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Abstract—Segmentation of ultrasound images is a challenging problem due to speckle, which corrupts the image
and can result in weak or missing image boundaries, poor signal to noise ratio and diminished contrast resolution.
Speckle is a random interference pattern that is characterized by an asymmetric distribution as well as significant
spatial correlation. These attributes of speckle are challenging to model in a segmentation approach, so many
previous ultrasound segmentation methods simplify the problem by assuming that the speckle is white and/or
Gaussian distributed. Unlike these methods, in this article we present an ultrasound-specific segmentation
approach that addresses both the spatial correlation of the data as well as its intensity distribution. We first
decorrelate the image and then apply a region-based active contour whose motion is derived from an appropriate
parametric distribution for maximum likelihood image segmentation. We consider zero-mean complex Gaussian,
Rayleigh, and Fisher-Tippett flows, which are designed to model fully formed speckle in the in-phase/quadrature
(IQ), envelope detected, and display (log compressed) images, respectively. We present experimental results
demonstrating the effectiveness of our method and compare the results with other parametric and nonparametric
active contours. (E-mail: greg.slabaugh@gmail.com) © 2009 World Federation for Ultrasound in Medicine &
Biology.
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INTRODUCTION AND LITERATURE

Segmentation is a fundamental problem in ultrasound
image processing and has numerous important clinical
applications, including anatomic modeling, change quan-
tification and image-guided interventions/therapy. While
ultrasound systems are continually improving by increas-
ing their spatial and temporal resolution, a fundamental
limitation to image quality is speckle, an interference
pattern resulting from the coherent accumulation of ran-
dom scattering in a resolution cell of the ultrasound
beam. While the texture of the speckle does not corre-
spond to any underlying structure, the brightness of the
speckle pattern is related to the local echogenicity of the
underlying scatterers. The speckle appears as a spatially
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correlated noise pattern and has a detrimental effect on
the image quality and interpretability. For example,
Bamber and Daft (1986) have shown that due to speckle,
the detectability of lesions in ultrasound is significantly
lower compared with X-ray and magnetic resonance
(MR).

Since the speckle obfuscates the structures of inter-
est, it also poses a difficult challenge to segmentation
algorithms. Numerous ultrasound segmentation papers
have appeared in the literature; a recent survey by Noble
and Boukerroui (2006) reviews methods up to the year
2005. In this body of literature, many papers assume the
intensities in an ultrasound image are spatially uncorre-
lated and/or the follow a Gaussian distribution. While
these assumptions render the problem more tractable, as
Michailovich and Tannenbaum (2006) argue, they are
oversimplifications that are unnatural to ultrasound im-
aging.

We concur with Noble and Boukerroui (2006), who

argue that by modeling the imaging physics of ultra-
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sound, it is possible to derive ultrasound-specific seg-
mentation techniques that are more successful than ge-
neric methods. In this class of ultrasound-specific meth-
ods, some authors have presented techniques designed
for non-Gaussian image statistics, starting with the ex-
ponential distribution pioneered by Chesnaud et al.
(1999), as well as Rayleigh, Sarti et al. (2005), Gamma,
Tao and Tagare (2005), and Beta, Martin-Fernandez and
Alberola-Lopez (2005) distributions. Other related sta-
tistical image segmentation methods include Ayed et al.
(2005), who use Gamma distributions for SAR image
segmentation, Ayed et al. (2006), who consider the
Weibull distribution, and nonparametric image segmen-
tation techniques such as Kim et al. (2005) and Unal et
al. (2005). However, such methods assume that the im-
age pixels are spatially uncorrelated, which is generally
not a valid assumption for ultrasound images and this has
an impact on both the derivation of the technique as well
as the effectiveness of the segmentation method.

Commercial ultrasound scanners typically employ
log compression to the envelope-detected image in order
produce a display image with a suitable dynamic range
for presentation on a monitor. This log compression
operation significantly changes the intensity distribution
of the speckle; transforming fully formed speckle from a
Rayleigh distribution to a Fisher-Tippett distribution, as
described by Michailovich and Adam (2003) and Dutt
and Greenleaf (1996). Previous segmentation work based
on image statistics does not address this issue and is,
instead, designed to work only with the envelope-de-
tected image.

Our contribution
In this article, we present an ultrasound-specific

segmentation approach that addresses both the spatial
correlation of the speckle data as well as its intensity
distribution. The approach relies on two steps. First, we
decorrelate the ultrasound image by applying a whiten-
ing filter. This filtering operation is designed to remove
the spatial correlation of the data, while maintaining its
diagnostic information. To our knowledge, this is the
first article to address the segmentation of decorrelated
images. On the decorrelated image, where the assump-
tion of spatial independence of the pixels is more appro-
priate, we present a unified analysis of statistical region-

Fig. 1. Block diagram. The ultrasound imaging system
approach, which appear
based segmentation algorithms for the complex Gauss-
ian, Rayleigh and Fisher-Tippett distributions, which
correspond to fully formed speckle in the in-phase/
quadrature (IQ), envelope detected image and display
images, respectively. Another original contribution is the
derivation and use of an active contour to segment im-
ages modeled by complex Gaussian and Fisher-Tippett
distributions. We model the curve using a level set ap-
proach, which provides sub-pixel resolution and easily
handles topological changes, while our flows (active
contour motion equations) drive the contour to relevant
structures in the image. Experimentally, we compare our
ultrasound-specific segmentation approaches with other
parametric and nonparametric region-based segmenta-
tion methods. Our hypothesis is that by modeling the
speckle, both in terms of its spatial correlation and in-
tensity distribution, better segmentations will be pro-
duced. This claim is justified by our experimental results,
which show the improvement of our parametric flows to
other region-based segmentation methods.

We note that a preliminary version of this work
appeared in Slabaugh et al (2006). In this article, we
expand on that work, providing more details and present-
ing segmentation methods for the imaging chain after
demodulation. Specifically, we consider segmentation of
the complex IQ image, envelope detected image and
display image. A new feature of this article is the com-
plex Gaussian flow for the complex IQ image and we
show how it is similar to the Rayleigh flow for the
envelope detected image. Additionally, we provide more
experimental results of our methods, including compar-
isons with non-parametric image segmentation.

MATERIALS AND METHODS

We begin with a brief review of the standard ultra-
sound image formation model in order to lay the foun-
dation of our segmentation methods, which are based on
the statistics of speckle. Due to space limitations this
review is very brief; further details can be found in
Michailovich and Adam (2003); Dutt and Greenleaf
(1996); Wagner et al (1983); and Goodman (2005).

As shown in Fig. 1, an in-phase/quadrature (IQ)
image is obtained by applying demodulation to standard
radio-frequency (RF) data from the transducer. This B-

ces an IQ image, which is the input provided to our
in the dotted rectangle.
produ
mode IQ image is complex and is the input to our system.
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Intensity distribution
Speckle is an interference pattern resulting from the

coherent accumulation of random scattering in a resolu-
tion cell of the ultrasound beam. In the case of fully
formed speckle, which is typically assumed when the
number of scatterers per cell is greater than ten Dutt and
Greenleaf (1996), it is assumed that each scatterer con-
tributes an independent random complex component,
resulting in a random walk in the complex plane. If one
applies the central limit theorem to the random walk, one
observes that the distribution is a zero-mean Gaussian
probability density function (PDF) in the complex plane,
i.e.,

pz�z� �
1

2��2e��z�2 ⁄�2�2� (1)

where z is complex. This PDF models the data in the IQ
image. To produce a real image for display, envelope
detection is performed by taking the magnitude of the IQ
image. It is fairly straightforward to show that under this
transformation, the distribution in the magnitude image
is Rayleigh (Goodman 2005), i.e.,

pX�x� �
x

�2e�x2⁄�2�2�, (2)

where x is real. Typically, the magnitude image has a
large dynamic range, and therefore the standard is to
log-compress the image to produce an image suitable for
display. Taking the natural log, i.e., Y � ln(X), one can
derive the distribution in the display image,

pY�y� � pX�x��dy

dx�
�1

, (3)

using dy/dx � 1/x � e�y, and normalizing, to get

pY(y) � 2e
1

2�2 exp([2y � ln(2�2)] � exp([2y � ln(2�2)]),

(4)

which is a doubly exponential distribution that has the
form of a Fisher-Tippett distribution. This distribution
therefore is the theoretical model for the image intensi-
ties for fully formed speckle in the log-compressed mag-
nitude IQ image. Note that in this article, we use the
terms magnitude image and envelope-detected image
interchangeably, and in addition, we use the terms log
magnitude and display image interchangeably.

To verify these theoretical models, we analyzed a
real ultrasound image taken of a lesion phantom (Model
539, ATS Laboratories Inc, Bridgeport, CT USA). The
image, shown in Fig. 2, was acquired using a Siemens
(Munich, Germany) Sequoia 512 system using a 6C2
transducer and frequency of 5.5 MHz. From different

depths, we selected three image regions (each indicated
by a white box) corresponding to the soft tissue, where
the primary variation in the image intensity is due the
speckle. In these regions, we formed a histogram, shown
in right-most column, of the pixel intensities. Naturally,
for the IQ image, this is a two-dimensional histogram
formed over the real and imaginary components of the
signal. Next, we estimate the standard deviation of the
complex Gaussian distribution of eqn 1 using the maxi-
mum-likelihood estimator that will be described in the
next section, and overlay the estimated distribution,
scaled to match the histogram. The complex distribution
provides an excellent fit to the histograms as demon-
strated in the figure.

The envelope-detected image is shown in the left-
most column of Fig. 3; notice the dark appearance re-
sulting from the large dynamic range of the intensities.
We show the histogram of the selected region in the
middle-left column, and fit the histogram to a Rayleigh
distribution (using the maximum-likelihood estimator
Sarti et al [2005]) and overlay the fit curve on top of the
histogram. The Rayleigh distribution does an excellent of
modeling the statistics in these examples as demon-
strated in the figure.

Finally, the display image, which is a typical pre-
sentation of an ultrasound image, is shown in the right-
middle column of Fig. 3. For the same selected regions,
we fit (using the maximum-likelihood estimator to be
described in the next section) a Fisher-Tippett distribu-
tion, which very accurately models the intensity distri-
bution. Similar results were found for other soft tissue
regions in the image. We repeat these experiments for
different regions of a real ultrasound image of a carotid
artery, shown in Fig. 4. All the images of carotid arteries
in the article were acquired using a Siemens Sequoia 512
system with a 8L5 transducer and a frequency of 8.0
MHz.

From this analysis, we conclude that the complex
Gaussian is indeed a good choice for modeling the in-
tensities of similar regions in the IQ image, the Rayleigh
model is preferred for the envelope-detected image and
the Fisher-Tippett distribution is preferred for the display
image. We also note that application of the Rayleigh
distribution to the display image is not ideal, as the
Rayleigh and Fisher-Tippett distributions are notably
different. Among other differences, the long tail of the
Rayleigh distribution is located to the right of the peak
(positive skew), while in the Fisher-Tippett distribution,
the long tail is found on the left side of the peak (negative
skew). We argue that the distribution that best matches
the data should be used in the segmentation approach.
Later, we will derive variational flows for region-based
segmentation based on these three distributions.

An issue for consideration is the sample size needed

to estimate the distributions. Intuitively, one would ex-
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pect that when the sample size is small, the estimated
parameter of the distribution is less reliable than when
the sample size is large. The phenomenon can be studied
by determining confidence intervals of the estimator as a
function of sample size, as shown in Fig. 5 for the
Rayleigh estimator using the method described in John-
son et al (1995). This plot shows the estimated parameter
(solid curve) as well as 95% confidence intervals (dashed
curves) as a function of samples for samples taken from
a window of the carotid image in Fig. 4e, averaged over
10 realizations (sets of samples from the window) to
characterize the trends that generalize independent real-
izations of the experiment. The figure shows that when
the number of samples is very few (e.g., one to three
samples), there is little confidence in the estimated pa-
rameter, as the dashed curves are far from the solid

Fig. 2. Using complex Gaussian distributions to model ult
column: real part of the IQ image, middle-left column: im
distribution fit to histogram. We select regions in the near-fi
curve. However, the confidence interval becomes signif-
icantly tighter as more samples are used to estimate the
distribution. Asymptotically, as the number of samples
becomes infinite, the confidence interval shrinks to zero.
We expect similar results for the other distributions. As
an empirical rule of thumb, at least five pixels should be
used to provide a reasonable estimation of the distribu-
tion. However, more pixels provide a better statistical
estimation.

Finally, we should note that non-Rayleigh scattering
can occur in the magnitude image when the number of
scatterers is low, their spatial locations are not indepen-
dent or the scattering is not diffuse. In these cases,
numerous distributions for modeling the ultrasound im-
age intensities have been proposed, including the Homo-
dyned K, Rice, Nakagami, Weibull, Generalized Gauss-
ian, and Rician-Inverse Gaussian (RiIG) distributions

image intensities in different parts of the IQ image. Left
y part of the IQ image, right column: complex Gaussian
p row), mid-field (middle row) and far-field (bottom row).
rasound
aginar
(Eltoft [2006]; Michailovich and Tannenbaum [2006]). It
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is beyond the scope of this article to consider all these
cases and how these distributions transform upon taking
the log of the image. Indeed, many of these distributions
are intractable analytically. Fortunately, in Michailovich
and Tannenbaum (2006), the authors argue that the dis-
tribution for fully formed speckle is a reasonable approx-
imation in these other cases.

Spatial correlation
At this point, we have characterized the image in-

tensity distribution but we have not yet addressed its
spatial correlation, which renders ultrasound as arguably
one of the more challenging medical imaging modalities
with which to work. To understand this spatial correla-
tion, we assume a standard image formation model
where the backscattered signal and the tissue reflectivity
function obey a simple relationship based on linear sys-
tems theory. Under the assumption of linear wave prop-
agation and weak scattering, the IQ image is considered

Fig. 3. Using Rayleigh and Fisher-Tippett distributions to m
Left column: envelope-detected image with region selecte
region, middle-right column: display image with region sel

region. We select regions in the near-field (top ro
to be the result of the convolution of the point spread
function (PSF) of the imaging system with the tissue
reflectivity function, i.e.,

g�x, y� � f�x, y� � h�x, y� � u�x, y� (5)

where g(x, y), f(x, y) and h(x, y) denote the IQ image, the
tissue reflectivity function, and the PSF, respectively. The
additive term u(x,y) describes measurement noise and phys-
ical phenomena that are not covered by the convolution
model. In the equation above, the received IQ image g(x, y)
is considered to be a filtered version of the true reflectivity
function f(x, y). The spatial extent of the PSF is dependent
upon the size of the aperture as well as the frequency of the
ultrasound imaging. Since the PSF is essentially a finite
bandwidth low-pass filter, it imparts non-negligible spatial
correlation to the IQ image. The correlation can be mea-
sured experimentally by calculating the half-bandwidth of
the autocovariance function of the magnitude IQ image, as
shown in Fig. 6. This function has a notable bandwidth

ltrasound image intensities in different parts of the image.
dle-left column: Rayleigh distribution fit to intensities in
ight column: Fisher-Tippett distribution fit to intensities in
id-field (middle row) and far-field (bottom row).
odel u
d, mid
ected, r
indicating the spatial correlation of the data; estimated
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sizes (computed as twice the half-bandwidth) are 4.34
and 2.45 pixels, respectively. Clearly, speckle in any
real imaging situation has significant spatial correla-
tion that should be addressed by an ultrasound seg-
mentation method. Thus, we can improve upon previ-
ous algorithms that assume that the speckle is a white
noise process. To address the spatial correlation, we
first transform the IQ image using a whitening filter
that decorrelates the data, resulting in another IQ
image with pixels that correlate less than the original
image.

Decorrelation
We perform whitening of speckled images Iraca et

al. (1989) by the use of a decorrelation procedure pro-
posed in Michailovich and Tannenbaum (2006), which
estimates the PSF using wavelet methods. Then, it is
possible to suppress the correlation by “undoing” the
effect of the PSF through deconvolution.

The speckle in the processed image has significantly
less spatial correlation, as depicted in Fig. 7; the half-

Fig. 4. Fitting Rayleigh and Fisher-Tippett distributions
For each row, left to right: magnitude image, Rayleigh d

fit to th
bandwidth size has decreased to 2.36 pixels in the lateral
dimension and 1.70 pixels in the range dimension. Vi-
sually, this decorrelated image appears to have a higher
spatial resolution as finer details become apparent. While
there may still exist some residual correlation in the
image after processing, we use the term “decorrelated

Fig. 5. Confidence intervals for the Rayleigh estimator as a
function of number of samples taken from the window shown

erent regions in an ultrasound image of a carotid artery.
tion fit to the histogram, display image, FT distribution
gram.
to diff
istribu
in Fig. 4e.
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image” to describe the image after the decorrelation filter
has been applied.

It is natural to wonder if the decorrelation affects
the intensity distributions. To check, we repeated the
previous experiment of fitting Rayleigh and Fisher-Tip-
pett distributions to histograms formed over the same
soft tissue region in the phantom image. As demonstrated
in Fig. 8, the decorrelation does not significantly affect
the distributions, so we infer that the models are still
suitable after decorrelation.

MAXIMUM LIKELIHOOD REGION-BASED
SEGMENTATION

In this section, we introduce ultrasound-specific
flows for segmentation using region-based active con-
tours. For simplicity, we derive the variational flow for
Fisher-Tippett distributions of the display image. For
this, we derive the maximum likelihood estimator for this
distribution as well as the maximum likelihood region-
based flow for curve evolution for segmentation. Similar
derivations (not presented for conciseness) for the com-
plex Gaussian and Rayleigh distributions (corresponding
to the IQ and envelope-detected image) are performed,
and the resultant estimators and flows are presented. We
show that the Rayleigh flow of Chesnaud et al. (1999);
Sarti et al. (2005) is similar to the zero-mean complex

Fig. 6. The autocovariance function of the selected regio
(a) and the range (vertical) direction (b). The correspon
Gaussian flow for the IQ image.

Fig. 7. Decorrelation decreases speckle size. Original image (a)
n from Fig 3a is shown in the lateral (horizontal) dimension in
and decorrelated image (b).
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In a spirit similar to Chan and Vese (2001), we will
evolve a contour embedded as the zero level set of a
higher dimensional function based on statistical mea-
sures computed both inside and outside the contour. For
this, we will need to estimate a Fisher-Tippett distribu-
tion given a set of samples from the image.

Maximum likelihood Fisher-Tippett estimator
Let I(x, y) denote a pixel intensity in the display

image at the location (x, y). As stated previously, the
Fisher-Tippett PDF for a pixel’s intensity can be written
as

p�I�x, y�� � 2e
1

2�2e�2I�x,y��ln�2�2��e2I�x,y��ln�2�2��, (6)

where �2 denotes the standard deviation parameter of the
reflectivity samples. For a region � in the image, the log
likelihood can then be expressed as

� � �
� �ln 2 �

1

2�2 � 2I�x, y� � ln�2�2�

� e2I�x,y��ln�2�2�� dxdy. (7)

Next, we find an expressi on for �2 that is the maximum
likelihood estimator of the FT distribution, by taking the
derivative of l and setting the expression equal to zero,

��

��
� �

� ��
1

�3 �
4�

2�2 � �e2I�x,y��ln�2�2��
4�

2�2�dxdy � 0.

(8)

Solving for �2 gives

�2 �
1

2

�
�

�e2I�x,y� � 1�dxdy

�
�

dxdy
. (9)

Fig. 8. Previous distributions apply to the decorrelated im
to Fig. 3a and c. The Rayleigh fit to the magnitude IQ d

the log magnitude decorre
Thus, given a region � with area given by �� dxdy, we
can compute the maximum likelihood value of the Fish-
er-Tippett distribution from the image intensities in the
region. We will do this to estimate the Fisher-Tippett
parameter �2 both inside and outside the active contour.
Note that we used this equation to estimate the FT
distributions shown in Figs. 3, 4 and 8.

Fisher-Tippett flow
We would like to deform a curve C in order to

achieve a maximum likelihood segmentation of the
data. Since the log function is monotonic, we can
equivalently maximize the log likelihood Chesnaud et
al. (1999); Sarti et al. (2005), using the probability
inside and outside the curve, Pi and Po. In the display
image, we model Pi and Po with Fisher-Tippett distri-
butions inside and outside the contour, respectively.
Specifically, the data-driven part of the curve evolu-
tion is derived as

�C

�t
� �ln Po � ln Pi�N

� �ln�2e
1

2�o
2e�2I�x,y��ln�2�o

2��e2I�x,y��ln�2�o
2��	

� ln�2e
1

2�i
2e�2I�x,y��ln�2�i

2��e2I�x,y��ln�2�i
2��	�N

� �ln
�i

2

�o
2 �

e2I�x,y� � 1

2�i
2 �

e2I�x,y� � 1

2�o
2 �N, (10)

where N is the outward-bound normal to the curve. As is
typical with curve evolution methods, we add a regular-
ization term designed to keep the evolving contour
smooth, yielding

�C

�t
� �ln

�i
2

�o
2 �

e2I�x,y� � 1

2�i
2 �

e2I�x,y� � 1

2�o
2 � 	
�N,

(11)

where 
 is the curvature, 	 is a constant. Performing

or the region in the middle of the image (corresponding
lated image is shown in (a) and the Fisher-Tippett fit to
Q image is shown in (b).
age f
ecorre
similar derivations for the complex Gaussian case (IQ
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image) and Rayleigh case (Magnitude image), we
present flows for these distributions in Table 1. Note that
the complex Gaussian and Rayleigh flows and estimators
have the same form.

Implementation
The curve evolutions presented above are totally

general in that they apply to any closed contour repre-
sentation, be it a spline, polygon, Fourier descriptor
curve or other such representation. The method requires
an initial closed contour C, which in this article is a small
square positioned by the user. For the region inside C,
we compute the maximum likelihood parameter �i

2 to
characterize the distribution of intensities. Similarly, for
the region outside the contour, we compute �o

2. With
these parameters estimated, we can then move the points

on the contour in the direction specified by
�C

�t
along its

normal direction using the corresponding flow.
We choose to implement the technique using

level set methods, which provide subpixel resolution
and easily accommodate topological changes of the
contour. The level set method models the evolving
curve as the zero-level set of a higher-dimensional
signed distance function, �(x,y), which is negative
inside the contour and positive outside. The values of

�(x,y) are updated as a function of time as
���x,y�

�t
� � F|��|, using a forward Euler numerical scheme,

where F �
�C

�t
·N. For further details, please refer to

Sethian (1999).
In Slabaugh et al. (2006), we demonstrated that

Tabl

Data Data model Paramet

IQ image Comp. Gaussian

�2 �
�

�

Mag. image Rayleigh

�2 �

Display image FT

�2 �
�

�
�e2
for log-compressed images, the Fisher-Tippett flow
produces better results, both qualitatively and quanti-
tatively, than the complex Gaussian/Rayleigh flow.
Intuitively, this result is expected as one should
choose the flow that best matches the data. For log-
compressed images, this suggests that the Fisher-Tip-
pett flow would be optimal. In our results section, we
will compare the Fisher-Tippett flow with two other
popular flows that have appeared in the literature: the
Chan-Vese flow Chan and Vese (2001) and the non-
parametric flow Cremers et al. (2007). To review
briefly, the Chan-Vese flow is based on the means
inside and outside the contour, i.e.,

�C

�t
� ��I � i�2 � �I � o�2 � 	
�N, (12)

where i and o are the means inside and outside the
contour, respectively. The non-parametric flow is given
by

�C

�t
� �ln�pi�I�

po�I��� 	
�N, (13)

where pi (I) and po(I) are the probabilities of a pixel with
intensity I being inside and outside the contour, respec-
tively, determined from Parzen windowing the histogram
of pixels inside and outside the contour, respectively.

RESULTS

In Fig. 9, we show comparisons between the Chan-
Vese, nonparametric and Fisher-Tippett flows for syn-
thetic images with decreasing contrast. The images were
generated using a speckle noise generator, which multi-

ows

ation Curve evolution

��2dxdy

xdy

�C

�t
� �ln

�i
2

�o
2 � �I�x, y��2

2�i
2 � �I�x, y��2

2�0
2 � 	
�N

y�2dxdy

dxdy

�C

�t
� �ln

�i
2

�o
2 � �I�x, y��2

2�i
2 � �I�x, y��2

2�0
2 � 	
�N

1�dxdy

y

�C

�t
� �ln

�i
2

�o
2 �

e2I�x,y� � 1

2�i
2 �

e2I�x,y� � 1

2�o
2 � 	
�N
e 1. Fl

er estim

�I�x, y

2�
�

d

�
�

I�x,

2�
�

I�x,y� �

2�
�

dxd
plies zero-mean complex Gaussian noise to an image and
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then simulates the PSF by convolving with a Gaussian-
weighted lowpass filter. This produced a synthetic IQ
image for subsequent processing. The image in this ex-
ample consists of four light gray targets on a dark gray
background. By changing the background color, we pro-
duced three images with decreasing contrast. For all
three images, the standard deviation of intensities in a
homogeneous region was approximately 23.2 units and
the contrast ratio (CR), defined as the ratio between the
means of the bright and dark regions, was 1.77, 1.55 and
1.4, respectively. Each image was decorrelated, produc-
ing a total of six images. Going from left to right in Fig.
9, the images were the original image with contrast ratio
1.77, its decorrelated version, the image with contrast
ratio 1.55, its decorrelated version, the image with con-
trast ratio 1.4 and its decorrelated version. For each
image, we applied the Chan-Vese (top row of the figure),
non-parametric (middle row), and Fisher-Tippett (bottom
row) flows, using an initialization of a small square (11
� 11 pixels) in the center of the target.

Qualitatively, the results in Fig. 9 show some inter-
esting trends. First, for higher contrast images (left two
columns), all methods perform reasonably well on both
the original image and decorrelated image. This is be-
cause there is adequate separation between the estimated
distributions (as measured by the mean, Parzen-win-
dowed density, or FT parameter) inside and outside of
the evolving contour for the curve to propagate to the
target boundaries. There are a few places in the original
image (leftmost column) where the methods break apart
around large speckles; however, performing a connected
component analysis on the signed distance function, one
could easily remove these. For the lowered contrast

Fig. 9. Comparison of segmentations of synthetically
Non-parametric flow. Bottom row: Fisher-Tippett flow.
image for three decreasing contrasts. For higher contr
contrast, decorrelating the image improves the results sig

Fisher-Tippett flow appl
images (middle two columns), the combination of the
speckle and reduced contrast causes the segmentations
on the original images to get stuck in local minima that
do not match the target boundaries; the evolving con-
tours break apart and follow large speckles, producing a
complex irregular shape. However, on the decorrelated
images, the flows achieve a much better result, and the
Chan-Vese and Fisher-Tippett flows achieve the best
segmentations. For the lowest contrast images (right two
columns), none of the segmentations are successful on
the original image and on the decorrelated image, only
the Fisher-Tippett flow is fully successful in segmenting
the target. The means used in the Chan-Vese flow are not
sufficient for this example, as the contrast is too low.
Also, using the histograms in the nonparametric method
is not ideal, as the histograms overlap significantly due to
the poor contrast. Quantitative results showing the areas
inside the converged contours are presented in Table 2.
The ground truth area is 12868 units. We see that both
qualitatively and quantitatively, the Fisher-Tippett flow
on the decorrelated image produced the best results com-
pared with the other methods.

In Fig. 10, we apply the Chan-Vese (top row), non-
parametric (middle row) and Fisher-Tippett flows (bottom
row) to a tumor phantom image and its decorrelated ver-
sion. This phantom has targets designed to mimic tumors,
which appear with different levels of contrast. Each seg-
mentation was initialized by placing a small contour inside
the target at exactly the same location and size. The seg-
mentation of the brightest target is shown in the left two
columns, for the original and decorrelated images, respec-
tively. As observed with the experiments with synthetic
data, when the contrast is very strong, all methods are
successful in delineating the borders of the target. However,

rated data. Top row: Chan-Vese flow. Middle row:
right: We show both the original and the decorrelated

ages, all methods work reasonably well. For lowered
tly. For the lowest contrast, the best result occurs for the
the decorrelated image.
gene
Left to
ast im
nifican
when the contrast decreases, the statistical modeling of the
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data becomes important. In the second two columns of the
figure, we show the results for the lighter target with less
contrast. Here, decorrelation of the data helps achieve better
results for all the methods but only the Fisher-Tippett flow
applied to the decorrelated image achieves a successful
result.

In Fig. 11, we demonstrate our method on an image
of the carotid artery. As before, we show the Chan-Vese
(top row), nonparametric (middle row) and Fisher-Tip-
pett (bottom row) flows, applied to the original image
(left column) and decorrelated image (right column). We
initialized each segmentation with a small square located
in the left-most side of the artery. The objective is for the
segmentation to expand, to propagate the length of the
artery and achieve a good segmentation. When applied to
the original image, both the Chan-Vese and nonparamet-
ric flows get stuck in local minima and fail to evolve
through the entire artery. However, the Fisher-Tippett
flow in this case, with its better matching statistical
model of the intensity distribution, is able to propagate
the length of the artery. On the decorrelated image, all

Table 2. Areas of the dif

Orig.
CR � 1.77

Dec.
CR � 1.77 C

Chan-Vese 13024 12898
Nonparametric 13037 13051
Fisher-Tippett 12946 12930

Ground truth area is 12868 units.
Contrast ratio (CR) is defined as the ratio between the means of the

Fig. 10. Chan-Vese (top row), nonparametric (middle r
phantom image. Left two columns: segmentation of the
image. Right two columns: segmentation of a target wi
image. When the contrast diminishes, it becomes increasi
appropriate flow for the in
segmentations improve to various degrees. Both the
Chan-Vese and nonparametric flows propagate farther;
however, they still get stuck in a local minima. The best
results for this experiment occur for the Fisher-Tippett
flow on the decorrelated image.

Another example of a carotid artery segmentation is
shown in Fig. 12. As before, we initialize the segmenta-
tion with a small square in the leftmost side of the artery.
On the original image (left column), none of the flows is
able to propagate the entire length of the artery; however,
the Fisher-Tippett flow (bottom row), with its better
modeling of the data, goes much farther along the artery
than the Chan-Vese (top row) or non-parametric (middle
row) flows. On the decorrelated image (right column),
only the Fisher-Tippett flow propagates the entire length
of the artery and achieves a reasonable segmentation for
this data.

We note that all of the flows studied in this article
are region-based flows. One could additionally add
boundary-based terms Kass et al. (1987); Casselles et al.
(1997), which would drive the active contours towards

segmentations in Fig. 9

.55
Dec.

CR � 1.55
Orig.

CR � 1.41
Dec.

CR � 1.41

12753 3713 2380
12484 4881 9782
12831 5049 12486

and dark regions.

d Fisher-Tippett flow (bottom row) applied to a tumor
est target, on the original (left) and decorrelated (right)
contrast, for the original (left) and decorrelated (right)
portant to decorrelate the image as well as use the most
ferent

Orig.
R � 1

2906
5724
6772
ow) an
bright

th less
ngly im
tensity distribution.
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strong edges in the image. However, since the focus of
this paper is region-based image segmentation, we leave
this subject for future work.

DISCUSSION AND SUMMARY

One question that has not yet been addressed is the
following: which of the following produces the best
results: the complex Gaussian flow, applied to the IQ
image, the Rayleigh flow, applied to the envelope de-
tected image or the Fisher-Tippett flow, applied to the
display image? The answer is that all flows produce the
same result. Earlier, we showed that the complex Gauss-
ian flow applied to the IQ image is identical to the
Rayleigh flow applied to the envelope detected image.
The Fisher-Tippett flow applied to the display image,
also produces identical results, as we demonstrate in Fig.
13. The top row shows the result of the Rayleigh flow
applied to the envelope detected image (left) and display
image (right), and the bottom row we show the Fisher-
Tippett flow applied envelope detected image (left) and
display image (right). The Rayleigh flow applied to the
envelope detected image produces the same result as the
Fisher-Tippett flow on the display image. In both these

Fig. 11. Segmentation of a carotid image. Chan-Vese (t
(bottom row). Original (left column) and decorrelated im

flow on the d
cases, we chose the flow that matches the data. However,
the other segmentations are unsuccessful, as the data
does not match the model. More specifically, the result in
the upper right part of the figure models Fisher-Tippett
distributed data with a Rayleigh distribution, and the
result in the lower left part of the figure models Ray-
leigh-distributed data with a Fisher-Tippett distribution.
This experiment emphasizes the fact that one should
choose the flow that best models the data.

In this article, we present ultrasound-specific meth-
ods for image segmentation. Speckle can be difficult to
handle since it exhibits significant spatial correlation and
does not generally follow a Gaussian distribution. Our
method first decorrelates the ultrasound image using a
whitening filter. We then perform maximum likelihood
segmentation using region-based active contours and ei-
ther the complex Gaussian, Rayleigh, or Fisher-Tippett
distribution model, depending on from which stage of the
imaging pipeline the image comes. We have derived the
complex Gaussian flow and Fisher-Tippett flows, and
have shown how the complex Gaussian flow is equiva-
lent to the Rayleigh flow.

In this work, our piecewise constant model assumes
that the image is bimodal mixture of (complex Gaussian,

), nonparametric (middle row), and Fisher-Tippett flow
ht column). The best results occur for the Fisher-Tippett
lated image.
op row
age (rig
Rayleigh or FT) distributions. This model is effective for
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a wide class of image segmentation problems, including
the ones presented in this paper. However, the model can
be extended in several ways. First, a multiphase segmen-
tation approach Vese and Chan (2002), using multiple
level set functions to model different tissue classes can
be used to produce multilabel segmentations. For images
with statistics that vary spatially in a piecewise smooth

Fig. 12. Another example carotid artery segmentation. C
Tippett flow (bottom row). Original (left column) and de

Fisher-Tippett flow
fashion, one could adapt the Mumford-Shah model
Mumford and Shah (1989) for the distributions presented
in this article. However, multiphase implementations and
piecewise smooth modeling of the image statistics are
left for future work.

We believe our method may impact clinical work-
flows that utilize automated computational tools involv-
ing segmentation. One class of such tools is computer-

ese (top row), nonparametric (middle row) and Fisher-
ted image (right column). The best results occur for the
decorrelated image.
han-V
correla
aided diagnosis applications that make measurements of
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anatomical structures. For example, one may be inter-
ested in the overall tumor load in a patient’s anatomy, the
regression or progression of lesions in follow-up scans so
that accurate delineations of tumor boundaries are
known, and automated tools rather than manual outlining
are required for efficiency and repeatability of the anal-
ysis. A similar application would be in image-guided
therapies that rely upon ultrasound guidance, as well as
radiation therapies that require accurate delineation of
lesion boundaries. The application of the method in such
workflows is left for future work. We note that our
method can be extended to three-dimensional image vol-
umes in a straightforward manner since our implicit
framework generalizes to the third dimension by adding
an extra coordinate dimension in the implementation.

In all our experiments, we observed the best results
when when we first decorrelate the image and then apply
the flow that best matches the intensity distribution. We

Fig. 13. Choosing the model that best matches the data.
applied to the envelope-detected image (left) and disp
example on the left but not on the right. In the bo
envelope-detected image (left) and display image (right).
but not on the left. Furthermore, we note that the exam

ident
observe that our ultrasound-specific flows produce better
results than other generic parametric or nonparametric
flows. From these experimental results, we conclude that
the combined decorrelation and statistical region-based
active contour results in improved segmentations. For
future work, we are interested in more comprehensive
validation studies on clinically important cases. Finally,
we believe the theory underlying this article will be
useful in other applications, such as filtering, tracking
and registration; we plan on investigating these topics in
the future.
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