
A Highly Resilient and Zone-based Key Predistribution
Protocol for Multiphase Wireless Sensor Networks

Kubra Kalkan Sinem Yilmaz
Sabanci University

Istanbul, Turkey
kubrakalkan@su.sabanciuniv.edu
sinemyilmaz@su.sabanciuniv.edu

 Omer Zekvan Yilmaz
 TUBITAK UEKAE

 Gebze, Kocaeli, Turkey
 zekvan@uekae.tubitak.gov.tr

Albert Levi
Sabanci University

Istanbul, Turkey
levi@sabanciuniv.edu

ABSTRACT
Pairwise key distribution among the sensor nodes is an essential
problem for providing security in Wireless Sensor Networks
(WSNs). The common approach for this problem is random key
predistribution, which suffers from resiliency issues in case of
node captures by adversaries. In the literature, the resiliency
problem is addressed by zone-based deployment models that use
prior deployment knowledge. Another remedy in the literature,
which is for multiphase WSNs, aims to provide self-healing
property via periodic deployments of sensor nodes with fresh keys
over the sensor field. However, to the best of our knowledge, these
two approaches have never been combined before in the literature.
In this paper, we propose a zone-based key predistribution
approach for multiphase WSNs. Our approach combines the best
parts of these approaches and provides self-healing property with
up to 6-fold more resiliency as compared to an existing scheme.
Moreover, our scheme ensures almost 100% secure connectivity,
which means a sensor node shares at least one key with almost all
of its neighbors.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General –
Security and protection (e.g., firewalls).

General Terms
Security
Keywords
Multiphase Sensor Networks; Sensor Network Security; Node
Capture Attacks; Key Distribution; Resiliency

1. INTRODUCTION

Wireless Sensor Networks (WSNs) [1] consist of small, battery-
operated, limited memory and limited computational power
devices called sensor nodes. The main task of a WSN is to sense
some events and carry these readings to a base station, called the

sink. The application areas of WSNs vary from military
applications to agriculture, habitat monitoring and healthcare. In
several applications, security of the data transferred within the
WSN is of utmost importance. When WSN deployed in hostile
areas, there is a possibility that the nodes can be captured by
adversaries. Each captured node gives away information about the
network. Thus, the security mechanisms must be designed by
considering such attack scenarios.

A key requirement of a security design for a WSN is pairwise key
distribution among the neighboring sensor nodes. In the literature,
the most cited approach is Eschenauer and Gligor’s (EG) Random
Key Predistribution approach [4]. In this approach, a set of random
keys selected from a global key pool is predistributed into sensor
nodes’ key rings in a redundant way. After the deployment,
neighboring nodes share at least one common key with a certain
probability. This probability is called secure connectivity. More
keys predistributed into sensor nodes increase the chance of having
a common key between neighboring nodes (i.e. increase secure
connectivity). However, in case of a capture of a node, more keys
are revealed to the adversary. Therefore, there is tradeoff between
secure connectivity and resiliency against node captures.

In order to increase the resiliency of EG scheme without reducing
secure connectivity, Du et al. proposed Zone-based Random Key
Predistribution (Zo-RKP) using deployment knowledge in key
predistribution [2]. In this method, sensor field is divided into
zones and nodes that are to be deployed over these zones are
grouped in batches. Each zone has its own key pool and the key
pools of neighboring zones share keys. Before the deployment, the
nodes of each group are stored random keys that are selected from
the corresponding zone’s key pool. Since the nodes of a particular
zone are likely to be neighbors after the deployment, same level of
secure connectivity is achieved by using less number of keys per
node as compared to EG scheme. Since the nodes need to store
less number of keys in their key rings, less information is revealed
to an attacker in case of node captures. Therefore, the resiliency
increases.

Another important work in the literature that aims increase the
network resiliency without reducing secure connectivity is
proposed by Castelluccia and Spognardi [3] for multiphase sensor
networks. In multiphase sensor networks, the sensor nodes are
periodically redeployed as their batteries are depleted. In the
scheme proposed in [3], called robust key pre-distribution (RoK),
the keys are refreshed in each redeployment so that the keys that
are compromised by the adversary become useless in time. In this
way, the network heals itself.

In this paper, we propose Zo-RoK, Zone-based Robust Key
Distribution. In Zo-RoK, we combine RoK [3] and Zo-RKP [2]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Q2SWinet’09, October 28–29, 2009, Tenerife, Canary Islands, Spain.
Copyright 2009 ACM 978-1-60558-619-9/09/10...$10.00.

This work is supported by Scientific and Technological Research Council
of Turkey (TUBITAK) under grant 104E071

schemes in order to boost up the resiliency performance of WSNs
while keeping the network securely connected using less number
of keys per node. We adapt the zone-based random key
predistribution model of Zo-RKP scheme into the multiphase
deployment model of RoK scheme. In this way, 100% secure
connectivity is achieved with small amount of keys per node. This,
in turn, reduces the number of secure link keys to be compromised
by the adversary. Moreover, due to key refresh at each
redeployment, the usefulness of the compromised keys becomes
limited in time. Our performance analyses show that our Zo-RoK
scheme is as much as 6 times more resilient to node capture attacks
as compared to RoK with the same level of secure connectivity.
Moreover, Zo-RoK saves 70% of key memory space as compared
to RoK scheme.

The rest of the paper is organized as follows. We explain the
proposed model in Section 2. Performance evaluation is given in
Section 3. In section 4, related work is presented and finally
Section 5 concludes the paper.

2. THE PROPOSED MODEL
In this section, we explain the proposed Zo-RoK (Zone-based
Robust Key Distribution) scheme. First, we give some background
information about Du et al.’s zone-based deployment model [2]
and the RoK scheme [3] on which our proposed scheme is built on.
After that, we explain the random key predistribution and the
pairwise key generation phases of our Zo-RoK scheme.

2.1 Background Information
In our Zo-RoK scheme, the main purpose is increased resiliency
with while keeping (i) the self-healing property of RoK, and (ii)
high secure connectivity rates as in RoK again. Resiliency is the
endurance of the system to node capture attacks. Secure
connectivity is the probability of two neighboring nodes to share a
common key. In random key predistribution schemes, such as [2],
[3] and [4], in order to reach high secure connectivity, nodes must
be equipped with more keys prior to deployment. This, on the
other hand, is a security risk. If an adversary attacks to the network
and captures some nodes, it will learn keys that might also be used
another part of the network. Thus, not only the captured nodes’
secure links, but also some innocent secure links between
uncaptured nodes become compromised. This means, resiliency is
undesirably declined. In order to improve resiliency, less keys
should be stored into the nodes prior to deployment, but this should
be done without sacrificing from secure connectivity. The zone-
based deployment model of Du et al.’s Zo-RKP scheme [2] uses
deployment knowledge during key predistribution. In this way,
high secure connectivity values can be reached with less number of
keys per node. This, in turn, causes increased resiliency.

In RoK model [3], sensor nodes are redeployed periodically. The
time period in which new nodes are deployed is called generation.
In each generation, some nodes are redeployed. Some nodes die
due to battery depletion in each generation as well. A refreshed key
ring is stored for each redeployed node. The key rings are
generation-specific so that the attacker cannot make use of a
captured key after a certain amount of generations. Similarly, the
attacker can make use of the keys of a captured node for the
messages sent by the nodes that belong to a couple of previous
generations only. To provide this facility, each node keeps
backward and forward key rings. The keys in these key rings are
randomly selected from forward and backward key pools,
respectively. In each generation, the keys in forward key pool are

hashed. For the backward key pool, a hash chain is generated for
each key. In each generation, each key is replaced with the next
value in the corresponding hash chain. Nodes that have common
key indices can calculate each other’s generation versions with
some hash calculations. In this way, they establish pairwise key.
Similarly, the attacker can calculate some link keys when it
captures a node. However, these link keys are limited with the
lifetimes of the sensor nodes. When a node dies and is replaced
with a redeployed one, the adversary cannot make use of the keys
of the dead node to compromise the links of the newly deployed
one. Therefore, the effect of a node capture lasts certain amount of
time. This property is called self-healing property. The amount of
time that the attacker makes use of a captured key ring is related to
the average lifetime of a node. In RoK model, the average lifetime
is taken as 5 generations. We also use the same value in Zo-RoK.
The readers may refer to [3] for more detailed discussion on RoK.

2.2 Our Contribution
In our Zo-RoK scheme, we adapt the zone-based deployment
model of Zo-RKP scheme [2] into the RoK model [3] in order to
have increased resiliency with self healing property. We divide the
sensor field into contingent zones and employ forward and
backward key pools for each zone. The nodes of particular zones
obtain their key rings from their zone key pools. For each
generation, zone key pools are updated (via hash and hash chains)
as in RoK. The main novelty in our scheme lies in the adaptation
of the Du et al.’s zone based deployment model into RoK. This is
explained in the next section. As will be discussed in Section 3,
with the proposed adaptation, Zo-RoK tremendously improves the
resiliency of the network against node capture attacks as compared
to RoK without any decrease in the secure connectivity.

Table 1. Notations used in the paper
FKP Global forward key pool
BKP Global backward key pool
ܭܨ ௭ܲ

௝ Forward key pool for region z at generation j
݂݇ఎ,క,௜

௝ ith key of the forward sub key pool shared between zones
(regions) ߦ and ߟ at generation j

݂݇௭,଴,௜
௝ ith key of non-shared forward sub key pool of zone (region)

 at generation j ݖ
ܭܤ ௭ܲ

௝ Backward key pool for region z at generation j
ܾ݇ఎ,క,௜

௝ ith key of the backward sub key pool shared between zones
(regions) ߦ and ߟ at generation j

ܾ݇௭,଴,௜
௝ ith key of non-shared backward sub key pool of zone

(region) ݖ at generation j
ሺ·ሻܪ Irreversible Hash function
ଵ݂ሺ·,·,·ሻ Three-factor ordering function
ଶ݂ሺ·ሻ Pseudorandom number sequence generator function
 ௜ௗಲ,௭,௝,௜ ith element of the pseudorandom number sequence generatedݎ

for node A of zone z at generation j
ߟ ุ ߦ Zone ߟ and zone ߦ are horizontally neighboring zones
ߟ ՟ ߦ Zone ߟ and zone ߦ are vertically neighboring zones
ߟ ա ߦ Zone ߟ and zone ߦ are diagonally neighboring zones
݉ Last generation
ܹܩ Generation window
ܲ Global key pool size (half is for forward, half is for

backward key pools)
ܵ Regional key pool size (half is for forward, half is for

backward key pools)
݇ Key ring size (half is for forward, half is for backward key

rings)
݀ Diagonal neighbor key sharing constant
݊ Vertical / horizontal neighbor key sharing constant
ܼ Number of zones, ܼ ൌ ݐ ൈ ݐ

2.3 Key Predistribution in Zo-RoK
In our Zo-RoK scheme, the sensor field is divided into a two
dimensional grid of zones/regions1 as in [2]. Each zone has its own
forward and backward key pools. The forward and backward key
pools of each zone are selected from global forward and backward
key pools. Moreover, the neighboring zones’ forward and
backward key pools share keys.

The notations used in the explanation of our model are given in
Table 1.

2.3.1 Generation of Forward and Backward Regional
Key Pools

As in [2], our scheme uses different sharing factors for the key
pools of horizontal/vertical and diagonal neighboring zones. As
shown in Figure 1, vertical and horizontal neighbor zones share
݊ · ܵ keys, diagonal neighbor zones share ݀ · ܵ keys, where
4ሺ݊ ൅ ݀ሻ ൌ 1. This is the original method of Du et al. [2]; we
adopt this to multiphase networks in Zo-RoK as will be detailed
below.

Figure 1. Key sharing among neighboring zones

The sizes of the global forward and backward key pools are ܲ/2
each. Similarly, for each region, backward pool size and forward
key pool size is ܵ/2.

Let us now generalize key pool sharing and regional key pool
generation mechanisms for a square sensor field with ݐ ൈ .zones ݐ
In such a field, for each row, ݐ െ 1 horizontal forward sub key
pools are shared between neighboring zones. Similarly, for each
column, ݐ െ 1 vertical forward sub key pools are shared between
neighboring zones. In this way, the total number of horizontally
and vertically shared forward sub key pools becomes 2 · ݐሺݐ െ 1ሻ,
each has distinct ݊ · ܵ/2 forward keys drawn from the global
forward key pool. The same analysis directly applies for backward
sub key pools; the total number of horizontally and vertically
shared backward sub key pools is 2 · ݐሺݐ െ 1ሻ, each has distinct
݊ · ܵ/2 backward keys drawn from the global backward key pool.

There are also distinct shared diagonal forward and backward sub
key pools in this setting. The total number of diagonally shared
forward sub key pools is 2 · ሺݐ െ 1ሻଶ, each has ݀ · ܵ/2 distinct
forward keys drawn from global forward key pool. Similarly, the
total number of diagonally shared backward sub key pools is
2 · ሺݐ െ 1ሻଶ, each has ݀ · ܵ/2 distinct backward keys drawn from
global backward key pool.

1 From this point on, zone and region will be used interchangeably.

Each shared sub key pool has distinct keys drawn from the
corresponding global key pool (backward or forward). When a key
is assigned to a shared key pool, it is deleted from the global one
so that it is not reused in another shared pool.

Each zone establishes its key pool using the abovementioned
horizontally, vertically and diagonally shared sub key pools. For
each horizontally neighboring zone pair, the keys in a horizontally
shared forward sub key pool are assigned to the forward key pools
of these neighboring zones. A shared key pool used for a zone pair
is not used again for other neighboring pairs. The same procedure
is applied for the backward keys. Similarly, the vertical and
diagonal neighbor pairs undergo the same process using vertically
and diagonally shared sub key pools. In this way, all shared sub
key pools are used. Identities of the individual keys are assigned
during the assignment of shared sub key pools to zone key pools.
More formally, a forward key or a backward key is identified using
three tuples as ݂݇௫,௬,௜ and ܾ݇௫,௬,௜, where x and y are the indices of
two neighboring zones. The index i is the order of the key in the
shared forward or backward sub key pool, where
݅ ൌ 1, 2,… , ݊ · ܵ/2 for horizontal and vertical neighbors,
݅ ൌ 1, 2,… , ݀ · ܵ/2 for diagonal neighbors.

The abovementioned process of zone key pool establishment
assigns ܵ/2 keys for non-boundary zones; thus, the key pool
establishment for these zones is completed. However, this process
puts less than ܵ/2 keys in the key pools of the boundary zones
since they do not have enough neighbors to share keys. In order to
equalize the key pool sizes for all zones, boundary zones should
fill up the remaining keys from the backward and forward global
key pools. The total number of missing forward keys for each of
the four corner zones is ሺ1 െ 2݊ െ ݀ሻ · ܵ 2⁄ . The total number of
missing backward keys is also the same. Other than these four
corner zones, there are 4 · ሺݐ െ 1ሻ side zones. The number of
missing keys of the forward key pool for each of these side zones
is ሺ1 െ 3݊ െ 2݀ሻ · ܵ 2⁄ . The number of missing backward keys is
also the same. The identities of those non-shared keys are assigned
after their assignments to the regional key pools. For the sake of
standardization, again a 3-tuple identification is used, however
second zone index is set to 0, meaning that this key is not shared
between zones. More formally, such non-shared forward and
backward keys are denoted as ݂݇௫,଴,௜ and ܾ݇௫,଴,௜, where x is the
index of the owning zone and i is the order of drawing from the
corresponding global key pool. The range of i depends on whether
x is a corner or side zone; ݅ ൌ 1, 2,… , ሺ1 െ 2݊ െ ݀ሻ · ܵ 2⁄ for
corner zones, and ݅ ൌ 1, 2, … , ሺ1 െ 3݊ െ 2݀ሻ · ܵ 2⁄ for side
zones.

As can be seen from the above analysis, the backward and forward
global key pools must be spent for the shared sub key pools and for
the missing keys of the boundary zones. Moreover, there are same
amount of keys for both backward and forward keys in each
category. Thus, the size of regional backward/forward key pools,
ܵ
2ൗ , is calculated as follows.

ܵ
2ൗ ൌ

ܲ
2ൗ

ݐሺݐ2݊ െ 1ሻ ൅ 2݀ሺݐ െ 1ሻଶ ൅ 4ሺ1 െ 2݊ െ ݀ሻ ൅ 4ሺݐ െ 1ሻሺ1 െ 3݊ െ 2݀ሻ

 [1]

As in RoK [3] scheme, we use the generation concept in Zo-RoK.
Therefore, the regional backward and forward key pools are to be
created for each generation. For forward key pools, initial
generation is 0. For generation-0 forward key pool of each zone,

ܵ/2 keys are selected from the global forward key pool as
described in this subsection. For region z, initial forward key pool
is formally shown as follows.

ܭܨ ௭ܲ
଴

ൌ ൜݂݇ఎ,క,௜
଴ ฬ

ሺ ߟ ൌ ݖ ש ߦ ൌ ሻݖ ר ሺߟ ุ ߦ ש ߟ ՟ ,ሻߦ
݅ ൌ 1, 2, … , ݊ · ߟ ,2/ܵ ൌ 1,2,… , ߦ ,ܼ ൌ 1,2, … , ܼൠ ራ

 ൜݂݇ఎ,క,௜
଴ ฬ

ሺ ߟ ൌ ݖ ש ߦ ൌ ሻݖ ר ሺߟ ա ,ሻߦ
݅ ൌ 1, 2, … , ݀ · ߟ ,2/ܵ ൌ 1,2, … , ߦ ,ܼ ൌ 1,2,… , ܼൠ ራ

 ቐ݂݇௭,଴,௜଴ ቮ
݅ ൌ 1, 2, … , ሺ1 െ 2݊ െ ݀ሻ · ܵ 2⁄ , if z is corner zone
݅ ൌ 1, 2, … , ሺ1 െ 3݊ െ 2݀ሻ · ܵ 2,⁄ if z is a side zone

if z is a non‐boundary zone ,׎
ቑ,

where ݖ ൌ 1, 2, … , ܼ [2]

In order to update the keys for the other generations, we use the
same approach employed in RoK. At each generation, the keys are
updated by the help of an irreversible hash function. Each key of
the forward key pool is hashed to generate the key pool of the next
generation. More formally, the forward key pool of zone z in
generation j is shown as follows.

ܭܨ ௭ܲ
௝ ൌ ቄ݂݇ఎ,క,௜

௝ ቚ ݂݇ఎ,క,௜
௝ ൌ ܪ ቀ݂݇ఎ,క,௜

௝ିଵቁ , ఎ,క,௜݂݇ ׊
௝ିଵ א ܭܨ ௭ܲ

௝ିଵቅ,

where ݖ ൌ 1, 2, … , ܼ and ݆ ൌ 1, 2, … ,݉ [3]

Backward key pools for different generations are prepared similar
to forward key pools with one difference such that the preparations
should start with the last generation, m. The reason is that one-way
hash chains [11] are used for each of the backward keys and they
have to be utilized from the end. Thus, the first regional backward
key pools are the generation-m pools, which are formally shown as
follows.

ܭܤ ௭ܲ
௠

ൌ ൜ܾ݇ఎ,క,௜
௠ ฬ

ሺ ߟ ൌ ݖ ש ߦ ൌ ሻݖ ר ሺߟ ุ ߦ ש ߟ ՟ ,ሻߦ
݅ ൌ 1, 2,… , ݊ · ߟ ,2/ܵ ൌ 1,2, … , ߦ ,ܼ ൌ 1,2, … , ܼൠ ራ

൜ܾ݇ఎ,క,௜
௠ ฬ

ሺ ߟ ൌ ݖ ש ߦ ൌ ሻݖ ר ሺߟ ա ,ሻߦ
݅ ൌ 1, 2, … , ݀ · ߟ ,2/ܵ ൌ 1,2, … , ߦ ,ܼ ൌ 1,2, … , ܼൠ ራ

ቐܾ݇௭,଴,௜௠ ቮ
݅ ൌ 1, 2, … , ሺ1 െ 2݊ െ ݀ሻ · ܵ 2⁄ , if z is corner zone
݅ ൌ 1, 2, … , ሺ1 െ 3݊ െ 2݀ሻ · ܵ 2,⁄ if z is a side zone

if z is a non‐boundary zone ,׎
ቑ,

where ݖ ൌ 1, 2, … , ܼ [4]

Each key of these key pools is the first element (seed) of a one-
way hash chain. The keys of generation ݉ െ 1 are the second
elements of the chains, and so on. More formally, the backward
key pool of zone z in generation j is represented as follows.

ܭܤ ௭ܲ
௝ ൌ ቄܾ݇ఎ,క,௜

௝ ቚ ܾ݇ఎ,క,௜
௝ ൌ ܪ ቀܾ݇ఎ,క,௜

௝ାଵቁ , ఎ,క,௜ܾ݇ ׊
௝ାଵ א ܭܤ ௭ܲ

௝ାଵቅ,

where ݖ ൌ 1, 2, … , ܼ and ݆ ൌ ݉ െ 1,݉ െ 2,… , 0 [5]

Here one should notice that the subscript triplets of a forward key
pool are exactly the same as the subscript triplets of the
corresponding backward key pool. This is particularly important
for key ring generations and session key establishment that will be
discussed in subsequent sections.

2.3.2 Generation of Key Rings
In this section, we describe the process of key assignments to the
nodes. Each node in Zo-RoK has forward and backward key rings,
as in RoK. However, different from RoK, each node picks its keys
from regional key pools. The selection process is random.

In order to facilitate the description of the key ring assignment
process, we assume that the keys of both forward and backward
key pools of each zone are ordered by their subscript triplets and
each key is assigned an implicit sequence number in the range of
[1, 2, … , ܵ/2]. The ordering is done in a way that the implicit
sequence number of a particular forward key ݂݇ఎ,క,௜

௝ is the same as
its backward counterpart ܾ݇ఎ,క,௜

௝ . The ordering function ଵ݂ሺߟ, ,ߦ ݅ሻ
gets the subscript triplet as parameter and returns the implicit
sequence number (in the range of 1, 2,… , ܵ/2) of that key in the
corresponding forward and backward key pools.

There are total of ݇ keys in a key ring. Half of it is for forward, the
other half is for backward keys. We employ a pseudorandom
number generator function ଶ݂ሺ. ሻ that returns a nonrepeating
pseudorandom sequence of ݇/2 numbers, ݎ௜, ݅ ൌ 1, 2, … , ݇/2 and
0 ൏ ௜ݎ ൑ ܵ/2 . These values are then used to determine the random
keys selected from the regional key pools. For each node, we use
this function with the generation, zone and node IDs in order to
determine a unique random sequence for that node. More formally,
for node A of zone z at generation j, the random index values of
forward and backward key rings are determined as follows.

ଶ݂ሺ݅݀஺ צ ݖ צ ݆ሻ ൌ ൫ݎ௜ௗಲ,௭,௝,௜ห ݅ ൌ 1, 2, … , ݇/2, 0 ൏ ௜ௗಲ,௭,௝,௜ݎ ൑ ܵ/2 ൯ [6]

First, forward key ring of this node is determined by picking the
forward keys with implicit sequence numbers of ݎ௜ௗಲ,௭,௝,௜ from the
corresponding forward key pool ܭܨ ௭ܲ

௝. More formally, the forward
key ring of node A of zone z at generation j, ܴܭܨ௜ௗಲ,௭

௝ , is defined as
follows.

௜ௗಲ,௭ܴܭܨ
௝ ൌ

ቄ݂݇ఎ,క,ఋ
௝ ቚ ݂݇ఎ,క,ఋ

௝ א ܭܨ ௭ܲ
௝ ר ଵ݂ሺߟ, ,ߦ ሻߜ ؠ , ௜ௗಲ,௭,௝,௜ݎ ݅ ൌ 1, 2, … , ௞

ଶ
ቅ [7]

The pseudorandom number sequence ݎ௜ௗಲ,௭,௝,௜ , ݅ ൌ 1, 2, … , ݇/2, is
determined using Equation 6.

Second, backward key ring is determined. The indexing
mechanism for the backward key ring is also the same. Same ଶ݂ሺ. ሻ
pseudorandom sequence (eq. 6) is used to determine the index of
the backward keys in order to be able to match up the forward and
backward keys in the pairwise key establishment phase. The only
difference in backward key ring generation is that backward key
ring of a node at generation j includes keys in key pools of
generation ܹܩ ൅ ݆ െ 1, where GW is a system parameter called
Generation Window. The main reason behind using generation
window concept is to limit the amount of generations that a
particular key becomes useful in order to provide self-healing. The
use of generation window concept in Zo-RoK is borrowed from
RoK scheme and will be explained in the next subsection. More
formally, the backward key ring of node A of zone z at generation
j, ܴܭܤ௜ௗಲ,௭

௝ , is defined as follows.

௜ௗಲ,௭ܴܭܤ
௝ ൌ

ቊܾ݇ఎ,క,ఋ
ீௐା௝ିଵ ቤ ܾ݇ఎ,క,ఋ

ீௐା௝ିଵ א ܭܤ ௭ܲ
ீௐା௝ିଵ ר ଵ݂ሺߟ, ,ߦ ሻߜ ؠ ௜ௗಲ,௭,௝,௜ݎ
݅ ൌ 1, 2, … , ݇/2

ቋ [8]

The pseudorandom number sequence ݎ௜ௗಲ,௭,௝,௜ , ݅ ൌ 1, 2, … , ݇/2, is
determined using Equation 6, as in forward key ring. In other
words, the sequence numbers, and consequently the subscript
triplets, of the forward keys are the same the ones of the backward
keys. For example, if forward key ring contains ݂݇ସ,଻,ଶଶ

௝ , then
backward key ring also contains ܾ݇ସ,଻,ଶଶ

ீௐା௝ିଵ.

Both forward and backward key rings are stored in the memory of
a sensor node before the deployment. Therefore, total of ௞

ଶ
൅ ௞

ଶ
ൌ ݇

keys are stored in each sensor node.

2.4 Zone-based Deployment and Pairwise Key
Generation in Zo-RoK
Zone-based grouping of nodes and key ring assignments have been
performed in the previous stage. Next step is the deployment of the
nodes over the sensor field. In our zone-based deployment model,
the sensor field is divided into ݐ ൈ zones. There is a group of ݐ
nodes associated with each zone. Initially, generation-0 nodes
selected from each group are deployed over the corresponding
zones. As the nodes die, replacement nodes of future generations
are continually deployed. In order to have a fair comparison with
the RoK scheme [3], the intra-zone deployment model in Zo-RoK
scheme is assumed to be similar to the deployment model of RoK.
In this deployment model, the deployment points in the zones are
arranged as a regular grid in which only the horizontal and vertical
neighbors hear each other. However, in order to accommodate the
deployment errors in Zo-RoK, a certain fraction of nodes are
assumed to be displaced to neighboring zones.

After the deployment, two neighboring nodes try to establish a
common pairwise key. The basic method of pairwise key
generation is the same as the RoK scheme [3]; forward and
backward keys are used together. Two neighboring nodes, ܣ and
of generations ݆ଵ and ݆ଶ, ଵ݆ ,ܤ ൑ ݆ଶ, first check whether their
generations overlap or not. According to [3], two nodes have
overlapping generations if |݆ଵ െ ݆ଶ| ൏ If their generations .ܹܩ
overlap, then they exchange all the ݇/2 forward/backward key
subscript triplets in their key rings. In order to establish a common
key, they have to have at least one common triplet in their key
rings. Suppose such a triplet ሺߟ, ,ߦ ሻ exists. The common keyߜ
between these two nodes is calculated as the hash of forward key
of generation ݆ଶ, ݂݇ఎ,క,ఋ

௝మ and backward key of generation

݆ଵ ൅ ܹܩ െ 1, ܾ݇ఎ,క,ఋ
௝భାீௐିଵ. More formally, the common key, ܭ, is

denoted as follows.

ܭ ൌ ሺ݂݇ఎ,క,ఋܪ
௝మ צ ܾ݇ఎ,క,ఋ

௝భାீௐିଵሻ [9]

In order both ܣ and ܤ calculate the same pairwise key, ݂݇ఎ,క,ఋ
௝మ and

ܾ݇ఎ,క,ఋ
௝భାீௐିଵ must be known by both users. Node ܤ has ݂݇ఎ,క,ఋ

௝మ in its
forward key ring, but node ܣ does not. However, ܣ can calculate it
by hashing the forward key ݂݇ఎ,క,ఋ

௝భ that it has in its forward key

ring | ଵ݆ െ ݆ଶ| times. Similarly, ܾ݇ఎ,క,ఋ
௝భାீௐିଵ exists in the backward

key ring of node ܣ, but not of node ܤ. However, ܤ can calculate it
by hashing the backward key ܾ݇ఎ,క,ఋ

௝మାீௐିଵ that it has in its backward
key ring |݆ଵ െ ݆ଶ| times.

If there is more than one common subscript triplet, then all of them
are utilized in pairwise key generation in the same manner.

The use of generation window, forward and backward keys
provide the established keys to be useful for a limited amount of
generations. In this way, if these keys are compromised, the
attacker can make use of it only a few generations. This causes the
system to self-heal in time. Since this self-healing behavior is
mainly due to the RoK scheme [3], we do not go into its detail in
this paper. The readers may refer to [3] for more details.

3. PERFORMANCE EVALUATION
We perform simulative performance evaluation and compare the
performance of RoK scheme [3] with the proposed Zo-RoK
scheme. The simulation software is developed using C# in .NET
2005. Simulations are run on a computer with Intel® Celeron® M
520 processor operating at 1.6 GHz. For the sake of accuracy, each
simulation is repeated 20 times and the average values are
reported. In order to make sure about the correctness of the
simulation software, we reproduce the results in [3] with no error.

The parameters that we used in our simulations are as follows. The
deployment area is divided into 10 ൈ 10 ൌ 100 zones, i.e.
Z ൌ 100. Each zone has 100 nodes, therefore, total number of
nodes is 10000. As discussed in Section 2.4, intra-area deployment
model is a grid-based one and only neighbors hear each other.
Since we fixed the neighboring relationships, the communication
range and deployment area are not system parameters. In order to
accommodate deployment errors, 20% of nodes are deployed in
neighboring zones using a uniform random distribution. As in RoK
[3], at the end of each generation, dead nodes are replaced by new
nodes with fresh key rings. The lifetime determination is also the
same as RoK such that the lifetime of a node is determined
according to a Gaussian distribution with mean 2/ܹܩ and
standard deviation 6/ܹܩ. The generation window, ܹܩ, is taken
as 10.

The global key pool size, ܲ, of both RoK and Zo-RoK is taken as
20000; half of it is used for forward keys, half of it is for backward
keys. In parallel to the work of Du et al. [2], horizontal/vertical key
sharing constant, ݊, and diagonal key sharing constant, ݀, are taken
as 0.15 and 0.10 respectively. These are the optimum values. Using
these parameters, the sizes of regional forward/backward key
pools, ܵ/2, is calculated using Equation 1 as ~178.

We, first analyze secure connectivity metric, which is defined as
the probability of two neighboring nodes being able to establish a
pairwise key (i.e. having at least one common key index in their
forward and backward key rings). With this analysis, we determine
the key ring size necessary to have almost 1.0 secure connectivity
for both RoK and Zo-RoK schemes. The results are depicted in
Figure 2. Our results show that with 250 keys in forward and 250
keys in backward key rings, RoK achieves perfect secure
connectivity (i.e. 1.0) in all generations. Comparable secure
connectivity for Zo-RoK is achieved when the forward and
backward key ring sizes are 75 each. As a result, we can say that
Zo-RoK uses 70% less memory as compared to RoK, while
reaching the same level of secure connectivity. The main reason
behind this performance improvement in Zo-RoK lies in the zone-
based deployment and key predistribution schemes. In Zo-RoK,
the nodes that will be close to each other after deployment share
keys, distant nodes do not. However, in RoK, distant nodes also
share keys. Therefore, an increased key ring size is needed in RoK
to achieve full secure connectivity as compared to proposed Zo-
RoK scheme.

Figure 2. Secure connectivity of RoK and Zo-RoK schemes. Both

are constantly 1.0.

Next, we analyze the resiliency of the network under node capture
attacks. Here two different metrics are used. These metrics are the
same ones used in RoK [3]:

− Active compromise ratio: This is the ratio of active
compromised links / all active links. As the attacker captures
nodes, it learns keys that are also used to secure links in other
part of the network. This metric is the ratio of amount of such
extra active links compromised over the amount of all active
links in the network. An active link is defined as a link
currently used by alive nodes.

− Total compromise ratio: This is the ratio of total compromised
links / all links. In this metric, not only active links, but also
dead links are taken into consideration (for both numerator and
denominator). A dead link is defined as a link with one or two
dead endpoints.

Moreover, two attacker models are considered, again in parallel to
the models in RoK [3]. These are temporary and constant attacker
models. In temporary attacker model, the attacker starts its node
capture attack at the beginning of generation 0 and gives up at the
beginning of generation 10. Within this 10 generation interval, the
attacker captures nodes at each round (round is a time unit and one
generation has 10 rounds). In the constant attacker model, the
attacker starts its attack by capturing nodes at the beginning of
generation 0 and never gives up.

Another attack parameter is the node capture rate of the attacker.
This parameter is defined as the number of nodes that the attacker
captures at each round. In our simulations, we consider 3 and 5
node captures/round (i.e. 30 and 50 nodes per generation).

Figures 3 – 6 show the resiliency performance of temporary
attacker model. As shown in these figures, general trend in
resiliency behavior of both schemes is similar but the harm caused
by temporary attacker in Zo-RoK is significantly smaller than
RoK. When the attack is at its highest stage around generation 10,
RoK compromises as much as 6-fold more links as compared to
proposed Zo-RoK scheme. This certainly makes Zo-RoK more
resilient than RoK. When Figures 3 and 5 are compared to Figures
4 and 6 respectively, we see that compromise ratio increases as
node capture rate increases, as expected. Moreover, these figures
also show that the relative benefit of Zo-RoK as compared to RoK
is higher with smaller node capture rates in the temporary attacker
model. Figures 5 and 6 also show that the system self-heals almost

at the same time (around generation 15). However, the overall
effect of the attack in Zo-RoK is much smaller than RoK as
discussed above. The main reason of this improved resiliency
behavior of Zo-RoK is having less key in the key rings as
compared to RoK. As discussed at the beginning of this section,
perfect secure connectivity in Zo-RoK is achieved using 150 keys
in the key ring; however, 500 keys are needed for RoK. Therefore,
when a node is captured, the attacker obtains more keys in RoK as
compared to Zo-RoK. This makes the attacker to compromise
more links in RoK.

Figure 3. Total compromise ratios of RoK and Zo-RoK schemes
under temporary attacker model with 3 node captures per round

 Figure 4. Total compromise ratios of RoK and Zo-RoK schemes
under temporary attacker model with 5 node captures per round

Figure 5. Active compromise ratios of RoK and Zo-RoK schemes

under temporary attacker model with 3 node captures per round

Figure 6. Active compromise ratios of RoK and Zo-RoK schemes

under temporary attacker model with 5 node captures per round

The results for the constant attacker model, in which the attacker
captures nodes forever, are shown in Figures 7 – 10. In both
compromise metrics and node capture rates, Zo-RoK shows better
resiliency performance than RoK does. Although total compromise
ratio increases as the attack continues in both schemes (Figures 7
and 8), the performance of Zo-RoK is up to 6-fold better than RoK
at the beginning of the attack. The marginal gain of Zo-RoK
reduces as the attack grows in upcoming generations since the
compromise ratio approaches to its maximum value of 1.0. From
Figures 9 and 10, we see that RoK is able to keep the active
compromise ratio within [0.2 – 0.3] for 3 nodes/round capture rate,
and within [0.4 – 0.6] for 5 nodes/round capture rate. On the other
hand, as seen in Figures 9 and 10, the proposed Zo-RoK scheme
keeps the active compromise ratio under control around 0.05 and
0.1 for 3 and 5 nodes/round capture rates respectively. This
analysis shows that the amount of active links compromised in
RoK scheme becomes as much as 5-fold more as compared to
Zo-RoK scheme.

Figure 7. Total compromise ratios of RoK and Zo-RoK schemes

under constant attacker model with 3 node captures per round

Figure 8. Total compromise ratios of RoK and Zo-RoK schemes
under constant attacker model with 5 node captures per round

Figure 9. Active compromise ratios of RoK and Zo-RoK schemes

under constant attacker model with 3 node captures per round

Figure 10. Active compromise ratios of RoK and Zo-RoK

schemes under constant attacker model with 5 node captures per
round

4. RELATED WORK
The basic model of random key predistribution in sensor networks
is first proposed by Eschenauer and Gligor [4]. This model
inspired several other authors. Upcoming studies, such as [5], [6]
and [7], mostly focused on increasing the security and performance

of random key predistribution schemes either by using the help of
the network or other cryptographic techniques.

The use deployment knowledge to improve the performance of
random key predistribution schemes is first proposed by Du et al.
[2]. In this scheme, the sensor field is divided into zones and nodes
are grouped according to these prior zone information. In this way,
after deployment, the nodes that are physically closer to each other
would have more chance to share keys. This, in turn, causes less
memory usage for keys and better connectivity and resiliency
performance. After [2], some other schemes, such as [8] and [9],
that use prior location information are proposed.

Ramkumar and Memon [12] proposed to use repeated hashing for
increased efficiency in random key predistribution. Castelluccia
and Spognardi proposed RoK scheme [3] for multiphase sensor
networks. In this scheme, new nodes with fresh key rings replace
dead ones. In this way, the network heals itself in time. Later,
Yilmaz et al. [10] proposed two schemes for faster self healing.

The proposed Zo-RoK scheme also aims self healing, but by
keeping the harm caused by the attacker under certain limits. Zo-
RoK combines the best parts of Du et al. [2] and RoK [3] schemes
and improves the resiliency of RoK up to 6-fold by using 70% less
key memory for full secure connectivity.

5. CONCLUSIONS
We proposed a random key predistribution scheme for multiphase
sensor networks. The proposed scheme, called Zo-RoK (Zone-
based Robust Key Distribution), uses prior deployment knowledge
in order to reduce the key ring size requirements. In this way, the
resiliency of the network against node capture attacks also
increases. Due to the multiphase property of the network, dead
nodes are replaced by new nodes. The new nodes come with fresh
keys in their key rings. In this way, the attacker can make use of
the compromised keys only for a small period of time and,
therefore, the network heals itself.

In Zo-RoK, we are inspired by [2] and [3] and combined the best
parts of these schemes. To the best of our knowledge, the proposed
Zo-RoK scheme is the first location-aware random key
predistribution scheme proposed for multiphase sensor networks.

We performed simulations for comparative performance
evaluation. We compared the performance of RoK with Zo-RoK
schemes. We have concluded that almost 100% key sharing
probability can be achieved using 70% less keys in Zo-RoK. This
reduced key amount also affects the resiliency of the system since
a captured node would reveal fewer keys to the adversary. In this
way, the active resiliency of the system is kept within reasonable
limits. Even in the worst case scenario that we tested (attacker is
attacking constantly with 5 nodes/round capture rate), only 10% of
the active links are compromised in Zo-RoK, whereas in RoK, the
attacker could compromise half of the network.

7. REFERENCES
[1] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci,

E. 2002. "Wireless sensor networks: a survey". Computer
Networks, 38(4), pp. 393–422.

[2] Du, W., Deng, J., Han, Y. S., Chen, S., and Varshney, P. K.
2004. "A key management scheme for wireless sensor
networks using deployment knowledge". INFOCOM 2004.

[3] Castelluccia, C. and Spognardi, A. (2007). "Rok: A robust key
pre-distribution protocol for multi-phase wireless sensor
networks". SecureComm 2007, Third International
Conference on Security and Privacy in Communication
Networks.

[4] Eschenauer, L. and Gligor, V. D. 2002. "A key-management
scheme for distributed sensor networks". In Proceedings of
the 9th ACM Conference on Computer and Communications
Security, pp. 41-47.

[5] Huang, D. and Medhi, D. 2007. "Secure pairwise key
establishment in large-scale sensor networks: An area
partitioning and multigroup key predistribution approach".
ACM Trans. Sen. Netw. 3(3), 16, Aug. 2007, DOI=
http://doi.acm.org/10.1145/1267060.1267064

[6] Li, G., Ling, H., and Znati, T. 2005. "Path key establishment
using multiple secured paths in wireless sensor networks". In
Proceedings of CoNEXT '05 - the 2005 ACM Conference on
Emerging Network Experiment and Technology, pp. 43-49.
DOI= http://doi.acm.org/10.1145/1095921.1095928

[7] Lei, W., Zhi-ping, C., and Xin-hua, J. 2005. "Researches on
scheme of pairwise key establishment for distributed sensor
networks". WMuNeP '05 - 1st ACM Workshop on Wireless
Multimedia Networking and Performance Modeling,. pp. 54-
61. DOI= http://doi.acm.org/10.1145/1089737.1089747

[8] Liu, D., Ning, P., and Du, W. 2008. "Group-based key
predistribution for wireless sensor networks". ACM Trans.
Sen. Netw. 4(2), Mar. 2008, pp. 1-30.
DOI= http://doi.acm.org/10.1145/1340771.1340777

[9] Liu, F., Rivera, J. and Cheng, X. 2006. "Location-aware key
establishment in wireless sensor networks". In Proceedings of
IWCMC '06 - International Conference on Wireless
Communications and Mobile Computing, pp. 21-26. DOI=
http://doi.acm.org/10.1145/1143549.1143556

[10] Yilmaz, O. Z., Levi, A. and Savas, E. 2008. "Multiphase
Deployment Models for Fast Self Healing in Wireless Sensor
Networks". In SECRYPT 2008 - International Conference on
Security and Cryptography 2008.

[11] Lamport, L. 1981. "Password Authentication with Insecure
Communication". Commun. of the ACM, 24(11), November
1981, pp. 770-772.

[12] Ramkumar, M. and Memon, N. 2005. "An Efficient Key
Predistribution Scheme for Ad Hoc Network Security". IEEE
Journal on Selected Areas of Communication, 23(3), March
2005, pp 611-621.

