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Abstract. We propose an Ant Colony Optimization (ACO) algorithm to the NP-
hard Vehicle Routing Problem with Simultaneous Delivery and Pick-up 
(VRPSDP). In VRPSDP, commodities are delivered to customers from a single 
depot utilizing a fleet of identical vehicles and empty packages are collected from 
the customers and transported back to the depot. The objective is to minimize the 
total distance traveled. The algorithm is tested with the well-known benchmark 
problems from the literature. The experimental study indicates that our approach 
produces comparable results to those of the benchmark problems in the literature. 

1. Introduction 

The Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is a 
variant of the VRP where the vehicles are not only required to deliver goods but also to 
pick up some goods from the customers. Customers receiving goods are called linehauls 
while customers sending goods are called backhauls. The objective is to minimize the total 
distance traveled by the vehicles and/or the number of vehicles used subject to maximum 
distance and maximum capacity constraints on the vehicles. VRPSDP may be classified 
into three categories: (i) Delivery First, Pick-up Second: the vehicles pick up goods after 
they have delivered their goods; (ii) Mixed Delivery and Pick-up:  linehauls and backhauls 
can occur in any sequence on a vehicle route; and (iii) Simultaneous Delivery and Pick-up: 
the vehicles simultaneously deliver and pick-up goods [11]. Delivery First Pick-up Second 
and Mixed VRPDP problems are jointly referred to as the VRP with backhauling (VRPB). 
Delivery First Pick-up Second and Mixed VRPDP problems are jointly referred to as the 
VRP with backhauling (VRPB). Each customer has either a delivery demand or a pick-up 
to be satisfied. Products to be delivered are loaded at the depot while picked up products 
are transported back to the depot. A set of vehicle routes has to be designed so that all 
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customers are serviced exactly once and no “pick-up customer” is visited before any other 
“delivery customer” on the same route. 

In this paper, we address VRPSDP with a fleet of uniform vehicles each having the 
same capacity. The delivery and pick- up items are identical in the sense that each unit 
consumes the same amount of vehicle capacity. Delivery and pick-up locations are unique 
and the delivery to a customer is only allowed from the depot. The objective is to serve all 
customers with the minimum total distance. 

Although VRP has been intensively studied in the literature research on VRPSDP is 
scant. The problem is first introduced by Min [10], where book distribution and recollection 
activity between a central library and 22 remote libraries at a county in Ohio, with limited 
number of trucks and available capacity, is discussed. Min utilizes a cluster-first route-
second approach and solves Traveling Salesman Problems (TSP) to optimality as sub-
problems. Halse [9] studies VRPSDP as well as many other special case problems in the 
VRP literature. Cases with a single depot and multiple vehicles and number of nodes 
varying between 22 and 150 are addressed. Lagrangean relaxation and column generation 
approach is utilized. A cluster-first route-second type heuristic is developed in which nodes 
are first distributed to vehicles and then the problem is solved using 3-opt algorithm.  

Angelelli and Mansini [1] study the VRPSDP with time windows constraints. They 
implement a branch-and-price approach based on a set covering formulation. Gendreau et 
al. [8] study the VRPSDP for a single vehicle case and develop two heuristics. Casco et al. 
[3] introduce a load-based insertion procedure for VRPB where the insertion cost for 
backhaul customers is based on the load still to be delivered. Salhi and Nagy [12] modify 
this method by allowing backhauls to be inserted in clusters rather than one by one. This 
procedure is also capable of solving simultaneous problems. 

Dethloff [6] presents insertion-based heuristics using four different criteria. He develops 
40 instances to test his algorithm. He also compares his results with those of [12] and 
reports an improvement on Min’s [10] problem. In the problem structure in [12], nodes are 
represented as disjoint delivery or pick-up nodes so repetitive servicing is allowed. Besides, 
the problem puts a limit on the maximum route length and introduces multiple depots rather 
than a single depot case. 

In this paper, we propose Ant Colony Optimization (ACO) algorithm for the VRPSDP 
introducing a new visibility function. To our knowledge, no ACO based approach has been 
previously proposed for this problem. Only Wade and Salhi [25] address the Mixed VRPB 
and Reimann et al. [20] address the VRPB with time windows using an ACO based 
approach. The remainder of the paper is organized as follows: In Section 2 description of 
the problem is provided. Section 3 is devoted to the discussion of the proposed ACO 
approach. Section 4 discusses computational experiments and numerical results. Finally, 
concluding remarks and future research issues are presented in Section 5. 

2. Problem Description 

The problem deals with a single depot distribution/collection system servicing a set of 
customers using a homogeneous fleet of vehicles. Each customer requires two types of 
service: a delivery and a pick-up. The critical feature of the problem is that both activities 
have to be carried out simultaneously by the same vehicle. Products to be delivered are 
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loaded at the depot and products picked up are transported back to the depot. The objective 
is to find the set of routes servicing all the customers with the minimum total distance [1]. 

From a practical point of view VRPSDP models situations such as distribution of 
bottled soft drinks, LPG tanks, laundry service of hotels where the customers are typically 
visited only once but for a double service and grocery stores where reusable specialized 
pallets/containers are used for the transportation of merchandise. Also, regulations may 
force companies to take responsibility for their products throughout their lifetime. 

Mathematically, VRPSDP is described by a set of homogenous vehicles V, a set of 
customers C, and a directed graph G (N, A). N = {0,…,n+1} denotes the set of vertices. 
Each vehicle has capacity Q and each customer i has delivery and pick-up requests di and 
pi, respectively. The graph consists of |C|+2 vertices where the customers are denoted by 
1,2,…,n and the depot is represented by the vertices 0 and n+1. A = {(i, j): i?j} denotes the 
set of arcs that represents connections between the depot and the customers and among the 
customers. No arc terminates at vertex 0 and no arc originates from vertex n+1. A 
cost/distance cij is associated with each arc (i, j). Finally, Q, di, pi, cij are assumed to be non-
negative integers. 

If P is assumed as an elementary path in G, P = {0 = i0, i1,…, ip, ip+1 = n + 1}, a feasible 
solution for our problem can be represented by a set of disjoint elementary paths originating 
from 0 and ending at n+1. These paths visit every customer exactly once while satisfying 
the capacity constraints. Thus, the pick-up demands already collected plus the quantities to 
be delivered must not exceed the vehicle capacity. The objective is to minimize the total 
distance traveled by all the vehicles. (Refer to Dethloff [6] for the mathematical model) 

Anily [2] proves that the VRPB is NP-hard in the following way: If Pj =0 (j ?  J ) or 
even Pj =D (j ?  J) then the problem reduces to the VRP which is known to be NP-hard. 
Thus, VRPB is also NP–hard. VRPB may be considered as a special case of the VRPSDP 
where either the delivery demand Dj or the pick-up demand Pj of each customer equals zero 
[12]. Hence, VRPSDP is also NP–hard. 

3. Description of the ACO based approach 

ACO is based on the way real ant colonies behave to find the shortest path between their 
nest and food sources. While walking ants leave an aromatic essence, called pheromone, on 
the path they walk. Other ants sense the existence of pheromone and choose their way 
according to the level of pheromone. Greater level of pheromone on a path will increase the 
probability of ants following that path. The level of pheromone laid is based on the path 
length and the quality of the food source. It will increase when the number of ants 
following that path increases. In time all ants are expected to follow the shortest path. 

ACO simulates the described behavior of real ants to solve combinatorial optimization 
problems with artificial ants. Artificial ants find solutions in parallel processes using a 
constructive mechanism guided by artificial pheromone and a greedy heuristic known as 
visibility. The amount of pheromone deposited on arcs is proportional to the quality of the 
solution generated and increases at run-time during the computation. ACO was first 
introduced for solving the TSP [5]. Since then many implementations of ACO have been 
proposed for a variety of combinatorial optimization problems such as quadratic 
assignment problem, scheduling problem, sequential ordering problem, and vehicle routing 
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problems. The interested reader is referred to [7] for details of ACO metaheuristic. In what 
follows is the description of the algorithm. 

3.1. Initialization 

An initial amount of pheromone t0 is deposited on each arc. In the literature, it has been 
observed that t0=1/nLinit, where Linit is the length of an initial feasible route and n is the 
number of customers, can generate the good routes. The initial route is constructed by 
starting at the depot and then selecting the not yet visited closest feasible customer as the 
next customer to be visited. A customer is infeasible if it violates the capacity. If no feasible 
customer is available then the route is terminated at the depot and a new route is initiated. 

Since the distance of customers to the depot is an essential characteristic of the tour 
length we incorporate this in calculating the visibility considering the savings of serving 
customer i and j on the same route instead of serving them on different tours. The distance 
between two customers is introduced into the visibility function through the use of Clarke 
and Wright savings measure [4]:  
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dij (di0) denotes the distance between customers i and j (the depot). The higher savings 
value favors visiting customer j after customer i while the longer distance value prevents it. 
Thus, the savings per unit distance traveled between customers measures the attractiveness 
of visiting customer j after customer i. The visibility of selecting customer j after customer i 
is then computed as follows: 



 ≥

=
otherwise   1

1if    
,

,

ij

ijijij
ij d

sds
η     (2) 

Since a high value of ?ij indicates that visiting customer j after customer i is a desired 
choice the tour length is expected to be shorter if the probability of moving from customer i 
to customer j increases with ?ij. Furthermore, a candidate list is used to reduce the 
computation time. The candidate list of each customer is formed as follows: in ACO, 
visiting customer j after the current customer i is based on the amount of both the 
pheromone trails t ij and the visibility ?ij on arc (i,j). Therefore, at each customer i candidate 
set O(i) is formed by taking k feasible customers with the largest attractiveness ϕij.  

3.2. Route construction process 

An ant is positioned at each customer and each ant constructs its own tour by successively 
selecting a not yet visited feasible customer. The choice of the next customer is based on its 
attractiveness values, which is a function of the pheromone trails and the visibility:  
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a and ß are parameters to control the relative weight of trail intensity t ij and visibility ?ij.  

Using the following equations (4) and (5) each ant may either visit the most favorable 
customer or randomly select a customer to visit based on a probability distribution p(i,j). 
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where q0 (0 = q0 = 1) is a parameter to control  exploitation versus exploration. 

3.3. Local and global updates 

In order to reduce the probability of repeatedly selecting a customer, the amount of the 
pheromone on the arc is reduced through evaporation. The reduction is made by applying a 
local updating rule given in equation (6):  

( ) 01 ρττρτ +−= ijij ?????????     ?????????(6) 
where ? (0 = ? = 1) is the trail persistence parameter. If no feasible customer is available 
due to the vehicle capacity constraint then the depot is chosen and a new route is started. 
This process is executed until all customers have been visited. 

Once all ants construct their tours, the best ? tours are chosen and the global updating 
rule is applied as follows:  
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If an arc is used by the rth best ant, the pheromone value on arc (i, j) will be increased by 
r

r
ij Lr /)( −=∆ λτ , where Lr is the tour length of rth best ant. The pheromone level on the arcs of 

the best solution is also increased by ** /1 Lij =∆τ , where L* is length of the best tour. The 
steps of the algorithm are summarized in Figure 1. 

 
compute visibility  
initialize pheromone  
while (max number of iterations is not reached) 

for each ant i 
select the next customer to visit from candidate list O(i)  
update vehicle capacity and candidate list  
perform local pheromone trail update 

end for 
perform global pheromone trail update 
save the best route 

end while 
Figure 1. Pseudo-code of the algorithm. 

4. Experimental study 

In this section, the proposed ant colony system based approach for VRPSDP is tested on the 
benchmark problem instance(s) of Min [10] and Dethloff [6]. The algorithm is coded using 
C++. The parameters were set according to initial experimental runs to different problems: 
k = (No of Customers)/2, q0 = 0.80, a = 0.75, ß = 4, and ? = 15. The number of iterations is 
set to 5000 and ρ = 0.15. 
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Problem Dethloff's Best Avg Soln Best Soln % Imp 
Min 89 89,8 88 1,14% 

SCA3-0 689 705,9 697,0 -1,15% 
SCA3-1 765,6 781,5 772,4 -0,88% 
SCA3-2 742,8 744,0 742,6 0,02% 
SCA3-3 737,2 731,0 727,9 1,27% 
SCA3-4 747,1 766,6 758,9 -1,55% 
SCA3-5 784,4 803,8 799,8 -1,92% 
SCA3-6 720,4 725,5 719,2 0,17% 
SCA3-7 707,9 742,3 731,5 -3,23% 
SCA3-8 807,2 820,9 799,7 0,93% 
SCA3-9 764,1 763,4 746,2 2,40% 
SCA8-0 1132,9 1102,8 1087,5 4,17% 
SCA8-1 1150,9 1232,2 1230,0 -6,43% 
SCA8-2 1100,8 1164,7 1143,1 -3,70% 
SCA8-3 1115,6 1264,9 1243,6 -10,29% 
SCA8-4 1235,4 1331,6 1286,9 -4,00% 
SCA8-5 1231,6 1272,4 1266,2 -2,73% 
SCA8-6 1062,5 1181,9 1177,5 -9,77% 
SCA8-7 1217,4 1304,2 1293,0 -5,85% 
SCA8-8 1231,6 1350,7 1326,6 -7,16% 
SCA8-9 1185,6 1230,7 1189,4 -0,32% 
CON3-0 672,4 668,6 662,6 1,48% 
CON3-1 570,6 606,4 600,5 -4,97% 
CON3-2 534,8 549,5 538,3 -0,66% 
CON3-3 656,9 644,4 636,5 3,20% 
CON3-4 640,2 630,9 628,7 1,84% 
CON3-5 604,7 618,9 610,7 -0,99% 
CON3-6 521,3 549,3 546,3 -4,58% 
CON3-7 602,8 634,8 625,1 -3,57% 
CON3-8 556,2 581,6 578,0 -3,77% 
CON3-9 612,8 615,4 615,3 -0,40% 
CON8-0 967,3 1011,1 1000,0 -3,27% 
CON8-1 828,7 845,7 840,5 -1,40% 
CON8-2 770,2 837,4 820,0 -6,07% 
CON8-3 906,7 970,6 960,0 -5,56% 
CON8-4 876,8 909,2 896,3 -2,17% 
CON8-5 866,9 946,6 923,8 -6,16% 
CON8-6 749,1 827,3 799,2 -6,27% 
CON8-7 929,8 959,1 934,2 -0,47% 
CON8-8 833,1 887,7 876,5 -4,96% 
CON8-9 877,3 914,8 898,2 -2,33% 

Table 1. Average improvements with ACO compared to Dethloff’s results. 
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Min [10] reported the objective function value for his problem as 94. Dethloff [6] 
reported his best solution for Min’s problem as 91 with a computation time of 0.27 seconds. 
Dethloff also reported the best known solution as 89 after 100 hours of computing time on a 
Pentium III 500 Mhz processor using XPRESS-MP. Our proposed algorithm obtained has 
been able to improve the solution to 88 with a computation time of 50 seconds on a 
Pentium IV 2.6 Ghz processor. 

Dethloff performed 10 experiments for each data and published the average travel 
distances. We performed 5 runs for each instance, compare the averages to those of 
Dethloff’s, and compute the gap as (Dethloff Avg/ACO Avg) – 1. We observe that ACO 
algorithm outperforms in 9 out of 40 problem instances. The average computation time for 
all problem instances is about 15 minutes. Table 1 reports Dethloff’s best solution in 
comparison with our average and best solutions as well as the gap for all problem instances. 
We observe that our algorithm performs better for the SCA instances where the customers 
are scattered. It is also worth noting here that these results are directly obtained from the 
ACO algorithm and they may be further improved by using a local search heuristic. 

5. Conclusion and future research directions 

We address the VRPSDP which has a growing practical relevance in the reverse logistics 
literature. The computational complexity of the problem necessitates good heuristic 
solution procedures. We tackle the problem using an ACO based solution approach 
equipped with a new visibility function. The experimental analysis reveals some 
improvements to the previously published results in the literature. In addition, our 
algorithm has provided the best solution in a well-known problem instance. On the other 
hand, the computation times are larger compared to the other heuristics whose progresses 
have been declared to be in seconds. 

Future work in this area may be dedicated to apply a local search heuristic to further 
improve the solutions obtained through ACO algorithm. The author is currently 
investigating 2-opt and 3-opt algorithms. Another future direction may involve attempting 
to further reduce the number of user controlled parameters and to improve the speed of the 
procedure. Parallel computing techniques may be utilized to reduce the computational 
efforts. The approach may be extended to apply to other types of VRP as well.  
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