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Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory,
in terms of the different probabilities of short-range and long-range bonds. A phase of critical
percolation, with algebraic (Berezinskii-Kosterlitz-Thouless) geometric order, occurs in the phase
diagram, in addition to the ordinary (compact) percolating phase and the non-percolating phase.
It is found that no connection exists between, on the one hand, the onset of this geometric BKT
behavior and, on the other hand, the onsets of the highly clustered small-world character of the
network and of the thermal BKT transition of the Ising model on this network. Nevertheless,
both geometric and thermal BKT behaviors have inverted characters, occurring where disorder is
expected, namely at low bond probability and high temperature, respectively. This may be a general
property of long-range networks.
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Scale-free networks are of high current interest [1–5],
due to their ubiquitous occurrence in physical, biological,
social, and information systems and due to their distinc-
tive geometric and thermal properties. The geometric
properties reflect the connectivity of the points of the
network. The thermal properties reflect the interactions,
along the geometric lines of connectivity, between degrees
of freedom located at the points of the network. These
interacting degrees of freedom could be voters influenc-
ing each other, persons communicating a disease, etc.,
and can be represented by model systems. Among issues
most recently addressed have been the occurrence of true
or algebraic [6, 7] order in the geometric or thermal long-
range correlations, and the connection between these ge-
ometric and thermal characteristics. In Ising magnetic
systems on a one-dimensional inhomogeneous lattice [8–
11] and on an inhomogeneous growing network [12], a
Berezinskii-Kosterlitz-Thouless (BKT) phase in which
the thermal correlations between the spins decay alge-
braically with distance was found. In growing networks
[13–20], geometric algebraic correlations were seen with
the exponential (non-power-law) scaling of the size of the
giant component above the percolation threshold. The

FIG. 1: (Color online) The scale-free random network is con-
structed by the repeated imbedding of the graph as shown in
this figure. The four edges surrounding the graph here will
be imbedded at the next phase of the construction. Such sur-
rounding edges of the innermost graphs of the created infinite
network are called the innermost edges. Along the innermost
edges, a bond occurs with probability q. Along each of the
other edges, a bond occurs with probability p. The latter
are the long-range random bonds. Different realizations are
illustrated in Fig.2.
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FIG. 2: (Color online) Different realizations of the random
network: (a) In the compact percolating phase, with q = p =
0.8. (b) In the compact percolating phase, with q = p = 0.4.
(c) In the algebraic percolating phase, with q = p = 0.1. (d)
In the non-percolating phase, with q = 0.3, p = 0.

connection between geometric and thermal properties
was investigated with an Ising magnetic system on a hier-
archical lattice that can be continuously tuned from non-
small world to highly clustered small world via increase
of the occurrence of quenched-random long-range bonds
[21]. Whereas in the non-small-world regime a stan-
dard second-order phase transition was found, when the
small-world regime is entered, an inverted BKT transi-
tion was found, with a high-temperature algebraically or-
dered phase and a low-temperature phase with true long-
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FIG. 3: (Color online) Renormalization-group flow diagram
of percolation on the network with short-range and long-range
random bonds.

range order but delayed short-range order. Algebraic or-
der in the thermal correlations has also been found in a
community network.[22] In the current work, the geomet-
ric percolation property of the quenched-random long-
range bonds is studied, aiming to relate the geometric
properties to the algebraic thermal properties. From an
exact renormalization-group solution, surprising results
are found both for the geometric properties in themselves
and in their would-be relation to the thermal properties.

The solved infinite network is constructed on a very
commonly used hierarchical lattice [23–25] with the addi-
tion of long-range random bonds, as indicated in Fig. 1.
The lattice formed by the innermost edges in the con-
struction explained in Fig. 1 is indeed one of the most
commonly used two-dimensional hierarchical lattices. In
our study, on each of these edges, a bond occurs with
probability q. To this hierarchical lattice, all further-
neighbor edges are added between vertices of the same
level. On each of these further-neighbor edges, a bond
occurs with probability p, thus completing the random
network studied here. Note that, due to the scale-free
nature of this network, phase transition behaviors as a
function of p must be identical along the lines q = 0 and
q = p, which is indeed reflected in the results below.

Hierarchical lattices provide exact renormalization-
group solutions to network [21, 22, 26–32] and other
diverse complex problems, as seen in recent works [33–
46]. The percolation problem presented by the ran-
dom network defined above is also readily solved by
renormalization-group theory. The recursion relation is
obtained by replacing graphs at the innermost level of the
random network by equivalent, renormalized, nearest-
neighbor bonds, which thereby occur with renormalized
short-range bond probability

q′ = 1− (1− q2)2(1− p) . (1)

This equation is derived as the probability 1 − q′ of
not having any path across the unit, each (1 − q2) fac-
tor being the probability of one sequence of short-range
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FIG. 4: (Color online) Geometric phase diagram of the net-
work with short-range and long-range random bonds, ex-
hibiting compact percolating, critical percolating, and non-
percolating phases. The dashed line indicates the onset of
high-temperature algebraic order in an Ising magnetic model
on this network. It is thus seen that this thermal onset has
no signature in the geometric correlations.

bonds being missing and (1 − p) being the probability
of the long-range bond being missing. The long-range
bond probability p does not get renormalized, similarly
to the thermal long-range interaction in the Ising model
lodged on this network [21]. The renormalization-group
flow of Eq.(1) has fixed points at q = 1, p arbitrary and
at q = p = 0. These fixed points are stable under
the renormalization-group flows and respectively corre-
spond to the sinks of the ordinary percolating and non-
percolating phases. Another continuum of fixed points is
obtained from the solution of

(1− p)(q3 + q2 − q − 1) + 1 = 0 . (2)

This equation gives a continuously varying line of fixed
points in the region 0 ≤ q ≤ (

√
5 − 1)/2, 0 ≤ p ≤ 5/32.

As seen in the flow diagram given in Fig. 3, this fixed
line starts at (q, p) = (0, 0), continues to (1/3, 5/32), and
terminates at ((

√
5−1)/2, 0). The renormalization-group

eigenvalue along this fixed line is

dq′

dq
=

4q∗

1 + q∗
, (3)

where the fixed point values q∗ are determined by p
as the solutions of Eq.(2). Thus, the fixed line is sta-
ble in its low-q segment and unstable in its high-q seg-
ment. Such reversal of stability along a fixed line, at
(q, p) = (1/3, 5/32) here, has also been seen in the BKT
transition of the two-dimensional XY model [7] and in
the Potts critical-tricritical fixed line in one [47], two
[48], and three [49, 50] dimensions. The renormalization-
group flows along the entire q direction, at any of the
fixed p values in 0 < p ≤ 5/32, are as seen for the thermal
behavior of antiferromagnetic Potts models [52, 53, 55].

As seen in Fig. 3, for p > 5/32, renormalization-group
flows from all initial conditions are to the sink q∗ = 1.
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This basin of attraction is, therefore, an ordinary (com-
pact) percolating geometric phase. For p ≤ 5/32, the
higher values of q flow to the sink q∗ = 1, thereby also
being in the ordinary (compact) percolating geometrical
phase. For 0 < p ≤ 5/32, the low values of q flow to the
stable critical fixed point at finite 0 < q∗ ≤ 1/3, thereby
being in a critical percolating phase. The infinite cluster
in this phase is not compact at the largest length scales,
but occurs with the bond probability of q∗. For p = 0,
the low-q phase is the ordinary non-percolating geometric
phase, with sink q∗ = 0.

The horizontal portion, in Fig. 4, of the phase bound-
ary between the compact and critical percolating phases
is controlled by the fixed point at (q, p) = (1/3, 5/32)
with a marginal direction. The non-horizontal portion
of the phase boundary between the compact and critical
percolating phases is controlled by the unstable fixed line
segment between (q, p) = (1/3, 5/32) and ((

√
5−1)/2, 0),

and has continuously varying critical exponents as a func-
tion of the long-range bond probability p. In an inter-
esting contrast, Kaufman and Kardar [54] have found,
for percolation on the Cayley tree with added long-
range equivalent-neighbor bonds, continuously varying
critical exponents as a function of the nearest-neighbor
bond probability, between compact percolating and non-
percolating phases. The emergent phase diagram of our
current model is given in Fig. 4.

One of the motivations of our study was to relate the
geometric and thermal properties of this scale-free net-
work. The Ising magnetic system located on this net-
work, with Hamiltonian

−βH =
∑

〈ij〉
Jsisj , (4)

where si = ±1 at each site i, 〈ij〉 indicates summation
over all pairs of sites connected by a short-range or long-
range bond, and the interaction J > 0 is ferromagnetic,
has an inverted BKT transition, with a high-temperature
algebraically ordered phase, in the compact percolation
phase in the region above the dashed line in Fig. 4. In the
region below the dashed line in the compact percolation
phase, the Ising transition is an ordinary second-order
phase transition. In the critical percolation phase, the
Ising model has no thermal phase transition.

The rightmost point of the dashed line, (q, p) =
(1, 0.494), was calculated in Ref.[21]. It was also seen
that this point separates the non-small-world geometric
regime at low p and the highly clustered, small-world geo-
metric regime at high p. The flows of q onto q∗ = 1 given
in Eq.(1) dictate that, for all q in the currently studied
infinite network, highly clustered small-world behavior
occurs for p & 0.494 and non-small-world behavior oc-
curs for p . 0.494.

The rest of the dashed line in Fig. 4, with the leftmost

point at (q, p) = (0.31, 5/32), has been currently calcu-
lated using the renormalization-group recursion relation
for the quenched probability distribution Q(J) for the
interactions on the innermost level,

Q(n)(J ′i′j′) =
∫ 


i′j′∏

ij

dJijQ(n−1)(Jij)


 dJi′j′P(0)(Ji′j′)

× δ(J ′i′j′ −R({Jij}, Ji′j′)) , (5)

where (n) indicates the distribution after n
renormalization-group transformations, P(0)(J) is
the initial (double-delta function) and conserved
quenched probability distribution for the interactions on
higher levels than innermost, and R({Jij}, Ji′j′) is the
local interaction recursion relation,

R({Jij}, Ji′j′) =
1
2

ln
[
cosh(Ji′k + Jkj′)
cosh(Ji′k − Jkj′)

]

+
1
2

ln
[
cosh(Ji′l + Jlj′)
cosh(Ji′l − Jlj′)

]
+ Ji′j′ . (6)

Thus, it is seen that, although the geometric correla-
tions of this network show an interesting critical perco-
lating phase, no quantitative connection exists between
the onset of geometric BKT behavior on the one hand,
and the onsets of thermal BKT behavior and small-world
character on the other hand. Qualitatively speaking how-
ever, note that an algebraically ordered geometric phase
at low bond probability is akin to an algebraically or-
dered thermal phase at high temperature, both of which
are rendered possible on the network. Thus, inverted
algebraic order where disorder is expected may be a
commonly encountered property, both geometrically and
thermally, for long-range random networks. Finally, we
note that to-date all renormalization-group calculations
exploring thermal behavior on scale-free networks have
been done using discrete Ising or Potts degrees of free-
dom. This is because of the compounded technical bur-
den introduced in position-space renormalization-group
calculations by continuum XY or Heisenberg degrees of
freedom, for example requiring the analysis of the global
flows of the order of a dozen Fourier components of
the renormalized potentials.[55] However, in view of the
rich BKT and other collective phenomena inherent to
these continuum-spin models, such large undertakings
may well be worth considering.
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