
Transparent Code Authentication at the Processor Level

Ahmet O. Durahim1, Erkay Savaş1, Berk Sunar2,

Thomas B. Pedersen1, Övünç Kocabaş1

1 Faculty of Engineering and Natural Sciences
Sabanci University

Istanbul, Turkey TR-34956

2Department of Electrical and Computer Engineering
Worcester Polytechnic Institute,

Worcester MA, 01609, USA

February 9, 2009

Abstract

We present a lightweight authentication mechanism which verifies the authenticity
of code and thereby addresses the virus and malicious code problems at the hardware
level eliminating the need for trusted extensions in the operating system. The tech-
nique we propose tightly integrates the authentication mechanism into the processor
core. The authentication latency is hidden behind the memory access latency, thereby
allowing seamless on-the-fly authentication of instructions. In addition, the proposed
authentication method supports seamless encryption of code (and static data). Conse-
quently, while providing the software users with assurance for authenticity of programs
executing on their hardware, the proposed technique also protects the software man-
ufacturers’ intellectual property through encryption. The performance analysis shows
that, under mild assumptions, the presented technique introduces negligible overhead
for even moderate cache sizes.
Keywords: Code authentication, stream cipher encryption, message authentication
codes, universal hashing.

1 Introduction

The protection of computer systems from tampering and malicious code has become a major
goal in recent years due to new business models that require a strong trust base in open
personal computer systems. To cite a few, electronic commerce, electronic government, and
online Banking require the handling of highly sensitive information. The lack of a root for
trust in computing systems and the shear complexity of software systems, e.g. operating

1

system (OS), prevents solid security schemes from being developed and deployed. Therefore,
the establishment of trust in computing systems remains the major obstacle preventing
widespread adoption of such key technologies.

To bring trust into computing systems is a sophisticated paradigm. The Trusted Plat-
form Module (TPM) [41] was developed by the Trusted Computing Group as a standard for
trust in computing. Despite the rapid advance in the standard achieved by strong backing of
major device manufacturers and software providers, the techniques proposed in the standard
provide only very general high level descriptions of the security and at this point do not con-
sider performance related issues such as operational efficiency and architectural integration.
For instance, a popular means for verifying an execution environment (attestation) is to
compute the hash of a program and/or data (state of a program). The computed hash value
which is stored in TPM’s Platform Configuration Registers (PCRs), are signed by the private
key in the TPM to generate a quote. As shown in [32, 33], the performance of any operation
involving TPM suffers significantly. Although initial or occasional use of the facilities of the
TPM can be afforded, the heavy computational and communication (between processor and
the TPM) burden eliminates the possibility of “on-the-fly” use of the TPM. Clearly, the
solution is to integrate vital security mechanisms into the processor architecture; essentially
embedding some of the TPM functionality (and possibly more that cannot be provided by
the TPM) into the processor architecture. Some of the security mechanisms which have been
proposed to embed in the processor are memory encryption, memory authentication, and
code authentication.

Though memory and code authentication are closely related issues, there are important
differences between the two. A memory authentication technique guarantees that memory,
which may be under the control of an adversary, behaves as valid memory. Memory au-
thentication, however, cannot detect if programs which run (legitimately) on the processor
modifies data and/or code accidentally or maliciously. It is the role of code verification to
guarantee that only “certified” programs can run on the processor, and that no program
can, accidentally or otherwise, modify the code of itself or other programs. In this paper we
propose a new, efficient method for code authentication.

Before and during the Trusted Computing initiative, less comprehensive schemes were
proposed. In an earlier work, Chevallier-Mames et al. [9] proposed to employ a just-in-
time delivery scheme of code which would eliminate the code tampering problem as the
executed code would always be fresh, delivered just-in-time when needed and then verified
and executed. This idea would address many of the security challenges we face today in
embedded systems security. However, this new model brings new problems with it. The
most critical one is performance. Most importantly, the latency introduced right before
the execution will be unacceptable for most interactive users unless performed under the
“one second” threshold. To overcome this obstacle, the authors advocate the use of fast
secret-key algorithms over public-key schemes, and propose thread-level batch verification of
instructions. Nevertheless, the reference does not give performance measures or a detailed
architectural level description on the feasibility of the proposed scheme.

Similar security features have been studied in the computer architecture community as
well. For instance, the Aegis architecture [39] aims to provide memory encryption and
tamper resilience by instruction verification. The model proposes two different architectures
differentiated by whether the OS is trusted or the trust is confined within the boundaries of

2

the chip.
In [19] Gassend et al. propose a memory authentication scheme based on Merkle trees

[34] to authenticate an arbitrarily large untrusted RAM memory. In [11] Clarke et al. pro-
pose a scheme which keeps the hash values of (logs of) all read and write operations. The
memory can then be authenticated off-line by comparing the logs with the actual content
of the memory. Furthermore, in [12] Clarke et al. propose a hybrid protocol with the aim
of balancing the drawbacks and benefits of the previously mentioned two protocols. The
overhead of this scheme tends to a constant as the number of instructions between critical
instruction grows. We will later on discuss the connection of these works to the proposed
authentication scheme.

In another work Yang et al. [43] focus on the related problem of achieving encrypted
memory. The work provides more detail at the architectural level and achieves to hide
much of the encryption latency behind the memory access cycles by utilizing a stream cipher
like scheme. Despite the novelty of the design, the downside of this work is that there is
no mechanism to prevent or detect tampering with the memory. In fact, if no additional
steps are taken for integrity verification the proposed scheme is vulnerable to straightforward
manipulations by an attacker. That is, the attacker may freely flip bits in encrypted memory
which are translated to bit-flips in the plaintext (due to the stream cipher approach) with
disastrous results. The paper proposes to use the hash tree based verification technique
introduced earlier by Clarke et al. [11] to bring cryptographic integrity checks into their
encryption technique. However, no treatment is given on whether this would be achievable
without re-introducing the latency which the paper wanted to shift off the critical path in
the first place. Another inconvenience of this approach is that it makes use of so-called
sequence number codes which are used to eliminate the information leakage that occurs
when the same memory location is modified and re-encrypted. Information leakage occurs
due to re-encryption of the same memory block with essentially the same seed (or key)
which means that the XOR-difference in the ciphertexts will reveal the XOR-difference of
the plaintexts. Despite these shortcomings the work provides an innovative idea, i.e. hiding
the encryption/decryption latency behind the access latency. The same idea was successfully
applied to memory authentication and encryption in [42], that combines Galois Counter
Mode of operation with Merkle’s tree approach.

The main argument for moving memory and code verification away from the TPM is
performance. The general purpose nature of the TPM makes it difficult to give efficient
implementations. We claim that the best performance is obtained by treating memory and
code verification separately, thus being able to optimize the methods for the different issues
that arise in the two problems. Memory authentication needs to handle changes in data, but
does not need to verify the origin of the data (it is written by the processor anyway). On
the other hand, code authentication can use the fact that code is static, but has to ensure
that it is the intented code.

In this paper we propose an efficient method for run-time authentication of code and static
data. The proposed technique achieves to hide the bulk of the verification complexity behind
the memory access latency. Our scheme relies on stream ciphers and universal families of hash
functions. It is modular, so that the cipher and/or hash function can be easily substituted.
We discuss how our code authentication scheme can be used in a number of scenarios with
different security requirements. The security of the scheme is thoroughly analyzed. Finally,

3

we present a performance analysis which shows that the presented technique introduces
negligible overhead when caches of moderate sizes are employed.

2 Authentication in the Stored-Program Model

In the stored-program paradigm, the executable part of a program (i.e. instructions) along
with data are stored in a single structure. This abstraction is realized physically in the
main memory by modern day computers. The processor requests the instruction block to
be executed by supplying its starting address to the memory. The memory provides the
instructions as requested. The memory also stores and supplies data, which can either be
generated statically by the software publisher or dynamically by the program itself while
in execution. Both instructions and data need to be authenticated for safe execution of
programs in the processor.

The main memory is a place where many different programs and their associated data
co-habit and therefore it is a particularly insecure place where instructions and data are
subject to modifications by unauthorized parties and malicious programs. It is true that
most computers employ some protection mechanisms that prevent programs from intervening
address spaces of each other. However, the protection mechanism is enforced by the OS,
which is overly complex and not necessarily a trusted piece of code. Hence, it is reasonable
to assume that instructions and data can be modified during program execution.

The processor on the other hand, is commonly assumed to be a safe place once the
instructions are brought from memory. The instructions and data are first put in an on-chip
memory known as cache memory, whence the instructions and data are fetched for execution.
The rationale behind believing that processor is a safe place for instructions and data is
that no instruction can contaminate the instructions and data in the cache. Contaminated
instructions and data are easily detected in our scheme since any update in the cache requires
verification of the updated cache block before the execution of the instructions in the block1.

In the program authentication model we propose, the instructions arrive in the cache
along with their authentication tags, which are verified before they are executed. Instructions
are transferred between the main memory and processor cache in groups, known as cache
blocks or cache lines. While the instruction length varies from one byte to 17 bytes in
contemporary processors, a typical length of cache block ranges from 8 to 512 bytes. In
the proposed scheme, all the instructions in a cache block rather than a single instruction
as suggested in [9] are used to generate an authentication tag. This approach has two
advantages:

1. verification is faster, and

2. less overhead is incurred during the transfer of the tag from memory to the processor.

It is true that the proposed technique implies a small and modular modification to mi-
croprocessor core and that any modification to hardware is much harder than any modifi-
cation to the software (more precisely to the OS where the most of the software protection

1Other non-invasive attacks (e.g. fault induction) to contaminate the instructions in the cache can be
thwarted using other means such as adversarial fault tolerant computing techniques (e.g. error detection); a
vast topic which is beyond the scope of this paper.

4

mechanism is implemented). It is, all the same, certainly relevant and we strongly believe
unavoidable, to explore these modifications since a software-only approach is proved to be
inadequate for providing a proper security and trust. Furthermore, there is a strong per-
ception that security, trust (and perhaps privacy) must be taken into account as design
parameters in early stages of microprocessor development. Major microprocessor companies
already introduced new technologies [15, 13, 3] that provides hardware support for security
and trust. Similarly, many research groups have long been working on hardware modifica-
tions for providing security, trust, and privacy as an integral part of the microprocessors
[44, 30, 12, 19, 11, 43, 9, 39].

In summary, the processor and main memory in the computer system are tied to each
other through the instructions and data of a program and the former does not trust the
latter. Restricting code verification within the boundaries of the CPU minimizes the trust
base. This has significant consequences, as the OS no longer needs to be trusted. In fact,
the operating system itself as well as the device drivers and the BIOS software, and virtually
any piece of code can be authenticated on-the-fly.

The integrity of the instructions should be verified transparently with unnoticeable delay
to the end user. For ease of use, convenience, and better scalability, signature schemes based
on public key cryptography (PKC) seem to offer certain advantages. The key distribution
problem is less of a concern, since the verification is realized using public key of the software
owner or trusted software repository. Public keys, either stored in software or embedded in
hardware, do not cause a security breach when they are compromised. But their authenticity
must be validated using certificates, prior to verification. Nevertheless, there are two impor-
tant factors that prohibit us from using PKC in code authentication: public-key signatures
are too long, and public-key signature verification is slow. While long public keys can be
tolerated up to a certain extent, high verification time is definitely unacceptable for on-the
fly code authentication. Only symmetric cipher based authentication can provide both short
authentication tags and fast (on-the-fly) verification of instructions.

In our scheme we utilize efficient Message Authentication Codes (MACs) [38, page 140]
built using universal families of hash functions due to their high encryption throughput and
short authentication tags. In addition to the performance benefits, MACs constructed using
universal families of hash functions allow the designer to quantify the security level precisely,
thus eliminating needs for performance degrading margins.

3 Alternative Protocols for Generation of Authentica-

tion Tags

None of the techniques for memory encryption/authentication proposed in [30, 43, 39, 11,
19, 12] addresses the issue of initial generation of the authentication tags and of cipherexts
for instructions and static data. This concern is closely related to trust in computing since
the user should be able to verify the authenticity of data and instructions before she uses
them for the first time. The issue can be reduced to key distribution as the aforementioned
techniques use a secret key for encryption and integrity check. Here we discuss several
alternative scenarios along with the classical approach for key distribution (or more precisely

5

tag generation) in the proposed scheme for software authentication. Unfortunately, there is
not one single technique that can be used in all application scenarios where their requirements
and constraints differ. Application developers and architects should choose a particular
technique depending on these requirements and constraints.

Since the proposed code authentication technique utilizes a symmetric encryption to
generate and verify the authentication tags, those parties which generate and verify the tags
should be in possession of a secret key. However, distribution of the secret keys to involved
parties is a major problem. In the classical setting, there are two parties in the authentication
architecture: the software producer who owns the intellectual rights of the software and the
software user who wants to execute the software on his/her hardware in an authenticated
way. The two parties share a secret key, K, that the software owner uses to generate the
authentication tag, T (P,K) for the program P . The secret key, K, may also be implemented
in the user’s processor by the hardware manufacturer to prevent the user from sharing the
authenticated software with other users. The secret key can be unique either to a single
user or to a group of users. Clearly, this will be less desirable to the user who has to trust
the software owner. This technique can majorly be used in special-purpose processors such
as those in game consoles and embedded processors deployed in automobiles where software
producer is in complete knowledge of the hardware.

Software

Owner

Software

User

Share

secret key

K

P

Trusted

Software

Repository

Register

Software

T(P, K)

Figure 1: Authenticated Program Distribution Protocol based on a Trusted Software Repos-
itory

Another scenario illustrated in Figure 1 can help remedy the aforementioned concerns
by involving the use of so-called trusted software repository (TSR). The TSR is responsible
for generating authentication tags for the programs. The software owners register their soft-
ware products with the trusted software repository, which inspects and stores the registered
programs in its local database. Note that the repository does not have to store the entire
program, but a representative of it, e.g. its hash in case the storage is of a concern. The
repository shares secret keys with users and generates authentication tags for a specific pro-
gram registered in the local database upon request by a user. The user first has to prove to
the repository that it is indeed a legitimate holder of the program. The repository checks
whether the program in question is identical to the one in the repository by comparing the
hashes of the programs. If the first two steps are in order, the repository generates an

6

authentication tag T (P,K) for the program P and sends it to the user. If the bandwidth
between the user and the TSR is a concern, the TSR can only send, for instance, the hash of
the all tags concatenated. The user generates all the tags for the program blocks herself and
checks their integrity using the hash value she received from the TSR. This method can also
be used in the other schemes described in this section and can help reduce the bandwidth
requirements in case of software updates and fixes.

One concern with the centralized approach is that the TSR may quickly become communi-
cation and computation bottlenecks. This concern can easily be addressed using replication.
The proposed protocol requires an infrastructure but otherwise does not require any changes
to the OS loader and no changes other than the authentication mechanism itself to the pro-
cessor core. Although the technique provides a sound alternative for code authentication in
general-purpose hardware it entails a trusted party whom the users must have complete con-
fidence in; a situation some users may find discomforting due to privacy and trust concerns.
On the other hand, the trusted party model and its variations [21] play a fundamental role
in many cryptographic protocols. Thus, the TSR-based solution can be employed in code
authentication whenever such a party exists.

The two techniques outlined above have one more shortcoming in common besides the
aforementioned concerns: privacy. Zhang et al. in [44] pointed out that user privacy is an
important issue even in the otherwise secure and trusted systems. Their solution is based on
an architectural modification similar to our approach in this respect. One possible solution
to privacy problem that will protect users against third parties tracking their activities is to
utilize public key cryptography. The software owner signs its software using its private key
and sends the software and the signature to the legitimate user who authenticates herself
without revealing her true identity2. Upon downloading the software, the user, knowing
the public key of the owner, verifies the software with the available trusted base (previously
verified trusted — and authenticated — signature verification program or a TPM). During
the verification process, the processor fetches the blocks of the software one by one starting
from the first block. As it verifies the code using public key cryptography, the processor can
generate authentication tags for blocks using the secret key; this is possible since tag gen-
eration and verification processes are identical. The proposed authentication infrastructure
inside the processor which can verify authentication tags is also capable of generating tags
without any modification. Consequently, neither the user reveals her identity nor the secret
key leaves the trusted hardware. The techniques in [30] and [31] can be used for generating,
protecting, and managing the secret key inside the processor. Although the tag generation
by the user may incur high latency, it needs to be performed only once during the installation
of the program and therefore the latency can be tolerated.

4 Details of the Code Authentication Procedure

In our scheme we make use of efficient MAC’s to ensure the integrity of individual blocks
of a program. The MAC is obtained by the application of a hash function picked randomly

2The user can employ group or ring signatures or group keys as suggested in [44] to prove that she is
one of the legitimate users. Any further discussion of anonymous authentication is beyond the scope of this
work.

7

from a universal family of hash functions on the message, followed by the generation of the
tag by encryption via a stream cipher.

Aj+1

Aj

Lj+1

Lj

program

blocks
Virtual

Address Program ID

 (I)

Mj Universal

Hash

Function

KU = (k1, ..., kn)

Stream

Cipher

Aj KTI

T

Cryptographic

Tag for Lj

Lj

Aj

Figure 2: Cryptographic (authentication) tag generation

The steps taken in the generation of authentication tags, illustrated in Figure 2, are
summarized as follows:

• Key Distribution One of the critical phases of the authentication mechanism is
the distribution of the authentication keys. For authentication, we need two keys:
KU ∈ {0, 1}m which is used in the universal hash computation of the message block,
and KT ∈ {0, 1}k which is used in the encryption mask generation through the stream
cipher. Here k denotes the length of the key which will be used for the stream cipher.
In the TSR-based scheme proposed in Section 3 the infrastructure eliminates the need
for the user to obtain a key. The TSR creates the software authentication tags. The
key is pre-built into the processor core. Hence, the TSR and the processor core share
keys by pre-distribution. Furthermore, for tamper-resilience the key may be tied to
the hardware by means of physically one way functions [31].

• Software Preparation The software (or rather a program since it is executable) P is
partitioned into program blocks3, Lj ∈ {0, 1}l. The program has a unique identification
number, I ∈ {0, 1}i and each block has an address4 specifying the placement of the
block in the memory, Aj ∈ {0, 1}a. The message to be signed is Mj := (Lj||I||Aj) ∈
{0, 1}m, where m = l + i + a and || stands for the concatenation operation.

• Digest Computation Several efficient cryptographic hash functions have been pro-
posed in the literature [8, 7, 29, 5, 26]. Universal hash functions, were first introduced
by Carter and Wegman [8]. Roughly speaking, universal families of hash functions are
collections of hash functions that map messages into short output strings such that the
collision probability of any given pair of messages is the same as for a randomly chosen

3A program block is mapped into a cache block which is the smallest amount of information transferred
between the processor and memory.

4Virtual address of the block must be used since the physical address cannot be known at this stage.

8

function. A universal family of hash functions can be used to build an unconditionally
secure MAC. For this, the communicating parties share a secret and randomly chosen
hash function from the universal family of hash functions, and a secret encryption key.
A message is authenticated by hashing it with the shared secret hash function and then
encrypting the resulting hash using the key. Carter and Wegman [8] showed that when
the family of hash functions is strongly universal, i.e. a stronger version of universal
families of hash functions where messages are mapped into their images in a pairwise
independent manner, and the encryption is realized by a one-time pad, the adversary
cannot forge the message with probability better than that obtained by choosing a
random string for the MAC.

We use the hash function PR (NH-polynomial with reduction) proposed in [26] to
generate message digests (or representatives) for our software blocks, Mj. The method
for hashing, which is proven to be universal on n equal-length strings (indicating that
collisions cannot be forced to occur too often), is easy to use, and being based on binary
polynomial operations in GF (2w) is easy to implement. Galois field GF (2w) also known
as binary extension field is constructed using a binary irreducible polynomial of degree
w, p. The elements of of GF (2w) are all the binary polynomials whose degrees are
smaller than w. The arithmetic in GF (2w) are regular polynomial arithmetic with an
additional reduction step by the irreducible polynomial (noted as (mod p)) whenever
the degree of the result is larger than or equal to w. Since the carry propagation is not
an issue in GF (2w) arithmetic, any constructions utilizing binary extension fields are
preferred for its speed and small area.

The software block Mj is written as a vector Mj = (m1,m2, · · · ,mn), where ml’s are
w-bit long and are considered as elements of GF (2w) for the hash computation. The
digest is computed using a hash function chosen randomly from the family of hash
functions PR as defined below.

Definition 1 [26] Given Mj = (m1,m2, · · · ,mn) and K = (k1, k2, · · · , kn), where ml

and kl ∈ GF (2w), for any even n ≥ 2, and a degree-w polynomial p irreducible over
GF (2w), PR is defined as follows:

Dj = PRK(Mj) =
n/2
∑

l=1

(m2l−1 + k2l−1)(m2l + k2l) (mod p) .

In summary, as a result of message digest computation, a w bit message digest, Dj, is
obtained for an m bit program block, which is the concatenation of instruction block,
block address, and program identification number in encrypted form and w < m

• Cryptographic (Authentication) Tag Computation: The tag is computed as
Tj = Dj ⊕ RT where the pseudo-random pad RT is the block output of the utilized
stream cipher, i.e. RT = SC(KT , A, I). The lengths of Tj, Dj and RT are naturally
identical. The generated cryptographic tag is stored in memory as explained in Sec-
tion 6.

9

Cryptographic tag generation is performed off-line and therefore does not constitute a
performance bottleneck. The software validation process, explained below, is performed on-
the-fly while the instructions are fetched from the memory, and thus naturally raises concerns
of performance degradation. However, we show that almost all computation during software
validation can be done in parallel to the memory access operation.

4.1 Software Validation

Lj+1

Lj

Memory

Physical

Address Program ID

Universal

Hash

Function

K
U

= (k
1
, ..., k

n
)

Stream

Cipher

A
j K

T
I

Tj

Address(Tj)

Processor

Virtual

Address

 A
j

Lj

I

Mj

Memory

Manager

Tj
= ?

PAj

PAj

R
T

Figure 3: Validation of software blocks

The outline of software validation is illustrated in Figure 3. When a memory request for
an instruction block goes out, the memory access latency is used to generate the pseudo-
random pad RT with the stream cipher SC(KT , A, I). The existence of extremely fast im-
plementations of stream and block ciphers justifies the assumption that sufficient pseudo-
random bits can be generated for an instruction block [36, 27, 18, 2] in the time it takes
to perform a memory access, i.e. the memory access latency. The resulting pad RT is
accumulated in a register within the processor.

As instructions are retrieved from the memory into the CPU, they are incrementally
hashed using the fast universal family of hash functions. Each incremental hash operation
consists of only two additions and one multiplication in GF (2w) which can be performed
extremely fast. After the last block is hashed, the accumulated tag value is computed as
Tj = PRKU

(Mj)⊕RT . The tag Tj computed in the authentication unit must be identical to
the tag that are fetched from the memory, in which case the verification is accomplished. As
long as the latency of an incremental hash computation operation can be hidden behind the
memory access latency, the verification operation will run concurrently. The result of the
verification as well as the instructions will be ready right after the last block is brought in
from memory and incrementally hashed. Hence, the overhead introduced by this step, is in
the retrieval of the authentication tag from memory and in the latency of the last incremental

10

hash and XOR computations. The latter incurs insignificant overhead, i.e. 1 clock cycle,
compared to the overhead due to the former5. The overhead introduced due to both factors
is studied in Section 7.

When an instruction block along with its authentication tag, (Mj, Tj) is received, the
authentication circuit that is built into the processor first computes the digest PRKU

(Mj) as
defined above, where Mj := (Lj||I||Aj) and Lj, I, and Aj are program block, program ID,
and block address, respectively. The circuit checks whether the tag verifies and decides to
execute (or not) accordingly, as shown in Figure 3.

4.2 Encryption of Software Blocks

The proposed scheme provides only integrity for program blocks in order to prevent unau-
thorized pieces of software from executing in the processor. However, we can easily enhance
our scheme with encryption to protect the IP of software manufacturer. The executable
code can be kept in encrypted form in memory. Using the stream cipher approach in [43],
the computation time for encryption and decryption operations can be hidden behind the
memory access latency. The only concern is whether a sufficient amount of pseudo-random
pad can be generated during the memory access. The number of pseudo-random bits re-
quired for encryption depends on the size of the instruction block. Assuming we partition the
software using the cache block size, the number of bits required for encryption/decryption
can be as many as 512 bytes. The number of bits required for the authentication procedure
explained above, on the other hand, are only 16 bytes (128 bits) for an acceptable level of
security. Fast stream and block cipher implementations [36, 27, 18, 2] justify the assumption
that the required number of pseudo-random bits can be generated during the memory access
operation.

5 Security Analysis

We follow the strategy developed by Krawczyk in [29]. That is, given a message M authen-
ticated by the tag t = h(M) ⊕ r where h is randomly selected from some family of hash
functions and r denotes a random string, the adversary should not be able to find M ′ (6= M)
and t′ such that t′ = h(M ′)⊕ r with non-negligible probability6. Here it is assumed that the
adversary knows the description of the family of hash functions but not the chosen h or r
values. In this scenario Krawczyk defines a family of hash functions to be ε-AXU (almost-
XOR-Universal)7 if it resists such an attack with probability larger than ε. The following
theorem quoted from the same reference establishes the necessary and sufficient condition
to obtain such a MAC.

5“Early-start” and “critical-word-first” techniques cannot be applied in the proposed scheme since the
processor waits for the entire block to execute the requested instruction, which may arrive earlier.

6The symbol ⊕ denotes the parallel bitwise exclusive-or operation.
7The reference by Krawczyk uses instead the terminology ε-otp secure. We prefer to use the equivalent

but more common terminology, i.e. ε-AXU in the text.

11

Theorem 1 A necessary and sufficient condition for a family H of hash functions to be
ε-AXU is that for all M1 6= M2 and c of w-bit constant,

Prh[h(M1) ⊕ h(M2) = c] = ε .

In the same reference, Krawczyk introduces an LFSR-based universal family of hash functions
which is proved to be ε-AXU. In practice, any ε-AXU family of hash functions may be
used in the code authentication scheme proposed in this paper, as long as it is possible to
build a circuit with reasonable footprint which will hash a block of code, in less time than
the memory access latency. Here we use the PR universal family of hash functions, since
reference [26] gives detailed hardware implementation results which gives hard evidence that
this performance condition will be met by this family of hash functions.

Although not shown in the original reference, the universal family of hash functions PR

may be easily shown to be ε-AXU (cf. Appendix).

Theorem 2 For any even n ≥ 2 and w ≥ 1, PR[n,w] is ε-AXU on n equal-length strings,
for ε = 2−w.

As a direct consequence of Theorems 1 and 2 the family of hash functions PR is ε-AXU.
This means that the MAC obtained by computing T = PRK(C)⊕RT is ε-AXU secure with
ε = 2−w when RT is randomly chosen and used only once. Alternatively, if RT is generated
by a pseudo-random number generator (or stream cipher), the security of the MAC rests on
the security of the pseudo-random number generator.

Finally, we would like to note that there is an implicit benefit of using universal hash
functions in this application. Since the security level can be quantified through the ε value,
the length of the authentication tag can be precisely optimized to be minimal for a required
security level. For instance, for practical applications ε = 2−80, or in other words a 80-bit
authentication tag per cache line should suffice to provide an acceptable level of security.
However, we use 128-bit authentication tag per cache line in order to demonstrate the effi-
ciency and feasibility of our scheme for even a higher level of security.

6 Processor and Memory Organization

The processor and memory organizations need to incorporate small changes in order to
support the proposed model for authenticated code execution. Figure 4, depicts a generic
memory organization adopted from common MIPS processors, where GP and PC stands
for global pointer — for easy access to static and global data — and program counter,
respectively. For easy access, the authentication tags are placed next to the data segment.
The order of the tags is the same as the instruction order in the memory. The address of the
tag of the first instruction is kept in a special purpose register, named here as tag pointer,
in short TP . Inside the processor architecture, as depicted in Figure 5, in addition to TP ,
a small memory (named as authentication cache) is kept for storing authentication tags,
and an authentication unit is included for validation of instructions. The authentication
cache contains authentication tags of instruction blocks, and is assumed to be of the same
size as one cache line. The authentication cache uses the same working principle as the

12

Hidden

Stack

Heap

Tag Segment

Data Segment

Text Segment

Reserved

PC

GP

TP

Figure 4: Memory Organization

instruction/data cache. When an instruction is to be authenticated, its tag is searched in
the authentication cache first; in case it is not found in the authentication cache, the current
content is evicted and the required authentication tag block is fetched from the memory.
We assume that a memory block (which resides in one cache line) is the smallest amount
of information transferred between the processor and the main memory, independent of the
type of information (i.e. instruction, data, or authentication tag). Therefore, a program
block is identical to a block of instruction cache.

The authentication unit inside the processor, which incorporate a stream cipher SC and
other necessary circuit, computes the authentication tag, as the instructions arrive in the
instruction cache in a cumulative fashion. The computed tag for the instruction block is then
compared against the tag in the authentication cache. If they match, all the instructions in
the cache line are considered as authentic and ready for safe execution.

If the authentication fails, the action taken by hardware or software (e.g. the OS) de-
pends on the application. The safest method is to terminate the program execution entirely
in security-related applications. If the program has the privilege of accessing sensitive in-
formation (e.g. secret keys, private information), it is best to prevent the execution of any
untrusted instruction since the damage can be irreversible otherwise. On the other hand,
there may be some other applications where we can just discard the results in case the pro-
gram that generates the results fails to authenticate in a certain instruction. In this case, the
program does not have to be terminated; but a flag may be set to indicate an authentication
failure.

While requested instructions are accessed through PC (program counter), the correspond-

13

 Authentication

 Cache Authentication

 Unit

 Instruction

 Cache
 Datapath

 MMU

PC

TP

Memory

Memory

Combinational

 Logic

Secret Key

 K

Figure 5: Processor Architecture

ing authentication tags are accessed using both PC and TP. TP is initially set to the address
of tag for the first instruction block. As the PC is updated (either incrementing it by 4 or
branch/jump target address), TP is updated using the formula

TP := TP +
⌊

PC

nI × nT

⌋

,

where nI and nT are the number of instructions and number of authentication tags in a
cache line, respectively.

7 Performance Analysis

In this section we demonstrate the efficiency and practicality of our scheme employing the
standard clock-cycle per instruction (CPI) metric as a basis for our performance analysis
with 128-bit authentication tags per cache line for a good security level. In this section,
we compare the performance of the authenticated architecture w.r.t. a base model which
simply stands for a regular processor architecture without the proposed code authentication
feature. As described earlier, although the proposed design applies on virtually any processor
architecture, we base our analysis on a standard RISC architecture with five pipeline stages:
IF (inst. fetch), ID (inst. decoding), EX (execute), MEM (memory access), WB (write
back).

The performance parameters related to the software profile are given in Table 1.
Similarly, architectural parameters determined by the organization of the processor and

memory system are enumerated in Table 2. cAR stands for the elapsed time between when
the first word of data appears at the memory output and the address is sent to memory.

14

Table 1: Performance parameters related to software profile

Parameter Definition

fL Frequency of load instructions

fD Frequency of data dependencies caused by load instructions

fR Frequency of data dependencies caused by load instructions
and resolved by reordering

fB Frequency of branch instructions

fJ Frequency of jump (unconditional branch) instructions

fTaken Percentage of branch instructions that are taken

This parameter primarily depends on the memory technology and the size of the memory.
cT represents the time required to transfer an entire block of instructions from the memory
output through the bus into the instruction cache after address resolution. This parameter
depends on the size of the instruction block and the bus width.

Table 2: Architectural parameters

Parameter Definition

cAR Time spent (in number of clock cycles) for address resolution

cT Time required to transfer an instruction block from the memory to cache

nI Number of instructions in a cache line

nT Number of tags in a cache line

fMP Percentage of branch mispredictions

The Base Model

The equation modeling the CPI in the base model is given as

CPI = 1 + CL + CB + MRI × MPI + MRD × MPD .

The term CL represents the overhead contributed to the CPI due to data dependency asso-
ciated with load instructions, i.e., when a data load instruction is followed by an instruction
that uses the result of the load instruction causes a delay in many common processor archi-
tectures. Here we assume that in the five-stage pipelined RISC architecture the delay is one
clock cycle. This assumption is based on the fact that, in the pipeline that employs data
forwarding from the MEM stage to the EX stage, it is sufficient that the next instruction
stalls for one clock cycle in the ID stage. The majority of such dependencies are resolved
by reordering of the instruction by the compiler. Still we can formulate the effect of data
dependency related delays in the analysis as

CL = fL × fD × (1 − fR) .

15

The term CB represents the overhead contributed to the CPI from branch mispredictions.
We assume the RISC architecture includes a simple branch prediction scheme of assume-
not-taken, where the branch outcome is resolved in the ID stage. Therefore, one clock cycle
is lost on misprediction.

CB = fB × fMP

The product MRI × MPI stands for the latency incurred in instruction cache misses. The
term MRI stands for the instruction cache miss rate and depends on the size of the in-
struction cache as well as on the statistics of the branching distance of the software profile.
The miss penalty, MPI , represents the number of clock cycles needed to bring a block of
instruction from the main memory to the instruction cache. Similarly, MRD ×MPD stands
for the latency incurred in data cache misses. MPI (or MPD) has two components: ad-
dress resolution and the transfer of the instructions through the bus into the cache. Hence,
MPI = cAR + cT . The most explicit form for the CPI is given as follows

CPI = 1 + fL × fD × (1 − fR) + fB × fMP + (MRI + MRD) × (cAR + cT) .

where we assume that instruction and data caches have the same configurations.

The Authenticated Processor Model

The CPI performance of the processor architecture that also includes an authentication unit
is modeled as

CPIAuth = CPI + CAuth .

The overhead caused by the authentication is broken down as follow

CAuth = 1 × MRI + MRI × MPI × factor

where factor represents the rate of authentication (cache) misses while the first term accounts
for the overhead due to one extra clock cycle to compute the final step in the cryptographic
tag calculation. Authentication misses are closely related to instruction flow during program
execution and minimized for sequential execution. Control flow instructions (e.g. branch
and jump) occasionally change instruction flow which results in higher miss rates for both
instruction and authentication caches. Since authentication cache can contain more than
one tag, it sometimes does not miss even if there is an instruction cache miss8. The term
factor represents the fraction of instruction misses that also result in an authentication cache
miss.9

The range of instructions, whose tags are in the same authentication block, is hereafter
called window of instructions. The number of instructions in a window can be calculated
using the simple formula nT × nI . We can categorize the authentications misses depending
on their cause, therefore obtain a more refined formula for factor as follows:

factor = factorSE + factorB + factorJ .

8We assume that the smallest cache block is 128 bit.
9The case that instruction cash hits while authentication cache misses does not entail fetching the au-

thentication tag from memory. Instructions found in the cache must have been already authenticated and
hence trusted.

16

The term factorSE represents the number of authentication misses during sequential exe-
cution of the instructions. Namely, the first instruction in a window always result in an
authentication miss even if there are no branch or jump instructions. The formula to calcu-
late factorSE is derived by discarding the jump and taken branch instructions:

factorSE =
1 − fB × fTaken − fJ

nT × nI

.

A branch instruction, when taken, causes an authentication cache miss when the target
instruction is beyond the current window of instructions. Therefore, not all taken branches
result in an authentication miss since the target instruction can be in the current window of
instructions. We use the term branch distance (BD) to denote the difference in the address of
the current instruction and the address of the target instruction. Similarly, branch offset b is
the number of bits that encode the distance in the branch instruction, i.e. b = dlog2(BD)e.
The statistics given in [22] shows that the majority of the branches are to relatively close
locations, where the branch offset can be captured with only 7-8 bits. Consequently, whether
a branch instruction leads to an authentication cache miss depends on both the branch offset
and the position of the branch instruction in the instruction window. For instance, a forward-
taken branch, which is placed near the end of the window, will cause an authentication cache
miss with a very high probability.

The probability that a branch instruction causes an authentication miss increases in
proportion to the increase of the branch offset. When the branch offset is for example b = 2,
the branch displacement will be at most 4, and therefore the last four instructions10 may
cause an authentication cache miss if they are forward-taken branches. Using all branch
offset values in PC-relative addressing common in RISC processors, i.e. n = 1 . . . 15, we
can derive a formula that gives the probability that an instruction causes an authentication
cache miss as follows:

factorB =
15
∑

b=1

fB × fTaken ×
min(2b, nI × nT)

nI × nT

× fb(b),

where fb(b) represents the percentage of all branches whose branch offset is b-bits11.
Unconditional branch instructions, including function calls, are usually referred to as

jump instructions and therefore are always assumed to cause authentication cache misses.
Therefore, we have factorJ = fJ .

The MIPS dynamic instruction mix for five SPECint2000 benchmark programs (i.e. gap,
gcc, gzip, mcf, perl) reported in [22, page 148] shows that branch and jump instructions
makeup 12% and 1% of instructions, respectively. In other words, fB = 12% and fJ = 1%12.
For the same benchmarks, the ratio of conditional branches, fb(b), whose branch offset is b-bit
is also reported in [22, page 173]. The frequency of taken branches fTaken for the SPEC2000
programs is reported as 66% in [22, page 232]. The instruction miss rate varies with cache

10For a conservative estimate we take the maximum amount of displacement for a given number of offset
bits.

11This unified formula incorporates the effects of both forward and backward branches
12For a conservative estimate we do not use SPECfp2000 benchmarks whose statistics features much lower

frequencies of branch instructions

17

8 16 32 64 128 256
0

0.5

1

1.5

2

Cache Size (KB)

C
P

I O
ve

rh
ea

d
a. CPI Overheads

DCacheMiss
ICacheMiss
Auth

8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

b. Relative CPI Overheads

C
P

I O
ve

rh
ea

d

Cache Size (KB)
8 16 32 64 128 256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
c. Relative CPI Overheads

C
P

I O
ve

rh
ea

d

Cache Size (KB)

Figure 6: CPI Overheads due to instruction authentication, instruction and data cache
misses for different cache sizes

and block sizes as well as the workload. The miss penalty depends on block size and width
of the bus between the processor and memory. Using the miss rates in [22, page 390] for five
SPECint2000 programs and miss penalty values in [22, page 414] for a fixed block size of
64 bytes, we can calculate the CPI overhead due to instruction authentication. In Figure 6,
we illustrate overheads to CPI due to instruction authentication, instruction cache and data
cache misses for different cache sizes (and therefore different instruction and data miss rates).
Figure 6.a distinguishes CPI overheads due to these three factors using different line styles.
Figure 6.b illustrates total CPI overhead due to instruction authentication, instruction and
data cache misses, with different shades representing the overheads due to different factors.
Note that, the CPI overhead due to instruction authentication is hardly noticeable (darkly
shaded area on top) when compared the CPI overheads due to instruction and data cache
misses (lightly shaded areas at the bottom). Thus, we compared the CPI overheads due
to instruction authentication and instruction cache misses in Figure 6.c, where the effect
of instruction authentication is now slightly more noticeable. The proposed model benefits
from large cache blocks, and hence incurs higher overheads when the block size is small.
However, the overhead due to instruction authentication is still acceptable for even the
smallest block sizes common in embedded processors. The results in Figure 7 demonstrate
the relative overhead due to instruction authentication to overhead due to instruction cache
misses, which is taken as 1 for all block sizes. As observed from Figure 7 CPI overhead of

18

16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Authentication Overhead vs. Instruction Cache Miss Overhead

R
el

at
iv

e
C

P
I O

ve
rh

ea
d

Cache Block Size (B)

Figure 7: CPI Overheads due to instruction authentication normalized to CPI overhead of
instruction cache misses for different block sizes

instruction authentication is at most 30% of CPI overhead due to instruction cache misses.
Considering CPI overheads due to other factors (such as data cache miss, data dependency,
branch missprediction), the overhead due to instructions authentication is still negligible for
even the smallest cache blocks commonly used in embedded processors.

Some processors employ a technique in which the requested instruction starts executing
without waiting for the other instructions in the same cache block to arrive from the memory.
The caches that employ this technique are known as early-start caches. Furthermore, there
are critical-word-first caches that fetch the requested instruction first from the memory.
The proposed code authentication scheme, unfortunately, does not support these techniques
since the processor has to wait for the entire instruction block to arrive in the cache and to
authenticate before the execution of the requested instruction. We, therefore, explore the
overhead incurred due to the fact the “early start” is not supported. In Figure 8, the area in
blue shade represents the CPI overhead of lost clock cycles due to the “late start.” The late
start results in only a limited contribution to the overhead and this contribution increases
with the block size.

19

8 16 32 64 128 256
0

0.02

0.04

0.06

0.08

0.1

0.12

Cache Size (KB)

C
P

I O
ve

rh
ea

d
a. Relative CPI Overheads

Autentication vs. Late Start Losses

16 32 64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

b. Late Start + Authentication vs.
Instruction Misses

C
P

I O
ve

rh
ea

d

Block Size (B)

Early Start Loss
Auth

Figure 8: CPI Overheads due to instruction authentication (including losses due to late-start)
normalized to CPI overhead of instruction cache misses for different block sizes

8 Simulation Results and Implementation Issues

8.1 Simulation Results

We used SimpleScalar [1] simulation tool to evaluate the overhead of the proposed scheme
on the overall CPI (clock cycle per instruction). SimpleScalar is a cycle-accurate simulator
for MIPS32 which is a RISC architecture used in both high-end and low-end processors. We
used the out-of-order execution configuration for a conservative estimate for the overhead
since out-of-order execution method usually achieves lower CPI values. In our experiments,
five commonly employed benchmark programs are used: AES RIJNDAEL, COMPRESS,
DIJKSTRA, GO, and SHA-113.

In order to evaluate the effects of the proposed authentication scheme on a wide range of
processors, we simulated the five benchmarks for several cache configurations where different
cache and block sizes are used. We keep the configurations as modest as possible. For
instance, we use only single-level cache organization where the largest cache size is 64 KB
that is becoming common in embedded processors. Since the cryptographic computations
are overlapped with memory access cycles, we only considered memory access latency for

13Benchmark programs are available at http://www.seas.gwu.edu/~bhagiweb/cs211/SimpleScalar/

SimpleScalarInstructions.html

20

authentication tags as an overhead. We assumed a small, 16-entry authentication cache
implemented as a FIFO buffer for holding recently accessed tags that takes approximately
320 B on-chip memory space.

Authentication Cache Cache Size (KB)
with 16 entry 1 4 8 32 64

16 67.92 53.77 49.01 28.03 13.74
Block 32 26.121 26.07 23.91 7.67 5.86
(Size) 64 11.87 13.49 12.87 3.81 2.57

(Bytes) 128 1.42 2.28 2.66 1.55 1.27
256 0.17 0.39 0.35 0.55 0.56

Table 3: CPI overhead as percentage in simulation results

The simulation results are summarized in Table 3 where one easily observes that the
overhead percentage of CPI even in modest cache configurations becomes negligible. For
high-end performance processors, the overhead will virtually disappear.

8.2 Implementation Issues and Hardware Overhead

The most important design issue is whether the authentication mechanism can easily and
inexpensively be integrated into a wide range of processor cores. Prohibitively high increase
in hardware area is not acceptable while the latency of key generation mechanism (i.e. stream
cipher cf. Figure 3) must be lower than the access latency of a memory block. As can be
observed in Figure 3, the stream cipher is the most latency-sensitive and area demanding
unit in the proposed authentication mechanism. The other units are merely simple modulo-2
adders, comparators, and relatively small amount of memory that we can use to store keys
and tag values. In order to explore the feasibility of the proposed authentication and its
overhead, we investigate hardware cost and latencies of state-of-the-art implementations of
two ciphers; namely Trivium, a stream cipher proposed for eSTREAM (ECRYPT Stream
cipher project)14, and AES that is originally a block cipher, but can be used to generate key
bits. Four state-of-the art ASIC realizations of these ciphers are presented in Table 4, where
the stream cipher implementation in [28] is both light-weight in terms of area and sufficiently
fast to easily match the latency requirements of our application. Similarly, even the ASIC
realizations of the stronger AES cipher15 can be profitably used in a wide range of processor
cores (from embedded to high end performance processors) for code authentication.

The performance gap between the processor and memory technologies is one of the major
issues in processor design since it tends to increase as the processor technologies improve
much faster than memory technologies. Therefore, transferring a block of data or instruction
between the memory and the cache is always one of the most expensive operations. The
access latency of a memory block depends on the size of the memory block used for memory-
to-cache transfers besides other factors. Depending on the bus width and the block size,

14see http://www.ecrypt.eu.org/stream/ and http://www.ecrypt.eu.org/stream/triviumpf.html
15AES offers 128-bit security versus Trivium’s 80-bit.

21

Table 4: State-of-the art designs suitable for stream cipher

Design Technology Max. Frequency Area Throughput bits/cycle

Trivium by Gaj et al. [28] 90nm 800 MHz ≈ 5645 51.2 Gpbs 64

AES by Satoh [37] 0.11µm 145 MHz 12454 1.595 Gpbs 11

AES by Hodjat et al. [23] 0.18µm 606 MHz 473000 77.6 Gpbs 128

AES by Northpole Eng. [17] 0.25µm 323 MHz 26000 41.3 Gpbs 127.86

bringing a block from memory to cache may typically take tens to hundreds of clock cycles.
The access latency of memory blocks in terms of the number of clock cycles used in the
SimpleScalar [1] simulator is given in the first row of Table 5 for different block sizes. The
proposed authentication scheme requires that the same number of bits as the block size be
generated by the ciphers. Table 5 shows that all designs except for the one in [37] generate
the number of key bits sufficient for both instruction authentication and encryption. The
design in [37] can be profitably used for embedded systems where typical memory block sizes
do not exceed 64 B. The design in [28], which is very fast and extremely area efficient, easily
matches the requirements of both embedded and of high-end performance processors.

Table 5: Number of clock cycles required by each design to generate key bits when operated
at frequencies up to maximum

Design 1 bit 1 B 16 B 32 B 64 B 128 B 256 B

Memory Latency
in SimpleScalar - - 26 34 50 82 146

[28] 21 21.125 23 25 29 37 53

[37] 0.086 0.678 11 22 44 88 176

[23] 0.00781 0.0625 1 2 4 8 16

[17] 0.00782 0.0626 1 2 4 8 16

The high-end performance processors work at higher frequencies and therefore may put
higher demands on our key generation mechanism. Working at their highest possible clock
frequencies, three designs in [28, 23, 17] can still provide a sufficient number of key bits for
a processor working at frequencies as high as 2 GHz (cf. Table 6). Note that for processors
working at very high frequencies, memory latencies can be much higher than our modest
estimate derived from the SimpleScalar simulator. Even though the design in [23] is excessive
in chip area usage, its overhead is negligible for high-end processors whose transistor counts
are expressed in hundreds of millions coming close to a billion.

In summary, a quick overview of current technology and state-of-the-art for cryptographic
algorithm realizations reveals that the proposed code authentication scheme can easily be
integrated into a wide range of processor cores with a negligibly low overhead in area and
time.

22

Table 6: Number of clock cycles required by each design to generate key bits at clock
frequencies 1 GHz/2 GHz

Design 16 B 32 B 64 B 128 B 256 B

[28] 28.75/57.5 31.25/62.5 36.25/72.5 46.25/92.5 66.25/132.5

[23] 1.65/3.3 3.3/6.6 6.6/13.2 13.2/26.4 26.4/52.8

[17] 3.09/6.2 6.2/12.4 12.4/24.8 24.8/49.6 49.6/99.2

Another practical issue is faults occurring in memory, registers, data bus, and control
circuitry that corrupt the bits in instructions, data and of special interest to us in authen-
tication tags. The faults introduced to computation by mother nature or adversaries are
shown to result in many undesired and dangerous situations where secrets are compromised
[6, 24, 10] and the computation is corrupted or stalled. Therefore, there is a plethora of pub-
lished works (e.g. [25, 40, 16, 35, 20]) that propose solutions to protect different aspects of
the computation. Only foreseeable result due to faults in authentication tags is that the com-
putation is interrupted as the hardware refuses to execute the unauthenticated instructions.
This can be considered as a security flaw since adversary may mount a denial of service at-
tack by introducing faults in the authentication tags. Therefore, authentication tags should
be protected against faults, adversarial or otherwise. However, the faults in authentication
tags do not require a special treatment since corrupted bits in data and instructions normally
results in similar consequences. For instance, a corrupted bit in an instruction can result in
an undefined instruction or access to restricted parts of the memory; each case an exception
is thrown and execution most probably stops. The advantage of the proposed scheme is
that any mechanism deployed for the protection of data and instructions naturally protects
the authentication tags since they are part of the program state and stored and treated in
the same manner. Another advantage of using authentication tags is that any adversarial
fault attack is immediately detected due to authentication circuitry. The protection against
adversarial faults and fault attacks must be approached from a holistic perspective so that
every aspect of the computation is considered. This is an active research area in its infancy
and naturally deserves serious treatment that is beyond the scope of this work.

9 Previous Work and Comparison

There is plethora of work on secure and trusted execution of programs where the primary
goal is to provide the programs with a secure environment free from the interference of other
malicious programs. The common perception is that software-only solutions are inadequate
and that hence hardware support is necessary. Furthermore, the operating system that
implements the core protection mechanism is overly complex and it is not possible write
a bug-free OS that is safeguarded against attacks. Major microprocessor manufacturers,
(Intel, AMD, ARM) already introduced hardware extensions to their processor cores that
allow isolated execution of programs [13, 15, 3]. This can be achieved by making the por-
tions of memory, of cache, of TLB used by a program inaccessible to other programs. The

23

techniques proposed in [32, 33] deals with performance problems in isolated execution of
security-sensitive codes by minimizing trusted code base and by proposing some hardware
extensions. They also allow fast and fine-grained attestation of the code executed. However,
both the code base that manages the isolated execution mechanism and the code running
in isolated environment have certain privileges (e.g. accessing sensitive information) and
therefore must be trusted. The proposed code authentication scheme provides this trust by
authentication every code block before their execution in an efficient manner.

Another line of work is concerned with encryption and authentication of frequently and
dynamically changing data used by programs in execution. Theorems 1 and 2 imply that
no adversary can generate an alternative value for a block. He can, however, substitute
a data block with an old (and already authenticated) data block. This is not a breach of
security for authenticated code, since the code is assumed to be static (and each block of
code is authenticated together with its address), but for dynamic data this is a security
breach. Authenticating data is not in the scope of this work, but since data can have an
impact on the execution of a program, we describe how our code authentication scheme can
work together with previously proposed memory authentication schemes — in particular the
schemes presented in the papers [11, 19, 12, 42].

In [19] Gassend et al. propose a memory authentication scheme based on Merkle trees
[34]. To authenticate an arbitrarily large untrusted RAM memory, an m-array tree structure
is built up. Each node of the tree contains collision resistant hashes of each of the m children.
The leaves of the tree contain the actual data. Parent nodes contain hash values of data
or other hash values. The root of the tree is kept on-chip in a trusted register of constant
size, all other nodes are kept in main memory or cache. To authenticate a block of data (or
an inner node) all hash values from the data to the root of the hash-tree are checked. To
update data, each hash value for the data block to the root has to be recalculated. This
scheme is secure, since all modifications to the memory require a modification of the root of
the tree, which is kept in a trusted register, thus no unauthenticated modifications can take
place. The worst case time complexity of each read or write operation is O(logm(N)) (for
balanced hash-trees), where N is the size of the memory. However, the scheme is improved by
observing that nodes that are already in trusted L1 cache do not need re-authentication. Re-
authentication of dirty cache-lines is only done when the cache-lines are flushed to memory.
The memory overhead of the scheme is 1/(m − 1).

In [11] Clarke et al. propose a scheme which keeps (the hash values of) logs of all read
and write operations. The memory can then be authenticated off-line by comparing the
logs with the actual content of the memory. This scheme is inspired by incremental hashing
by Bellare et al. [4]. Clarke et al. introduce the new concept of multiset hash functions,
which are families of hash functions that map a multiset (a set with possible repetitions) to a
constant size hash value. They give three constructions of multiset hash functions which are
incremental — that is: given two multisets and their hash values, it is efficient to compute the
hash value of the multiset-union of the two multisets. The idea for memory authentication
is to keep logs of all read and write operations. Log entries contain address, data, and
timestamp triples. Since the logs can become arbitrarily large, only two multiset hashes are
kept: one for read and one for write operations. When authentication is requested all memory
locations have to be compared with the logs. This gives a very inefficient authentication of
O(N), but read and write operations require only a small constant overhead (adding entries

24

to the read and write logs). The only memory requirement for this scheme are the two
multiset hash values of the logs. Since authentication is very expensive, it is only done when
data is exported out of a program execution environment (e.g. microprocessor).

In [12] Clarke et al. propose a hybrid protocol with the aim of balancing the drawbacks
and benefits of the two protocols described in [11] and [19]. The overhead of this scheme
tends to a constant as the number of instructions between critical instruction grows.

The state-of-the-art in memory encryption/authentication implementations is introduced
by Yan et al. in [42], where Galois/Counter Mode of operation (GCM) is used to reduce
authentication latency and overlap it with memory accesses (similar to our scheme in this
respect). Using GCM encryption and authentication together resembles our authentication
scheme; however our construction is more general and more flexible in the sense that it
allows different implementation alternatives. They provide implementation results of their
schemes where only 4% IPC degradation is reported which is a significant improvement over
classical hash- or MAC-based schemes. As the work targets high-end performance processors,
the implementation results are given for a system with a rich configuration; e.g. 1 MB L2
cache with 64-byte blocks, 128-bit system bus that connects memory and processor etc.
The size of the cache and cache blocks have a decisive effect on the miss rates and a cache
of 1 MB as used in the experiments of [42] results in a very low miss rate and hence the
cryptographic operation for tag computation becomes extremely infrequent. A system bus of
128-bit perfectly matches 128-bit Galois field multiplication used in the GCM authentication.
Another issue is that the length of the authentication tag is a mere 64-bit which does not
provide a sufficient security since finding collusions is not difficult for 64-bit authentication
tags16. Although 64-bit authentication tags can be used for frequently changing data blocks,
its use for static instruction blocks is definitely not advisable. The scheme uses 32 KB
on-chip cache for counter values, which may not be accommodated in embedded systems.
Furthermore, the authentication scheme must be implemented with the encryption scheme,
which is an additional burden for cases where the encryption is not needed. And finally, the
scheme relies on block ciphers which are considered to be slower than stream ciphers that
can be profitably used for their speed and low resource requirements.

It is natural to ask how the schemes proposed in [11], [19], and [12] relate to our scheme.
These schemes solve the problem of “checking if the untrusted RAM behaves like valid RAM
[12].” The aim of these papers is to ensure that only the main processor can modify the
memory. However, the processor will authenticate any modification that is made to the
memory by code which is running on the processor. There is no mechanism to prevent a
virus, for instance, to modify data (or code) in the memory. To avoid this problem two
things are needed: 1) code must be authenticated before it is executed (in particular when
it is loaded into the memory), and 2) modification of code must be prevented. The schemes
in [11, 19, 12, 42] can be used in conjunction with a TPM to authenticate code at the
time it is loaded, by, e.g. letting the TPM verify a digital signature of the code before the
code is executed. This, however, will increase the load time of a program considerably. To
prevent modification of code, write protection mechanisms should be added to the schemes in
[11, 19, 12, 42]. However, such a scheme will always inherit the non-constant authentication

16The GCM schemes allows up to 128-bit MACs. However, a longer tag than 64-bit will negatively affect
the IPC degradation in [42].

25

overhead from these techniques.
In the schemes of [11] and [19] the validation of any block of memory involves the trusted

on-chip hash value(s). In particular, after loading a new program into memory the scheme
in [19] has to compute the entire sub-hash-tree covering the code of the program in order to
validate the first instruction. For large programs this will give relatively long loading times.
In [11] all verifications involves verifying the entire memory.

The scheme in [11] is specially tuned for dynamic data, since it keeps a log of read and
write operations. However, verification of any block of memory in [11] involves hashing of
the entire memory. While keeping read and write logs is a good solution for dynamic data,
it clearly introduces unnecessary overhead if the data is static.

Since our scheme does not face the difficulties of dynamically changing memory, we can
avoid the associated overhead. Each authentication operation in our scheme only introduces
a small constant overhead which can mostly be hidden in the memory access operation.
Furthermore, as discussed in Section 3, our scheme can be used directly to verify that the
code which is loaded and executed is authentic, as well as to protect the intellectual property
of software manufacturers.

The above discussion shows how our scheme and the schemes in [11, 19, 12, 42] comple-
ment each other. Our scheme can authenticate a program and the static data that is loaded
into the memory, while the schemes in [11, 19, 12, 42] can guarantee that dynamic data is
created by the application and not the adversary. While our scheme can be used for code
and static data authentication for efficiency reasons, the previous schemes in [11, 19, 12, 42]
can be used for dynamic data authentication once the program execution starts.

Lee et al. in [30] propose a technique for code authentication based on AES-MAC com-
putation along with encryption. They report that the latency due to authentication is 100
clock cycles and that overall performance degradation is around 1%. One major issue with
this technique is that the high latency of authentication tag computation is not overlapped
with memory access operation. Another, probably more important issue, is that perfor-
mance figures are obtained for a very large L2 cache of 2MB for which instruction misses are
extremely infrequent and therefore instruction authentication occurs extremely infrequently
as well. However, for smaller caches used in embedded processors, the performance penalty
can be prohibitively high. The last issue with the technique in [30] is that 16 bytes of an
instruction block is used to store the authentication tag for the rest of the instruction block.
Since the effective size of the instruction block is actually reduced, the miss rate will increase.
Furthermore, the technique may not be applicable for cache lines of smaller sizes; namely
16 B and 32 B common in embedded processors. In contrast to the technique in [30], our
method does not affect the instruction miss rate, it can be applied in embedded systems
with much smaller cache and block sizes, most of the cryptographic computations can be
overlapped with memory access cycles, and our authentication cache can take advantage of
spatial locality.

Yang et al. in [43] propose an efficient memory encryption technique where cryptographic
computation is overlapped with memory access cycles. This technique deals with the en-
cryption/decryption of dynamically changing data and data/instruction authentication is
not addressed. They report 1.28% performance penalty for a system with 256 KB L2 unified
cache of 128 B cache lines where an additional 64 KB on-chip storage is required.

Any comparison of our scheme with the previous work is not fair due to the following

26

reasons: i) different problems are addressed (trusted code execution through instruction
authentication vs. memory encryption and authentication), ii) different classes of processors
are targeted (a wide range of processors versus high-end performance processors), and iii)
different simulation environments (simulation tool and benchmarks) are used. Our two basic
claims are that the code authentication is a different problem than memory encryption and
authentication and that we do not have to suffer high hardware and timing complexities of
the latter since the former can be solved in a much more efficient way. Having said that
the comparison is not fair, it may still be useful to display different aspects of our scheme
vis-à-vis with those of the previous schemes as we do in Table 7.

Table 7: An unfair comparison with the previous schemes

Aspects [30] [43] [42] proposed

Cache size 2 MB 256 KB 1 MB 64 KB (max.)

Block size 64 B 128 B 64 B 16 B and up

Cache levels 2 2 2 1

On-chip memory for tags NA 64 KB 32 KB 320 B (max.)

Reported overhead (best) 1% 1.28% 4% 0.56%

Dynamic data authentication No No Yes No

Separate Authentication and
Encryption Yes NA No Yes

Cryptographic Primitive Block Cipher Stream Cipher Block Cipher Stream Cipher

Authentication Tag Size 128 NA 64 128

As observed in Table 7, the proposed scheme can provide code and static data authenti-
cation of sufficient security level with a very low overhead both in time complexity and area
usage. Its low cost nature renders itself to be used even in low-cost resource constrained
embedded processors for which the estimated cost of the previous schemes are not afford-
able. Conversely, the latency overhead of the proposed scheme will virtually disappear for
high-end performance computers.

10 Conclusion

In this paper we presented a code authentication scheme with low overhead that is tightly
integrated into a processor architecture to facilitate on-the-fly code and static data au-
thentication. The presented scheme builds on the previously proposed idea of hiding the
computational latency of encryption behind memory access latencies. The security of the
scheme is established using message authentication codes, based on efficient universal fam-
ilies of hash functions, which provide security when used with one-time pad encryption.
Furthermore, since the proposed authentication technique manages to hide the latency, it
is suited to be used to ensure the integrity of code and static data blocks encrypted with
efficient stream ciphers which otherwise are open to many forms of attacks. Hence, the
proposed authentication technique enables off-the-critical-path code encryption. The perfor-
mance analysis shows that the presented architecture bears little overhead for even modest

27

cache sizes. Our simulation results confirms our claims on the reduced overhead in time and
space complexities.

11 Acknowledgement

The authors would like to thank the anonymous referees for their helpful comments. The
works of Erkay Savaş and Ahmet O. Durahim are supported by the Scientific and Techno-
logical Research Council of Turkey (TUBITAK) under project number 105E089 (TUBITAK
Career Award). The work of Berk Sunar is supported by the National Science Foundation
under Grants No. ANI-0133297 (NSF CAREER Award) and CNS-0831416.

References

[1] The simplescalar tool set. Available at http://wwww.simplescalar.com/.

[2] Kazumaro Aoki and Helger Lipmaa. Fast implementations of AES candidates. In AES
Candidate Conference, pages 106–120, New York City, USA, 13–14 April 2000.

[3] ARM. TrustZone Technology Overview. http://www.arm.com/products/security/

trustzone/.

[4] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography: The
case of hashing and signing. In Desmedt [14], pages 216–233.

[5] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and Phillip Rogaway. UMAC:
Fast and secure message authentication. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of Lecture Notes in Computer Science, pages 216–233. Springer, 1999.

[6] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In EUROCRYPT, pages 37–51,
1997.

[7] Gilles Brassard. On computationally secure authentication tags requiring short secret
shared keys. In CRYPTO’82, Lecture Notes in Computer Science, pages 79–86. Springer-
Verlag, 1982.

[8] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

[9] Benôıt Chevallier-Mames, David Naccache, Pascal Paillier, and David Pointcheval. How
to disembed a program? In Marc Joye and Jean-Jacques Quisquater, editors, CHES
2004, volume 3156 of Lecture Notes in Computer Science, pages 441–454. Springer-
Verlag, 2004.

[10] H. Choukri and M. Tunstall. Round reduction using faults. In L. Breveglieri and
I. Koren, editors, 2nd International Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC’05), pages 13–24, 2005.

28

[11] Dwaine E. Clarke, Srinivas Devadas, Marten van Dijk, Blaise Gassend, and G. Edward
Suh. Incremental multiset hash functions and their application to memory integrity
checking. In Chi-Sung Laih, editor, ASIACRYPT 2003, volume 2894 of Lecture Notes
in Computer Science, pages 188–207. Springer-Verlag, 2003.

[12] Dwaine E. Clarke, G. Edward Suh, Blaise Gassend, Ajay Sudan, Marten van Dijk, and
Srinivas Devadas. Towards constant bandwidth overhead integrity checking of untrusted
data. In IEEE Symposium on Security and Privacy, pages 139–153. IEEE Computer
Society, 2005.

[13] Intel Corporation. LeGrande technology preliminary architecture specification. Intel
Publication no. D52212, May 2006.

[14] Yvo Desmedt, editor. Advances in Cryptology - CRYPTO ’94, 14th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994,
Proceedings, volume 839 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[15] Advanced Micro Devices. AMD64 virtualization: Secure virtual machine architecture
manual. AMD Publication no. 33047 rev. 3.01, May 2005.

[16] D. Pradhan ed. Fault Tolerant Computing – Theory and Techniques, volume 1. New
Jersey: Prentice-Hall, 1st edition, 1986.

[17] North Pole Engineering. AES core. http://www.hardware-ciphers.com/en/aes/

asic-unrolled.html.

[18] Kris Gaj and Pawel Chodowiec. Fast implementation and fair comparison of the final
candidates for advanced encryption standard using field programmable gate arrays. In
David Naccache, editor, CT-RSA, volume 2020 of Lecture Notes in Computer Science,
pages 84–99. Springer, 2001.

[19] Blaise Gassend, G. Edward Suh, Dwaine E. Clarke, Marten van Dijk, and Srinivas
Devadas. Caches and hash trees for efficient memory integrity. In Proceedings of Ninth
International Symposium of High Performance Computer Architecture (HPCA 2003),
pages 295–306, February 2003.

[20] Gunnar Gaubatz and Berk Sunar. Robust finite field arithmetic for fault-tolerant public-
key cryptography. In Luca Breveglieri, Israel Koren, David Naccache, and Jean-Pierre
Seifert, editors, FDTC, volume 4236 of Lecture Notes in Computer Science, pages 196–
210. Springer, 2006.

[21] Oded Goldreich. Secure multi-party computation. Working Draft, Verison 1.1, 1998.
citeseer.ist.psu.edu/article/goldreich98secure.html.

[22] J. Hennesy and D. Patterson. Computer Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers Inc. (Elsevier), 3rd edition, 2002.

29

[23] Alireza Hodjat and Ingrid Verbauwhede. Speed-area trade-off for 10 to 100 Gbits/s
throughput AES processor. In 2003 IEEE Asilomar Conference on Signals, Systems,
and Computers, November 2003.

[24] Marc Joye, Arjen K. Lenstra, and Jean-Jacques Quisquater. Chinese remaindering
based cryptosystems in the presence of faults. J. Cryptology, 12(4):241–245, 1999.

[25] Albert L. Hopkins Jr. and T. Basil Smith III. The architectural elements of a symmetric
fault-tolerant multiprocessor. IEEE Trans. Computers, 24(5):498–505, 1975.

[26] Jens-Peter Kaps, Kaan Yüksel, and Berk Sunar. Energy scalable universal hashing.
IEEE Trans. Computers, 54(12):1484–1495, 2005.

[27] K. Kaukonen and R. Thayer. A stream cipher encryption algorithm “ARCFOUR”, inter-
net engineering task force (IETF) internet draft, July 14 1999. http://www.mozilla.

org/projects/security/pki/nss/draft-kaukonen-cipher-arcfour-03.txt.

[28] K.Gaj, G. Southern, and R. Bachimanchi. Comparison of hardware performance of
selected phase ii eSTREAM candidates. State of the Art of Stream Ciphers Work-
shop (SASC 2007), February 1 2007. http://www.ecrypt.eu.org/stream/papersdir/
2007/026.pdf.

[29] Hugo Krawczyk. Lfsr-based hashing and authentication. In Desmedt [14], pages 129–
139.

[30] Ruby B. Lee, Peter C. S. Kwan, John Patrick McGregor, Jeffrey S. Dwoskin, and
Zhenghong Wang. Architecture for protecting critical secrets in microprocessors. In
ISCA, pages 2–13. IEEE Computer Society, 2005.

[31] Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten van Dijk, and
Srinivas Devadas. Extracting secret keys from integrated circuits. IEEE Trans. VLSI
Syst., 13(10):1200–1205, 2005.

[32] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi
Isozaki. Flicker: an execution infrastructure for tcb minimization. In Joseph S. Sventek
and Steven Hand, editors, EuroSys, pages 315–328. ACM, 2008.

[33] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and Arvind
Seshadri. How low can you go?: recommendations for hardware-supported minimal tcb
code execution. In Susan J. Eggers and James R. Larus, editors, ASPLOS, pages 14–25.
ACM, 2008.

[34] Ralph C. Merkle. Secrecy, authentication, and public key systems. PhD thesis, Electrical
Engineering, Stanford, 1979.

[35] Arash Reyhani-Masoleh and M. Anwar Hasan. Towards fault-tolerant cryptographic
computations over finite fields. ACM Trans. Embedded Comput. Syst., 3(3):593–613,
2004.

30

[36] Marcin Rogawski. Hardware evaluation of estream candidates: Grain, lex, mickey128,
salsa20 and trivium. State of the Art of Stream Ciphers Workshop (SASC 2007), Febru-
ary 1 2007. http://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf.

[37] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact rijndael
hardware architecture with s-box optimization. In Colin Boyd, editor, ASIACRYPT,
volume 2248 of Lecture Notes in Computer Science, pages 239–254. Springer, 2001.

[38] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC (Taylor
Francis Group), 3rd edition, 2006.

[39] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. AEGIS: architecture for tamper-evident and tamper-resistant processing. In
Utpal Banerjee, Kyle Gallivan, and Antonio González, editors, ICS 2003, pages 160–171.
ACM, 2003.

[40] Berk Sunar, Gunnar Gaubatz, and Erkay Savas. Sequential circuit design for embed-
ded cryptographic applications resilient to adversarial faults. IEEE Trans. Computers,
57(1):126–138, 2008.

[41] Trusted Computing Group, Incorporated. TCG Software Stack (TSS), Specification
Version 1.2, Level 1. Part1: Commands and Structures, January 6 2006. https://www.
trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pdf.

[42] Chenyu Yan, Daniel Englender, Milos Prvulovic, Brian Rogers, and Yan Solihin. Im-
proving cost, performance, and security of memory encryption and authentication. In
ISCA, pages 179–190. IEEE Computer Society, 2006.

[43] Jun Yang, Lan Gao, and Youtao Zhang. Improving memory encryption performance in
secure processors. IEEE Trans. Computers, 54(5):630–640, 2005.

[44] Youtao Zhang, Jun Yang, Yongjing Lin, and Lan Gao. Architectural support for pro-
tecting user privacy on trusted processors. SIGARCH Computer Architecture News,
33(1):118–123, 2005.

Proof of Theorem 2

Proof 1 Let M , M ′ be distinct members of the domain A with equal lengths. We are required
to show that

Pr [PRK(M) ⊕ PRK(M ′) = c] = 2−w .

Note that since we are working over a finite field GF (2w) the exclusive-or operation is iden-
tical to an addition operation and we may use the symbols ‘⊕’ and ‘+’ interchangibly. Ex-
panding the terms inside the probability expression, we obtain

n/2
∑

i=1

(m2i−1 + k2i−1)(m2i + k2i) +
n/2
∑

i=1

(m′

2i−1 + k2i−1)(m
′

2i + k2i) = c (mod p) .

31

The probability is taken over uniform choices of (k1, k2, . . . , kn) with each ki ∈ GF (2w). Since
M and M ′ are distinct, mi 6= m′

i for some 1 ≤ i ≤ n. Addition and multiplication in GF (2w)
are commutative, hence there is no loss of generality in assuming m2 6= m′

2. Hence we need
to prove that for any choice of k2, k3, . . . , kn that

Prk1∈GF (2w)

(m1 + k1)(m2 + k2) +
n/2
∑

i=2

(m2i−1 + k2i−1)(m2i + k2i)+

(m′

1 + k1)(m
′

2 + k2) +
n/2
∑

i=2

(m′

2i−1 + k2i−1)(m
′

2i + k2i) = c (mod p)

 ≤ 2−w

Let

y =
n/2
∑

i=2

(m′

2i−1 + k2i−1)(m
′

2i + k2i) +
n/2
∑

i=2

(m2i−1 + k2i−1)(m2i + k2i) .

Rewriting the identity inside the probability yields

k1(m2 + m′

2) = y + c + m1(m2 + k2) + m′

1(m
′

2 + k2) (mod p) .

Since m2 6= m′

2, the term (m2 + m′

2) cannot be zero and its inverse in GF (2w) exists. Hence
there is exactly one k1 ∈ GF (2w) satisfying the equation, which is

k1 = (m2 + m′

2)
−1 (y + c + m1(m2 + k2) + m′

1(m
′

2 + k2)) (mod p) .

Therefore,
Pr [PRK(M) ⊕ PRK(M ′) = c] = 2−w .

32

