
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 9, SEPTEMBER 2009 3609

Scaled Bilateral Teleoperation Using Discrete-Time
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Abstract—In this paper, the design of a discrete-time sliding-
mode controller based on Lyapunov theory is presented along
with a robust disturbance observer and is applied to a piezostage
for high-precision motion. A linear model of a piezostage was
used with nominal parameters to compensate the disturbance
acting on the system in order to achieve nanometer accuracy. The
effectiveness of the controller and disturbance observer is vali-
dated in terms of closed-loop position performance for nanometer
references. The control structure has been applied to a scaled
bilateral structure for the custom-built telemicromanipulation
setup. A piezoresistive atomic force microscope cantilever with a
built-in Wheatstone bridge is utilized to achieve the nanonewton-
level interaction forces between the piezoresistive probe tip and
the environment. Experimental results are provided for the
nanonewton-range force sensing, and good agreement between
the experimental data and the theoretical estimates has been
demonstrated. Force/position tracking and transparency between
the master and the slave has been clearly demonstrated after
necessary scaling.

Index Terms—Bilateral control, discrete sliding-mode control
(SMC), disturbance observer, force sensing, high-precision motion
control, telemicromanipulation.

I. INTRODUCTION

IN RECENT years, the demand for microsystem technology
has grown rapidly, particularly due to the development

of microelectromechanical systems (MEMS) products such
as accelerometers, inkjet printer heads, optical MEMS, etc.
Complex micro/nano systems generally contain much distinct
functionality in a single product and consist of different types
of materials. Use of a monolithic (uniform) process to produce
complex micro/nano systems is desirable but, unfortunately, is
not always feasible. The current state of the art is to incorporate
multiple incompatible components into a single product by uti-
lizing serial assembly techniques, i.e., handling the parts one by
one [1], [2]. The first and foremost requirement for the assem-
bly process is to “precisely manipulate” objects. Manipulation
includes cutting, pushing, pulling, indenting, or any other type
of interactions that changes the relative position and relation of
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entities. The process of manipulation is very cumbersome to be
performed autonomously with robotic systems and/or directly
by human operators. Bilateral control, which is typically used
for teleoperation, offers a solution to these tasks since it enables
the operator to work remotely without actually being there. That
is, if the actual presence of an operator is not possible, inclusion
of a bilateral control system between the operator and the task
would simply give a possibility to the so-called “telepresence”
of the operator.

Bilateral control is defined as the control of two systems
working together on an actual or virtual task. Typically, it
is used for teleoperation, in which one system is called the
“master” side and the other is called the “slave” side of bilateral
action. The slave subsystem tracks the positions of the master
subsystem, and the master side provides the forces encountered
by the slave side to the operator, and hence, teleoperation is
achieved [3], [4]. Nowadays, many researchers have come up
with the notion of “multilateral control” [5], [6] consisting of
more than two systems working with proper coordination to
achieve a desired task. In order to perform telemicromanip-
ulation, it is indispensable to achieve robust and transparent
bilateral controllers for human intervention so that high-fidelity
position/force interaction between the operator and the remote
micro/nano environment can be achieved [7], [8]. As bilateral
control enables skilled teleoperation on several tasks, it offers
better safety, low cost, and high accuracy. On the other hand, it
also suffers from time delay problem [9], [10] that effects the
transparency of the systems.

For high-precision motion control problems, robustness of
the control algorithm is the most crucial element, even if the
system model is linear. Furthermore, when the plant to be
controlled has nonlinearities such as internal hysteresis, which
is the case for lead zirconate titanate (PZT, also known as
piezoactuator), then the advantage of designing a robust con-
troller according to nominal plant parameters to reject param-
eter uncertainties would provide less effort than modeling the
system and utilizing disturbance compensation methods [11],
[12]. Moreover, it is a fact that using more complicated models
may not always lead to better disturbance compensation results
than just using a simple model (e.g., the model of Coulomb fric-
tion) since the quality of disturbance compensation depends not
only on the model but also on the implementation constraints.

To avoid the difficulties mentioned earlier and concentrate
on the main issues of the control problem, one needs to find a
methodology that produces a robust controller design according
to the nominal parameters and has fine disturbance rejection
to achieve high-precision motion control with minimum effort.
As performance requirements become more stringent, classical
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controllers such as proportional–integral–derivative, which has
been the most preferred controller and widely used in industry
for generations, can no longer provide acceptable results. The
theory of variable-structure systems (VSSs) has opened up a
wide new area of development for control designers. Variable-
structure control (VSC), which is frequently known as sliding-
mode control (SMC), is characterized by a discontinuous
control action that changes structure upon reaching a set of
predetermined switching surfaces. Some of the concepts and
theoretical advances of VSS are covered by Young et al. [13],
Utkin [14], and Sabanovic et al. [15]. These kinds of control
may result in a very robust system and provide a possibility for
achieving the goals of high-precision motion. The SMC theory
was initially developed from a continuous-time perspective.
It has been realized that directly applying continuous-time
SMC algorithms to discrete-time systems will lead to some
indomitable problems, such as limited sampling frequency,
sample/hold effects, and discretization errors. Since the switch-
ing frequency in sampled-data systems cannot exceed the sam-
pling frequency, a discontinuous control will disable generation
of motion in a random manifold in discrete-time systems.
This leads to chattering at the sampling frequency along the
designed sliding surface or even instability in case of a too large
switching gain. In order to cope with the aforementioned issues,
a discrete-time SMC structure has been derived.

In order to achieve force transparency between the master
and the slave, it is necessary to sense the force in the nanonew-
ton range with high accuracy. Many researchers have used dif-
ferent ways for sensing or estimating force using PZT actuators
[16], capacitive sensors, optical deflection as in the atomic force
microscope (AFM) scheme, tunneling as in scanning tunneling
microscope, etc. A piezoresistive AFM cantilever with a built-
in Wheatstone bridge is utilized as a force sensor. Piezoresistive
sensors have been used for many other MEMS applications,
including accelerometers, gyroscopes, and AFM cantilevers.

In this paper, the design and implementation of a discrete
sliding-mode controller, along with a disturbance observer,
based on SMC are presented to eliminate nonlinear distur-
bances acting on PZT in order to achieve high position accuracy
in the nanoscale. Moreover, force sensing with the nanonewton
range using a piezoresistive AFM cantilever is presented, and
finally, the force/position tracking of the master and the slave
for the telemicromanipulation setup is achieved.

This paper is organized as follows. Section II explains the
telemicromanipulation setup, Section III discuss the design of
the discrete sliding-mode controller, and Section IV focuses
on modeling of PZT actuator along with the simulation and
experimental results for position control using SMC. Section V
discusses scaled bilateral teleoperation using SMC, including
the experimental validation of force sensing with nanonewton
accuracy, and Section VI shows the experimental results of the
force/position tracking of the master and the slave. Section VII
describes the conclusion.

II. TELEMICROMANIPULATION SETUP

The system is composed of two parts, namely, a master
mechanism operated by the human operator and a slave mech-

Fig. 1. Schematic view of the telemicromanipulation system.

Fig. 2. Experimental setup for telemicromanipulation.

anism interacting with the micro environment. For the master
mechanism, a dc servo is utilized, while a piezoresistive mi-
crocantilever attached on PZT stacks is used for the slave. A
bilateral man–machine interface is implemented for control, as
shown by schematics in Fig. 1.

The position data from the master side are scaled and
transferred to the slave side, while simultaneously, the force
measured at the slave side is scaled and transferred back to
the master. XYZ base stages are manually operated for proper
alignment of the microobject under the workspace. A graphical
display is also made available to the operator. Fig. 2 shows the
experimental setup.

An open architecture telemicromanipulation system that sat-
isfies the requirements has been developed and used as the
slave mechanism. Nanoscale positioning of the microcantilever
has been provided using three-axis piezostages (P-611 by
Physik Instrumente), which are driven by a power amplifier
(E-664) in closed-loop external control mode. The strain gauge
sensors integrated in the amplifier are utilized for position
measurement of the closed-loop stages that possess a travel
range of 100 μm/axis with 1-nm theoretical resolution. An
open-loop piezoelectric micrometer drive (PiezoMike PI-854
from Physik Instrumente) has been utilized as the base stage,
which is equipped with integrated high-resolution piezo linear
drives [17]. Manually operable linear drives are capable of
1-μm resolution, and the automatic movement range of the
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micrometer tip with respect to the position can be set to 50 μm
(25 μm in/out). As for the force feedback, a piezoresistive
AFM cantilever with a built-in Wheatstone bridge from Applied
NanoStructures, Inc., has been utilized. A real-time controller
card (dSPACE DS1103) is used as a control platform along with
an optical microscope (Nikon MM-40) which is used as visual
feedback for the human operator.

III. SLIDING MODE IN VARIABLE-STRUCTURE SYSTEMS

SMC, which is sometimes known as VSC, is characterized
by a discontinuous control action that changes structure upon
reaching a set of predetermined switching surfaces. This control
structure may result in a very robust system and thus provides
a possibility for achieving the goals of high-precision motion.
Consider the following system:

ẋ = f(x, t) + B(x, t)u(x, t), x ⊂ Rn, u ⊂ Rm (1)

where all the elements and their first-order time derivatives of
vector f(x, t) and matrix B(x, t) are continuous and bounded.
The rank of B(x, t) = m ∀x, t > 0.

The discontinuous control is given by

u =
{

u+(x, t), σ(x) > 0
u−(x, t), σ(x) < 0

(2)

σ(x)T = {σ1(x), σ2(x), . . . , σm(x)}

σ(x) = G(xr − x) (3)

where u+(x, t), u−(x, t), and σ(x) are continuous functions;
G is a positive integer chosen for the error-converging response
time; and xr is the reference position. u(x, t) undergoes discon-
tinuity on the manifold σ = 0.

Let S = X|σ(x)=0 be a switching manifold that includes the
origin x = 0. If, for any x0 in S, x(t) is in S for all t > t0,
then x(t) is a sliding mode of the system, and the manifold S
is called a sliding manifold. A sliding mode exists if, in the
vicinity of the switching surface S, the tangent or the velocity
vectors of the state trajectory always point toward the switching
surface.

A. Design of Discrete Sliding-Mode Controller

Drakunov and Utkin [18] introduced a continuous approach
to SMC for an arbitrary finite dimensional discrete-time system.
This approach implies that, for a sampled-data controller (as
the system becomes discrete), the controller should be contin-
uous to overcome the sampling frequency limitations of the
discontinuous approach. For a such continuous implementation
of SMC, plant motion is proven to reach the sliding manifold of
the predefined state trajectory in finite time.

The derivation of the controller structure can be achieved
using proper selection of the Lyapunov function V (σ) and an
appropriate form of the derivatives of the Lyapunov function
V̇ (σ). The system under consideration in this paper is single
input–single output, so further derivation will be carried out

for systems with scalar input and scalar sliding-mode function
σ(x) ⊂ �1.

A suitable candidate of the Lyapunov function can be
taken as

V (σ) =
σ2

2
. (4)

Hence, the derivative of the Lyapunov function is

V̇ (σ) = σσ̇. (5)

In order to guarantee the asymptotic stability of the solution
σ(x, xr) = 0, the derivatives of the Lyapunov function may be
selected to be

V̇ (σ) = −Dσ2 − μ
σ2

|σ| . (6)

Here, D and μ are positive constants. Hence, if the control can
be determined from (5) and (6), then the asymptotic stability
will be guaranteed since V (σ) > 0, V (0) = 0, and V̇ (σ) < 0.
By combining (5) and (6), the following equation can be
deduced, i.e., σ(σ̇ + Dσ + μ(σ/|σ|)) = 0, which results in (7)

σ̇ + Dσ + μ
σ

|σ| = 0. (7)

The derivative of the sliding function can be written as
σ̇ = G(ẋr − ẋ) = Gẋr − Gẋ. Here, G = {λ 1}, with λ being
a positive constant. After some simplification, σ̇ can be written
as σ̇ = Gẋr − Gf − GBu(t) = GB(ueq − u(t)), and can be
further deduced to (8)

u(t) = ueq + (GB)−1

(
Dσ + μ

σ

|σ|

)
. (8)

Direct implementation of control (8) requires knowledge of the
equivalent control ueq = (GB)−1Gf , which is unlikely. The
discrete-time implementation of control is most likely, so we
will show an approach that allows approximation of term ueq

and leads to simple recursive implementation of the control
algorithm (8).

Assuming sampling interval Ts and k = Z+, by applying
Euler approximation from σ̇ = (GB)(ueq − u), one can write

σ ((k + 1)Ts) = σ(kTs) + Ts(GB) (ueq(kTs) − u(kTs)) .
(9)

The discretized control (8) may be written as

u(kTs) = ueq(kTs) + (GB)−1

(
Dσ(kTs) + μ

σ(kTs)
|σ(kTs)|

)
.

(10)

The ueq(kTs) needed for implementation of the discretized
control (10) could be determined from (9), but that would re-
quire estimation of σ((k + 1)Ts). In order to avoid usage of the
predicted value σ((k + 1)Ts) in the calculation of control input,
an approximation of the equivalent control ueq(kTs) could be
used. The equivalent control ueq = (GB)−1Gf is continuous,
so it may be approximated with the order of the one sampling
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period O(Ts) by taking a single-step backward approximation
and can be written as ueq(kTs) ∼= ueq((k − 1)Ts). From (9),
one can write σ(kTs) as

σ(kTs) = σ ((k − 1)Ts)

+ Ts(GB) (ueq ((k − 1)Ts) − u ((k − 1)Ts)) . (11)

Consequently, by rearranging (9), ueq((k − 1)Ts) may be ex-
pressed in the following form:

ueq ((k − 1)Ts) = u ((k − 1)Ts)

+ (GB)−1 1
Ts

(σ(kTs) − σ ((k − 1)Ts)) . (12)

By inserting (11) into (10), the approximated control [with ap-
proximation error being ueq(kTs) − ueq((k − 1)Ts) = O(Ts)]
may be expressed as

u(kTs) ∼=ueq((k − 1)Ts)+(GB)−1

(
Dσ(kTs)+μ

σ(kTs)
|σ(kTs)|

)

=u((k − 1)Ts)+(GB)−1 1
Ts

×
(
(1+DTs)σ(kTs)−σ((k−1)Ts)+Tsμ

σ(kTs)
|σ(kTs)|

)
.

(13)

The control structure (13) is suitable for implementation
since it requires measurement of the sliding-mode function
and the value of the control applied in the preceding step.
For a discrete-time system, the discrete sliding mode can be
interpreted as the only state that is required to be kept on the
sliding surface at each sampling instant. Between the samples,
the states are allowed to diverge from the surface within a
boundary layer, and estimation of the boundary layer will be
explained in next section.

B. Estimation of Boundary Layer in Discrete SMC

During the course of designing a controller, it is crucial to
analyze the robustness of the controller or, in other words,
whether it satisfies the condition defined by (7). Moreover,
estimation of the boundary layer of the sliding manifold is
significant in relation with the robustness of the controller. The
analysis shown is concerned with a general system as in (1),
where f(x, t) and B(x, t) are assumed to be continuous and
bounded. The derivative of the sliding surface is given by

dσ(t)
dt

= G(ẋr − ẋ) = Gẋr(t) − Gf(t) − GBu(x, t)

= GB (ueq(t) − u(t)) . (14)

The intersampling change of σ(t) may be evaluated by inserting
a control from (13) into (14). Assume that the following result

is obtained:

dσ(t)
dt

= GB
(
ueq(t) − u(t−)

)
= GB

(
ueq(t) − ueq ((k − 1)Ts)

− (GB)−1

(
Dσ(kTs) + μ

σ(kTs)
|σ(kTs)|

))

= GB (ueq(t) − ueq ((k − 1)Ts))

−
(

Dσ(kTs) + μ
σ(kTs)
|σ(kTs)|

)
. (15)

After simplification, (15) can be written as

dσ(t)
dt

+ Dσ(t) = GBΔueq(t) − DΔσ − Dμ = ξ(t)

= GBΔueq(t) − GBΔxr − DGΔx − Dμ

= ξ(t). (16)

The terms can be written as

Δueq(t) = ueq ((k − 1)Ts) = O(Ts)

Δσ = σ(t) − σ(kTs). (17)

Since ueq(t), x(t), and xr(t) are continuous functions, then
its order depends on the selection of μ. By selecting μ small
enough ξ(t) becomes in the order of the sampling period,
i.e., ξ(t) = O(Ts) and the boundary layer is then of the order
O(T 2

s ).

IV. HIGH-PRECISION MOTION USING PIEZOACTUATOR

A. Modeling PZT Actuator

Since piezoceramic is a known dielectric, one would expect
a PZT stack actuator to exhibit a capacitive behavior along
with the rate-independent hysteresis exhibited, which affects
the net electrical charge delivered to the actuator. Additionally,
dynamic observation indicates that endpoint displacement as a
function of electrical charge is well approximated by second-
order linear dynamics.

The piezostage consists of a piezodrive with a flexure-guided
structure, which is designed to possess zero stiction and fric-
tion. Moreover, the flexure stages exhibit high stiffness, high
load capacity, and shock and vibration insensitivity. Fig. 3
describes the overall electromechanical model [19] of a PZT
actuator.

The hysteresis and piezoelectric effects are separated. H
represents the hysteresis effect, and uh is the voltage due to this
effect. The piezoelectric effect is represented by Tem, which
is an electromechanical transducer with transformer ratio. The
capacitance Ce represents the sum of the capacitances of
the individual PZT wafers, which are electrically in parallel.
The total current flowing through the circuit is q̇. Furthermore,
q may be seen as the total charge in the PZT actuator. The
charge qp is the transducer charge from the mechanical side.
The voltage up is due to the piezoeffect. The total voltage over
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Fig. 3. Electromechanical model of a PZT actuator.

TABLE I
PROPERTIES OF PIEZOSTAGE

the PZT actuator is uin, Fp is the transducer force from the
electrical side, Fext is the externally applied force, and y is
the resulting elongation of the PZT actuator. The mechanical
relation between Fp and y is denoted by M . Note that we
have equal electrical and mechanical energies at the ports of
interaction, i.e., upqp = Fpy.

The piezoelectric ceramic has elasticity modulus E, viscosity
η, and mass density ρ. Furthermore, the geometric properties
of the PZT actuator are length L and cross-sectional area
Ap. Nominal mass mp, nominal stiffness kp, and damping
coefficient cp can be calculated as mp = ρApL, kp = EAp/L,
and cp = ηAp/L.

The complete electromechanical equations can be written as

mpÿ + cpẏ + kpy = Tem (uin(t) − H(y, uin)) − Fext. (18)

Here, y represents the displacement of the piezostage, and
H(y, uin) denotes the nonlinear hysteresis, which is a function
of y and uin. The properties of the utilized piezoelectric actuator
are shown in Table I. Since modeling hysteresis and using com-
pensation techniques are cumbersome processes due to their
dependencies on many factors, thus the disturbance observer
which is discussed in the following section will be used for
compensation of hysteretic behavior in the system.

B. Disturbance Observer Based on SMC

There are several hindrances for high-precision motion that
is highly nonlinear in nature and arises from several factors
such as hysteresis, dead zone, saturation, backlash, etc., of the
actuators and/or sensing devices, high parameter variations, and
time delay. It might be possible to combine all the effects of
these different kinds of disturbances on the plant response (i.e.,
observe their position) and provide a compensation for them

as an addition to the controller output and use this sum as the
plant input. This kind of compensation is called “disturbance
compensation,” and the observer used is called “disturbance
observer.”

The observer structure is deduced based on (18) under the as-
sumption that all plant parameter uncertainties, nonlinearities,
and external disturbances can be represented as a lumped distur-
bance. It is assumed that y is the displacement and measurable
and that ut is the input and also a measurable quantity

mpÿ + cpẏ + kpy =Temu(t) − Fdis

Fdis = ΔT (uin + vh) + Δmÿ + Δcẏ + Δky.

(19)

Here, mp, cp, and kp are the nominal plant parameters, while
Δm, Δc, Δk, and ΔT are the uncertainties associated with the
plant parameters. Since y and u(t) are measurable quantities,
the observer structure can be written in the following form:

mp
¨̂y + cp

˙̂y + kpŷ = Temu − Temuc. (20)

Here, ŷ, ˙̂y, and ¨̂y are the estimated position, velocity, and
acceleration, respectively. u is the plant control input, and uc

is the observer control input, as shown in Fig. 4.
The estimated position ŷ should be forced to track y. The

derivation process of the SMC structure is also used for deriving
the observer controller whose sliding manifold is defined as
σobs = λobs(y − ŷ) + (ẏ − ˙̂y).

Here, λobs is a positive constant. If σobs is forced to become
zero, then ŷ should be forced to y. As described in the previous
section, with the same analogy, it can be written as (σ̇obs +
Dobsσobs) = 0, which guarantees σobs → 0.

After some modification, the resulting equation can be
written as

(ÿ − ¨̂y) + (λobs + Dobs)(ẏ − ˙̂y) + λobsDobs(y − ŷ) = 0.
(21)

It can be seen that the transient of the closed-loop system is
defined by the roots −λobs and −Dobs. From structure (20), it
can be seen that the input matrix Bobs and G can be written as

Bobs =
[
0 −Tem

mp

]T
(22)

G = [λobs 1 ]. (23)

Thus, after some simplification, the observer structure can be
written as

uck
= uck−1−

mp

Tem

(
Dobsλobs +

σobsk
− σobsk−1

Ts

)
. (24)

Here, uc is the compensated control input to the system. The
positive feedback by input uc forces the system to behave
closely toward the ideal system having nominal parameters.
However, in reality, there is also some amount of difference
between the real disturbance and the estimated disturbances.
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Fig. 4. Controller and disturbance observer for position control of the PZT actuator.

Fig. 5. Position response for a reference of 50 nm [20].

C. Experimental Validation of Position Control

In order to verify the performance of the discrete-time
sliding-mode controller along with the disturbance observer,
smooth-step inputs are applied to one of the piezostages, and
the response is drawn in Fig. 5, which represents the step
response for position reference of 50 nm. The rise time and
steady state error are 23 ms and 2%, respectively. An overshoot
behavior is not observed, and operation with no overshoot is the
foremost requirement for micromanipulation applications since
an overshoot may result in damage to the probe or particles.
However, the system suffers from noise coming from the mea-
surement devices, which shows up in the steady-state plots.

Fig. 6 shows the response for the trapezoidal input with a
height of 0.5 μm, and the result shows that it precisely follows
the reference position and that tracking error is found to be
less than 10 nm. Fig. 7 shows the position response for the
sinusoidal input with an amplitude of 1 μm with low frequency
of 2 Hz due to the requirement of slow motion on the slave side.
It can clearly be observed that the actual position tracks the ref-
erence with high accuracy and that the tracking error is within
±20 nm. These experimental results suggest that the proposed
controller, along with the disturbance observer, produces
acceptable results for positioning with very high precision.

V. SCALED BILATERAL TELEOPERATION

In micromanipulation applications, scaled bilateral control is
used for teleoperation where the master/human is not able to ac-

Fig. 6. Position response for a trapezoidal reference.

Fig. 7. Position response for a sinusoidal reference for 1-μm amplitude.

cess the micro environment on the slave side. Since the master
and the slave are working on the macroscale and microscale,
respectively, it is indispensable to use a general bilateral con-
troller to scale the position and forces between two sides for
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Fig. 8. Piezoresistive AFM cantilever with built-in Wheatstone bridge.

extensive capability. In other words, the position information
from the master side is scaled down to the slave, and the force
information from the slave side is scaled up to the master.

A. Schematic of Telemicromanipulation Setup

The complete bilateral structure is shown in Fig. 1, com-
prising the master and slave sides. A piezostage on the slave
side is required to track the master’s position, as dictated by
the operator using a discrete sliding-mode controller structure,
as discussed in the previous section. The 1D force of inter-
action with the environment, generated by the piezoresistive
cantilever, on the slave side is transferred to the master as a
force opposing its motion, therefore causing a “feeling” of the
environment by the operator. The conformity of this feeling
with the real forces is called “transparency.” Transparency is
crucial for micromanipulation/nanomanipulation applications
for stability of the overall system. Furthermore, for microsys-
tem applications, position and forces should be scaled in order
to adjust to the operator requirements. The position of the
master manipulator, scaled by a factor α, is used as a position
reference for the slave manipulator, while the calculated force
due to contact with the environment, scaled by a factor β, is fed
back to the operator through the master manipulator.

B. Force Sensing Using Piezoresistive AFM Cantilever

A commercially available piezoresistive microcantilever
from Applied NanoStructures, Inc. with an integrated built-in
Wheatstone and strain gauge is utilized as the force sensor, as
shown in Fig. 8. As the force is applied at the free end of the
cantilever, the change of strain gauge resistance takes place,
depending on deflection. The amount of deflection is measured
by a Wheatstone bridge that provides an analog voltage output
and amplified by the amplifier, as shown in Fig. 1.

To compensate the offset caused by the built-in cantilever
resistance value, one of the passive resistors in the Wheatstone
bridge is connected to a potentiometer. The amplified voltage
corresponding to the forces is then sent to the data acquisition
card, and the force is calculated using Hooke’s law F = Kc ×
z, where Kc is the known spring constant of 0.3603 N/m and
z is the amount of cantilever deflection. The spring constant

Fig. 9. Force for smooth-step position reference.

is calculated by considering a linear beam equation and verified
via a natural frequency test using an AFM [21]. The linear beam
equation is represented as Kc = 3EI/L3, where E represents
the modulus of elasticity (190 GPa for silicon) and I denotes
the moment of inertia for a bending beam calculated as I =
bh3/12, with b and h representing the width and height of the
microcantilever (50 and 1.6 μm), respectively. The value of I is
calculated as 17.067 × 10−24 m4.

The cantilever is mounted on the three-axis closed-loop
stages, and the interaction (contact and noncontact) forces be-
tween the tip and the glass slide are measured. The movement of
the cantilever is selected to be perpendicular to the plane of the
optical axis in order to achieve better visibility of the distance
between the cantilever and the glass slide. Since the displace-
ment range of the x-axis of the closed-loop stage is 100 μm,
the glass slide is brought within the range using open-loop
manual PZT axes. Finally, the change of the resistance is
converted to change in voltage (millivolt range) using the built-
in full bridge along with a potentiometer for offset calibration
and sending to the to amplifier to generate ±10 V.

C. Experimental Validation of Force Sensing

In order to verify the force sensing, the piezoresistive
AFM cantilever is made to interact with the glass slide, and
Fig. 9 shows the attractive forces between the tip and the
glass slide [22]. A decreasing distance between the tip and the
glass slide corresponds to an increase in the position of PZT
along the same axis. It can be observed that, as the distance
between the tip and the glass slide decreases, attractive forces
increase. The first part of the graph is dominated by electrostatic
forces, while the remaining part is dominated by van der Waals
forces. The change in slope of the force measurement plot
corresponding to these two regions can be observed in Fig. 9.

In order to verify the force measurement, theoretical values
of the pull-off force (breaking load during the withdrawal of the
tip) between the silicon tip and the glass surface are compared
with the experimental results. In the case of the interaction
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Fig. 10. Forces of interaction between the silicon tip and the glass slide.

between a spherical tip and a planar surface, the interaction
force can be approximated by the Dugdale model [23] as

Fpull-off =

(
7
4
− 1

4
4.04λ

1
4 − 1

4.04λ
1
4 + 1

)
πWR (25)

where W is the work of adhesion between the two media,
R is the radius of the sphere, and λ is a coefficient, which
can be used to choose the most appropriate contact model for
a given case [24]. Using the interfacial energy, the pull-off
force can be calculated for λ = 0.54 according to the Dugdale
model as 39.43 nN [25], [26]. Fig. 10 shows the experimentally
determined pull-off force that is close to 40 nN, indicating
a close match between the theoretically and experimentally
determined values.

VI. POSITION/FORCE TRACKING OF MASTER AND SLAVE

In order to attain “full” transparency, it is inevitable that the
slave precisely tracks the master position, and simultaneously,
the slave also transmits the interaction force from the environ-
ment to the master. In our case, the force transmitted by the
piezoresistive cantilever is in single dimension.

A. Scaling of Position/Force Information

Since the master and the slave side reside on the macroscale
and the microscale, respectively, it is very vital to appropriately
choose the scaling factor in order to attain optimum perfor-
mance. In ideal condition, the steady-state condition of the
bilateral controller should be

xs =αxm

Fm =βFs (26)

where α and β represent the position and force scaling; xm

and xs denote the master and slave positions; and Fm and Fs

stand for the master and slave forces, respectively. To be able
to meaningfully interact with the micro environment, positions
and forces are scaled to match the operator requirements.

In the first and second experiments, scaling factors of α =
0.027 μm/deg and β = 0.00366 N/nN are used, i.e., an angular
displacement of 1 deg on the master side corresponds to a linear
displacement of 0.027 μm on the slave side, and a force of
0.00366 nN on the slave side corresponds to a force of 1 N
on the master side. The objective of these experiments is to
provide very fine motion on the slave side for a relatively larger
displacement on the master side, so α is selected according to
this objective. Then, the corresponding forces/torques for each
amount of displacement were compared for the selection of β,
keeping in mind that the dc servo on the master side has low
torques.

B. Experimental Validation of Position/Force Tracking

Fig. 11 shows the experimental results for position tracking
along with the tracking error of the master and slave systems. It
can clearly be seen that, under different references, the slave
tracks the master position with high accuracy. This position
tracking performance is acceptable for precisely positioning the
microcantilever.

Fig. 12 shows the force tracking between the master and the
slave along with the tracking error. It can clearly be observed
from the figure that the master tracks the slave force precisely
and that the tracking error is found to be within ±20 nN. Thus,
it can clearly be concluded that using a discrete SMC structure
along with a disturbance observer yields very precise position
tracking. Force tracking also confirms the transparency between
the master and the slave.

VII. CONCLUSION

In this paper, the design of a discrete-time sliding-mode
controller based on Lyapunov theory was presented. A robust
disturbance observer based on sliding-mode control was pre-
sented and applied to a piezostage by considering all the non-
linearities present in the system as lumped disturbance. A linear
model of a piezostage was used with nominal parameters and
employed to compensate the disturbance acting on the system
in order to achieve nanoscale accuracy. The effectiveness of
the controller and disturbance observer was verified in terms
of closed-loop position performance. The results show that
the proposed controller structure produced good experimental
results eliminating any chattering motion but the influence of
sensing noise in the high frequency range, effect steady-state
position of the system and forces an oscillatory behavior.

The aforementioned discrete-time sliding-mode controller
has been applied in the bilateral structure for the custom-built
telemicromanipulation setup. A piezoresistive AFM microcan-
tilever with a built-in Wheatstone bridge was utilized to achieve
the nanonewton-level interaction forces between the cantilever
probe tip and the glass surface. Experimental results are com-
pared to the theoretical estimates of the changes in attractive
forces as a function of decreasing distance and of the pull-off
force between a silicon tip and a glass surface. Good agreement
among the experimental data and the theoretical estimates has
been demonstrated. Force/position tracking between the master
and the slave has clearly been demonstrated after necessary
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Fig. 11. Position tracking of the bilateral controller for zigzag motion with 20-nm amplitude.

Fig. 12. Force tracking of the bilateral controller and tracking error.

scaling. It is clearly demonstrated that the slave position tracked
the master position with high precision and that the master felt
the interaction forces in one dimension between the slave and
the environment.
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