
A HIGH PERFORMANCE HARDWARE ARCHITECTURE FOR HALF-PIXEL
ACCURATE H.264 MOTION ESTIMATION

Sinan Yalcin and Ilker Hamzaoglu
Faculty of Engineering and Natural Sciences, Sabanci University,

34956, Tuzla, Istanbul, Turkey
syalcin@su.sabanciuniv.edu, hamzaoglu@sabanciuniv.edu

Abstract—In this paper, we present a high performance and low
cost hardware architecture for real-time implementation of half-pel
accurate variable block size motion estimation for H.264 / MPEG4
Part 10 video coding. The proposed architecture includes a novel
half-pel interpolation hardware that is shared by novel half-pel
search hardwares designed for each block size. This half-pel
accurate motion estimation hardware is designed to be used as part
of a complete H.264 video coding system for portable
applications. The proposed architecture is implemented in Verilog
HDL. The Verilog RTL code is verified to work at 85 MHz in a
Xilinx Virtex II FPGA. The FPGA implementation can process 30
HDTV frames (1280x720) per second.

I. INTRODUCTION
 Video compression systems are used in many commercial
products. These applications make the video compression
hardware devices an inevitable part of many commercial products.
To improve the performance of the existing applications and to
enable the applicability of video compression to new real-time
applications, a new international standard is developed. This new
standard, called H.264 / MPEG4 Part 10, offers significantly better
video compression efficiency than previous standards.
 The video compression efficiency achieved in H.264 standard
is not a result of any single feature but rather a combination of a
number of encoding tools. As it is shown in the top-level block
diagram of an H.264 Encoder in Figure 1, one of these tools is the
half-pel accurate variable block size motion estimation used in the
baseline profile of H.264 standard [1, 2, 3]. Motion estimation is
the most computationally demanding part of the video encoders.
In order to increase the performance of integer-pel motion
estimation, half-pel accurate variable block size motion estimation
is performed [4, 5, 6]. However, the amount of computation
required by half-pel accurate variable block size motion estimation
is even more than the amount required by integer-pel motion
estimation. Therefore, this coding gain comes with an increase in
encoding complexity which makes it an exciting challenge to have
a real-time implementation of half-pel accurate variable block size
motion estimation for H.264 video coding.
 In this paper, we present a high performance and low cost
hardware architecture for real-time implementation of half-pel
accurate variable block size motion estimation for H.264 / MPEG4
Part 10 video coding. The proposed architecture includes a novel
half-pel interpolation hardware that is shared by novel half-pel
search hardwares designed for each block size. To the best of our
knowledge, this is the first half-pel accurate variable block size
motion estimation hardware in the literature for H.264 standard.
This half-pel accurate motion estimation hardware is designed to
be used as part of a complete H.264 video coding system for
portable applications together with a previously published integer-
pel motion estimation hardware [7]. The proposed architecture is

Figure 1. H.264 Encoder Block Diagram

implemented in Verilog HDL. The Verilog RTL code is verified to
work at 85 MHz in a Xilinx Virtex II FPGA. The FPGA
implementation can process 30 HDTV frames (1280x720) per
second.
 Our hardware design is a cost-effective solution for portable
applications. Interpolation datapath in the proposed hardware is
shared by various block size modes and search datapaths use 28
processing elements for search operations.
 The rest of the paper is organized as follows. Section II
explains the half-pel accurate motion estimation algorithm. The
proposed half-pel interpolation hardware is described in Section
III and the proposed half-pel search hardware is described in
Section IV. The implementation results are given in Section V.
Finally, section VI presents the conclusions.

II. OVERVIEW OF HALF-PEL ACCURATE MOTION
ESTIMATION ALGORITHM

 The search locations for half-pel accurate motion estimation
are shown in Figure 2. First, integer-pel motion estimation is
performed at the integer-pel search locations and best integer-pel
motion vector (MV) is determined based on a performance metric,
e.g. minimum Sum of Absolute Difference (SAD). Then, half-pel
motion estimation is performed at the half-pel search locations
around the best integer-pel MV with a search range of [-1, 1], and
the integer-pel MV is refined by the best half-pel accurate MV.
 Before searching for the best half-pel accurate MV, half pixels
in the half-pel search window are interpolated from neighboring
pixels using a 6-tap FIR filter with weights (1/32, -5/32, 5/8, 5/8,
-5/32, 1/32). First, the half pixels that are adjacent to two integer
pixels are interpolated from 6 integer pixels. Then, the remaining
half pixels are interpolated from 6 horizontal or 6 vertical half
pixels. A half-pel interpolation example is shown in Figure 3.
First, the half pixels a, b, c, d, e, f are interpolated from 6
corresponding horizontal integer pixels. For example, half pixel c
is interpolated from the 6 horizontal integer pixels A, B, C, D, E, F
(c = round ((A-5B+20C+20D-5E+F) / 32)). Then, the half pixels

Figure 2. Half-Pel Search Locations

g, h, i, j, k, m are interpolated from 6 corresponding vertical
integer pixels. For example, half pixel i is interpolated from the 6
vertical integer pixels M, N, C, I, O, P. Finally, half-pel n can be
interpolated from either horizontal half pixels g, h, i, j, k, m or
vertical half-pixels a, b, c, d, e, f.

III. PROPOSED HALF-PEL INTERPOLATION HARDWARE
 The half-pel accurate variable block size motion estimation
hardware performs half-pel interpolation and half-pel search for
each block size. First, half-pel interpolation hardware calculates
the half pixels in the half-pel search window of a block. Then,
half-pel search hardware searches the half-pel search locations and
determines the best half-pel accurate MV for that block. This
process is repeated for all block sizes.
 The proposed half-pel interpolation hardware for 4x4, 4x8 and
8x4 block sizes is shown in Figure 4. If a dedicated half-pel
interpolation datapath is used for each block size, the half-pel
interpolation datapaths would be idle during half-pel search. The
proposed hardware, therefore, has a novel half-pel interpolation
datapath that is shared by 4x4, 4x8 and 8x4 block sizes. During the
half-pel search of 4x4 blocks, the half-pel interpolation datapath is
used for half-pel interpolation of 4x8 and 8x4 blocks. This reduces
the area of the half-pel interpolation hardware significantly
without increasing the cycle count.
 The half-pel interpolation hardware for 8x8, 8x16, 16x8 and
16x16 block sizes has its own half-pel interpolation datapath and it
is similar to half-pel interpolation hardware for 4x4, 4x8 and 8x8
block sizes.

A. Half-Pel Interpolation Flow

 The proposed half-pel interpolation flow for a 4x4 block is
shown in Figure 5. The half-pel interpolation flows for the other
block sizes are similar to this flow. The light gray rectangles
denote integer pixels (e.g. 0-0) and dark gray rectangles denote
half pixels (e.g. A00, B00, C00). The integer-pel MV for this 4x4
block points to the integer pixel 3-3. The half-pel search locations
around this integer pixel (C00, A03, C01, B01, C11, A13, C10,
B00) have to be searched to determine the best half-pel accurate
MV. Therefore, the top-left corner of the half-pel search window
is C00 and the bottom-right corner is C44. There are 9x9 (integer
and half pixels) – 4x4 (integer pixels) = 65 half pixels in the half-
pel search window and 100 integer pixels (0-0 to 9-9) are required

Figure 3. Half-Pel Interpolation Example

to calculate these half pixels. The integer pixels are stored in the
input register file and the half pixels in the half-pel search window
are stored in the search register file.
 The half pixels are grouped according to their calculation
order; first set A half pixels, then set B half pixels and finally set C
half pixels are calculated. Set A half pixels are interpolated from 6
corresponding vertical integer pixels. For example, A00 is
interpolated from integer pixels 0-0, 1-0, 2-0, 3-0, 4-0, 5-0 and
A10 is interpolated from integer pixels 1-0, 2-0, 3-0, 4-0, 5-0, 6-0.
Therefore, the first column of set A half pixels (A00 to A40) are
calculated using the first column of integer pixels (0-0 to 9-0). The
remaining set A half pixels are calculated similarly.
 Set B half pixels are interpolated from 6 corresponding
horizontal integer pixels. For example, B00 is interpolated from
integer pixels 3-0, 3-1, 3-2, 3-3, 3-4, 3-5 and B01 is interpolated
from integer pixels 3-1, 3-2, 3-3, 3-4, 3-5, 3-6. Therefore, the first
row of set B half pixels (B00 to B04) are calculated using the
fourth row of integer pixels (3-0 to 3-9). The remaining set B half
pixels are calculated similarly.
 Finally, set C half pixels are interpolated from 6 corresponding
horizontal set A half pixels. Therefore, in addition to the set A half
pixels that are in the search window, the set A half pixels that are
required to calculate set C half pixels are also calculated and
stored in temporary register file. For example, C00 is interpolated
from set A half pixels A00, A01, A02, A03, A04, A05 and C01 is
interpolated from set A half pixels A01, A02, A03, A04, A05,
A06. Therefore, the first row of set C half pixels (C00 to C04) are
calculated using the first row of set A half pixels (A00 to A09).
The remaining set C half pixels are calculated similarly.

B. Half-Pel Interpolation Datapath

 The proposed half-pel interpolation datapath is shown in
Figure 6. The datapath implements the 6-tap FIR filter round ((A-
5B+20C+20D-5E+F) / 32). It takes 6 input pixels and calculates
the corresponding half pixel. The datapath is pipelined into 2
stages using pipeline registers (P Reg) to increase the clock
frequency and interpolation throughput. The multiplications with
coefficients 5 and 20 are implemented with shifters and adders
instead of multipliers to reduce area. For example, 5X is calculated
by 2-bit left shift (4X) and addition (4X+X). The output of the
datapath is clipped to range [0-255].

Figure 4. Half-Pel Interpolation Hardware

Figure 5. 4x4 Half-Pel Interpolation Flow

 Since one set A half pixel is interpolated from 6 integer pixels,
if we use 1 half-pel datapath, 5 set A half pixels will be
interpolated in 5 clock cycles by accessing 30 integer pixels. Since
one set A half pixel is interpolated from 6 integer pixels, if we use
1 half-pel datapath, 5 set A half pixels will be interpolated in 5
clock cycles by accessing 30 integer pixels. However, since one
column of set A half pixels (5 pixels) can be calculated using one
column of integer pixels (10 pixels), if we use 5 half-pel
interpolation datapaths, 5 set A half pixels can be interpolated in 1
clock cycle by accessing 10 integer pixels. This reduces the
number of input register file accesses by 3 and the number of
clock cycles by 5. We used 10 half-pel interpolation datapaths to
further reduce the clock cycle count. Therefore, two columns of

set A half pixels (10 pixels) are calculated in 1 clock cycle by
accessing 20 integer pixels.
 Similarly, two rows of set B half pixels (10 pixels) are
calculated in 1 clock cycle by accessing 20 integer pixels.
However, since set C half pixels are interpolated from set A half
pixels and accessing two rows of set A half pixels in 1 clock cycle
increases the complexity of the register files, one row of set C half
pixels (5 pixels) are calculated in 1 clock cycle by accessing one
row of set A half pixels (10 pixels).
 The half-pel interpolation hardware, therefore, calculates set A
half pixels in 5 clock cycles, set B half pixels in 2 clock cycles and
set C half pixels in 5 clock cycles. The half-pel interpolation for a
4x4 block, therefore, takes 12 clock cycles.

Figure 6. Half-Pel Interpolation Datapath

 Since the half-pel interpolation datapaths access 20 integer
pixels and produce 10 half pixels in 1 clock cycle, the input
register files should have 20 read ports and search register files
should have 10 write ports. However, in Xilinx Virtex II FPGAs,
register files with more than two read and one write ports use very
large area and distributed RAMs have two read and one write
ports. Therefore, in order to use distributed RAMs, we used
register files with a word length of 10 pixels (80 bits).
 This requires organizing the half-pixels in the search register
file such that 10 half pixels produced by half-pel interpolation
hardware in one cycle can be written as one word to the search
register file and the half pixels can be easily accessed by the half-
pel search hardware. The proposed layout of the half-pixels in the
4x4 search register file is shown Figure 7. The rectangles labeled
as 4-0, 0-0, 4-1, 2-0, X, 2-1, 4-5, 0-1, 4-6 correspond to C00, A03,
C01, B00, 3-3, B01, C10, A13, C11 in Figure 5. Therefore, the
half-pel search window in the 4x4 search register file corresponds
to half-pel search window starting with C00 and ending with C44
in Figure 5.
 As shown in Figure 7, first two columns of set A half pixels
are written as an 80-bit word to address 0 and the other two
columns of set A half pixels are written as an 80-bit word to
address 1. Similarly, first two rows of set B half pixels are written
as an 80-bit word to address 2 and the other two rows of set B half
pixels are written as an 80-bit word to address 3. Similarly, set C
half pixels are written to addresses 4, 5 and 6.

 IV. PROPOSED HALF-PEL SEARCH HARDWARE
 The proposed half-pel accurate variable block size motion
estimation hardware has dedicated half-pel search hardware for
each block size in order to perform the half-pel search faster.
Each half-pel search hardware has 4 PEs. Since there are 7 block
sizes, 28 PEs are used in the half-pel motion estimation hardware.
 Half-pel search hardware for 4x4 block size is shown in
Figure 8. The half-pel search hardwares for other block sizes are
similar to this hardware. The SAD value for a search location is
calculated by a processing element (PE) in 16 clock cycles. Since

Figure 7. 4x4 Search Register File

Figure 8. 4x4 Half-Pel Search Hardware

there are 8 half-pel search locations, half-pel search would take
8*16=128 clock cycles using one PE. We used 4 PEs in order to
perform the half-pel search operation faster. Each PE calculates
the SAD for two half-pel search locations in 2*16=32 clock
cycles. The SADs calculated by PEs are sent to a comparator, and
the comparator determines the minimum SAD and the
corresponding best half-pel accurate MV.
 The proposed half-pel search flow for a 4x4 block is shown in
Figure 9. The half-pel search flows for the other block sizes are
similar to this flow. The calculations done by each PE in this flow
is organized to reduce the number of search register file and
current register file read ports. The search register file has two 80-
bit read ports, s0 and s1. During half-pel search, the proper pixel
(8 bits) is selected by a multiplexer in each cycle among 10 pixels
(80 bits) and sent to proper PEs. The current register file has two
8-bit read ports, c0 and c1. PE0 and PE1 use s0 and c0 ports, PE2
and PE3 use s1 and c1 ports.
 The half-pel search locations are allocated to PEs as follows.
First, 4 search locations that use set C half pixels are searched.
PE0 calculates the SAD for the 4x4 block starting with pixel
stored in address 4-0 and ending with pixel stored in address 5-8,
PE1 calculates the SAD for the 4x4 block starting with 4-1 and
ending with 5-9, PE2 calculates the SAD for the 4x4 block starting

Figure 9. 4x4 Half-Pel Search Flow

with 4-5 and ending with 6-3 and PE3 calculates the SAD for the
4x4 block starting with 4-6 and ending with 6-4. During these
calculations, port s0 provides the pixels stored in addresses 4 and
5 and these 20 pixels are used by PE0 and PE1. Port s1 provides
the pixels stored in addresses 4, 5 and 6 and proper 20 pixels are
used by PE2 and PE3.
 Then, 2 search locations that use set A half pixels and 2 search
locations that use set B half pixels are searched. PE0 and PE1
searches the two set B search locations and PE2 and PE3 searches
the two set A search locations. PE0 calculates the SAD for the 4x4
block starting with pixel stored in address 2-0 and ending with
pixel stored in address 3-8, PE1 calculates the SAD for the 4x4
block starting with 2-1 and ending with 3-9, PE2 calculates the
SAD for the 4x4 block starting with 0-0 and ending with 1-8, PE3
calculates the SAD for the 4x4 block starting with 0-1 and ending
with 1-9. During these calculations, port s0 provides the pixels
stored in addresses 2 and 3 (set B) and these 20 pixels are used by
PE0 and PE1. Port s1 provides the pixels stored in addresses 0 and
1 (set A) and these 20 pixels are used by PE2 and PE3.

V. IMPLEMENTATION RESULTS
 The proposed half-pel motion estimation hardware for 4x4,
4x8 and 8x4 block sizes is implemented in Verilog HDL. The
half-pel motion estimation for a 4x4 block takes 48 clock cycles;
half-pel interpolation takes 14 clock cycles (2 cycles register file
access and pipeline delays) and half-pel search takes 34 clock
cycles (2 cycles register file access and pipeline delays). Since
there are 16 4x4 blocks in a MB, half-pel motion estimation for a
MB for 4x4 block size takes 16*48=768 clock cycles. The half-pel
motion estimation for an 8x4 block takes 25+65=90 clock cycles.
Since there are 8 8x4 blocks in a MB, half-pel motion estimation
for a MB for 8x4 block size takes 8*90=720 clock cycles.
Similarly, half-pel motion estimation for a MB for 4x8 block size

takes 720 clock cycles. Therefore, half-pel motion estimation for a
MB for 4x4, 4x8 and 8x4 block sizes take 768 clock cycles and
the 4x4 block size is the bottleneck.
 The implementation is verified with RTL simulations using
Mentor Graphics ModelSim. The Verilog RTL is then synthesized
to a 2V8000ff1152 Xilinx Virtex II FPGA with speed grade 5
using Mentor Graphics Leonardo Spectrum. The resulting netlist is
placed and routed to the same FPGA using Xilinx ISE Series 7.1.
 The FPGA implementation is verified to work at 85 MHz
under worst-case PVT conditions with post place and route
simulations. The FPGA implementation can process an HDTV
frame in 32.6 msec. (3600 MB * 768 cycles per MB * 11.8 ns
clock cycle = 32.6 msec). Therefore, it can process 1000/32.6 = 30
HDTV frames (1280x720) per second.
 The FPGA implementation including the distributed RAMs
uses the following FPGA resources; 5627 Function Generators,
2814 CLB Slices, 3546 Dffs/Latches, i.e. %6 of Function
Generators, %6 of CLB Slices, %3.7 of Dffs/Latches.

VI. CONCLUSIONS
 In this paper, we presented a high performance and low cost
hardware architecture for real-time implementation of half-pel
accurate variable block size motion estimation for H.264 / MPEG4
Part 10 video coding. The proposed architecture includes a novel
half-pel interpolation hardware that is shared by novel half-pel
search hardwares designed for each block size. This half-pel
accurate motion estimation hardware is designed to be used as part
of a complete H.264 video coding system for portable
applications. The proposed architecture is implemented in Verilog
HDL. The Verilog RTL code is verified to work at 85 MHz in a
Xilinx Virtex II FPGA. The FPGA implementation can process 30
HDTV frames (1280x720) per second.

REFERENCES
[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,

“Overview of the H.264/AVC Video Coding Standard”, IEEE
Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7,
pp. 560–576, July 2003

[2] I. G. Richardson, H.264 and MPEG-4 Video Compression, Wiley,
2003

[3] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG,
Draft ITU-T Recommendation and Final Draft International
Standard of Joint Video Specification, ITU-T Rec. H.264 and
ISO/IEC 14496-10 AVC, May 2003

[4] H. Mahdavi-Nasab, S. Kasaei, “Half-Pixel Accuracy Block
Matching Motion Estimation Algorithms for Low Bitrate Video
Communications”, Proc. IEEE Int Conf. on Internet, 2005

[5] M. Rehan, P. Agathoklis, “Half-pixel accurate motion estimation
using a flexible triangle search”, Proc. IEEE Conf. on Comm.,
Comp. and Signal Proc., pp. 257–260, 2005

[6] T. Dias, N. Roma, L. Sousa, “Efficient motion vector refinement
architecture for sub-pixel motion estimation systems”, Proc. IEEE
Workshop on Signal Proc. System Design and Implementation, pp.
313-318, November 2005

[7] S. Yalcin, H. Ates, I. Hamzaoglu, “A High Performance Hardware
Architecture for an SAD Reuse based Hierarchical Motion
Estimation Algorithm for H.264 Video Coding”, Int. Conf. on Field
Programmable Logic and Applications, pp. 509–514, August 2005

