was removed and 100

ul of PI solution was added to each sample. Samples were left in the dark for 45 min for dye

incubation after which 500 ul of PBS was added to slow down the reaction. Samples were

analyzed by FACS.
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4. RESULTS AND DISCUSSION

4.1 Results

4.1.1 - Effect of Tunicamycin Concentration on Cell Death : Tunicamycin induces ER

stress and the UPR by blocking asparagine -linked glycosylation of nascent glycoproteins at

the ER lumen [18]. Persistent ER stress leads to cell death, typically via apoptosis [27].

To assess the cell death induction profile, wt HCT116 cells were treated with the ER stressor

tunicamycin at increasing concentrations with treatment periods of 12, 24, and 48 h. Cell

death was assayed by the MTT cell proliferation assay (Fig 1A, B, C). MTT assay quantifies

cell viability. The yellow tetrazolium salt MTT is cleaved to purple formazan crystals by

metabolically active cells. The formazan crystals are solubilized and color -quantified by a

spectrophotometer (https://www.roche-applied-science.com/pack-insert/1465007a.pdf).

Cells did not show a significant death response in the first 12 h of treatment. This is sensible

granting that the UPR is primarily a survival response. Cells die in the case that the stress is

not alleviated. Significant death occurred after 24 h of treatment. The concentration of  1

μg/ml tunicamycin was sufficient to activate the death process after 24 h of treatment. This is

consistent with previous reports that use the drug tunicamycin as an ER stressor.

Increasing drug concentration by nine -fold did not significantly affect vi ability compared to

low doses. The drug tunicamycin has been reconstituted in DMSO. DMSO vehicle control of

1 μg/ml of TM (= 0.1% v/v) did not cause a significant death response, which is important

for the assessment of death associated with tunicamycin. T he ratio of DMSO- to TM-

associated death decreases as the drug concentration increases. The increment in tunicamycin

concentration does not have a significant effect on cell death, while increased DMSO

concentration does.

1 μg/ml tunicamycin was chosen f or further experimentation since at this concentration,

DMSO in the medium does not significantly affect the cells and that it takes t wo days for

treated cells to die, making the survey of the different phases of the UPR related to survival

and death manageable.

www.roche-applied-science.com/pack-insert/1465007a.pdf
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Figure 4.1 Tunicamycin dose determination.

wt HCT116 cells were treated with different doses of TM and corresponding DMSO vehicle
controls for different time periods for the purpose of dose determination. Percentage survival
was quantified by MTT assay. Untreated control cells were taken as 100% viable. A, 12 hr
treatments. B, 24 hr treatments. C, 48 hr treatments.



43

4.1.2 - Tunicamycin Induces the Unfolded Protein Response (UPR) in HCT116 Cells : A

characteristic feature of the UPR is the tra nscriptional increase in the levels of the

transcription factor CHOP protein [123]. Microarray studies revealed that CHOP is one of

the highest inducible genes during ER stress [118].

CHOP induction in HCT116 cells is observed at the first three hours of treatment with

tunicamycin (1 μg/ml) (Fig 2). Control cells do not express CHOP. CHOP is induced the

most after 12 h of treatment. The level decreases after 24 h.

   CHOP

β-actin

Figure 4.2. TM induces CHOP expression.

A, wt HCT116 cells were treated with TM (1 μg/ml) for various periods (0, 3, 12, 24, 48 h)
and 30 μg of total protein isolates were run on 10% SDS -PAGE gel, and were subjected to
Western blot analysis for CHOP protein detection and β -actin as loading control.

4.1.3 - Tunicamycin (1 μg/ml) Induces Cell Death After 24 h of Treatment, Assessed by

the Trypan Blue Exclusion Method : Dead cells take the Trypan blue dye in due to loss of

membrane integrity. The ratio of blue cells to all cells counted on a haemocytometer reveals

the percentage of dying cells. 1 μg/ml tunicamycin -treated HCT116 cells did not lose their

membrane integrity at 15 h of treatment, consistent wit h the results of the MTT assay. At 27

h cells, about 20% of the cells had lost their membrane integrity (Fig 3). Results are an

average of three separate counts of approximately 100 -150 cells.

    C        3h         12h       24h       48h
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Figure 4.3. TM induces cell death assessed by the Trypan blue cell count.

wt HCT116 cells were incubated without (control) or with tunicamycin at 1 μg/ml for 15 and
27 h. TM-related cell death does not start after 15 h of treatment. Death of TM -treated cells
significantly increases after 27 h of treatment.

4.1.4 - Effect of Tunicamycin on Cell Morphology: Cells were photographed under a phase -

contrast filtered light microscope (photomicrography) at 100 and 400X magnification after 15

h and 27 h treatments along with control cells at 15 h (Fig 4). Control cells are seen at their

confluent state. Nuclei of control and tunicamycin -treated cells are visible. There is no

discernible morphology change (ocular limits defined by light microscopy) in cells treated

with tunicamycin after 15 h.

Reduced confluency of tunicamycin -treated cells (Fig 4B, E) compared to control cells (Fig

4A, D) after 15 h of treatment is not due to death, since these photos represent the sample

cells subjected to the Trypan blue exclusion experiment under the previous title. The Tryphan

blue experiment suggests  that the ratio of dead cells associated with tunicamycin treatment at

15 h is no different than the untreated control sample. A probable explanation is the G1 cell -

cycle arrest of cells prompted by tunicamycin. To test this hypothesis, we evaluated the ce ll

cycle condition of tunicamycin-treated cells after 12 and 24 h treatments.
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Figure 4.4. Phase-contrast photomicrography.

Photos A, B, and C were taken at 100X, and D, E, and F at 400X magnification. A and D  are
photos of control cells at 15 h. B and E are photos of 1 μg/ml TM -treated cells at 15 h, and C
and F at 27 h. Cell death associated with TM treatment is observed in C and F.

4.1.5 - Effect of Tunicamycin on Cell Cycle : Proliferation of animal cells is controlled by

the interplay between growth-promoting and growth-limiting signals. The maintenance of

tissue homeostasis and control of cell number is achieved through restraints on cell

proliferation and induction of programmed cell death [168]. The uncontrolled growth of

cancer cells in many cases is related to the deregulation of the elements of the cell cycle.

B E

C F

A D
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The mammalian cell cycle is divided into two fundamental parts, the interphase and mitosis.

The interphase is divided into three d iscrete steps. During the G1 phase, cells get ready to

duplicate their DNA. DNA synthesis occurs in the S phase. During the G2 phase, cells

contain 4n chromosomes and are ready for mitosis.

A-

B-

p21CİP1

β-actin

Figure 4.5A. TM induces cell cycle arrest at the G1 phase.

100,000 HCT116 cells were seeded on 12 -well plates and incubated with TM for 12 or 24 h.
The cells were collected and subjected to PI dye for cell cycle analysis b y FACS. Figure
shows the histograms for PI radiation of control and TM -treated cells. Percentage of cells at
the G1 phase increase with tunicamycin treatment.
Figure 4.5B. TM increases p21CİP1 expression.

wt HCT116 cells were treated with TM (1 μg/ml) fo r various periods (0, 3, 12, 24, 48 h) and
30 μg of total protein isolates were run on 10% SDS -PAGE gel, and were subjected to
Western blot analysis for p21CİP1 protein detection and β-actin as loading control.

Propidium iodide (PI) is a fluorescent mole cule that stains DNA. The intensity of signal from

PI stained DNA from a single cell analyzed by FACS is used to determine the DNA content

      C           3h            12h           24h         48h
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of the cell. The DNA content depends on the phase of the cycle the cell is in. Figure 5A

shows the histogram of cells  subjected to PI dye. The first peak identifies the cells in the G1

phase, the intermediates the S phase and the second peak the G2 phase.

Tunicamycin treatment after 12 h increases the percentage of cells in the G1 phase compared

to the control sample. The ratio of G1 to G2 stays similar after 24 h.

For the orderly transition between phases of the cell cycle, the activity of cyclins and the

sequential activation of their catalytic partners, the cyclin -dependent kinases (CDKs) are

necessary. CDKs are inhibited by CDK inhibitor proteins (CKIs) including p21CİP1 and

p27KİP1. Cell cycle arrest can be caused the degradation of cyclin subunits, or to the

induction of CDKIs.

Even though the CKIs break the cyclin A - CDK2 and cyclin E - CDK2 complexes, they

positively regulate the cyclin D - CDK4/6 complexes [153], which are essential during the

early timepoints of the G1 to S transition. The UPR induces cell cycle arrest by blocking the

translation of cyclin D1 mRNA during the gl obal translational attenuation caused by the

phosphorylation of the elongation factor eIF2σ via PERK kinase activity [162]. In the case of

Cyclin D1 translational attenuation, CİP/KİP proteins are free to bind the cyclin E – CDK2

and cyclin A – CDK2 complexes to inactivate them. This process contributes to the G1 arrest

observed with tunicamycin treatment.

p21CİP1 is induced by p53-dependent (due to DNA damage) [154] and p53-independent

(due to stress response or differentiation) [155] pathways. It inhibits CDK4/6 and CDK2 by

binding them causing cell cycle arrest at the G1 phase [156].

Western blot results reveal that the expression of p21CİP1 increases with tunicamycin

treatment, with the highest induction after 3 h of treatment (Fig 5B). Decrease in the level of

p21CİP1 protein after 24 h of treatment coincides with the initiation of t he apoptotic

signaling pathway (Fig 8).
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4.1.6- Effect of JNK Inhibition on p21CIP1 Protein Levels In Tunicamycin -treated

HCT116 Cells: c-Jun NH2-terminal kinase (JNK) is a member of the mitogen -activated

protein kinase family (MAPK). JNK was first iden tified as a stress-activated protein kinase.

JNK has a role in the induction of apoptosis, but it also has been implicated in cell survival

and proliferation. The absence of both JNK1 and JNK2 causes the early embryonic death of

mice associated with neuronal apoptosis defects and exencephaly [98, 99].

JNK1 and JNK2 have differential phosphorylation and upregulation profiles. Several tumor

lines possess constitutively active JNK (one or the other, or both) [169]. JNK has numerous

substrates; one of many is c -JUN.

JNK is known to contribute to cell cycle progression. JNK1 and JNK2 seem to take over

different tasks. JNK1 deficiency res ults in a reduction in cell number compared to wt mouse

fibroblasts, whereas JNK2 deficiency results in a larger number of cells. JNK2 -/- fibroblasts

spend less time in G1 compared to wt or JNK1 -/- fibroblasts [99].

ER stress-induced activation of JNK is dependent on the ER transmembrane protein IRE1.

JNK is activated through the IRE1 -TRAF2-ASK1 pathway during the UPR [92].

SP600125, an anthrapyrazole, is a selective inhibito r of JNK catalytic activity [170].

SP600125 inhibits both JNK1 and JNK2 in cells. The molecule SP600125 was used at 20 μM

concentration as an inhibitor of JNK phosphorylation in the experiments. According to the

datasheet, this dosage efficiently inhibits JNK1 (p46) and 2 (p54) activation a nd has no effect

on the MAP kinases, p38 or ERK1/2. Inhibition of JNKs via SP600125 causes the cell cycle

arrest of COLO205 and AGS gastrointestinal cancer cells at G2/M phase and induces the

expression of cyclin B and the CKI p27KİP1.

Our results indicate that active JNK1 (46 kDa), but not JNK2 (54 kDa) is present in non -

treated HCT116 cells. Tunicamycin treatment increased the phosphorylation of JNK1 in a

more pronounced fashion than JNK2. JNK1 and JNK2 are at their highest level at 12 and 24

h of tunicamycin treatment. The protein level of inactive, non -phosphorylated forms of JNK1

and JNK2 correlate with the phosphorylated levels of these proteins such that the levels of

non-phosphorylated JNK1 in cells decreases as the level of the phosphorylated form

increases (Fig 6A).
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Inhibition of JNK in tunicamycin -treated HCT116 cells caused attenuation in p21CİP1 levels

(Fig 6B). Tunicamycin-induced p21CİP levels decreased to almost non -existence with the

inhibition of JNK by SP600125. This response was not obs erved in early time periods (3 h),

however at 12 h, p21 protein is almost completely degraded. This result implies that JNK

activity plays a role in the stabilization of p21CİP1. Next, we want ed to determine if

p21CİP1 expression contributes to the cell cy cle arrest observed with tunicamycin -treatment

by evaluating the cell cycle phase distribution of SP600125 and tunicamycin -treated cells

(TM treatment and JNK inhibition) compared to only tunicamycin -treated HCT116 cells.

A-

pJNK
         pJNK2 – 54 kDa
         pJNK1 – 46 kDa

β-actin

   JNK
  JNK2 – 54 kDa
  JNK1 – 46 kDa

    C           DMSO C     1h            3h 6h  12h          24h

       C         DMSO C  0.5h    1h          3h          6h          12h      24h    48h
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B-

p21CİP1

β-actin

Figure 4.6A. JNK expression profile in HCT116 cells.

wt HCT116 cells were treated with TM (1 μg/ml) for various periods ( 0, DMSO C, 1, 3, 6,
12, 24 h) and 30 μg of total protein isolates were run on 10% SDS -PAGE gel, and were
subjected to Western blot analysis for pJNK, JNK and β -actin as loading control.

Figure 4.6B. JNK inhibition attenuates p21CIP1 levels in TM -treated HCT116 cells.

p21CİP1 protein levels with JNK inhibition via SP600125 and β-actin loading control.

4.1.7- Effect of JNK, ERK and p38 Inhibition on Cell Cycle in Tunicamycin -treated

HCT116: Consistent with the p21CİP1 loss due to JNK inactivity during th e UPR, G1 phase

arrest induced by tunicamycin was bypassed in SP600125 and tunicamycin -treated HCT116

cells. It has been shown that JNK1 and p38 is able to stabilize p21CİP1 in TGF -Beta treated

HD3 cells [165]. Our results indicate that JNK plays a role in the G1 arrest induced by

tunicamycin. Tunicamycin treatment shifts the distribution of cell cycle phase towards G1.

JNK inhibition in these cells clearly shifts the distribution towards G2.

Contrary to the findings of Stephen et al. on the stabilizing effect of p38 on p21 by

phosphorylation (causing G1 arrest) in TGF -β treated HD3 cells, p38 inhibition by

SB203580 did not change the phase distribution of tunicamycin -treated HCT116 cells. ERK

inhibition by PD98059 led to a similar phenomenon as p38 inhibition (Figure 7A).

    C         TM                                             TM+SB600125
                3h          12h      24h      48h       3h           12h               24h
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Figure 4.7. JNK, but not ERK or p38 inhibition leads cells bypass the G1 arrest induced by TM.

100,000 HCT116 cells were seeded on 12 -well plates and incubated with TM for 12 h. Cells
were treated with either the JNK inhibitor SB600125, p38 inhibitor SB203580, or  ERK
inhibitor PD98059 for 1 h prior to TM treatment. Cells were collected and subjected to PI
dye for cell cycle analysis by FACS. TM -treated cells were arrested at the G1 phase of the
cell cycle. SB600125 pre-treatment caused a shift in the phase distrib ution of TM-treated
cells towards the G2 phase. P38 and ERK inhibition did not cause any shift in the
distribution. JNK activity appears to play a role in the G1 phase arrest during the UPR
induced by tunicamycin, possibly through stabilizing p21CİP1.

4.1.8 - Effect of Tunicamycin on Cell Death via Apoptosis and the Contribution of

Caspases: The UPR activated to bring back ER homeostasis is fundamentally a

cytoprotective response, in which the elements of the UPR operate in a sequential manner

[20]. The first and foremost arm of the response is to decrease the ER’s protein load by

stopping global translation. What ensues is the increase in ER’s folding capacity and the

degradation of misfolded proteins.
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However, if the UPR is unable to compensate for the damage the stress exercises on the cell

or when the UPR is excessive or prolonged, apoptotic mechanisms are in charge. Processing

of caspase-2, -3, -4, -7, -8, -9 and -12 (in rodents) has been observed in ER stre ss-induced

apoptosis [25].

z-VAD-fmk is a pan-caspase inhibitor that irreversibly binds to the catalytic site o f caspases

and inhibits the induction of apoptosis. Co -incubation of tunicamycin-treated (1μg/ml)

HCT116 cells with z-VAD-fmk at 20 μM decreased tunicamycin -induced apoptosis from

22% to 16% at 24 h assayed with FACS analysis of Annexin V -binding. (Fig 8A)

Annexin-V binding is specific for apoptosis quantification. Apoptosis induction brings about

the exposure of the phosphatidylserine (PS) residues on the cell membrane for recognition

for phagocytosis. Annexin-V binds to the flipped phosphatidylserines (P S) on the cell

membrane. The intensity of the signal from a single cell measured by FACS quantifies the

binding of FITC-conjugated Annexin-V to the flipped PS residues. Histogram shows cell

count vs. intensity of FITC radiation.

Effect of caspase inhibition on tunicamycin- treated cells was also quantified by the Tryphan

blue exclusion method (Fig 8B) and a similar result was obtained for 15 and 27 h of

treatment.
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Figure 4.8. Resistance of HCT116 cells to TM-induced death upon caspase inhibition.

A, HCT116 cells were treated with the general caspase inhibitor z -VAD-fmk (20 μM) for 1 h
followed by TM treatment (1ug/ml) for another 24 h. Apoptosis was quantified by FACS
analysis of Annexin-V binding. B, HCT116 cells were treated with the general caspa se
inhibitor z-VAD-fmk (20 μM) for 1 h followed by TM treatment (1 μg/ml) for 15 or 27 h.
Cell death was assayed by the Tryphan blue exclusion method by taking the ratio of blue
cells to all counted cells. Amount of death in co -treated cells decreased.

4.1.9- Caspase Activation and PARP Cleavage Upon Tunicamycin -Treatment: Poly

ADP ribose polymerase (PARP) is a substrate for caspases and it is used as a marker for

caspase induction and apoptosis.  PARP cleavage has been reported to be catalyzed by

caspase-3 (sakvesen dixit 1997). Caspase -3 is an effector caspase downstream of the

apoptosome and caspase-9 in the mitochondrial apoptosis pathway. Caspase -3 processing is

observed after 24 h and PARP cleavage takes place after 48 h of tunicamycin treatment in

HCT116 cells (Fig 9A). An interesting result is that PARP cleavage still takes place when

pan-caspase processing is inhibited by the use of z -VAD-fmk. Western blotting for caspase -3

activation for cells treated with z -VAD-fmk reveals that caspase-3 processing is indeed

abolished in these cells but PARP cleavage is not affected. WB for different caspases would

reveal if PARP cleavage in z-VAD-fmk treated cells is dependent or independent of caspase

activity.

Caspase-8 is known to mediate signal transduction  downstream of death receptors located at

the plasma membrane. Caspase -8 is known to process the BH3-only protein Bid, which

causes Bid translocation to the mitochondrial membrane triggering cytochrome c release.

Processes like this link the external apopt osis pathway with the mitochondrial pathway. Jimbo

et al have shown that caspase -8 activation is indispensible for cytochrome c release and
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caspase-9 activation during ER stress in P19 embryonal carcinoma cells. In our setting, we

have observed caspase-8 activation (Fig 9B) along with caspase-3 processing and PARP

cleavage upon tunicamycin treatment.

A-

   PARP (full-length and cleaved)

   Cleaved Casp-3

B-

Full-length Casp-8

B-actin

Figure 4.9A. TM induces Caspase-3 activation and PARP cleavage.

wt HCT116 cells were treated with TM (1 μg/ml) or TM (1 μg/ml) and z -VAD-fmk for
various periods (0h, 24h, 48h) and 30 μg of total protein isolates were run on 10% SDS -
PAGE gel, and were subjected to Western blot analysis for PARP cleavage, caspase -3
processing and β-actin as loading control. Caspase -3 processing is observed after 24 h
treatment with TM. PARP cleavage takes place after 48 h. Surprisingly PARP cleavage is
observed in z-VAD-fmk treated cells treated that don’t activate caspase -3.
Figure 4.9B. TM induces Caspase-8 Activation.

wt HCT116 cells were treated with TM (1 μg/ml) for various periods (0, 0.5, 1, 3, 6, 12, 24,
48h) and 30 μg of total protein isolates were run on 10% SDS -PAGE gel, and were subjected
to Western blot analysis for full -length caspase-8 and β-actin as loading control. Caspase -8
processing takes place in TM-treated cells after 24 h.

4.1.10 - JNK Sensitizes HCT116 Cells to Tunicamcyin -treatment after 24h: Hatai et al

have reported that JNK activation induces cytochrome c re lease. JNK has also been reported

to phosphorylate and inactivate t he proapoptotic Bcl-2 [108]. JNK phosphorylates the

prosurvival Bcl-2 it inactive. It can phosphorylate BAD to inhibit apoptosis. In contrast to its

       C         0.5h       1h          3h         6h       12h      24h      48h

  C        TM                    TM+zVAD
              24h     48h       24h     48h
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proapoptotic function, inhibition of JNK by SP600125 have been reported to decrease the

viability of some gastrointestinal cancer cell lines and induced apoptosis via the activation of

caspase-8, caspase-3 and PARP cleavage [104].  The severity of the death response

correlated with the level of active JNK in control cells.

JNK inactivation sensitized HCT116 cells to tunicamycin after 24 h of treatment by almost 2 -

fold compared to tunicamycin-treated cells (Fig 10). In our case, JNK plays a prosurvival

role in ER stress-related death since its inactivation increases the rate of apoptosis. In

contrast, ERK and p38 inactivation do not make a pronounced difference in the apoptotic

response after 24 h of tunicamycin tre atment.
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Figure 4.10. JNK inactivation sensitizes cells to ER stress after 24 h.

Cells were incubated without (Control) or with 1 ug/ml TM for 24 h in the presence or
absence of either JNK, p38 or ERK inhibitors. Apoptosis was assayed by the Annexin V -
FITC binding assay using FACS. JNK inhibition significantly increased the percentage of
apoptosis in tunicamycin-treated HCT116 cells after 24 h. p38 and ERK inhibition did not
have a significant effect on apoptosis.

4.1.11 – CHOP Levels Upon JNK Inhibition: It has been reported that overexpression of

the highly induced protein CHOP during ER stress causes apoptosis. The transcription factor

CHOP is known to be induced by all three arms of the UPR. Fig 11 shows the levels of

CHOP protein upon TM treatment and JNK inhibition. JNK inhibition in TM-treated

HCT116 cells decreasesd the levels of CHOP after 12 hr of treatment. This result implies that

JNK activity has a stabilizing effect on CHOP and that CHOP  is not responsible for

increased apoptosis observed with JNK inhibition in TM -treated HCT116 cells.
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CHOP

β-actin
Figure 4.11. JNK inhibition attenuates CHOP levels in TM -treated HCT116 cells.

CHOP protein levels with JNK inhibition via SP600125 and β -actin loading control

4.1.12 – Effect of p38 and ERK Inhibition on Cell Survival : Phosphorylation levels of

ERK1/2 and p38 in control and tunicamycin -treated HCT116 cells are shown in Fig 12.

Phosphorylated ERK1/2 is constitutively active in control cells and levels of activation were

not increased by treatment with tunicamycin. Levels of active p38 decrease with treatment.

The prosurvival effect of pERK is observed at 40 h of treatment by the increase in cell death

when the activation of ERK1/2 is inhibited by the molecule SB203580.

p38 phosphorylation status and contribution to cell death is tougher to evaluate. Active p38

levels decrease with treatment and p38 inhibition causes an increase in cell death at 40 h.

     C        TM                                       TM+SB600125
                3h      12h      24h      48h       3h         12h              2 4h
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Figure 4.12A. Levels of ERK and p38 phosphorylation.

wt HCT116 cells were treated with TM (1 μg/ml) for various periods and 30 μg of t otal protein isolates
were run on 10% SDS-PAGE gel, and were subjected to Western blot analysis for pERK, p -p38
detection and B-actin as loading control.
Figure 4.12B. Inactivation of p38 and ERK sensitizes HCT116 cells to TM after 40 h of treatment.

FACS analysis of apoptosis in TM-treated HCT116 cells incubated without (control) or with
tunicamycin (TM) in the presence or absence of MAPK inhibitors (JNK, p38 or ERK) for 40
h. Active p38 and ERK have a greater and death preventing effect on apoptosis at 40 h than
24 h of treatment.

     C           0.5h       1h           3h           6h        12h        24h        48h
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4.1.13 – Role of MAPK on HCT116 Cell Survival : Control HCT116 cells were treated with MAPK

inhibitors and induction of apoptosis was quantified by FACS analysis of Annexin -V binding. All three

MAPK are active constitutively  in non-treated HCT116 cells (Figs 8 and 13). Inactivating JNK in non-

treated cells leads to an apoptotic response ( Fig 13). The JNK pathway seems to be crucial for the

survival of HCT116 colon carcinoma cells. p38 and ERK activity do not seem to contribut e to cell

survival in these cells since their inhibition does not elicit an apoptotic response.
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Figure 4.13. Role of MAPK on HCT116 cell survival.

wt HCT116 cells were incubated without (control) or with 20 μM MAPK inhibitors of JNK,
p38 or ERK for 24 h. Inhibitors were given 1 h prior to TM -treatment. JNK inhibition was
significant in increasing the percentage of apoptotic cells.

4.2 Discussion

The ER is responsible for the translation, maturation, modification and delivery of secretory

proteins. Maintenance of ER homeostasis is crucial for a healthy operating cell. ER

homeostasis can be lost due to many factors related to the proper working conditions and

undertakings of the ER. Loss of homeostasis at the ER results in ER stress and the act ivation

of the unfolded protein response (UPR) to alleviate this stress [15]. The UPR induces cell

cycle arrest at the G1 phase. This is mostly due to global translational attenuation during the

UPR mainly as a result of eIF2α phosphorylation by the activated PERK kinase [162].

Prolonged ER stress eventually leads cells to apoptosis (typically) through multiple

potentially participating processes, such as the activation of caspase -12 in rodents [83],

activity of MAP kinases [92], induction of CHOP protein [123], release of Ca2+ from the ER

[27], alterations in Bcl-2 family proteins, such as the phosphorylation of proapoptotic BH3 -

onlys [130, 131] etc. Signals from the ER are merged with the intrinsic apoptosis pathway by
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the activity of the Bcl-2 family members. Cytochrome c r elease and caspase-9 activation

related to mitochondrial membrane polarization (MOMP) is observed in ER stress -related

cell death [80]. It has been reported that caspase -8 plays a role in merging the death signals

with the mitochondrial apoptosis pathway in ER stress -related apoptosis [171].

Here, we have assessed the role of MAPK in ER stressed cancer cells related to cell

proliferation and cell death with an emphasis in JNK  activity. Contributions of p38 and ERK

to the condition of the ER-stressed cell were mainly evaluated in comparison to JNK activity.

In physiological conditions, the UPR is activated in response to acute or persistent stress.

Cancer cells that are subjected to hypoxia have been reported to adapt to persistent ER stress

that may result in resistance to chemotherapeutics. Here, we have used the HCT116 colon

carcinoma cell line and mimicked the UPR by using tunicamycin as an ER stress inducer at a

concentration that resulted in cells’ demise in a two day period  (48h). The activation of the

cytoprotective UPR comprised the primary response that lasted for one day, after which cells

started to die at least partially by apoptosis.

Fig 1 shows the cell death response of HCT116 cells upon tunicamycin treatment with

increasing concentrations and at different time periods (12, 24, 48 h) assessed by the MTT

assay, which quantifies cell viability by cell metabolic activity. The death response is not

observed after 12 h treatment. The death response observed after 24 and 48 h treatments did

not increase with increasing the drug concentration, whereas death related to DMSO

concentration did. A supposition could follow with the observation that increasing the drug

concentration does not significantly affect cell death that the availability of the three ER

stress-sensing transmembrane proteins, PERK, ATF6 and IRE1 may be a liming factor in the

stress response behavior of cells, and that the concentration of 1 μg/ml tunica mycin activates

most of the available sensor proteins at the ER membrane for signaling. We chose the

concentration of 1 μg/ml for further experimentation for the reason that DMSO at that

concentration gave the lowest death response and cell death response was expanded to a two

day period.

Much of the knowledge about the UPR, its activation and regulation, comes from cultured

cells treated with ER stress -inducing agents, such as tunicamycin. It should be noted that this

kind of experimentation bares a short fall in its nature that it fails to imitate the UPR under



60

milder and persistent assault, which is often the case in the physiological condition. There are

cases, where cells, when faced with chronic stress activate the UPR in an adaptive form and

escape death in a scale ranging from days to years. Treatment with these agents severely

assaults the cells under investigation and eventually activates the death mechanism linked

with the UPR. In vitro experimentation, therefore, may not be the equivalent of the

physiological UPR or more precisely, the problem with this methodology is that it

circumvents the question of how cells escape death and adapt to ER stress [15].

CHOP protein is known to be induced by all three arms  of the UPR [43, 172, 173]. Upon ER

stress, the transcriptional induction of CHOP is regulated by four cis-acting elements,

AARE1, AARE2, ERSE1 and ERSE2 [174]. Under ER stress, the ER-resident chaperone

BiP preferentially binds to misfolded/unfolded proteins at the ER lumen rendering active the

three ER transmembrane stress transducers PERK, ATF6 and IRE1 [28, 175]. Activated

PERK phosphorylates eIF2α, ceasing global protein translation [2] and resulting in the

upregulation of the transcription factor ATF4, that contains an upstream open reading frame

(uORF) [35]. One of the targets of ATF4 is CHOP. ATF6 is transported to the Golgi where it

is cleaved by S1P and S2P proteases to become an active transcription factor that activates

CHOP [40]. Activated IRE1 cleaves an intron of the XBP-1 mRNA available in the

cytoplasm, making it a mature mRNA with an open reading frame for transcription. XBP -1

transcription is also regulated by ATF6 [48]. ATF4 binds to the AARE1 and AARE2 motifs

on the chop promoter. Both ATF6 and XBP-1 bind to the ERSE motifs with the transcription

factor NF-Y [174].

Figure 2 shows the elevated CHOP protein levels upon tunicamycin treatment that lasts for

the first 24 h. We have used the induction o f CHOP as a marker of UPR induced by

tunicamycin that cells are undergoing the UPR. CHOP protein is not expressed in control

cells because CHOP is expressed under the condition that eIF2α is phosphorylated. The

decrease in CHOP expression after 24 h may be  due to the activation of eIF2α. A western

blot for phosphorylated eIF2α may clarify the expression profile of CHOP during the UPR.

As to the death promoting nature of CHOP, overexpression of CHOP induces apoptosis that

can be inhibited by the prosurvival apoptotic molecule Bcl-2 [123]. However, perk-/- cells

that are extremely sensitive to ER stress does not require CHOP for apoptosis [33].

Downstream of CHOP-induced apoptosis is not clear [81]. CHOP is known to be modified
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post-transcriptionally. p38 MAP kinase increases CHOP transcriptional activity by

phosphorylating it on Ser78 and Ser81 [176].

In this study, we evaluated the role of JNK in UPR conditions because JNK is a stress -

activated kinase that has been reported to be involved in cell proliferation and apoptosis in

many types of death-inducing stimuli. There are three forms of JNK, JNK1 -3. JNK1 and

JNK2 are expressed ubiquitously an d JNK3 is specific to the brain, testes and heart [93].

JNK is activated by various kinds of environmental stress, such as osmotic stress, redo x

stress, radiation and treatment with cytokines, such as TNF, IL -1 [93].

The role of JNK in apoptosis seems to be cell type and stimulus -specific and that JNK1 and

JNK2 have differential roles in contributing to cell death or proliferation. JNK1 and JNK2

deficient mice show different patterns of gene expression [97].

A proapoptotic role for JNK has been described in vinblastine, doxorubicin and etoposide -

induced apoptosis [112]. In contrast, Vivo et al have shown that JNK inhibit ed TRAIL-

induced apoptosis [177].

The contradictory observations for the effect of JNK activation on cell condition have been

attributed to its large number of substrates and their temporal availability [96].

Constitutive JNK basal activity has been reported in some cancers. Wang et al have

examined cancer and normal human breast tissues and found that the expression of JNK2

was markedly increased in cancerous tissues [102]. In our case, control HCT116 cells

express active JNK1 but not JNK2 without any external stimulus (Fig 6). The constitutive

biologic function of basally active JNK is thought to promote cell survival and growth [101].

There are studies suggesting that JNKs might have an oncogenic role. In cancer cells, an

‘oncokinase’ would transduce signals leading to cell survival and proliferation. We have

observed a similar phenomenon with HCT116 cells, that when JNKs are inhibited  by the

specific JNK inhibitor SP600125, apoptosis was induced (Fig 13). The inhibition of the other

two MAPKs ERK and p38 did not induce apoptosis. The inhibition of JNKs has been shown

to cause growth arrest or apoptosis in some tumor cells [103]. Xia et al investigated the levels

of active JNK in various gastrointestinal cancer lines and found that the apoptotic effect of

JNK inhibition in untreated cancer cells is correlated with the strength of basal JNK activity,



62

in their case JNK2. The oncogenic activity of JNK  may be related to the transformation of

the cells because a contrary report is that doubly knocking out jnk1-/-jnk2-/- in fibroblasts

cause an increase in the number and growth of Ras-induced tumor nodules.

ER stress induces cell cycle arrest at the G1 p hase. Cyclin-dependent kinase (CDK)-mediated

inactivation of the retinoblastoma tumor suppressor protein (pRB) is required for cells to

undergo the G1 to S phase transition.  CDK4 and CDK6 are activated during mid -G1 and

their activity depends on proteins of the cyclin D family. Active CKD4 and CKD6

phosphorylate pRB rendering it inactive. This promotes the expression of genes required for

the G1 to S transition, such as cyclin E that is induced in late G1. Cyclin E binds and

activates CDK2, cell cycle cont inues.

Tunicamycin-induced-cell cycle arrest is mainly due to the phosphorylation of the eIF2α by

PERK kinase. eIF2α phosphorylation induces an arrest in global translation, which effects

cyclin D1 translation and protein level as well. Cyclin D1 is required for passing the early

checkpoint in the G1 to S phase transition. Cyclin D1 phosphorylates and activates the

cyclin-dependent kinase CDK4 and contributes to the progression of cell cycle. Cyclin D1

has a short half-life and is depleted quickly in the case of t ranslational attenuation.

CDKs are inhibited by CDK inhibitor proteins (CKIs) including p21CİP1 and p27KİP1. Cell

cycle arrest can be caused the degradation of cyclin subunits, or to the induction of CDKIs.

Even though the CKIs break the cyclin A - CDK2 and cyclin E - CDK2 complexes, they

positively regulate the cyclin D - CDK4/6 complexes [153] which are essential during the

early time points of the G1 to S transition. The UPR induces cell cycle arrest by blocking the

translation of cyclin D1 mRNA during the global translational attenuation caused by the

phosphorylation of the elongation factor eIF2 α via PERK kinase activity [162]. In this case,

CİP/KİP proteins are free to bind the cyclin E – CDK2 and cyclin A – CDK2 complexes to

inactivate them. This process contributes to the G1 arrest observed with tunicamycin

treatment.

p21CİP1 is a global inhibitor of cell cycle progression at the G1 to S transition. p21CİP1 has

a short-half life of about 20 to 60 minutes in most cells. It is degraded by t he
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ubiquitin/proteasome pathway [158]. p21CİP1 can be regulated posttranscriptionally to

stabilize it [157].

We have shown that p21CİP1 levels increase with tunicamycin -treatment (Fig 5). We have

also observed the G1 arrest induced by tunicamycin (Fig 5). We speculate that this phase

arrest is partly due to the increase in p21CİP1 levels. JNK inhibition via SP600125 t reatment

decreased the levels of p21CİP levels in tunicamycin -treated HCT116 cells (Fig 6). This

decrease was effective after the 3 rd hour of treatment until the 24 th hour. This observation

correlated with the cell cycle progression of these cells. Cell cy cle analysis by PI dye assayed

by FACS revealed that tunicamycin -treated cells were arrested at the G1 phase of the cell

cycle, whereas JNK inhibition led cells bypass this arrest and shifted the phase distribution

towards the G2 phase (Fig 7). At 12 hours , JNK inhibited tunicamycin-treated cells

continued to proliferate (observed by microscopy as well) in contrast to only tunicamycin -

treated cells. Inhibition of the two MAPK p38 and ERK did not have an effect (Fig 7).

The increase in p21CİP1 protein levels is less likely due to a translational or transcriptional

increase since protein translation does not take place during the UPR. Absence of p21CİP in

cells treated with the JNK inhibitor SP600125 suggests that the post -translational

stabilization of p21CİP1 includes JNK’s kinase activity. JNK and p38 have been reported to

phosphorylate and stabilize p21CİP1 [165]. We can speculate that the absence of p21CIP1 in

the case of JNK inhibition facilitates the G1 to S transition in these cells. The reappearance

of p21CIP1 may be related to the resume of protein translation. Attenuation in translation

that takes place promptly as a part of the UPR is nevertheless transient. Western blot for

phosphorylated eIF2α may clarify the situation. It is also important to note that the

appearance of p21CIP1 in JNK-inhibited tunicamycin-treated HCT116 cells correlates with

the initiation of apoptosis in these cells.

The mechanisms that cause the switch to apoptosis from the survival response during the

UPR are not clear. The dominating facto rs are thought to differ for different cell types. JNK

activation by the ER stress transducer IRE1 through TRAF2 and ASK1, induction of CHOP,

deregulation of Bcl-2 and IAPs (inhibitor of apoptosis), upregulation of proapoptotic BH3 -

onlys have been suggested as mediators of apoptosis in the case of UPR. Mitochondrial

(intrinsic) apoptosis pathway is involved in ER stress -induced apoptosis [80].
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Tunicamycin-treated HCT116 cells underwent apoptosis after 24 h of treatm ent (Fig 8). Cell

death was not observed in the first 12 hours of treatment, assessed by MTT assay and the

Tryphan blue exclusion method that measure cell viability through cell metabolic activity and

cell death, respectively. Annexin V -FITC binding assay evaluated by FACS did not suggest

apoptotic death in the first 12 hours. This is sensible considering the fact that UPR is

activated as a cytoprotective mechanism in cells subjected to ER stress, and that if the UPR is

not overcome, cells start to die.

We evaluated the dependence on caspases in tunicamycin -induced cell death in HCT116

cells using two methods. We have used z -VAD-fmk, a pan-caspase inhibitor and quantified

apoptosis by FACS and cell death by the Trypan blue exclusion method. Apoptosis decre ased

from 22% to 16% in tunicamycin -treated cells. A similar decrease was observed with the

Tryphan blue method. The reason for a non -complete attenuation may be that ER -stress

induced apoptosis in HCT116 cells may involve caspases that are not inactivated  by z-VAD-

fmk or that apoptosis related to ER stress in these cells are only partially caspase -dependent.

Next, we evaluated cell death in the case of JNK, ERK and p38 inhibition. We showed that

the inhibition of both JNKs, JNK1 and JNK2 by SP600125 enhan ces the rate of ER-stress

induced apoptosis HCT116 colon carcinoma cell line by about 2 -fold after 24 hours with no

further increase after 24 h (Figs. 10 and 12). Inhibition of p38 or ERK MAPKs does not have

an effect in the first 24 h but their inhibition  is effective in increasing apoptosis after 40 h of

treatment. Phosphorylated ERK is present in control cells and tunicamycin treatment does

not affect the levels. Phosphorylated p38 levels decrease with tunicamycin treatment, the

effect of which is tough to evaluate.

Next, we wanted to figure out what causes the increased apoptotic response when JNK is

inhibited in TM-treated cells. We inspected the level of the transcription factor CHOP since

CHOP is highly induced during ER stress, and that its overexp ression causes growth arrest

and apoptosis [120, 121].  We have found that CHOP is not responsible for increased

apoptosis in JNK-inhibited cells. Figure 11 shows that CHOP is almost non -existent in TM-

treated and JNK-inhibited HCT116 cells at 12 h of treatment. Therefore, we conclude that the

increase in death related to JNK inhibition is not rela ted to elevated levels of CHOP. The

result also suggests that active JNK has a role in stabilizing the CHOP protein.
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The proliferative effect of JNK inhibition in the first 12 hours of treatment, and death

inducing effect of JNK inhibition after 24 hours may seem contradictory. However, both

responses may be thought to define a prosurvival role for JNK activity. In t he case of

promoting G1 arrest, JNK plays a cytoprotective role through the conservation of metabolic

energy. One suggestion for differential  roles of JNK pertaining to the different phases of the

UPR is that JNK’s role differs with the  temporal availability of its substrates. In the case of

ER stress, JNK might be serving different roles in re lation to the status of eIF2α activity

which determine the on/off status of global translation. Data for eIF2α phosphorylation could

come in handy in evaluating the differential effects of JNK. p38 and ERK show differential

effects on cell death in similar ways during the course of ER stress response.

4.3 Conclusion

As a summary, in our experimental model we have found that JNK plays a prosurvival role

during the different phases of ER stress. During the survival response, JNK activity promotes

the G1 cell cycle arrest induced by tunicamycin. This arrest may be thought as a survival

mechanism since termination of division conserves energy. Later in the response, inhibition

of JNK increases the apoptotic response by about 2 -fold after 24 h of treatment. p38 and

ERK inhibition does not have an effect either on the cell cycle distribution or death profile at

24 h of treatment. The apoptosis -inducing effect of p38 and ERK inhibition can be observed

after 40 h of treatment.

The elucidation of the prosurvival factors pertaining to ER stress management of cells is

important in finding new strategies for cancer therapy. Cancerous tissue that receives

insufficient oxygen and nutrition undergoes ER stress. In many conditions, the UPR is an

adaptation to persistent ER stress. It has been reported that in this case cells are more

resistant to cancer therapy. Administration of drugs aimed at the prosurvival elements of the

UPR may render therapy more effective.

Apart from resulting in apoptosis, ER stress induces aut ophagy as well. The role of

autophagy in cell death is a debated issue. It is thought that autophagy serves a cytoprotective

role early in its induction that it aids the mechanism of eliminating misfolded proteins. There

are cases in experimental condition s, where autophagy results in cell death. It would be

interesting to evaluate the role of autophagy in ER -stress induced death. Inhibition of the
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PI3K by its inhibitor LY294002 increases apoptosis in these cells (data not shown) and

PARP cleavage is observed more rapidly. LY294002 is also known to inhibit autophagy by

inhibiting the formation of the autophagosome. We would like to evaluate if the contribution

of autophagosome formation promotes survival or death in the ER -stressed cells and that if

this is in any way related to JNK kinase activity.

p21CİP1 translation is achieved through p53 -dependent and independent mechanisms. As a

future perspective, the dependence of p21 induction on p53 could be evaluated for HCT116

cells that lack the p53 gene. PCR a nalysis of p21CİP1 mRNA levels and Western blotting for

eIF2α phosphorylation may serve as evidence for JNK’s role in p21C İP1 stabilization.

It would be interesting to investigate  if the increased induction of apoptosis related to JNK

inactivity is related to increased caspase activation. We found that PARP cleavage is not

inhibited in cells treated with the pan -caspase inhibitor z-VAD-fmk. We could use specific

caspase inhibitors and western blotting to eliminate the caspases that do not take part in the

cleavage of PARP during ER stress.

Figure 4.14 Suggested Mechanism for the Unfolded Protein Response in HCT116 cells related to the
MAPKs JNK, p38, ERK, and caspase activity, p21 and CHOP protein levels.



67

Appendix A

CHEMICALS (in alphabetical order)
Name of Chemical Supplier Catalog Number

Acrylamide/Bis-acrylamide Sigma, Germany A3699
Ammonium persulfate Sigma, Germany A3678
Annexin V-FITC Alexis Biochemicals ALX-209-250-T100
Antibiotic solution Sigma, Germany PP3539
Anti β-actin Ab Cell Signal Tech, USA 4967
Anti-JNK Ab Cell Signal Tech, USA 9252
Anti p-JNK Ab Cell Signal Tech, USA 4671
Anti-ERK1/2 Ab Cell Signal Tech, USA 9102
Anti-p-ERK1/2 Ab Cell Signal Tech, USA 4377
Anti-p38 Ab Cell Signal Tech, USA 9212
Anti-p-p38 Ab Cell Signal Tech, USA 9215
Anti p21 Cell Signal Tech, USA 2946
Anti-cleaved caspase 3 Ab Cell Signal Tech, USA 9661

Anti-caspase 8 Ab Cell Signal Tech, USA
Anti-rabbit IgG HRP linked Cell Signal Tech, USA 7074
Anti-mouse IgG HRP linked Amersham Biosciences, UK RPN4201
Anti-CHOP Santa Cruz Biotech.
DMSO Sigma, Germany D2650
Ethanol Riedel-de Haen, Germany 32221
Feotal Bovine Serum Sigma, Germany F2442
Glycine Amnesa, USA 0167
HCl Merck, Germany 100314
Hyperfilm ECL Amersham Biosciences, UK RPN2103K
Hybond P-membrane (PVDF) Amersham Biosciences, UK RPN2020F
Isopropanol Riedel-de Haen, Germany 24137
KCl Fluka, Switzerland 60129
KH2PO4 Riedel-de Haen, Germany 04243
KOH Riedel-de Haen, Germnay 06005
Liquid Nitrogen Karbogaz, Turkey
McCoy’s 5A Medium Biological Industries 01-075-1
2-Mercaptoethanol Sigma, Germany M370-1
Methanol Riedel-de Haen, Germany 24229
MgCl2 Sigma, Germany M9272
Milk Diluent Concentrate KPL, USA 50-82-00
NaCl Riedel-de Haen Germany 13424
NaO2H2H3.3H2o Riedel-de Haen, Germany 25022
NaOH Merck, Germany 1006462
NaPO4H2 Riedel-de Haen Germany 04269
NP-40 Sigma, Germany I3021
Pen/Strep Solution Biological Industries
PD98059 Calbiochem, USA 513000
PMSF Sigma, Germany P7626
Prestained Protein MW Fermantas, Germany #SM0441
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Propidium Iodide (PI)
Rnase A Roche, Germany 1119915
SB2033580 Calbiochem, USA 559389
SP600125 Calbiochem, USA 420123
Sodium Dodecyl Sulphate Sigma, Germany L4390
TEMED Sigma, Germany T7029
Triton X-100 Applichem, Germany A1388
Tris Fluka, Switzerland 93349
Tunicamycin Calbiochem, USA 654380
Trypan Blue Dye Merck, Germany
Trypsin/EDTA 1X Merck, Germany 03-050-1
Tween-20 Merk, Germany 822184

Appendix B

Molecular Biology Kits (in alphabetical order)

Name of Kit Supplier Catalog Number

ECL Advanced
Chemiluminescence

Amersham Biosciences, UK RPN2135

Cell Proliferation Kit I (MTT) Roche, Germany 1465007-001
Dc Assay Bio-Rad
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Appendix C

Autoclave Hirayama, Hiclave HV-110, Japan

Certoclav, Table Top Autoclave CV -EL-12L, Austria

Balance Sartorius, BP211D, Germany

Sartorius, BP221S, Germany

Sartorius, BP610, Germany

Schimadzu, Libror EB-3200 HU, Japan

Centrifuge Eppendorf, 5415C, Germany

Eppendorf, 5415D, Germany

Eppendorf, 5415R, Germany

Kendro Lab. Prod., Heraeus Multifuge 3L, Germany

Hitachi, Sorvall RC5C Plus, USA

Hitachi, Sorvall Discovery 100 SE, USA

Deepfreeze -70°C, Kendro Lab. Prod., Heraeus Hfu486 Basic, Germany

-20°C, Bosch, Turkey

Distilled Water Millipore, MilliQ Academic, France

Electrophoresis Biogen Inc., USA

Ice Machine Scotsman Inc., AF20,USA

Incubator Memmert Modell 300, Germany
Memmert Modell 600, Germany

Laminar Flow Kendro Lab. Prod., Heraeus, HeraSafe HS12, Germany

Magnetic Stirrer VELP Scientifica, ARE Heating Magnetic Stirrer, Italy

Microliter Pipette Gilson, Pipetman, France
Mettler Toledo Volumate, USA
Eppendorf, Germany

Microscope

pH Meter WTW, pH540 GLP MultiCal, Gerany
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Power Supply Biorad, PowerPac 300, USA
Wealtec, Elite 300, USA

Refrigerator 4°C, Bosch, Turkey

Shakers Forma Scientific, Orbital Shaker 4520, USA
GFL Shaker 3011 USA
New Brusnswick Sci., Innova 4330, USA
C25HC Incubator shaker, New Brunswick Scientific, USA

Spectrophotometer Schimadzu UV-1208, Japan
Scimadzu UV-3510, Japan

Thermocycler Eppendorf, Mastercycler Gradient, Germany

Water bath Huber, Polystat cc1, Germany
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