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10 Abstract Sixty-six spring and winter common

11 wheat genotypes from Central Asian breeding

12 programs were evaluated for grain concentrations

13 of iron (Fe) and zinc (Zn). Iron showed large

14 variation among genotypes, ranging from

15 25 mg kg–1 to 56 mg kg–1 (mean 38 mg kg–1).

16 Similarly, Zn concentration varied among geno-

17 types, ranging between 20 mg kg–1 and 39 mg kg–

18
1 (mean 28 mg kg–1). Spring wheat cultivars pos-

19 sessed higher Fe-grain concentrations than winter

20 wheats. By contrast, winter wheats showed higher

21Zn-grain concentrations than spring genotypes.

22Within spring wheat, a strongly significant positive

23correlation was found between Fe and Zn. Grain

24protein content was also significantly (P < 0.001)

25correlated with grain Zn and Fe content. There

26were strong significantly negative correlations

27between Fe and plant height, and Fe and glutenin

28content. Similar correlation coefficients were

29found for Zn. In winter wheat, significant positive

30correlations were found between Fe and Zn, and

31between Zn and sulfur (S). Manganese (Mn) and

32phosphorus (P) were negatively correlated with

33both Fe and Zn. The additive main effects and

34multiplicative interactions (AMMI) analysis of

35genotype · environment interactions for grain Fe

36and Zn concentrations showed that genotype

37effects largely controlled Fe concentration,

38whereas Zn concentration was almost totally

39dependent on location effects. Spring wheat

40genotypes Lutescens 574, and Eritrospermum 78;

41and winter wheat genotypes Navruz, NA160/

42HEINEVII/BUC/3/F59.71//GHK, Tacika, DU-

43CULA//VEE/MYNA, and JUP/4/CLLF/3/

44II14.53/ODIN//CI13431/WA00477, are promising

45materials for increasing Fe and Zn concentrations

46in the grain, as well as enhancing the concentra-

47tion of promoters of Zn bioavailability, such as S-

48containing amino acids.
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51 Introduction

52 The Central Asia region comprises five countries

53 (Kazakhstan, Kyrgyzstan, Turkmenistan, Tajiki-

54 stan and Uzbekistan) which grow a total of more

55 than 15 million ha of wheat (Triticum aestivum).

56 In northern Kazakhstan (48–55� N), spring wheat

57 is grown on steppe lands under dry-land condi-

58 tions. Throughout the southern region (36–

59 44� N), occupying 5–6 million ha, winter or fac-

60 ultative wheat is grown primarily under irrigation

61 (60–70%) (Fig. 1). Rainfed wheat is planted on

62 the remaining 30–40% of the area, mostly on

63 hillsides or mountainous areas where irrigation is

64 not possible (Morgounov et al. 2001).

65 For both spring and winter wheat improve-

66 ment, regional and international cooperation

67 have been established with the objectives of

68 strengthening national breeding programs by

69 exchanging information and breeding materials.

70 Since 1994 wheat research in the region was

71 substantially influenced by the development of

72 international linkages, especially in breeding.

73 CIMMYT and ICARDA established germplasm

74 exchange networks through the TURKEY-CI-

75 MMYT-ICARDA Winter and Facultative Wheat

76 Improvement Program located in Turkey, and

77 more recently through the Kazakhstan-Siberia

78 Network on Spring Wheat Improvement

79(KASIB), a CIMMYT Central Asia and Caucasus

80initiative. By 2003 several wheat lines from both

81programs were being tested in the region for

82possible release. The advantages of the new lines

83are higher grain yield, and better resistance to leaf

84diseases, especially yellow rust. These efforts

85contribute significantly to improving food security

86and self-sufficiency of grain production in these

87countries. Uzbekistan achieved self-sufficiency in

882002 and 2003, whereas Tajikistan and Turkmen-

89istan have improved national wheat production

90substantially during the past decade (Morgounov

91et al. 2005).

92However, nutritional problems related to

93cereal-based diets throughout the region, espe-

94cially those linked to vitamin and mineral defi-

95ciencies in vulnerable groups, such as children

96under five years and women in reproductive age,

97are national concerns. UNICEF and the Micro-

98nutrient Initiative (2004) estimated iron defi-

99ciency anemia ranging from 33% to 49% in

100children under 5 years of age and 31–63% in

101women aged 15–49 for countries in the Central

102Asian region. In Central Asia, as in large parts of

103the developing world, micronutrient deficiencies

104are widespread. It is estimated that two billion

105people worldwide suffer from micronutrient defi-

106ciencies, especially children and women (Cakmak

107et al. 2002; Welch and Graham 2004). High and

Fig. 1 Wheat-producing
areas in the former Soviet
Union. Winter wheat is
grown during October–
June and spring wheat
during May–August
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108 monotonous consumption of cereal-based foods

109 has been shown to be a major reason for such

110 widespread occurrence of micronutrient deficien-

111 cies in the developing world. Cereal grains are

112 inherently poor in concentration of micronutri-

113 ents, and rich in compounds depressing the

114 bioavailability of micronutrients such as phytic

115 acid. In Central Asian countries, wheat is the

116 most important staple food contributing greatly to

117 daily calorie intake. Between 50% (Kazakhstan)

118 and 65% (Tajikistan) of daily calorie intake

119 comes solely from wheat and this rate can be

120 greater than 75% in rural regions (Cakmak et al.

121 2004).

122 This situation has led to the formation of the

123 ‘‘Anemia Prevention and Control’’ (APC) pro-

124 gram in Kazakhstan, Kyrgyzstan, Uzbekistan,

125 Tajikistan and Turkmenistan under the support

126 of UNICEF, which among other activities fosters

127 the universal fortification of wheat flour with

128 minerals and vitamins (Gleason and Sharmanov

129 2002). However, fortification efforts are highly

130 dependent on funding, and the scope is restricted

131 to a single geographical area. Standard fortifica-

132 tion programs must be sustained at the same

133 level of funding year after year; and if the

134 investments are not sustained, the benefits

135 disappear (Bouis et al. 2000). By contrast,

136 investment in research in plant breeding has

137 multiplicative effects; the benefits may accrue to

138 a number of countries and moreover, the benefits

139 from breeding advances typically do not disap-

140 pear after initial successful investment and

141 research, as long as an effective domestic agri-

142 cultural research infrastructure is maintained

143 (Bouis et al. 2000).

144 Recently, the CGIAR launched the Harvest-

145 Plus initiative, a challenge program on biofortif-

146 ication of staple crops (breeding crops with high

147 micronutrient contents). Under this initiative,

148 CIMMYT is developing high yielding disease

149 resistant wheat germplasm with enhanced levels

150 of iron (Fe) and zinc (Zn), and this germplasm is

151 now being tested by national program partners.

152 The objectives of the present study were to (i)

153 determine the levels of Fe and Zn in the grain of

154 current wheat lines and cultivars used in breeding

155 programs in Central Asia, (ii) analyze the

156genotype · environment interactions (GE) and

157relationships with other traits, and (iii) identify

158promising lines with higher Fe and Zn concen-

159trations in the grain.

160Materials and methods

161Sixty-six spring and winter wheat cultivars and

162advanced lines from Central Asian national

163breeding programs were selected for this study

164(Table 1). Grain samples from each germplasm

165included in a Kazakhstan-Siberia Network for

166Spring Wheat Improvement Regional Nursery

167(5th KASIB) grown at five locations in Kazakh-

168stan in 2004 were analyzed for Fe and Zn

169concentration at Waite Analytical Services, Uni-

170versity of Adelaide, Australia, based on the nitric/

171perchloric acid digestion method using an induc-

172tively coupled plasma optical emission spectrom-

173eter (ICP-OES) (Zarcinas et al. 1987). Grain

174from field trials, grown at nine locations in

175Kazakhstan, Kyrgyzstan and Tajikistan in 2005,

176were also analyzed for micro (Fe, Zn and Mn)

177and macro-elements (Mg, P, and S) at Sabanci

178University, Istanbul, Turkey. Measurements of

179the mineral nutrients were conducted using an

180ICP-OES after digesting samples in a closed

181microwave system (Zarcinas et al. 1987; USEPA

1821998; Ryan 2005). Agronomic and grain quality

183data for spring wheat were available from

184‘‘Results of the 4th and 5th Kazakhstan-Siberia

185Network Trials for Spring Wheat Improvement’’

186(CIMMYT 2005). For winter wheat, data on grain

187yield additional to the mineral analyses were

188available only for Tajikistan.

189Data were evaluated statistically using one-way

190analyses of variance; means were compared using

191a least significant difference (LSD) procedure.

192Associations among variables were evaluated

193using Pearson correlation and linear regression

194techniques. Genotype · environment was ana-

195lyzed independently by trials and country using

196the additive main effects and multiplicative

197interactions analysis (AMMI). The AMMI model

198postulates additive components for the main

199effects of genotypes (ai) and environments (bj)

200and multiplicative components for the effect of
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Table 1 Concentrations of Fe and Zn in seeds of spring and winter wheat genotypes

Genotype Fe (mg kg–1)b Zn (mg kg–1) Test environmentsa

Spring wheat

Chelyaba 56 32 (4) A, B, C, D, E
Lutescense 148-97-16 48 32 (2) A, B, C, D, E
Iren 48 32 (3) A, B, C, D, E
Eritrospermum 78 48 29 (11) A, B, C, D, E
Omskaya 35 47 29 (6) A, B, C, D, E
Lutescense 574 47 29 (8) A, B, C, D, E
For a 47 33 (1) A, B, C, D, E
Eritrospermum 727 47 29 (12) A, B, C, D, E
Novosibirsk 15 46 29 (7) A, B, C, D, E
Altaiskaya 50 46 28 (30) A, B, C, D, E
Tertsia 46 29 (10) A, B, C, D, E
Lutescense 424 45 29 (9) A, B, C, D, E
Shortandikskaya uluchshennaya 45 31 (5) A, B, C, D, E
GVK 1857-9 45 26 (19) A, B, C, D, E
Lutescense 13 43 27 (15) A, B, C, D, E
Lutescense 29-94 43 24 (22) A, B, C, D, E
Lutescense 53-95 43 25 (21) A, B, C, D, E
GVK 1369-2 43 26 (18) A, B, C, D, E
Atubenka 42 24 (24) A, B, C, D, E
Glubokovskaya 41 27 (14) A, B, C, D, E
Bayterek 41 25 (20) A, B, C, D, E
Lutescense 54 40 26 (17) A, B, C, D, E
Stepnaya 40 24 (23) A, B, C, D, E
Aktobe 32 40 23 (25) A, B, C, D, E
Astana 39 26 (16) A, B, C, D, E
Spring wheat mean 45 28
LSD (0.05) 5.6 12.72
Winter wheat

VORONA/HD2402 43 30 (16) F, G, H
Navruz 42 39 (1) F, G, H
Tacika 42 34 (6) F, G, H
Alex 41 34 (7) F, G, H
Naz 40 29 (19) L, M
Ormon 39 32 (11) F, G, H
DUCULA//VEE/MYNA 39 33 (9) F, G, H
JUP/4/CLLF/3/II14.53/ODIN// CI13431/WA00477 39 32 (12) F, G, H
Kauz 38 35 (4) F, G, H
Norman 38 31 (13) F, G, H
KINACI 38 28 (21) F, G, H
NA160/HEINE VII/BUC/3/ F59.71//GHK 38 38 (2) F, G, H
TX71A 1039.1VI*3 38 28 (22) F, G, H
Chakbol 37 30 (15) F, G, H
Krasnodar 99 37 36 (3) F, G, H
Atillac 36 34 (5) F, G, H
1D13.1/MLT//TUI 36 33 (10) F, G, H
SHARK/F4105W2.1 36 30 (18) F, G, H
7C/CNO//CAE/3/YMH/4/VP... 36 27 (25) F, G, H
MV 218-98 36 34 (8) F, G, H
Eritrosp.750 35 25 (31) L, M
BOCRO 4 34 30 (17) F, G, H
CEBECO 148//CNO/TNIA//... 34 31 (14) F, G, H
NORKAN/TJB406.892/MON 33 27 (24) F, G, H
Almaly 33 25 (30) L, M
Adyr 32 28 (23) I, J, K
Kazakhstan 10 32 27 (26) L, M
Zhetisu 32 25 (32) L, M, N
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206206206206206206 the interaction (/ij). Thus, the mean response of

207 genotype i in environment j is modeled by

Ŷ ¼ l þ ai þ bj þ
Xm

k¼ 1

kkcikdjk þ qij þ eij

209209 where l is the grand mean, ai is the main effect of

210 the ith genotype, bj is the main effect of the jth

211 environment, and /ij is the interaction between

212 genotype i and environment j; in which /ij is

213 represented by

Xm

k¼1

kkcikdjk

215215 where kk is the size, cik is the normalized

216 genotype vector of the genotype scores or sensi-

217 tivities, djk is the normalized environmental

218 vector of the scores describing environments, qij

219 are the AMMI residuals, and eij is the error term.

220 All calculations were performed by IRRISTAT

221 4.3 software (International Rice Research Insti-

222 tute 2003).

223Results and discussion

224Wheat grain composition

225Table 1 shows mean concentrations of Fe and Zn

226in mature grain from 66 genotypes. The amount

227of Fe in the grain showed a large variation among

228genotypes and ranged from 25 mg kg–1 to 56 mg

229kg–1 (mean 38 mg kg–1). As with Fe, the concen-

230tration of Zn varied among genotypes and

231ranged from 20 mg kg–1 to 39 mg kg–1 (mean

23228 mg kg–1).

233Comparing the 12 spring and 12 winter wheat

234genotypes with the highest iron and zinc concen-

235trations, it was clear that spring wheat genotypes

236possessed higher grain Fe concentrations. By

237contrast, grain Zn concentrations were higher in

238winter wheat than spring wheat. Comparing the

239top 12 Fe genotypes with the best 12 Zn genotypes

240for winter wheat, there were six genotypes in

241common (Navruz, Tacika, Alex, Ormon, NA160/

242HEINE VII/BUC/3/ F59.71//GHK and JUP/4/

243CLLF/3/II14.53/ODIN//CI13431/WA00477). For

Table 1 Continued

Genotype Fe (mg kg–1)b Zn (mg kg–1) Test environmentsa

Akdan 31 29 (20) L, N
Tilek 30 24 (36) I, J, K
Asyl 29 23 (38) I, J, K
Djamin 29 24 (34) I, J, K
Nikonia 29 27 (28) L, N
Intensivanaya 28 26 (29) I, J, K
Kayrak 27 24 (35) I, J, K
Kyial 27 23 (39) I, J, K
Mironovskaya 35 27 25 (33) L, N
Azibrosh 26 23 (37) I, J, K
Zubkov 26 22 (40) I, J, K
Mambo 26 27 (27) L, N
Swindi 25 20 (41) I, J, K
Winter wheat mean 34 29
LSD (0.05) 7.54 7.89
Grand mean 38 28

Genotypes are listed in descending order for Fe. Numbers in parentheses indicate Zn ranking
a Spring wheat environments in Kazakhstan: A = Almaty 2004, B = Kartabalyk 2004, C = Pavlodar 2004, D = Astana
2004, and E = Aktobe 2004. Winter wheat environments in Tajikistan: F = Gissar 2005, G = Isfara 2005 and H = Vakhsh
2005. Winter wheat environments in Kyrgyzstan: I = Karasu-Osh 2005, J = Sokuluk-Chu 2005, and K = Bakay-Atip-Talas
2005. Winter wheat environments in Kazakhstan: L = Uzun-Agash 2005, M = Almalibak 2005, and N = Shymkent 2005
b Environment B (Karabalyk 2004) was not included in the Fe analysis for spring wheat
c Spring wheat genotype Atilla performed well under autumn-sowing conditions in Tajikistan, therefore it was included
with winter wheat in our study
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244 spring wheat, 11 genotypes were among the top

245 12 for high Fe and high Zn concentrations.

246 Table 2 and Fig. 2A show that the concentration

247 of Fe and Zn in the grain of spring wheat

248 cultivars were strongly and positively corre-

249 lated [Fe = (17.2011) + (0.9917) Zn, R2 = 0.6335;

250 P = < 0.001]. A strong correlation between grain

251 Zn and Fe concentrations occurred in germplasm

252 containing both wild wheat (Cakmak et al. 2004)

253 and cultivated wheats (Peterson et al. 1986). In

254 winter wheat this association was equally strong

255 [Table 3 and Fig. 2B; Fe = (8.5300) + (0.8855)

256 Zn, R2 = 0.6270; P < 0.001]. The relationship

257 between Fe and Zn was not so strong for the

258 combined spring and winter wheat data [Fig. 2C;

259 Fe = (16.8126) + (0.7452) Zn, R2 = 0.1856;

260 P < 0.001]. Considering independently spring

261 and winter wheat, our findings support other

262 findings, that it is possible to combine high-iron

263 and high-zinc traits during breeding (Monasterio

264 and Graham 2000; Cakmak et al. 2004).

265 Table 2 shows the Pearson correlations

266 between Fe, Zn and other nine agronomic and

267 grain quality traits for spring wheat. A strong

268 positive significant correlation was found between

269 Fe and grain protein content (r = 0.65). Strong

270 negative significant correlations occurred be-

271 tween Fe and plant height (r = –0.6), and Fe

272 and glutenin content (r = –0.48), indicating that

273 shorter plants with lower glutenin content

274 favor higher grain-Fe concentration. Weak but

275significant negative correlations between Fe and

276grain yield (r = –0.41), and Fe and grain number

277per m2 (r = –0.38), confirmed that modern culti-

278vars with high grain yield and grain yield compo-

279nent traits tend to have lower concentrations of

280micronutrients in the grain. Similar correlation

281coefficients were found between Zn and other

282traits (Table 2), but the negative correlations

283between Zn and yield (r = –0.64), and Zn and

284grain number per m2 (r = –0.55) were stronger

285than those observed for Fe. Another slight

286difference was the positive significant correlation

287between Zn and gliadin content (r = 0.44). For

288Zn, the strongest correlation was with protein

289(r = 0.68***). A very strong correlation between

290grain Zn and grain protein was also shown

291previously (Peterson et al. 1986; Feil and Fossati

2921995), indicating that grain protein may be a sink

293for Zn. In agreement with these results, Distelfeld

294et al. (2006) recently showed that a locus (e.g.,

295Gpc-B1 affecting grain protein concentration) on

296the short arm of chromosome 6B in wheat was

297also effective in increasing accumulation of Zn

298and Fe in grain. In wheat seed, Zn is predom-

299inantly localized in the embryo and aleurone

300layer (up to 150 mg per kg seed) whereas endo-

301sperm contains much less (around 15 mg Zn per

302kg seed) (Ozturk et al. 2006). The embryo and

303aleurone are rich in protein, supporting the

304suggestion that high protein in seed represents

305an important sink for Zn. This association

Table 2 Pearson correlation coefficients among grain iron
content (Fe), grain zinc content (Zn), grain yield, grain
protein content, glutenin content, gliadin content, days to
heading, plant height, thousand-grain weight (1000-K),

grain number per m2 (KNO), and test weight of 25 spring
wheat genotypes grown across locations in Kazakhstan in
2004

Zn Yield Grain
protein

Glutenin Gliadin Days to
heading

Height 1000-
K

KNO Test
weight

Fe 0.79*** –0.41* 0.65*** –0.48** 0.34 0.05 –0.60*** 0.05 –0.38* –0.26
Zn –0.64*** 0.68*** –0.51** 0.44* –0.13 –0.62*** 0.03 –0.55** –0.37
Yield –0.46* 0.32 –0.18 0.53** 0.73*** –0.04 0.87*** 0.65***
Grain Protein –0.85*** 0.29 –0.11 –0.61*** –0.35 –0.22 –0.50**
Glutenin –0.20 –0.03 0.51** 0.45* 0.04 0.51**
Gliadin 0.02 –0.06 0.03 –0.17 –0.10
Days to
Heading

0.57** 0.18 0.37 0.57**

Height 0.10 0.57** 0.72***
1000-K –0.52** 0.15
KNO 0.46*

*Significant at P = 0.05; **significant at P = 0.01; ***significant at P = 0.001
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306 between Zn and protein should be considered in

307 breeding programs aimed at improving cereal

308 grains for Zn and Fe contents.

309 For winter wheat, only data on micro and

310 macro-nutrient concentrations in grain were

311 available for all trials. Significant positive corre-

312 lation coefficients were found between Fe and Zn,

313 S, and Mg; between Zn and S; and between

314 Mn, Mg and P. An important point was the

315 negative correlation between P and both Fe

316 and Zn (r = –0.18 and r = –0.11, respectively

317(Table 3, Fig. 3C). The contents of P in winter

318wheat analyzed ranged from 2627 mg kg–1 to

3193694 mg kg–1 (mean 3177 mg kg–1). Approxi-

320mately 75% of total P in wheat grain is stored

321as phytic acid, particularly in the germ and

322aleurone layers (Lott and Spitzer 1980; Raboy

3232000). At physiological pH, phytic acid is a poly-

324anion, with each molecule containing six to eight

325negative charges distributed among six phosphate

326esters. This relatively small molecule with a high

327charge density is a strong chelator of positively

328charged mineral cations such as calcium, iron and

329zinc (Raboy 2000). In terms of human health and

330nutrition, dietary phytate can have both negative

331and positive outcomes. It can contribute to

332mineral depletion and deficiency in populations

333that rely on whole grains and legume-based

334products as staple foods; however, phytic acid

335can also function as an antioxidant and anticancer

336agent and may have other beneficial effects on

337health (Cakmak et al. 2002; Welch and Graham

3382004).

339Welch and Graham (2004) highlighted the

340importance of promoters, mostly organic acids

341and S-containing amino acids, for the bioavail-

342ability of Zn. Biologically, increasing the content

343of promoters which serve as catalysts, is an

344attractive option to increase Zn bioavailability,

345because marginal increases are likely to have

346large effects. Minor changes in the promoter

347content are unlikely to have negative effects on

348the food quality. This is in contrast to selecting for

349a lower anti-nutrient content, which may have

350negative effects on food quality due to potential

351anti-carcinogenic and anti-mutant functions.
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Fig. 2 Linear regressions: (a) Fe vs. Zn for 25 spring
genotypes, (b) Fe vs. Zn for 42 winter wheat genotypes,
and (c) Fe vs. Zn for the combined spring–winter wheat
genotypes

Table 3 Pearson correlation coefficients among grain iron
content (Fe), grain zinc content (Zn), grain manganese
content (Mn), grain magnesium content (Mg), grain
phosphorous content (P), and grain sulfur content of 42
winter wheat genotypes across locations in central Asia in
2005

Zn Mn Mg P S

Fe 0.79*** –0.46*** 0.29* –0.18 0.67***
Zn –0.46*** 0.16 –0.11 0.71***
Mn 0.31* 0.59*** 0.05
Mg 0.50*** 0.47***
P 0.04

*Significant at P = 0.05; **significant at P = 0.01;
***significant at P = 0.001
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352 In this study, Fe-grain and S-grain, and Zn-

353 grain and S-grain, were positively and signifi-

354 cantly correlated, suggesting a possible positive

355 correlation between high grain micronutrients

356 and high S-containing amino acid concentrations

357 in grain. From the best 12 genotypes with

358 S-grain content ranging from 1140 mg kg–1 to

359 1558 mg kg–1, seven were among the best 12

360 Fe-grain genotypes (Navruz, Naz, DUCULA//

361 VEE/MYNA, NA160/HEINEVII/BUC/3/F59.71

362 //GHK, Norman, JUP/4/CLLF/3/II14.53/ODIN//

363 CI13431/WA00477, and Tacika), and nine were

364 within the top 12 Zn-grain genotypes (Navruz,

365 NA160/HEINEVII/BUC/3/F59.71//GHK, Kauz,

366 DUCULA//VEE/MYNA, JUP/4/CLLF/3/II14.53

367 /ODIN// CI13431/WA00477, Atilla, Krasnodar

368 99, MV 218-98 and Tacika). Five genotypes with

369 high S-grain concentration were among both high

370Fe-grain and high Zn-grain groups. Thus, the

371development of new winter wheat genotypes with

372higher grain Fe and grain Zn concentrations and

373promoters that affect both Fe and Zn bioavail-

374ability appears feasible.

375Genotype · environment interactions

376The AMMI analysis of variance of Fe and Zn

377grain concentrations (mg kg–1) carried out inde-

378pendently for each trial and presented in Tables 4

379and 5, show the relative magnitudes of the

380genotype (G), location (L), and genotype · loca-

381tion (GL) variance terms. Generally, the expres-

382sions of Fe and Zn levels were controlled to a

383large extent by location (especially true for Zn).

384However, for Fe in spring wheat, and in winter

385wheat in Kazakhstan (trial 1), genotype (G) was

25.0

30.0

35.0

40.0

45.0

25.0 31.3 37.5 43.8 50.0
Mn

F
e

25.0

30.0

35.0

40.0

45.0

950.0 1050.0 1150.0 1250.0 1350.0
Mg

F
e

25.0

30.0

35.0

40.0

45.0

2600.0 2900.0 3200.0 3500.0 3800.0

P

F
e

25.0

30.0

35.0

40.0

45.0

1100.0 1225.0 1350.0 1475.0 1600.0

S

F
e

Fe = (51.7504) + (-0.5054) Mn
R2 = 0.2177; P < 0.001

Fe = (8.4956) + (0.0220) Mg
R2 = 0.0899; P > 0.05

Fe = (49.3615) + (-0.0048) P
R2 = 0.0344; P > 0.05

Fe = (-15.2684) + (0.0377) S 
R2 = 0.4610; P < 0.001

Fe vs. Mn Fe vs. Mg

Fe vs.P Fe vs.S 

(A) (B)

(C) (D)

Fig. 3 Linear regressions of 42 winter wheat genotypes: (a) Fe vs. Mn, (b) Fe vs. Mg, (c) Fe vs. P, and (d) Fe vs. S
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386 the most important source of grain Fe concentra-

387 tion accounting for over 50% of the G + L + GL.

388 For all trials, the grain Fe- genotype effect was

389 never less than 22% indicating that genotype was

390 an important contributor to overall variability.

391 In contrary to Fe, in the AMMI analysis of

392 variance of grain Zn concentrations, genotype

393 (G) was the most important source of variation

394 only in Tajikistan, accounting for 35.13% of the

395 G + L + GL. For the other trials (with the

396 exception of Kyrgyzstan where G accounted for

397 about 32%) the genotypic effect was minor,

398 explaining 4–9% of the G + L + GL variation.

399 The genotype · location effect (GL) was impor-

400 tant for both Fe and Zn. For Fe, GL ranged from

401 17.6% to 48.64% across the trials, and for Zn,

402 from about 7.3% to 48.77%. This implies that for

403 both Fe and Zn, the rankings of winter wheat

404 genotypes in Tajikistan and Kazakhstan were

405 influenced by location.

406Conclusions

407There were strong positive correlations between

408the Fe and Zn grain concentrations for both

409spring and winter materials. For spring wheat,

410positive correlations between grain Fe and grain

411Zn concentrations and grain protein content

412indicated that breeding and selection for one of

413these traits could simultaneously improve the

414others. Negative correlations between the micro-

415nutrient concentrations, plant height and grain

416yield does not necessarily imply that a strategy for

417reducing plant height could produce gains in grain

418yield and grain element concentrations. The

419observed negative correlations between grain

420element concentrations, plant height and grain

421yield might be at least partially explained in that

422shorter and lower yielding genotypes have a lower

423dilution effect of minerals in the grain, and thus

424express higher grain Fe and Zn concentrations.

Table 4 Additive main effects analysis of variance from the AMMI model for grain iron density (mg kg–1) of the genotypes
for independent trials

Source df SS MS Explained (%)

Spring wheat, Kazakhstan

Genotypes 24 1213.09 50.55 50.53
Locations 3 758.53 252.84 31.59
Genotypes · location 72 428.91 5.96 17.86
Total 99 2400.53
Winter wheat, Tajikistan

Genotypes 21 405.98 19.33 22.72
Locations 2 752.38 376.19 42.11
Genotypes · location 42 628.21 14.95 35.16
Total 65 1786.58
Winter wheat, Kyrgyzstan

Genotypes 9 124.43 13.82 22.23
Locations 2 283.08 141.54 50.58
Genotypes · location 18 152.11 8.45 27.18
Total 29 559.62
Winter wheat, Kazakhstan

Genotypesa 4 83.26 20.81 51.31
Locations 1 16.03 16.03 9.88
Genotypes · location 4 62.96 15.74 38.80
Total 9 162.27
Genotypesb 4 34.73 8.68 22.83
Locations 1 43.37 43.37 28.51
Genotypes · location 4 73.98 18.49 48.64
Total 9 152.10

a Trial 1: locations Uzun-Agash and Almalibak; and genotypes Almaly, Naz, Kazakhstan 10, Eritrosp.750, and Zhetisu
b Trial 2: locations Uzun-Agash and Shymkent; and genotypes Zhetisu, Akdan, Mambo, Nikonia, and Mironovskaya 35

Euphytica

123

Journal : 10681 Dispatch : 12-12-2006 Pages : 11

Article No.: 9321
h LE h TYPESET

MS Code : EUPH1350 h CP h DISK4 4



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

426426 However, some genotypes with optimum plant

427 height and above average Fe and Zn (Lutescens

428 574 and Eritrospermum 78) were found.

429 In the winter wheats, the strong positive corre-

430 lations among grain Fe, grain Zn and grain S

431 together with high concentrations of each (Navruz,

432 NA160/HEINEVII/BUC/3/F59.71//GHK, Tacika,

433 DUCULA//VEE/MYNA, and JUP/4/CLLF/3/

434 II14.53/ODIN//CI13431/WA00477) should be

435 important for the development of new breeding

436 populations targeting the enhancement of Fe and

437 Zn bioavailability by increasing the concentration

438 of promoters such as S-containing amino acids

439 (i.e., methionine, histidine, and lysine).

440 Breeding for increased grain yield may simul-

441 taneously increase grain element concentration

442 and could take three approaches: (i) to identify

443 lines with improved ability to allocate mineral

444 nutrients into the grain without changes in root

445 uptake of nutrients, (ii) to select lines with greater

446 ability for root uptake of mineral nutrients, whilst

447maintaining current high efficiencies of partition-

448ing to the grain, and (iii) to identify lines that

449have both features (Calderini and Ortiz-Monas-

450terio 2003). Regarding genotype · environment

451interactions grain Fe concentration was to an

452important extent, controlled by genotype effects,

453whereas grain Zn concentration was almost

454totally dependent on location. Thus, genotypes

455having a greater genetic ability for root uptake of

456Fe and Zn (CIMMYT 2005) could be important

457sources of germplasm for increasing micronutri-

458ent concentration in Central Asian wheats.
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Table 5 Additive main effects analysis of variance from the AMMI model for grain zinc density (mg kg–1) of the genotypes
for independent trials

Source df SS MS Explained (%)

Spring wheat, Kazakhstan

Genotypes 24 976.58 40.69 8.67
Locations 4 9443.27 2360.82 83.88
Genotypes · location 96 836.96 8.72 7.43
Total 124 11256.80
Winter wheat, Tajikistan

Genotypes 21 703.49 33.49 35.13
Locations 2 636.51 318.25 31.79
Genotypes · location 42 662.51 15.77 33.08
Total 65 2002.52
Winter wheat, Kyrgyzstan

Genotypes 9 125.40 13.93 32.59
Locations 2 162.50 81.25 42.24
Genotypes · location 18 96.80 5.38 25.16
Total 29 384.69
Winter wheat, Kazakhstan

Genotypesa 4 25.80 6.45 8.58
Locations 1 128.28 128.28 42.65
Genotypes xlocation 4 146.69 36.67 48.77
Total 9 300.77
Genotypesb 4 15.88 3.97 4.68
Locations 1 209.56 209.56 61.73
Genotypes · location 4 114.01 28.50 33.59
Total 9 339.46

a Trial 1: locations Uzun-Agash and Almalibak; and genotypes Almaly, Naz, Kazakhstan 10, Eritrosp.750, and Zhetisu
b Trial 2: locations Uzun-Agash and Shymkent; and genotypes Zhetisu, Akdan, Mambo, Nikonia, and Mironovskaya 35
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