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Abstract. We study the conductance through two types of graphene
nanostructures: nanoribbon junctions in which the width changes from wide
to narrow, and curved nanoribbons. In the wide–narrow structures, substantial
reflection occurs from the wide–narrow interface, in contrast to the behavior
of the much studied electron gas waveguides. In the curved nanoribbons,
the conductance is very sensitive to details such as whether regions of a
semiconducting armchair nanoribbon are included in the curved structure—such
regions strongly suppress the conductance. Surprisingly, this suppression is not
due to the band gap of the semiconducting nanoribbon, but is linked to the valley
degree of freedom. Although we study these effects in the simplest contexts, they
can be expected to occur for more complicated structures, and we show results
for rings as well. We conclude that experience from electron gas waveguides
does not carry over to graphene nanostructures. The interior interfaces causing
extra scattering result from the extra effective degrees of freedom of the graphene
structure, namely the valley and sublattice pseudospins.
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1. Introduction

There has been tremendous interest recently in investigating carbon-based nanoelectronics,
first with carbon nanotubes [1]–[3] and more recently with graphene [4]. In that context,
researchers have intensively studied graphene ‘nanoribbons’—infinite, straight strips of
graphene of constant width—both theoretically [5]–[23] and experimentally [24]–[31]. Most of
the theoretical effort has been focused on nanoribbons of essentially constant width. However,
more functionality, beyond that of a mere wire, might be gained if one considers more general
and realistic nanoribbons in which the width of the ribbon changes, it curves, or particular
junctions of nanoribbons are formed.

On a more fundamental level, the continuing great interest in the effect of reduced
dimensionality, such as electron–electron interactions in reduced dimensions, provides
motivation for studying quasi-one-dimensional (1D) systems. Graphene’s unusual dispersion
(massless Dirac fermions) and reduced density of states at the Fermi energy, for instance,
suggest potential for novel effects. Of course, one should first understand the non-interacting
system before turning to interactions.

Graphene nanoribbons are closely analogous to electron waveguides patterned out of two-
dimensional electron gas (2DEG), usually in GaAs or other semiconductor systems [32]–[42].
However, there is an important difference in how the confinement is achieved. While in 2DEG
waveguides the electrons are trapped in the transverse direction of the waveguide by applying
a potential by means of local gate electrodes, graphene nanoribbons are directly cut out of
a larger graphene flake. This gives rise to different types of boundaries, depending on the
direction in which the nanoribbons are cut with respect to the graphene lattice. If the longitudinal
direction of the nanoribbon is along the direction of nearest-neighbor carbon bonds, the resulting
boundary is of ‘armchair’ type, while cutting at 30◦ with respect to the nearest-neighbor carbon
bonds results in a ‘zigzag’ boundary (see figure 1). It has been shown that the low-energy
properties of nanoribbons with boundaries other than these two are equivalent to those of zigzag
nanoribbons [43]. On the experimental side, there has been recent progress in controlling the
edges of graphene samples [44, 45], which is essential to enable physicists to probe the influence
of edge details on transport properties.
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Figure 1. Wide–narrow junctions for different types of nanoribbons formed from
a hexagonal lattice. The width of the narrower part is W1, whereas that of the
wider part is W2. The gray-shaded sites denote infinite extension. (a) Abrupt
junction between armchair nanoribbons. (b) Abrupt junction between zigzag
nanoribbons. (c) Gradual junction between zigzag nanoribbons.

This paper is organized as follows: first, we study one of the most simple systems beyond
a straight nanoribbon with constant width, namely wide–narrow junctions, by which we mean
two semi-infinite nanoribbons attached together to form a step. We calculate the conductance
of such ribbons by numerically solving the tight-binding model, and also obtain analytical
results for the case of armchair boundaries. In the second part, we investigate numerically the
conductance of curved wires cut out of graphene. In this case the width of the nanoribbon is
approximately constant, but the longitudinal direction with respect to the underlying graphene
lattice and hence the transverse boundary conditions change locally. In contrast to systems with
sharp kinks and abrupt changes in the direction, which have been investigated in earlier work
[7, 13, 14], [19]–[21], [46], we focus here on smooth bends.

In both the cases, we find remarkable deviations from the conductance of 2DEG
waveguides that are clear signatures of the sublattice and valley degrees of freedom in the
effective 2D Dirac Hamiltionian describing graphene’s low-energy excitations,

H = vF

(
σx px + σy py 0

0 −σx px + σy py

)
. (1)

Here, the matrix structure is in valley space, σx/y are Pauli matrices in pseudo- or sublattice-spin
space, px/y are the momentum operators, and vF ≈ 106 m s−1 is the Fermi velocity. Alternatively,
from a strictly lattice point of view, the deviations that we see are caused by the basis inherent
in graphene’s hexagonal lattice.

For our numerical work, we use a nearest-neighbor tight-binding model taking into account
the 2pz-orbitals of the carbon atoms [4, 47] and solve the transport problem using an adaptive
recursive Green function method [48] to obtain the conductance G. Throughout the paper,
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lengths are given in units of the graphene lattice constant a which is
√

3 times the nearest-
neighbor carbon–carbon length, while energies are in units of the nearest-neighbor hopping
constant t = 2h̄vF/(

√
3a)≈ 3 eV.

2. Wide–narrow junctions: changing the width of a nanoribbon

The simplest way to form an interface within a nanoribbon is to change its width. In this section,
we investigate the conductance of infinite nanoribbons in which the width changes from wide
to narrow, which then can be viewed as a junction between a wide semi-infinite nanoribbon and
a narrow one. Figure 1 shows three examples of such junctions with armchair (ac) and zigzag
(zz)-type edges. We denote the width of the narrower wire by W1 and the width of the wider
wire by W2. A naive expectation for the dependence of G on the Fermi energy EF is the step
function G(EF)= N1(EF)2e2/h where N1 is the number of occupied transverse channels in
the narrow wire. This would be correct if there were no reflection at the wide–narrow interface.
Realistically, however, there is scattering from this interface, and so the steps in the conductance
are not perfectly sharp.

For usual 2DEGs modeled by either a square lattice of tight-binding sites or a continuum
Schrödinger equation with quadratic dispersion, the detailed shape of G(EF) has been studied
previously. Szafer and Stone [36] calculated G(EF) by matching the transverse modes of the two
semi-infinite wires. The inset in figure 2 (b) compares tight-binding results (using a square grid)
with mode-matching results in this case for W2 = 2W1 in the one-mode regime of the narrow
part. The agreement between the two is excellent. Note that the resulting conductance step is
very steep.

2.1. Armchair nanoribbons

For armchair nanoribbons, the analysis proceeds in much the same way as for the usual 2DEG,
square lattice case. At a fixed Fermi energy in the effective Dirac equation, the transverse
wavefunctions for the various subbands are mutually orthogonal, as explained further in
appendix A. Performing a matching procedure similar to that used in [36], one calculates the
conductance from the overlap of transverse wavefunctions on the two sides of the wide–narrow
junction. A detailed derivation is presented in appendix B.

Figure 2 shows the conductance resulting from the numerical solution of the matching
equations at energies for which there is one propagating mode in the narrow part. In addition,
the conductance obtained from tight-binding calculations for wide–narrow junctions between
armchair nanoribbons is shown (using the hexagonal graphene lattice). Figure 2 shows G(EF)

for different combinations of metallic and semiconducting nanoribbons (cf appendix A). The
agreement between the two methods is extremely good: even the singularity associated with the
subband threshold in the wider ribbon is reproduced in detail by the mode-matching method,
showing that the effective Dirac equation describes the system very well.

In figure 2, we see immediately that G(EF) for the armchair nanoribbon case differs greatly
from the normal 2DEG G(EF) (inset of figure 2(b)): the rise from zero to unit conductance is
much slower in graphene, taking at least half of the energy window and in some cases (see e.g.
figure 2(a)) not reaching the saturation value at all. For completely metallic nanoribbons, the
lineshape is very different (panel (c)) and the conductance is suppressed at low Fermi energies
(see also [49]).
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Figure 2. Conductance of wide–narrow junctions in armchair nanoribbons as
a function of Fermi energy EF: results from tight-binding (solid lines) and
mode matching (squares, obtained by solving equation (B.12) numerically). The
energy window corresponds to the full one-mode regime of the narrow part. The
behavior depends on whether the widths W1,2 correspond to semiconducting or
metallic armchair nanoribbons. (a) Semiconducting–semiconducting (W1 = 99,
W2 = 199). (b) Metallic-semiconducting (98, 199). (c) Metallic–metallic (98,
197). (d) Semiconducting–semiconducting (79, 109). Inset in (b): Conductance
of a wide–narrow junction in a usual 2D electron gas: tight-binding calculation
(solid line) on a square lattice (W1 = 200as, W2 = 400as) and solution of
matching procedure (circles, equation (2) of [36]). ts is the nearest-neighbor
hopping energy on the square lattice and as is its lattice spacing.

2.2. Zigzag nanoribbons

For zigzag nanoribbons, the analysis does not proceed as simply as in the usual 2DEG
or armchair nanoribbon cases: the transverse wavefunctions depend on the longitudinal
momentum—similar to 2DEG wires with a magnetic field—and are not orthogonal at fixed
Fermi energy (cf appendix A). Because this orthogonality is used in the matching method of
appendix B, we cannot apply it to the zigzag case.

Figure 3(a) shows numerical tight-binding results for G(EF) in two different systems with
zigzag edges: one with an abrupt change in width (red curve) and one with a gradual connection
(blue curve), as depicted in figures 1(b) and (c), respectively. Note first that the conductance is
close to its maximum value only in small windows of energy, as in the armchair nanoribbon
case and in marked contrast to the usual 2DEG, square lattice situation.
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Figure 3. (a) Conductance of wide–narrow junctions in zigzag nanoribbons as a
function of Fermi energy (W1 ≈ 19, W2 ≈ 76). Curves for a structure with abrupt
change in width (red line, depicted in figure 1(b)) and one with a gradually
changing width (blue dashed line, depicted in figure 1(c)) are compared to the
number of propagating modes in the narrow wire (black line, i.e. the maximum
possible conductance). (b) Probability density (color coded in arbitrary units) of
an electron entering the system from the narrow region at EF = 0.03t . Only the
density on the B sublattice is shown. A and B denote the sublattice type at the
edges. The density decreases by a factor of about 20 from the B edge (red) to the
A edge (blue).

In the abrupt case, one sees pronounced antiresonances at the threshold energies for
transverse modes in the wide nanoribbon. In order to see that this is due to the boundary
conditions satisfied by the transverse modes in a zigzag nanoribbon, consider the following
argument. As seen in figures 1(b) and (c), there is only one sublattice at each zigzag edge. In the
effective Dirac equation one has a spinor with entries corresponding to the sublattices, thus the
boundary condition is that one of the entries has to vanish at the edge while the other component
is determined by the Dirac equation and is in general not zero at the boundary [9]. One finds
from equation (A.24) (e.g. from a graphical solution) that the higher EF is above the threshold of
a mode, the closer the transverse wavenumber gets to a multiple of π/W and the closer the value
of the spinor entry in question goes to zero. For our situation, then, the matching of a transverse
mode in the narrow nanoribbon (which is already far above the threshold of the mode) with one
in the wider nanoribbon is particularly bad at the threshold of the latter and gets better with
increasing Fermi energy. This explains the observed antiresonances in G(EF).

For the gradually widened junction, we insert another zigzag edge to interpolate between
the wide and narrow nanoribbon (see figure 1(c)). In this case, the modes of the two infinitely
extended parts are not directly matched and thus the sharp antiresonances are not present. Note,
however, the complete suppression of G at very low energies. In this regime, there is only a
single-mode propagating in the wide nanoribbon as well as in the narrow one. This state is
located mainly on the B sublattice close to the lower edge and on the A sublattice on the upper
edge. Since the sublattice at the lower edge changes from A to B at the junction (cf figure 1(c)),
this state cannot be transmitted and the conductance is zero. This is confirmed by the intensity
distribution plotted in figure 3(c). In the more realistic next-nearest-neighbor hopping model, the
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Figure 4. Schematics of curved graphene nanoribbons. zz denotes a nanoribbon
with a zigzag edge as in figure 1(b), ac denotes an armchair edge, and ‘zz’
denotes a zigzag-like boundary as explained in the text. (a) Parameters defining
a ‘sidestep nanoribbon’; it is point symmetric about its center. (b) A structure
with a single zigzag–armchair interface. (c) For γ > 30◦, there will be small
regions with armchair edges (shaded red); these have a width Wac and behave as
in appendix A. (d) For γ < 30◦, no armchair regions form; the curved nanoribbon
is zigzag-like throughout.

situation is the same for most of the single-mode regime but changes for very low energies, when
the so-called edge states are propagating [6, 9]. In that regime, the two states are exponentially
localized at the upper and lower edge, respectively, and are independent of each other. Thus, the
one localized at the A edge transmits whereas the one localized at the B edge is blocked [22].

Summarizing the results for the wide–narrow junctions, we see that the behavior of
graphene nanoribbons differs substantially from that of the familiar 2DEG situation. The
matching at the graphene junctions is much less good, leading to a suppression of the
conductance from the expected nearly step-like structure.

3. Curved graphene nanoribbons

Curved nanoribbons are defined by cutting smooth shapes out of an infinite graphene sheet.
Since the graphene lattice is discrete, the resulting boundary is not perfectly smooth but will
have edges of zigzag and armchair type in certain directions as well as some intermediate edge
types. However, according to Akhmerov and Beenakker [43], the intermediate boundary types
behave basically like zigzag boundaries for low energies, and we thus call these boundaries
‘zigzag-like’.

In figure 4, we show schematically several of the curved nanoribbons studied. A ‘sidestep
nanoribbon’ consists of an infinitely extended horizontal zigzag ribbon of width W , followed by
a curved piece with outer radius of curvature R2 and inner radius R1 = R2 − W , a second straight
piece making an angle γ with respect to the first one, a curve in the opposite direction, and
finally followed by another infinitely extended zigzag nanoribbon. The details of the system’s
edge depend on γ : (1) If γ = 30◦, the middle straight piece has armchair edges. (2) If γ > 30◦

the middle straight piece is zigzag-like with the dominating sublattice at the edges reversed
from that for the two horizontal nanoribbons. In the curved part, there is a small region where
the edges are locally of armchair type. If we denote the angle of the local longitudinal direction
from the horizontal by θ , this happens at θ = 30◦ (see figure 4(c)). The inset in figure 5 shows

New Journal of Physics 11 (2009) 095022 (http://www.njp.org/)
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Figure 5. Conductance of sidestep nanoribbons as a function of Fermi energy
with γ = 60◦ and R2 = 259 for two widths of the armchair region, Wac = 68.5
(solid red, corresponds to a semiconducting ribbon) and Wac = 68 (dashed blue,
corresponds to a metallic ribbon). The solid black line shows the number
of propagating transverse modes in the zigzag leads. Note that the internal
interfaces between the zigzag and semiconducting armchair regions are much
more reflective than for the metallic armchair case. Inset: the lattice structure of
the first curve of a sidestep nanoribbon showing the armchair region formed at
θ = 30◦.

the lattice structure of such a curved region. (3) Finally, if γ < 30◦, the middle straight piece
also has zigzag-like edges, but the dominating sublattice at the edges is the same as for the
horizontal ribbons. In this case, no local armchair region forms as θ is always smaller than 30◦

(see figure 4(d)).
In these various cases, then, different interior interfaces are formed between zigzag and

armchair nanoribbons. We will see that the type of interface is critical in determining the
properties of the curved nanoribbons. In addition, the nature of the armchair nanoribbon—
whether it is semiconducting or metallic—has a large effect on the conductance. Thus the width
of the armchair region Wac is an important parameter; according to equation (A.15) one has a
metallic nanoribbon if 4(1+Wac/a)/3 ∈ N and a semiconducting nanoribbon otherwise.

Figure 5 shows the conductance of sidestep nanoribbons with γ = 60◦, for which a small
armchair region is formed in each of the curved parts. When the width of this armchair region
corresponds to a metallic nanoribbon, the conductance is basically 2e2/h—the maximum
possible value—throughout the one-mode regime of the zigzag leads (Wac = 68, dashed blue
line). In striking contrast, when the width is just a/2 larger (red line) the conductance is
strongly suppressed. Resonance peaks result from Fabry–Perot behavior caused by scattering
from the two armchair regions which define a ‘box’ for the middle straight region. We find this
behavior consistently for all sidestep wires in which armchair regions form that have a width
corresponding to a semiconducting nanoribbon.
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(blue triangles, Wac = 68) while in the other it is semiconducting (red circles,
Wac = 68.5). Note the sharp decrease in conductance in the semiconducting case
when the armchair edges first form at γ = 30◦. The dotted lines are guides to the
eye.

Figure 6 shows the dependence on the angle γ by plotting the conductance 〈G〉 averaged
over all energies for which there is one propagating mode in the zigzag leads. For γ < 30◦

there are no armchair regions in the curved parts of the structure, and the average conductance
is very close to the maximum value in all cases studied. As soon as the critical angle of 30◦

is surpassed and small armchair pieces form in the curves, the conductance depends strongly
on the exact value of Wac. If Wac corresponds to a metallic ribbon, 〈G〉 remains high and is
rather independent of γ . On the other hand if Wac corresponds to a semiconducting ribbon,
〈G〉 suddenly drops by more than 80% and then remains approximately constant upon further
increase of γ . The constancy of 〈G〉 in the respective regimes supports the statement of [43] that
straight boundaries that are neither exactly of armchair nor exactly of zigzag type behave like
zigzag boundaries. To summarize, if a curve in a zigzag nanoribbon causes two semiconducting
armchair regions to appear, then a very effective barrier is formed which causes very high
reflectivity.

The simplest idea to explain this effect would be that at low energies there is by definition
a gap in a semiconducting ribbon and since this means there are no propagating states in the
local armchair region, one expects the conductance to be suppressed because electrons have to
tunnel trough this region in order to be transmitted. However, this does not explain our findings:
the energy range over which the conductance suppression occurs is much larger than the energy
gap of the semiconducting region. In fact, it is given by the energy range of the one-mode
regime in the surrounding zigzag parts. To make this clear, we show the bandstructures of both
a semiconducting armchair ribbon and a zigzag ribbon of approximately the same width in
figure 7 (both nanoribbons are infinitely extended). One can clearly see that within the one-mode
regime of the zigzag nanoribbon, in which the states are completely valley polarized, there can
be several propagating modes in the semiconducting armchair nanoribbon, so the suppression
of G must be of a different origin.
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Figure 8. Single zigzag to armchair interface conductance of a smooth bend
through 30◦, as depicted in figure 4(b) (R2 = 259). Both semiconducting
(solid red line, Wac = 68.5) and metallic (dashed blue line, Wac = 68) armchair
nanoribbons lead to good conductance. The solid black line shows the number of
propagating transverse modes in the zigzag lead, corresponding to the maximum
possible conductance (in the armchair lead at energies above the semiconducting
gap, there are always more or equally many modes propagating).

Furthermore, it is not the bare zigzag–armchair junction that leads to suppressed
conductance, but rather it is necessary to have two zigzag pieces differing by an angle of more
than 30◦ and being separated by a small armchair region. This can be seen in two stages. First,
figure 8 shows the conductance of an infinitely extended zigzag nanoribbon connected to an
infinitely extended armchair nanoribbon via a 30◦ curve, the structure shown schematically in
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Figure 9. 90◦ curve with horizontal zigzag lead and vertical armchair lead. A
local armchair region forms at θ = 30◦ and a local zigzag region at θ = 60◦.
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Figure 10. Conductance of 90◦ curved nanoribbons with either a semiconducting
(solid red) or metallic (dashed blue) armchair region at θ = 30◦. (a)
Semiconducting armchair lead: Wac = 69 (solid red) and Wac = 69.5 (dashed
blue). (b) Metallic armchair lead: Wac = 88.5 (solid red) and Wac = 89 (dashed
blue). Black line: number of propagating modes in the zigzag lead (R2 = 259.).

figure 4(b). In the one-mode regime of the zigzag ribbon, the conductance is maximal for the
case of a metallic armchair ribbon. For a semiconducting armchair ribbon, the conductance is,
of course, zero for energies below the gap, but it increases rapidly up to 2e2/h for larger values
of EF. Thus, a single zigzag to semiconducting-armchair interface conducts well.

For the second stage of the argument, consider a bend through 90◦ from an infinite
zigzag lead to an armchair one, as depicted in figure 9. In contrast to the 30◦ zigzag–armchair
connection just discussed, this one has three interfaces between zigzag and armchair regions.
Figure 10 shows the conductance of several 90◦-curved nanoribbons. As for the sidestep ribbons,
the conductance is suppressed when a semiconducting armchair region is present in the curve.
Note that the suppression is not due to the infinitely extended armchair lead, for which we chose
a semiconducting nanoribbon in 10(a) and a metallic one in 10(b).
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Figure 11. Average conductance as a function of the length added to the
armchair region of a 90◦-curved nanoribbon. The structures are as in figure 10(a):
nanoribbons with a semiconducting (red) or metallic (blue) armchair region at
θ = 30◦. The average is over all EF above the semiconducting gap of the armchair
lead and in the one mode regime of the zigzag lead. The dotted lines are guides
to the eye.

If one makes the natural assumption that the armchair region acts as a blocking barrier,
one would expect the blocking to become more effective as the armchair region is lengthened.
However, this is clearly not the case in the data shown in figure 11. The system is a 90◦

curved nanoribbon in which the armchair region at θ = 30◦ is lengthened by 1L; we plot
〈G〉, the conductance averaged over all energies in the one-mode regime of the zigzag lead,
as a function of 1L . For a metallic armchair region in the curve, the conductance is roughly
independent of 1L , as expected. Surprisingly, for the semiconducting case, the conductance
increases as a function of1L . This establishes, then, that conductance suppression occurs when
two zigzag–armchair interfaces occur in close spatial proximity.

Our numerical results suggest that the evanescent modes in the armchair regions play an
essential role. They are necessary, of course, in order to match the propagating zigzag mode
to a solution in the armchair region. For short armchair pieces the evanescent modes from the
two interfaces overlap. We conjecture that these evanescent modes are mutually incompatible in
the semiconducting case, destroying the possibility of matching on both sides at the same time,
while they are compatible for metallic armchair regions. If one has a long armchair piece, the
evanescent modes decay leading to independent matching at the two ends.

4. Conclusions

We have shown in a variety of examples that interfaces within graphene nanoribbons can
strongly affect their conductance, much more so than in the familiar 2DEG electron waveguides
and wires. Firstly, for wide–narrow junctions, our main results are figures 2 and 3. For both
armchair and zigzag nanoribbons, changes in width act as a substantial source of scattering,
reducing the conductance. Secondly, for curved nanoribbons, our main results are figures 6, 8
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Figure 12. Conductance of rings with armchair leads (R2 = 259). Red solid:
ring with semiconducting armchair regions in both arms (Wc = 69 in the right
arm and Wc = 68.5 in the left). Blue dashed: ring with metallic armchair regions
in the right arm (Wc = 69.5) and semiconducting in the left (Wc = 69). Inset:
schematic of the ring structure; red shading indicates regions with armchair
edges, as in figure 4.

and 11. There is a strong reduction in conductance when a curve joining two zigzag regions
contains a semiconducting armchair region.

The effect of such internal interfaces will certainly be felt in more complex structures
as well. As an example, consider rings for studying the modulation of the conductance
by a magnetic field through the Aharonov–Bohm effect [50]. Figure 12 shows such a ring
schematically together with its conductance in two cases. As for the curved nanoribbons, when
semiconducting armchair regions occur in the curved part of the structure, the conductance is
substantially reduced.

In considering experimental manifestations of internal interfaces, disorder and in particular
the edge disorder which has received attention recently [44, 45], [51]–[54], may be important.
The effects we observe in our calculations will most likely also be present in structures with
disordered edges, provided the disorder is not too strong. Consider, for example, the suppression
of the conductance in curved wires. In the inset of figure 5 as well as in figure 9, one can see that
between the armchair and the zigzag regions, the edges are not perfect. We believe that when the
edge disorder is weak enough to allow for pieces with armchair edges, the suppression should
still be present.

The underlying reason for the impact of internal interfaces can be viewed in two ways.
From the lattice point of view, it arises from the additional complexity of the hexagonal
lattice with its basis compared to the standard square lattice. Equivalently, from the continuum
point of view, it arises from the extra degrees of freedom inherent in the Dirac-like equation
governing graphene—those of the sublattice and valley pseudospins. As development of
graphene nanostructures accelerates, the impact of internal interfaces should be taken into
account when considering future carbon nanoelectronic schemes.
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Appendix A. Wavefunctions of graphene nanoribbons in the Dirac equation

We calculate the eigenfunctions of graphene nanoribbons within the effective Dirac model. This
has been done by Brey and Fertig in [9] and Peres et al in [10]. The effective Dirac equation
taking into account contributions from both valleys is given by [4]

H8(r)= E8(r) (A.1)

with

H = vF

(
σx px + σy py 0

0 −σx px + σy py

)
(A.2)

and

8(r)= [8K (r),8K ′(r)]T
=
[
8A(r),8B(r),8′

A(r),8
′

B(r)
]T
. (A.3)

Here 8K and 8K ′ are spinors with two components corresponding to contributions from the
two different valleys K and K ′, respectively. 8A/B and 8′

A/B are scalar wavefunctions, where
the subscripts A and B stand for the two sublattices (see figure A.1). The total wavefunction
containing the fast oscillations from the K -points is then

ψ(r)=

(
ψA(r)
ψB(r)

)
= eiK ·r

(
8A(r)
8B(r)

)
+ eiK ′

·r

(
8′

A(r)
8′

B(r)

)
. (A.4)

A.1. Armchair nanoribbons

We consider an armchair nanoribbon which is infinitely extended along the y-direction (see
figure A.1(a)). Using the Bloch ansatz

8(r)= eiky yφ(x) (A.5)

and the Dirac equation (A.1), one obtains

−i(ky + ∂x)φB(x)= εφA(x), (A.6)

i(ky − ∂x)φA(x)= εφB(x), (A.7)

−i(ky − ∂x)φ
′

B(x)= εφ′

A(x), (A.8)

i(ky + ∂x)φ
′

A(x)= εφ′

B(x) (A.9)

and, by applying the Hamiltonian twice,

(k2
y − ∂2

x )φ(x)= ε2φ(x) (A.10)

with ε = E/(h̄vF). According to figure A.1(a), the correct boundary condition [9] for an
armchair nanoribbon is ψ(r)= 0 for x = 0 and x = W̃ . (For the connection between the

New Journal of Physics 11 (2009) 095022 (http://www.njp.org/)

http://www.njp.org/


15

Figure A.1. Infinitely extended graphene nanoribbons. (a) Armchair ribbon
along the y-direction. The outermost rows of atoms are at x = a/2 and W̃ − a/2,
respectively. Hence, the width of the ribbon is given by W = W̃ − a. The
boundary condition however is, that the wavefunction is zero at x = 0 and
x = W̃ , respectively. (b) Zigzag ribbon along the x-direction. Here the width of
the ribbon is W = W̃ − 2a/

√
3. Since first row of missing atoms at each side is

only on one sublattice, the boundary conditions requires only the corresponding
part of the wavefunction to vanish.

nanoribbon width W used previously and W̃ , see the caption of figure A.1.) The ansatz φB(x)=

Aeiqn x + Be−iqn x , φ′

B(x)= Ceiqn x + De−iqn x solves both the B sublattice parts of equation (A.10)
with ε2

= k2
y + q2

n and the boundary condition, if we require

qn =
nπ

W̃
− K with n ∈ Z, (A.11)

where K = 4π/(3a). We find that B = C = 0 and A = −D. Using equations (A.6) and (A.8) to
determine 8A(x) and 8′

A(x) from 8B(x) and 8′

B(x), we thus find that, up to a normalization
factor, the wavefunctions are

φ(x)∼
[
(qn − iky)e

iqn x/ε, eiqn x , −(qn − iky)e
−iqn x/ε, −e−iqn x

]T
, (A.12)

ψ(r)∼ eiky y sin [(qn + K )x]
[
(qn − iky)/ε, 1

]T
. (A.13)

The wavefunction ψ(r) is, up to the spinor part, very similar to that of a 2DEG waveguide:
the width of the ribbon is a multiple of half the transverse wavelength. However, here the
transverse wavelength is of the order of the lattice constant, not the system’s width, since
n is of order W̃/a for the energetically lowest lying modes. Nevertheless, the wavefunctions
for different transverse quantum numbers n are orthogonal at a fixed Fermi energy. Note
that for evanescent modes, we just have to consider imaginary wavenumbers ky = iκy and
equations (A.11), (A.12) and (A.13) still hold.

The energy for this solution is

E = ±h̄vF

√
k2

y + q2
n . (A.14)
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Therefore one has a metallic spectrum if there is a state with qn = 0. From equation (A.11), it
follows immediately that this is the case whenever

4

3

W̃

a
∈ N. (A.15)

A.2. Zigzag nanoribbons

For a zigzag nanoribbon along the x-direction (see figure A.1(b)), the Bloch ansatz is

8(r)= eikx xφ(y), (A.16)

the Dirac equation becomes

(kx − ∂y)φB(y)= εφA(y), (A.17)

(kx + ∂y)φA(y)= εφB(y), (A.18)

−(kx + ∂y)φ
′

B(y)= εφ′

A(y), (A.19)

−(kx − ∂y)φ
′

A(y)= εφ′

B(y), (A.20)

and one has

(k2
x − ∂2

y )φ(y)= ε2φ(y) . (A.21)

The boundary condition for a zigzag ribbon differs from that for an armchair ribbon in
that the wavefunction has to vanish on only one sublattice at each edge [9]: ψA(x, y = 0)=

ψB(x, y = W̃ )= 0. With the following ansatz for 8A(x) and 8′

A(x),

φA(y)= Aeizy + Be−izy, φ′

A(y)= Ceizy + De−izy, (A.22)

(A.21) yields ε2
= k2

x + z2, and the boundary condition requires A = −B and C = −D. Thus the
valleys completely decouple for zigzag nanoribbons, and equations (A.18) and (A.20) yield

8K/K ′ ∼ [sin(zy), {τ kx sin(zy)+ z cos(zy)} /ε ]T , (A.23)

where τ = +1 for the K and τ = −1 for the K ′ valley. The boundary condition for the B parts
of the wavefunction provides an equation that determines the allowed values for z,

kx = −τ z/ tan(zW̃ ). (A.24)

Thus the transverse quantum number is coupled to the longitudinal momentum, as in 2DEG
waveguides in the presence of a magnetic field. In order to write equation (A.23) in a symmetric
way, we square the quantization condition (A.24) and use the relation k2

x = ε2
− z2 to obtain

ε2
= z2/ sin2(zW̃ ). (A.25)

Using (A.24) and (A.25) in equation (A.23) leads to

8K/K ′ ∼ [sin(zy), s(z, ε) sin{z(W − y)}]T (A.26)

with s(z, ε)= sign[εz/ sin(zW̃ )]. From this symmetric expression, one clearly sees that the total
weight on each sublattice is the same.

The transcendental equation (A.24) has real solutions z ∈ R only for |ε|> 1/W̃ . These
states correspond to bulk states: they are extended over the whole width of the ribbon. For |ε|<

1/W̃ there are only imaginary solutions iz ∈ R, corresponding to the so-called edge states [6, 9],
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Figure A.2. Profile of transverse wavefunctions in a zigzag nanoribbon. (a)
z = 2.25/W̃ , ε = 2.89/W̃ . (b) z = 2/W̃ , ε = 2.2/W̃ . (c) z = 0, ε = 1/W̃ . (d)
z = 4i/W̃ , ε = 0.15/W̃ .

which are exponentially localized at the edges and live predominantly on one sublattice at each
side, as can be seen from equation (A.23). For the special case z = 0 corresponding to |ε| = 1/W̃
equation (A.26) results in

lim
|z|→0

8K/K ′ ∼ [y, −sign(ε)(y − W̃ )]T, (A.27)

i.e. a linear profile of the transverse wavefunction. Figure (A.2) shows the profile of several
transverse zigzag modes.

Appendix B. Mode matching for wide–narrow junctions with armchair edges

We derive a set of analytic equations that determine the transmission amplitudes for
wide–narrow junctions with armchair edges as introduced in section 2.1. We label the transverse
modes in the narrow part of the system by ϕ±(x) and those in the wide part by χ±(x). The ±

stands for propagation in the positive and negative y-directions, respectively. Furthermore, we
use latin subscripts n and m for ϕ and greek subscripts ν and ω for χ . Then we know from
appendix A that

ϕ±

n (x)=
1

√
W1

sin (nπx/W1)
[
(qn ∓ ikn

y)/ε, 1
]T
, (B.1)

χ±

ν (x)=
1

√
W2

sin (νπx/W2)
[
(qν ∓ ikνy)/ε, 1

]T
. (B.2)
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Here, we define the kn/ν
y to lie always on the positive real axes for propagating states and on the

positive imaginary axes for evanescent states

kn/ν
y = +

√
ε2 − q2

n/ν. (B.3)

The full scattering wavefunction for an electron incident from the wide side in mode ω is

y 6 0 : ψω(x, y)= χ+
ω(x)e

ikωy y +
∑
ν

rνωχ
−

ν (x)e
−ikνy y, (B.4)

y > 0 : ψω(x, y)=

∑
n

tnωϕ
+
n (x)e

ikn
y y, (B.5)

where the sums run over all modes, both propagating and evanescent. Matching the two parts at
the junction, defined to be y = 0, we obtain

χ+
ω(x)+

∑
ν

rνωχ
−

ν (x)=

∑
n

tnωϕ
+
n (x). (B.6)

We can extract the scattering amplitudes by projecting this equation first on the wide side and
then on the narrow side. Firstly, multiplying the B-part of this equation by [χ−

ν′,B(x)]
∗ and

integrating from 0 to W2 yields

rνω = −δνω +
∑

n

2tnωb−+
νn (B.7)

for which we used
∫ W2

0 dx
[
χ−

ν′,B(x)
]∗
χ±

ν,B(x)=
1
2δνν′ and the definition

b±±

νn :=
∫ W2

0
dx
[
χ±

ν,B(x)
]∗
ϕ±

n,B(x). (B.8)

Since ϕ±

n,B(x) vanishes for x > W1, one can replace the upper limit of integration W2 by W1.
Secondly, we project equation (B.6) onto modes of the narrow lead. Multiplying by

[ϕ+
n′(x)]† and integrating from 0 to W1 yields

d++
nω +

∑
ν

d+−

nν rνω =
1

2ε2

(
|qn + ikn

y |
2 + ε2

)
tnω, (B.9)

where we have introduced the definitions (note the spinor inner product)

d±±

nω :=
∫ W1

0
dx
[
ϕ±

n (x)
]†
χ±

ω (x) (B.10)

and have again used orthogonality of the transverse wavefunctions, now in the form∫ W1

0
dx
[
ϕ+

n (x)
]†
ϕ+

n′(x)=
1

2ε2

(
|qn + ikn

y |
2 + ε2

)
δn,n′ . (B.11)

Combining equations (B.7) and (B.9), we obtain∑
m

(∑
ν

2d+−

nν b−+
νm −

1

2ε2

(
|qn + ikn

y |
2 + ε2

)
δnm

)
tmω = d+−

nω − d++
nω, (B.12)

which can be written as a matrix equation in the form∑
m

Mnm tmω = cn. (B.13)
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This can be solved for the tmω by introducing large enough cut-offs for m and ν and then
inverting the now finite matrix M .

The total transmission for a particle incident in mode ω from the wide side is given by

Tω =

∑
n prop.

Tnω =

∑
n prop.

∣∣∣∣∣ jn
y

jωy

∣∣∣∣∣ |tnω|
2
=

∑
n prop.

∣∣∣∣∣ kn
y

kωy

∣∣∣∣∣ |tnω|
2. (B.14)

Finally, the conductance of the system is connected to the transmission via Landauer’s formula

G =
2e2

h

∑
ω prop.

Tω. (B.15)

In these last two equations the sums run over propagating modes only.
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