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Semilassial approah to the a-ondutane of haoti avitiesCyril Petitjean1, Daniel Waltner1, Jak Kuipers1, �nanç Adagideli1,2 and Klaus Rihter1
1Institut für Theoretishe Physik, Universität Regensburg, 93040 Regensburg, Germany.

2Faulty of Engineering and Natural Sienes, Sabani University, 34956 Tuzla Istanbul, Turkey.(Dated: June 9, 2009)We address frequeny-dependent quantum transport through mesosopi ondutors in the semi-lassial limit. By generalizing the trajetory-based semilassial theory of d quantum transport tothe a ase, we derive the average sreened ondutane as well as a weak-loalization orretionsfor haoti ondutors. Thereby we on�rm respetive random matrix results and generalize themby aounting for Ehrenfest time e�ets. We onsider the ase of a avity onneted through manyleads to a marosopi iruit whih ontains a-soures. In addition to the reservoir the avityitself is apaitively oupled to a gate. By inorporating tunnel barriers between avity and leadswe obtain results for arbitrary tunnel rates. Finally, based on our �ndings we investigate the e�et ofdephasing on the harge relaxation resistane of a mesosopi apaitor in the linear low-frequenyregime.PACS numbers: 05.45.Mt,74.40.+k,73.23.-b,03.65.YzI. INTRODUCTIONIn ontrast to d-transport experiments, the appliedexternal frequeny ω of an a-driven mesosopi stru-ture provides a new energy sale ~ω that permits one toaess further properties of these systems, inluding theirintrinsi harge distribution and dynamis.The interest in the a-reponse of mesosopi ondu-tors goes bak to the work of Pieper and Prie1 on thedynami ondutane of a mesosopi Aharonov-Bohmring. This pioneering work was followed by several exper-iments ranging from photon-assisted transport to quan-tum shot noise2,3,4,5,6,7. More reently, the a-regime hasbeen experimentally reinvestigated ahieving the mea-surement of the in and out of phase parts of the a-ondutane8 and the realization of a high-frequeny sin-gle eletron soure9. Moreover, the reent rise of interestin the full ounting statistis of harge transfer has ledto a reexamination of the frequeny noise spetra10,11,12.This experimental progress has sine triggered renewedtheoretial interest in time dependent mesosopi trans-port13,14,15,16,17.One way to takle the a-transport problem is to startfrom linear response theory for a given potential distri-bution of the sample18,19,20. This involves the di�ultythat, in priniple, the potential distribution and morepreisely its link to the sreening is unknown. Anotherapproah onsists of deriving the a-response to an ex-ternal perturbation that only enters into quantities de-sribing the reservoirs. Suh approahs were initiatedby Pastawski21 within a non-equilibruium Green fun-tion based generalized Landauer-Büttiker formalism, andthen the sattering matrix formalism of a time-dependentsystem was developed by Büttiker et al.22,23. Sine theenergy is in general no longer onserved for an a-bias,the formalism is based on the onept of a sattering ma-trix that depends on two energy arguments24 or equiv-alently on two times25. Fortunately, when the inversefrequeny is small ompared to the time to esape the

avity, the a-transport an be expressed in terms of thederivative of the sattering matrix with respet to en-ergy26. In this artile we start from the time dependentsattering matrix formalism and limit our investigationsto open, lassially haoti ballisti ondutors in the low-frequeny regime27.For a-transport we alulate the average orrelator ofsattering matries S(E) at di�erent energies E. For thiswe need to know the joint distribution of the matrix el-ements Sαβ;ij at di�erent values of the energy or otherparameters. (We label the reservoirs onneted to theondutor by a greek index and the mode number by alatin index.) To our knowledge a general solution to thisproblem does not yet exist for haoti systems. How-ever, in the limit of a large number of hannels, the �rstmoments of the distribution Sαβ;ij(E)S†
αβ;ij(E

′) were de-rived using both semilassial methods28,29 and variousrandom matrix theory (RMT) based methods25,30,31,32.Although the a-transport properties of ballisti haotisystems seem to be well desribed by the RMT of trans-port32, we develop a semilassial approah for three rea-sons: First, this allows us to on�rm the random matrixpredition by using a omplementary trajetory-basedsemilassial method. Seond, the energy dependenein the random matrix formalism was introdued by re-sorting to arti�ial models suh as the "stub model"25.While being powerful, this treatment is far from miro-sopi or natural. The third and strongest reason is to gobeyond the RMT treatment and investigate the rossoverto the lassial limit. Similarly as for the stati aseRMT is not appliable in this regime. As �rst notied byAleiner and Larkin33, ballisti transport is haraterizedby a new time sale, known as the Ehrenfest time τE
34,35,that ontrols the appearane of interferene e�ets. TheEhrenfest time orresponds to the time during whih aloalized wavepaket spreads to a lassial length sale.Typially, in open haoti systems two suh lengths arerelevant, the system size L and the lead width W . Wean thus de�ne an Ehrenfest time assoiated with eah
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2one36,37, the losed-avity Ehrenfest time,
τcl
E = λ−1 ln[L/λF], (1)and the open-avity Ehrenfest time,

τop
E = λ−1 ln[W 2/λFL], (2)where λ is the lassial Lyapunov exponent of the avity.Although the suess of the semilassial method(beyond the so-alled diagonal approximation, see be-low) to desribe quantitatively universal and nonuniversal d-transport properties is now learly es-tablished38,39,40,41,42,43,44,45,46,47,48,49, the orrespond-ing semilassial understanding of frequeny dependenttransport is far less developed. Based on an earliersemilassial evaluation of matrix element sum rules byWilkinson50 and a semilassial theory of linear responsefuntions51, a semilassial approah to the frequeny-dependent ondutivity within the Kubo-formalism ledto an expression of the a-(magneto-) ondutivity σ(ω)in terms of a trae formula for lassial periodi orbits52.Closely related to this evaluation of σ(ω) is the problemof frequeny-dependent (infrared-) absorption in ballistimesosopi avities whih has been treated semilassi-ally in Ref. [51℄. Peaks in the absorption ould be as-signed to resonane e�ets when the external frequeny

ω orresponds to the inverse periods of fundamental pe-riodi orbits in the avity. Ref. [33℄ ontains a �rst,
σ-model based approah to weak loalization e�ets inthe a-Kubo ondutivity, where the �ndings were inter-preted in a quasilassial trajetory piture (beyond thediagonal approximation). We note also that the semi-lassial treatment of the produt of sattering matries
S(E) at di�erent energies, has been investigated in dif-ferent ontext suh as the Erison �utuations41 and thetime delay48, however without onsidering the Ehrenfesttime dependene.The outline of this artile is as follows: In Setion IIwe introdue our model to treat the system of interestnamely a quantum dot under a bias, and reall some ba-si results about onservation laws in presene of a timedependent �eld. In Set. III we present the method usedto treat sreening, whih is based on a self-onsistent ap-proah developed by Büttiker et al.23. The admittane,i.e. the a-ondutane, is then alulated semilassiallyfor the partiular ase of strong oupling to the leads(transparent ontat) in Set. IV, where we illustrate ourresult by treating the time dependene of a pulsed avity.We generalize the method to ope with arbitrary tunnelrates in Set. V, and �nally we use our general resultsto investigate dephasing e�ets on the harge relaxationresistane of a mesosopi apaitor in Set. VI.II. THE MODELWe onsider a ballisti quantum dot, i.e. a two-dimensional haoti avity oupled to M eletron reser-voirs via M leads. Eah lead α has a width Wα and

Figure 1: Two dimensional haoti avity with M leads andone gate 0. Eah lead α has a width Wα and is oupled toa reservoir at potential Uα(ω) and urrent Iα(ω). Eah tun-nel barrier is haraterized by the set of transmission prob-abilities Γα = {Γα,1, · · · , Γα,Nα}. The gate and the sam-ple are apaitively oupled, whih leads to a gate urrent
I0(ω) = −iωC[U0(ω) − U(ω)].is oupled to the avity through a tunnel barrier (seeFig. 1). In addition to the treatment of Ref. [45℄ we as-sign a partiular tunnel probability to eah lead mode.The tunnel barrier is thus haraterized by a set of trans-mission probabilities, Γα = {Γα,1, · · · , Γα,Nα

}, with Nαthe maximum mode number of lead α. The haoti dot isadditionally apaitively oupled to a gate onneted toa reservoir at voltage U0(ω), from whih a urrent I0(ω)�ows. This apaitive oupling with the gate is takeninto aount via a geometrial apaitane C22,32,53.We further require that the size of the ontat is muhsmaller than the system size L, but still semilassiallylarge, 1 ≪ Nα ≪ L/λF. This requirement ensures thatthe partile spend enough time inside the avity to expe-riene the haoti dynamis.As usual for suh mesosopi strutures we need to dis-tinguish between quantum and lassial time sales. Onthe quantum side we have already introdued the Ehren-fest times (τop
E , τcl

E ) in Eqs. (1,2), while another time saleis the Heisenberg time τH, the time to resolve the meanlevel spaing of the system. On the lassial side the timeof �ight τf between two onseutive bounes at the sys-tem avity wall is relevant. In most ballisti systems orbilliards we have τf ≃ λ−1. Another relevant time saleis the ballisti ergodi time τerg whih determines howlong it takes for an eletron to visit most of the availablephase spae. However, as we deal with transport proper-ties, a further important time sale is the dwell time τD,the average time spent in the avity before reahing theontat, we have τD/τerg ≫ 1. The related esape ratetherefore satis�es
τ−1
D = τ−1

H

M
∑

α=1

Nα
∑

i=1

Γα,i. (3)For small openings whih we onsider here, we have
λ τD ≫ 1.



3The a-transport properties of suh a mesosopi sys-tem are haraterized by the dimensionless admittane
gαβ(ω) = Gαβ(ω)/G0 = G−1

0 ∂Iα(ω)/∂Uβ(ω), (4)with G0 = dse
2/h, where ds = 1 or 2 in the abseneor presene of spin degeneray. In this study we limitourselves to the oe�ients gαβ(ω) with α, β = 1, · · · , Mwhere the oe�ients denoting the gate are determinedby urrent onservation and the freedom to hoose thezero point of energy22,

M
∑

α=0

gαβ(ω) =
M
∑

β=0

gαβ(ω) = 0 . (5)We note that Eq. (5) is a straightforward onsequeneof the underlying gauge invariane. Owing to the on-servation of harge, the total eletri urrent ful�lls theontinuity equation
∇∇∇ · jp +

∂ρ

∂t
= 0, (6)where ρ is the harge density and jp the partile urrentdensity. For d-transport, the harge density is time in-dependent and so we have∇∇∇· jp = 0. Thus the sum of allurrents that enter into the dot is always zero. Moreoverthe urrent properties must remain unhanged under a si-multaneous global shift of the voltages of the reservoirs.These onditions imply the well know unitarity of thesattering matrix54,

∑

α,i

S†
αβ;ij(E)Sαγ;ik(E) = δβγ;jk. (7)For a-transport, the produt of sattering matriesat di�erent energies no longer obey a similar prop-erty54,55,56,57 i.e.

∑

α,i

S†
αβ;ij(E)Sαγ;ik(E′) 6= δβγ;jk, (8)indeed this inequality expresses the fat that, due to thepossible temporary pile up of harge in the avity, thepartile urrent density no longer satis�es ∇∇∇ · jp = 0.However one an instead use the Poisson equation

∇∇∇ · D = ρ, (9)where D = −ǫ0∇∇∇ϕ with ϕ the eletri potential, to de�nethe total eletri urrent density whih satis�es∇∇∇· j = 0,as a sum of a partile and a displaement urrent:
j = jp +

∂D

∂t
. (10)In order to �nd j one needs to know the eletrial �eld

D. In general its alulation is not a trivial task beausethe intrinsi many-body aspet of the problem makes thetreatment of the Poisson equation (9) triky, espeially

if it is neessary to treat the partile and displaementurrent on the same footing.In this work we shall adopt the approah of Ref. [23℄ tosimplify the problem. In this approah the environmentis redued to a single gate, the Coulomb interation isdesribed by a geometrial apaitane C, and the twourrents are treated on di�erent footing; the partile ur-rent is alulated quantum mehanially via the satter-ing approah, while the displaement urrent is treatedlassially via the eletrostati law (Eqs. (6,9)). This sim-pli�ation will permit us below to re-express the Poissonequation (9) to obtain the simplest gauge invariant the-ory that takes are of the sreening. We emphasize thateven though our model ould be thought of as oversim-pli�ed it has the advantage of being able to probe thee�ets due to the long range Coulomb interation. In-deed, for non-interating partiles it is possible to treatthe dot and the gate via two sets of unorrelated onti-nuity equations. The Coulomb interation removes thispossibility, and we need to onsider the gate and dot asa whole system.III. EXPRESSION FOR THE ADMITTANCEThe method to ompute the admittane proeeds intwo steps55: First the diret response (partile urrent)to the hange of the external potential is alulated un-der the assumption that the internal potential U(ω) ofthe sample is �xed. This leads to the de�nition of theunsreened admittane gu
αβ(ω). Seond, a self-onsistentproedure based on the gauge invariane (urrent on-servation and freedom to hoose the zero of voltages) isused to obtain the sreened admittane gαβ(ω).The unsreened admittane reads22

gu
αβ(ω) =

∫

dE
f(E − ~ω

2 ) − f(E + ~ω
2 ))

~ω
(11)

×Tr

[

δαβ1α − Sαβ

(

E +
~ω

2

)

S
†
αβ

(

E − ~ω

2

)]

,where f(E) stands for the Fermi distribution, Sαβ is the
Nα×Nβ sattering matrix from lead β to lead α, and 1αis an Nα × Nα identity matrix. Under the assumptionthat U(ω) is spatially uniform, the sreened admittane
gαβ(ω) is straightforward to obtain22. For sake of om-pleteness we present here only the outline of the methodand refer to Ref. [26℄ for more details.On the one hand the urrent reponse at ontat α is

Iα(ω) = G0





M
∑

β=1

gu
αβ(ω)Uβ(ω) + gi

α0(ω)U(ω)



 , (12)where gi
α0(ω) is the unknown internal reponse of themesosopi ondutor generated by the �utuating po-tential U(ω). On the other hand the urrent indued atthe gate is

I0(ω) = −iωC[U0(ω) − U(ω)]. (13)



4Gauge invariane permits a shift of −U(ω) and providesan expression for the unknown internal response,
gi

α0(ω) = −
M
∑

β=1

gu
αβ(ω). (14)Then urrent onservation, ∑M

α=1 Iα(ω) + I0(ω) = 0,yields the result of the sreened admittane22,
gαβ(ω) = gu

αβ(ω) +

∑M
δ=1 gu

αδ(ω)
∑M

δ′=1 gu
δ′β(ω)

iωC/G0 −
∑M

δ=1

∑M
δ′=1 gu

δδ′(ω)
.(15)In the self-onsistent approah used to obtain Eq. (15),the only eletron-eletron interation term that has beenonsidered is the apaitive harging energy of the avity.This implies that we should onsider a su�iently largequantum dot58. We note that, using a 1/N -expansion,the self-onsistent approah above was reently formallyon�rmed in Ref. [59℄. Moreover, Eq. (15) an be gener-alized to non-equilibrium problems, using Keldysh non-equilibrium Green funtions60.In the next setions we present the semilassial evalu-ation of Eq. (11) in the zero temperature limit (inluding�nite temperature is straightforward). For reasons of pre-sentation we �rst give the semilassial derivation for thetransparent ase in Set. IV, and then we explore thegeneral ase in Set. V. In Set. VI we present an appli-ation of the sreened result for tunnel oupling, when weompute the relaxation resistane of a mesosopi haotiapaitor.IV. SEMICLASSICAL THEORY FOR THEADMITTANCEA. Semilassial approximationWe �rst onsider the multi-terminal ase assumingtransparent barriers, i.e. Γα,i = 1, ∀(α, i). In the limit

kBT → 0 the unsreened admittane, Eq. (11), reduesto
gu

αβ(ω) =Nαδαβ−Tr

[

Sαβ(EF+
~ω

2
)S†

αβ(EF−
~ω

2
)

]

.(16)Semilassially, the matrix elements for sattering pro-esses from mode i in lead β to mode j in lead α read29,61
Sαβ;ji(EF ± ~ω

2
) = (17)

−
∫

β

dx0

∫

α

dx
〈j|x〉〈x0|i〉
(2πi~)1/2

∑

γ

Aγe
i

~
Sγ(x,x0;EF±

~ω
2 ),where |i〉 is the transverse wave funtion of the i-th mode.Here the x0 (or x) integral is over the ross setion of the

βth (or αth) lead. At this point Sαβ is given by a sumover lassial trajetories, labelled by γ. The lassial

paths γ onnet X0 = (x0, px0) (on a ross setion oflead β) to X = (x, px) (on a ross setion of lead α).Eah path gives a ontribution osillating with ation
Sγ (inluding Maslov indies) evaluated at the energy
EF ± ~ω/2 and weighted by the the omplex amplitude
Aγ . This redues to the square root of an inverse elementof the stability matrix62, i.e. Aγ = |(dpx0/dx)γ |

1
2 .We insert Eq. (17) into Eq. (16) and obtain doublesums over paths γ, γ′ and lead modes |i〉, |j〉. The sumover the hannel indies is then performed with the semi-lassial approximation45,∑Nβ

i=1〈x0|i〉〈i|x′
0〉 ≈ δ(x′

0−x0),and yields
gu

αβ(ω) − Nαδαβ = −
∫

β

dx0

∫

α

dx
∑

γ,γ′

AγA∗
γ′

2π~
e

i

~
δS(EF,ω).(18)Here,

δS(EF, ω) = Sγ(x0, x; EF +
~ω

2
) − Sγ′(x0, x; EF − ~ω

2
).(19)As we are interested in the limit ~ω ≪ EF, we an expand

δS(EF, ω) aroundEF. The dimensionless a-ondutaneis then given by
gu

αβ(ω) − Nαδαβ = −
∫

β

dx0

∫

α

dx
∑

γ,γ′

AγA∗
γ′

2π~
(20)

× exp

[

i

~
δS(EF) +

iω

2
(tγ + tγ′)

]

,where δS(EF) = Sγ(x0, x; EF) − Sγ′(x0, x; EF) and tγ(tγ′) is the total duration of the path γ (γ′). Eq. (20) isthe starting point of our further investigations.B. Drude AdmittaneWe are interested in quantities arising from averagingover variations in the energy or avity shapes. For mostsets of paths, the phase given by the linearized ation dif-ferene δS(EF) will osillate widely with these variations,so their ontributions will average out. In the semilas-sial limit, the dominant ontribution to Eq. (20) is thediagonal one, γ = γ′, whih leads to tγ = tγ′ , δS(EF) = 0and gives
gu,D

αβ (ω) = Nαδαβ −
∫

β

dx0

∫

α

dx
∑

γ

|Aγ |2
2π~

eiωtγ . (21)In the following we proeed along the lines of Ref. [42℄.The key point is the replaement of the semilassial am-plitudes by their orresponding lassial probabilities. Tothis end we use a lassial sum rule valid under ergodiassumptions63,
∑

γ

|Aγ |2eiωtγ [· · · ]γ = (22)
∫ ∞

0

dt

∫ π/2

−π/2

dθ0dθ eiωtpF cos(θ0)P (X,X0; t)[· · · ]X0 .



5

Figure 2: A semilassial ontribution to weak loalizationfor a system with strong (transparent) oupling to the leads.The two paths follow eah other losely everywhere exeptat the enounter, where one path (dashed line) rosses itselfat an angle ǫ, while the other one (full line) does not (goingthe opposite way around the loop). The ross-hathed areadenotes the region where two segments of the solid paths arepaired (within Wα ≃ Wβ ≃ W of eah other)In Eq. (22), pF cos(θ0) is the initial momentum along theinjetion lead and P (X,X0; t) the lassial probabilitydensity to go from an initial phase spae point X0 =
(x0, θ0) at the boundary between the system and the leadto the orresponding point X = (x, θ). The average of Pover an ensemble or over energy gives a smooth funtionthat reads

〈P (X,X0; t)〉 =
cos(θ)

2τD

∑M
α=1 Wα

e−t/τD , (23)with the esape rate τ−1
D given in Eq. (3).Using Eqs. (21), (22) and (23), we reover the Drudeadmittane

gu,D
αβ (ω) = Nαδαβ − NαNβ

N

(

1

1 − iωτD

)

, (24)where N =
∑M

α=1 Nα.C. Weak loalization for transmission, re�etionand oherent baksattering1. Weak loalizationThe leading-order weak-loalization orretion to theondutane was identi�ed in Refs. [33,39℄ as those aris-ing from trajetories that are exponentially lose almosteverywhere exept in the viinity of an enounter. Anexample of suh a trajetory pair for haoti ballistisystems is shown in Fig. 2. At the enounter, separat-ing the `loop' from the `legs', one of the trajetories (γ′)intersets itself, while the other one (γ) avoids the ross-ing. Thus, they travel along the loop they form in op-posite diretions. In the semilassial limit, only pairsof trajetories with a small rossing angle ǫ ontributesigni�antly to weak loalization. In this ase, eah tra-jetory remains orrelated for some time on both sides

of the enounter. In other words, the smallness of ǫ re-quires two minimal times: TL(ǫ) to form a loop, and
TW(ǫ) in order for the legs to separate before esapinginto di�erent leads. The enounter introdues a typiallength sale δr⊥ that orresponds to the perpendiulardistane between the two paths in the viinity of theenounter. In the ase of hyperboli dynamis, we get
δr⊥ = vFǫ/(2λ) ∼ Lǫ. Hene, the typial minimal timeis given by Tℓ(ǫ) = λ−1 ln[(ℓ/δr⊥)2], with ℓ = {L, W}that we an approximate as

TL(ǫ) ≃ λ−1 ln[ǫ−2], (25a)
TW(ǫ) ≃ λ−1 ln[ǫ−2(W/L)2]. (25b)The presene of the external driving does not hangethis piture. Eah weak-loalization ontribution au-mulates a phase di�erene given by the linearized ation

δS(EF) ≃ δSRS = EFǫ2/λ39. Following the same linesas for the derivation of the Drude ontribution, thoughthe sum over paths is now restrited to paths with anenounter, the sum rule (22) still applies, provided theprobability P (X,X0; t) is restrited to paths whih rossthemselves. To ensure this we write
P (X,X0; t) =

∫

C

dR2dR1P (X,R2; t − t2)

× P (R2,R1; t2 − t1)P (R1,X0; t1) , (26)where the integration is performed over the energy sur-fae C. Here, we use Ri = (ri, φi), φi ∈ [−π, π] for phasespae points inside the avity, while X lies on the leadsurfae as before.We then restrit the probabilities inside the integralto trajetories whih ross themselves at phase spaepositions R1,2 with the �rst (or seond) visit of therossing ourring at time t1 (or t2). We an write
dR2 = v2

F sin ǫdt1dt2dǫ and set R2 = (r1, φ1 ± ǫ). Thenthe weak-loalization orretion is given by
gu,wl

αβ (ω) =
1

π~

∫

β

dX0

∫

dǫℜe
[

eiδSRS/~

]

〈F (X0, ǫ, ω)〉 ,(27)with,
F (X0, ǫ, ω) = (28)

2v2
F sin ǫ

∫ ∞

TL+TW

dt

∫ t−TW/2

TL+TW/2

dt2

∫ t2−TL

TW/2

dt1

×pF cos θ0

∫

R

dY

∫

C

dR1P (X,R2; t − t2)

×P (R2,R1; t2 − t1)P (R1,X0; t1) eiωt.Under our approximation tγ′ ≃ tγ = t, the intro-dution of the driving frequeny leads to performing aFourier transform of the survival probability, and we ob-tain
〈F (X0, ǫ, ω)〉 =

(vFτD)2pF sin ǫ cos θ0

πΩ

Nα

N
(29)

×exp [−TL/τD] exp [iω(TL + TW)]

(1 − iωτD)3
,



6with Ω the avity area. Inserting Eq. (29) into Eq. (27),the ǫ integral is dominated by small angle (ǫ ≪ 1)ontributions, allowing for the approximation sin ǫ ≃ ǫand pushing the upper limit to in�nity. This yieldsan Euler Gamma funtion times an exponential term
e−τcl

E /τDeiω(τcl
E +τop

E ) (with τop
E and τcl

E given by Eqs. (1,2)that reads, to leading order in (λ τD)−1,
∫ ∞

0

dǫ 2ℜe

[

exp

[

iEFǫ2

λ~

]]

ǫ
1+ 2

λτD
(1−2iωτD)

(

W

L

)
2iω
λ

≃ − π~

mv2
FτD

e
−

τcl
E

τD
+iω(τcl

E +τop
E )

(1 − 2iωτD)+O

[

1

λτD

]

.(30)Performing the X0 integral and using Nβ = (π~)−1pFWβand N = (~τD)−1mΩ, the weak-loalization orretion tothe unsreened admittane is
gu,wl

αβ (ω) =
NαNβ

N2
e−τcl

E /τD
(1 − 2iωτD) eiω(τcl

E +τop
E )

(1 − iωτD)3
. (31)We note that due to the absene of unitarity of the un-sreened admittane we need to expliitly evaluate all theelements of gu

αβ(ω). The weak-loalization ontributionto re�etion ru,wl
αα (ω) is derived in the same manner as

gu,wl
αβ (ω), replaing however the fator Nβ/N by Nα/N .We then obtain
ru,wl
αα (ω) =

(

Nα

N

)2

e−τcl
E /τD

(1 − 2iωτD) eiω(τcl
E +τop

E )

(1 − iωτD)3
.(32)However as in the d-ase there is another leading-order ontribution to the re�etion, the so-alled oherentbaksattering. This di�ers from weak loalization asthe path segments that hit the lead are orrelated. Thismehanism should be treated separately when omputingthe Ehrenfest time dependene, whih is the objet of thenext paragraph.2. Coherent baksatteringThough the orrelation between two paths does notin�uene the treatment of the external frequeny, it in-dues an ation di�erene δS(EF) = δScbs = −(p0⊥ +

mλr0⊥)r0⊥ where the perpendiular di�erene in po-sition and momentum are r0⊥ = (x0 − x) cos θ0 and
p0⊥ = −pF(θ − θ0). As for weak loalization, we an

identify two timesales, 1
2T ′

L, 1
2T ′

W, assoiated with thetime for paths to spread to L, W , respetively. Howeverunlike for weak loalization we de�ne these timesalesas times measured from the lead rather than from theenounter. Thus we have
T ′

ℓ(r0⊥, p0⊥) ≃ 2

λ
ln [(mλℓ)/ |p0⊥ + mλr0⊥|] , (33)with ℓ = {L, W}47. Replaing the integral over X0 byan integral over (r0⊥, p0⊥) and using pF cos θ0dX0 =

dp0⊥dr0⊥, the oherent-baksattering ontributionreads
ru,cbs
αα (ω) = (π~)−1

∫

α

dp0⊥dr0⊥ℜe
[

e
i

~
δScbs

]

〈

F cbs(X0, ω)
〉

,(34)with
〈

F cbs(X0, ω)
〉

=

∫ ∞

T ′

L

dt

∫

α

dX P (X,X0; t)e
iωt

=
Nα

N

e−(T ′

L−
1
2T ′

W)/τDeiωT ′

L

1 − iωτD
. (35)As in the d-ase we perform a hange of variables

p̃0⊥ = p0⊥ + mλr0⊥. Then we push the p̃0⊥ integrallimit to in�nity and evaluate the r0⊥ integral over Wα.This result,
∫ ∞

−∞

dp̃0⊥
~ sin(p̃0⊥Wα/~)

p̃0⊥

∣

∣

∣

∣

p̃0⊥

mλL

∣

∣

∣

∣

(1−2iωτD)

λτD
(

W

L

)
1

λτD

= π~ e
−

τcl
E

τD eiω(τcl
E +τop

E ) + O
[

(λτD)−1
]

, (36)together with Eq. (35) and Eq. (34) yields
ru,cbs
αα (ω) = −Nα

N
e−τcl

E /τD
eiω(τcl

E +τop
E )

(1 − iωτD)
. (37)Surprisingly the oherent-baksattering ontributionthus has exatly the same exponential dependene on

τop
E and τcl

E as the other weak-loalization ontributions.While in the d-ase this property is a onsequene ofurrent onservation, this fat is not obvious in the a-ase.At this point we an summarize our results for theunsreened admittane. From Eqs. (24, 31, 32, 37),
〈

gu
αβ(ω)

〉 an be written as
〈

gu
αβ(ω)

〉

= δαβNα − NαNβ

N(1 − iωτD)
+

Nα exp
[

− τcl
E

τD

]

exp
[

iω(τcl
E + τop

E )
]

N(1 − iωτD)

(

Nβ(1 − 2iωτD)

N(1 − iωτD)2
− δαβ

)

+ O(N−1). (38)First we note that in the limit of zero Ehrenfest time we reover the RMT result for the unsreened admit-



7tane of Brouwer and Büttiker32. Conerning the Ehren-fest time dependene of the admittane, we note that theresult is onsistent with the absorption study performedin Ref. [64℄. As for the d-ase we �nd the absene ofthe Ehrenfest time τop
E in the term exp[−τcl

E /τD] whihderives from the lassial orrelation between the pathsthat onstitute the enounter. The physial origin of theterm exp
[

iω(τcl
E + τop

E )
] omes from the fat that bothtrajetories that ontribute to weak loalization and o-herent baksattering involve an enounter that has aminimal duration of (τcl

E + τop
E ) (Leg part and loop partof the enounter, see Fig. 2). The presene of this mini-mal duration, 2τe

E = τcl
E + τop

E , is in aordane with theEhrenfest time shift predition of the quantum orretionto the survival probability65 and the photofragmentationstatistis66. We return to the Ehrenfest time dependenein Set. IVE.We an also onsider the e�et of a magneti �ux on themesosopi admittane. A weak magneti �eld has littlee�et on the lassial dynamis but generates a phasedi�erene between two trajetories that travel in oppositediretions around a weak-loalization generating losedloop. This phase di�erene is Φ/Φ0, where Φ0 is the �uxquantum, and Φ is proportional to the �ux through thedireted area enlosed by the loop. To inorporate this in

the previous semilassial treatment we must introdue afator exp[iΦ/Φ0] into F in Eq. (29) and F cbs in Eq. (35).The alulation gives a Lorentzian shape29,39,42 for the
Φ-dependene of the quantum orretion to the averageadmittane,

g
u,wl/cbs
αβ (ω, Φ) =

g
u,wl/cbs
αβ (ω, 0)

1 + A2Φ2 (τf/τD − iωτf)
−1 . (39)Here A2 = αΩ2, with α a system dependent parameter oforder unity, Ω the avity area and τf is the time of �ightbetween two onseutive bounes at the avity wall.D. The sreened admittaneFollowing the self-onsistent approah, the sreenedadmittane is straightforwardly obtained when we sub-stitute Eq. (38) into Eq. (15) and expand the result toleading order in N−1. This simple substitution is justi-�ed, beause the typial �utuations of the unsreenedadmittane are of order N−2. The sreened admittanethen reads

〈gαβ(ω)〉 = δαβNα − NαNβ

N(1 − iωτ)
+

Nα exp
[

− τcl
E

τD

]

exp
[

iω(τcl
E + τop

E )
]

N(1 − iωτD)

(

Nβ(1 − 2iωτ)

N(1 − iωτ)2
− δαβ

)

+ O(N−1), (40)where τ−1 = τ−1
D +NG0/C is the harge relaxation timeor quantum RC time. Eq. (40) is the �rst intermediateresult from whih we an draw some general onlusions.At zero Ehrenfest time we reover the two-terminal resultof Brouwer and Büttiker in Ref. [32℄. The omparison be-tween the sreened (Eq. (40)) and unsreened (Eq. (38))admittane shows that the sreening amounts to the re-plaement of the dwell time τD by the RC time τ every-where up to the prefator of the third term. Only for theweak loalization and the oherent-baksattering ontri-butions does the dwell time dependene survive. Thoughthe relevant time sale for the lassial admittane is theharge relaxation time τ , the quantum orretions areharaterized by the dwell time τD. It is important toremember that τD is a harateristi time sale of thenon-interating system. Its relevane here has its originin the fat that weak loalization is due to the interfer-ene of eletroni waves, whih is unimportant for hargeaumulation in the system. The absene of the RC time

τ at leading order in ω is thus quite natural. We reallthat, as onstruted in the framework of the model, theadmittane matrix Eq. (40) is urrent onserving if thegate is inluded. The elements of the admittane relatedto the gate are obtained via the sum rule (5). Neverthe-

less, if we impose this above sum rule to the unsreenedresult we also obtain a onserved urrent, and this situ-ation orresponds to a avity whih has in�nite apai-tane to the gate. In the reverse limit of zero apaitanewe reah the harge neutral regime that orresponds toputting τ = 0 in Eq. (40). Upon performing that, wereover the harge-neutral limit obtained by Aleiner andLarkin in Refs. [33,67℄ whih for the onventional weak-loalization ontribution reads
gwl,τ=0

αβ (ω) =
NαNβ

N2

exp
[

− τcl
E

τD
+ iω(τcl

E + τop
E )
]

(1 − iωτD)
. (41)We note that for the partiular geometry of a apaitor(only one lead and one gate), sine Eq. (40) is valid forany apaitive oupling, we an obtain the e�et of theEhrenfest time sale on the interferene orretion to theadmittane of a mesosopi apaitor. This was not pos-sible within the harge-neutral limit approah of Aleinerand Larkin, sine the interferene orretions onsideredhere are absent in that ase.Here one important remark is due. In both, Eq. (40)and Eq. (41) the admittane involves an osillatory be-havior as a funtion of the Ehrenfest time, whih should



8in priniple be more easily aessible experimentally. In-deed, we see here in our quest for the Ehrenfest timephysis a lear advantage in investigating weak loaliza-tion in the a-regime. In the stati ase, the ratio τE/τDis the only relevant and tunable parameter for the dweak-loalization orretion. Consequently, the range ofexperimental investigation is onsiderably redued by thelogarithmi dependene of τE on the system size. Forthe dynamial weak loalization the frequeny depen-dene ω ombined with the apaitive oupling C pro-vides more freedom in probing τE-behavior. However,although the ωτE Ehrenfest time dependene was pre-dited in Ref. [33℄ (in whih some possible experimentalveri�ation was foreasted in a magnetoondutane ex-periment or in an optial baksattering experiment), weare not aware of any experimental veri�ation of the ex-istene of suh an osillation. To date there exist onlytwo experiments devoted to exploring the τE signature:The shot noise experiment by Oberholzer et al.68 andthe weak loalization experiment in an antidot lattie byYevtushenko et al.69. Both experiments were performedin the stati ase.E. Pulsed avitiesIn this setion we omment on the Ehrenfest time de-pendene of the admittane and its link to that of thesurvival probability65,66. To this end we onsider the par-tiular ase of a pulsed avity57, i.e. the appliation of apulse Uα(t) = aαδ(t) to one of the ontats α. The re-sponse urrent at ontat β to suh a pulse will be propor-tional to the frequeny integral over the a-ondutane,
gu

αβ(t) =
1

2π

∫

dω gu
αβ(ω) exp (−iωt) . (42)This problem was previously addressed in Ref. [57℄ wherethe onnetion between the RMT alulation of the ad-mittane and RMT results for the quantum and the las-sial survival probability70,71 were disussed. More pre-isely, in Refs. [70,71℄ a di�erene between the quantumand the lassial survival probability was predited fortimes of order t∗ =

√
τDτH. The onlusion of Ref. [57℄was two-fold: �rst, based on the weak-loalization or-retion, a deviation of the unsreened admittane at t∗was on�rmed, while seondly the sreened system wasshown not to exhibit suh a t∗-dependene.Based on our semilassial results (38,40) we are ableto on�rm this dependene. For the unsreened admit-tane, the weak-loalization and oherent-baksatteringontribution, δgu

αβ(t) = gu,wl
αβ (t) + gu,cbs

αβ (t), yields a om-pliated time-dependene and reads on a log sale
ln

[

NτD

NαNβ
δgu

αβ(t)

]

= − t − τop
E

τD
(43)

+ ln

[

−δαβ

Nα
+

1

N

(

t − 2τe
E

τD

)(

2 − t − 2τe
E

2τD

)]

.

Here we reall that 2τe
E = τcl

E + τop
E . At zero Ehrenfesttime, τe

E = 0, we see as in Ref. [57℄ that while the initialtime dependene is determined by τD (�rst term of rhs ofEq.(43)), for times larger than t∗ the t2-term in the logwill be important. We therefore �nd a deviation fromthe lassial exponential behavior.This onlusion still holds at �nite Ehrenfest time, upto the inlusion of a time shift 2τe
E as predited in thereent semilassial derivation65 of the survival probabil-ity.The treatment of the sreened ase is more demandingdue to the presene of the RC time τ . However sine thepole linked to the dwell time τD is only simple, it is learthat even at inomplete sreening, there is no term pro-portional to t2. This is in aordane with the absene ofdeviations for the interating admittane. However, theEhrenfest time dependene will be equivalent to the un-sreened one, leading to a time shift . Only for ompletesreening (τ = 0) it is possible to obtain a simple result,whih reads on a log sale

ln

[

NτD

NαNβ
δgτ=0

αβ (t)

]

= − t − τop
E

τD
+ ln

[

1

N
− δαβ

Nα

]

. (44)V. MULTI-TERMINAL SYSTEM WITHTUNNEL BARRIERThe alulation of the admittane with tunnel barriersfollows the trajetory-based method reently developedby Whitney45 for the d-ase. We reall here the threemain hanges in the theory with respet to the trans-parent ase. For more details on the inlusion of tunnelbarriers we refer to Ref. [45℄.At �rst, in the presene of tunnel barriers the om-plex amplitude Aγ in Eq. (17) is extended to inlude thetunneling probabilities reading45,
Aγ = C

1
2
γ tβ,itα,j

∏

β′,j′

[rβ′,j′ ]
Nγ(β′,j′) (45)where Cγ = |(dpx0/dx)γ | is the rate of hange of the ini-tial momentum px0 for the exit position x of γ, Nγ(β′, j′)is the number of times that γ is re�eted bak into thesystem from the tunnel barrier on lead β′ and the trans-mission and refetion amplitudes at the lead β satisfy

|tβ,i|2 = (1 − |rβ,i|2) = Γβ,i. We note that without anyloss of generality, we assoiated in Eq. (45) the momen-tum px0 (or px) with the hannel i (or j).At this point the replaement of the semilassial am-plitudes by their orresponding lassial probabilities stillholds, though the tunneling probabilities are inluded.As an example the probability to go from a phase point
X0 (here we assoiate the hannel i to the momentum
pF cos θ0) on lead β to an arbitrary point on lead α sim-ply satis�es (for α 6= β),

∫ ∞

0

dt

∫

α

dX 〈P (X,X0; t)〉 =
Γβ,iΓ

(1)
α

N
, (46)
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Figure 3: A failed oherent-baksattering ontribution to a-ondutane, gu,cbs

αβ (ω). It involves paths whih return losebut anti-parallel to themselves at lead α, but are re�eted o�the tunnel-barrier, remaining in the avity to �nally esapevia lead β. The ross-hathed area denotes the region wherethe two solid paths are paired (within Wα ≃ W of eah other).where we let Γ
(1)
β =

∑Nβ

j=1 Γβ,j and de�ne N =
∑

α Γ
(1)
α .More importantly, the introdution of a tunnel barrierindues three hanges: (i) The dwell time (single pathsurvival time) beomes

τ−1
D1 = τ−1

H

∑

α

Γ(1)
α = τ−1

H N, (47)beause a typial path may hit a lead but be re�etedo� the tunnel barrier (remaining in the avity) numeroustimes before tunneling and esaping.(ii) The paired-paths survival time for paths loserthan the lead width is no longer equal to the dwell timeinstead it is given by
τ−1
D2 = τ−1

H

∑

α

(

2Γ(1)
α − Γ(2)

α

)

= τ−1
H

(

2N − Ñ

)

, (48)where Γ
(2)
α =

∑Nα

i=1 Γ2
α,i and we de�ne Ñ =

∑

α Γ
(2)
α . Thisis beause a seond path following a path whih has notesaped will hit the same tunnel barrier, and thus mayesape even though the �rst path did not. Compare thiswith a system without tunnel barriers: there a path hasnot esaped beause it has not touhed the leads; thus aseond path following the �rst one has no possibility toesape.(iii) The oherent baksattering peak ontributes totransmission as well as re�etion. The positive ontri-bution to the transmission ompetes with the usual neg-ative weak-loalization ontribution to transmission, seealso Fig 3.For the alulation of the Drude ondutane, onlyhange (i) above is required, yielding

gu,D
αβ (ω) = Γ

(1)
β δαβ −

Γ
(1)
α Γ

(1)
β

N

1

1 − iωτD1
(49)

When alulating the onventional weak-loalizationontribution we need hanges (i) and (ii) above. Sinethe lassial paths onsidered stay lose to itself for atime TW (ǫ)/2 on either side of the enounter we mustuse the paired-paths survival time, τD2, for these parts ofthe path. Elsewhere the esape time is given by the singlepath survival time, τD1. With these new ingredients we�nd that the onventional weak-loalization ontributionbeomes
gu,wl

αβ (ω) =
Γ

(1)
α Γ

(1)
β

N2

(

2 − Ñ

N

)

− 2iωτD1

(1 − iωτD1)3
e−ΘτE eiω(τcl

E +τop
E ),(50)with ΘτE = τop

E /τD2 + (τcl
E − τop

E )/τD1. The exponentialsuppression exp(−ΘτE) related to the lassial orrela-tion is simply the probability that the path segmentssurvive a time τop
E as a pair (τop

E /2 on either side ofthe rossing) and survive an additional time (τcl
E − τop

E )unpaired (to omplete a loop of length τcl
E ). Similarlyas for the transparent ase, the exponential dependene

exp[iω(τcl
E + τop

E )] indiates that the minimal duration ofa weak loalization trajetory is τcl
E + τop

E .However as realized by Whitney45, this is not the to-tal weak-loalization ontribution to ondutane, be-ause of failed oherent-baksattering gu,cbs(ω) thatontributes to ondutane (hange (iii) above). We re-all that this involves a path whih returns lose butanti-parallel to itself at lead α, but is then re�eted o�the tunnel-barrier on lead α, remaining in the avity un-til it eventually esapes through lead β. An example ofsuh a trajetory is shown in Fig. 3. We an alulatethe baksattering ontribution as before but using τD2,when the paths are within Wα of eah other, and τD1elsewhere. This result is then multiplied by the proba-bility that the path re�ets o� lead α and then esapesthrough lead β and weighted by the dynamial fator
(1 − iωτD1)

−1 due to the diagonal transmission from αto β i.e. the leg part of Fig 3. In addition to the o-herent baksattering expression for ru,cbs(ω) this givesa ontribution to the admittane of the form
gu,cbs1

αβ (ω) =
Γ

(2)
α − Γ

(1)
α

(1 − iωτD1)2
Γ

(1)
β

N2
e−ΘτE eiω(τcl

E +τop
E ),(51a)

gu,cbs2
αβ (ω) =

Γ
(2)
β − Γ

(1)
β

(1 − iωτD1)2
Γ

(1)
α

N2
e−ΘτE eiω(τcl

E +τop
E ),(51b)

ru,cbs
αβ (ω) = − δαβ

1 − iωτD1

Γ
(2)
α

N
e−ΘτE eiω(τcl

E +τop
E ), (51)where we reall that Γ

(2)
α =

∑Nα

i=1 Γ2
α,i.Using Eqs. (49, 50, 51), the unsreened admittane inthe presene of tunnel barriers reads
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〈

gu
αβ(ω)

〉

= Γ(1)
α δαβ −

Γ
(1)
α Γ

(1)
β

N(1 − iωτD1)
(52)

+
Γ

(1)
α Γ

(1)
β

N2

e−ΘτE eiω(τcl
E +τop

E )

(1 − iωτD1)

(

2 − Ñ/N − 2iωτD1

(1 − iωτD1)2
+

Γ
(2)
α /Γ

(1)
α + Γ

(2)
β /Γ

(1)
β − 2

(1 − iωτD1)
− Γ

(2)
α

Γ
(1)
α

N

Γ
(1)
β

δαβ

)

+ O
(

N−1
)

.As a hek of the formula (52), we an easily reoverthe previous Eq. (38) for the unsreened admittane ob-tained for transparent barriers and also the tunnel d- ondutane45.After the substitution of Eq. (52) into Eq. (15) thesreened admittane in presene of tunnel barriers reads
〈gαβ(ω)〉 = Γ(1)

α δαβ −
Γ

(1)
α Γ

(1)
β

N(1 − iωτ)
(53)

+
Γ

(1)
α Γ

(1)
β

N2

e−ΘτE eiω(τcl
E +τop

E )

(1 − iωτD1)

(

2 − Ñ/N − 2iωτ

(1 − iωτ)2
+

Γ
(2)
α /Γ

(1)
α + Γ

(2)
β /Γ

(1)
β − 2

(1 − iωτ)
− Γ

(2)
α

Γ
(1)
α

N

Γ
(1)
β

δαβ

)

+ O
(

N−1
)

,where the quantum RC time reads now τ−1 = τ−1
D1 +

NG0/C. We emphasize that from Eq. (53) it is possi-ble to derive all the results presented in this paper andtherefore this equation is the entral result of this paper.In the seond line of Eq. (53), the seond ontribu-tion in the brakets represents the orretion due to thepresene of the failed oherent baksattering. Impor-tantly, Eq. (53) inludes both, the limit of in�nite apa-itane C and the transparent ase. In the harge neu-trality limit (τ = 0) the presene of the tunnel barriersdoes not drastially alter the onlusion drawn for thetransparent ase. Indeed, for the weak-loalization or-retion, in addition to the expeted substitution Nα, Nby Γ
(1)
α , N , we observe only a renormalisation by a fator

(Γ
(2)
α /Γ

(1)
α + Γ

(2)
β /Γ

(1)
β − Ñ/N). Thus Eq. (41) beomes

gwl,τ=0
αβ (ω) = (54)
(

Γ
(2)
α

Γ
(1)
α

+
Γ

(2)
β

Γ
(1)
β

− Ñ

N

)

Γ
(1)
α Γ

(1)
β

N2

e−ΘτE eiω(τcl
E +τop

E )

(1 − iωτD1)
.More importantly, one of the main e�ets of the tunnelbarrier in the d-ase was the suppression of the weak-loalization orretion45,72 for opaque barriers. Thissuppression results from the ompetition between twopurely quantum e�ets, interferene and tunneling. Theorresponding semilassial treatment45 shows that theanellation is due to an exat ompensation betweenthe weak-loalization orretion and the failed oher-ent baksattering. It is interesting that this onlu-sion annot be generalized to a-transport. Sine thefrequeny dependene of the weak-loalization orretiondi�ers from the one of the failed oherent baksattering

the ompensation annot our. Dynamial weak loal-ization is thus more robust against the presene of tunnelbarriers. We note, however, that for τ = 0 we reover theanellation of the weak-loalization orretion with tun-nel probabilities, see Eq. (54).VI. CHARGE RELAXATION RESISTANCE OFA MESOSCOPIC CHAOTIC CAPACITORTo illustrate and apply the general results derivedabove, we onsider here the mesosopi equivalent of alassial RC iruit22. A quantum oherent apaitor hasbeen reently investigated experimentally by Gabelli etal.8 using a two-dimensional eletron gas. The quantumapaitor is omposed of a marosopi metalli eletrodeon top of a lateral quantum dot de�ning the seond ele-trode. The role of the resistane is played by a quan-tum point ontat that onnets the quantum dot to areservoir. The experiment was performed in the oherentregime at high magneti �eld in the one edge state limit.Measuring the real and imaginary part of the admittaneof suh a iruit, Ref. [8℄ on�rmed the predited22 uni-versal value of the quantized harge relaxation resistaneof a single hannel avity, whih is equal to half a resis-tane quantum h/2e2.Based on this experimental realization we propose hereto investigate the opposite regime of large hannel num-bers at zero magneti �eld. This regime is not harater-ized by the universal value of the preeding fully quantumone, however it should be experimentally aessible. Ifwe assume that the quantum dot is haoti we an mapthis system to the one-terminal geometry of the more



11general set-up onsidered in the previous setion. Thetranspareny of the quantum point ontat is replaedby the transmission probability of the tunnel barrier Γ1.To simplify the result we assume in the following that the
N hannels of the apaitor have the same tunnel rate,i.e. Γ1,i = Γ (∀i), the dwell time of the apaitor is thus
τD = τH/(NΓ).In a quantum oherent apaitor, there is obviously nod-urrent, but we an address a-transport via the ad-mittane G(ω)23,53. At low temperatures it is harater-ized by an eletrohemial apaitane Cµ and a hargerelaxation resistane Rq,

G(ω) = −iωCµ + ω2C2
µRq + O(ω3) . (55)In ontrast to their lassial ounterparts, Cµ and Rqstrongly depend on the loal density inside the sample73.They are thus sensitive to the phase oherent dynamisof the eletrons inside the sample and thus subjet todephasing.

Figure 4: Shemati piture of the mesosopi apaitor withthe dephasing lead (see text). The haoti avity has an extralead (lead φ), whose voltage is hosen to render the net urrentzero, whih leads to dephasing without a loss of partiles.Sine eah hannel has the same tunnel rate Γ1,i = Γ and
Γφ,i = Γφ, ∀i, the dwell time of the apaitor is τD ∝ (NΓ)−1and the dephasing time reads τφ ∝ (NφΓφ)−1.To model the loss of oherene of eletrons inside theavity we appeal to the so-alled voltage/dephasing probemodel74, whih onsists of adding another lead φ, (seeFig. 4) to our avity and tuning the potential of thisprobe in suh a way that the net urrent is zero. Conse-quently any eletron that enters this lead is immediatelyreplaed by another one with an unrelated phase lead-ing to inoherene without loss of partiles. While suhan approah has reently been used for the mesosopiapaitor in the one hannel limit14, here we investigatesimilar e�ets of the dephasing in the limit of large han-nel numbers75 where our semilassial method is fullyjusti�ed.The admittane an be written as

G(ω) =
−iωCχ(ω)

−iωC + χ(ω)
, (56)where

χ(ω) = G0

(

gu
11(ω) −

gu
1φ(ω)gu

φ1(ω)

gu
φφ(ω)

)

. (57)

The unsreened admittane elements are given inEq. (52). The survival times τD1 and τD2 of this two-leadgeometry are related to the real dwell time τD of ourapaitor and to the dephasing time τφ = τH/(NφΓφ),where Nφ and Γφ,i = Γφ (∀i) are, respetively, the num-ber of hannels and the tunneling rates of the dephasinglead46:
τD1 = τD

[

1 +
τD

τφ

]−1

, (58a)
τD2 = τD

[

(2 − Γ) +
τD

τφ
(2 − Γφ)

]−1

. (58b)Inserting expression (52) for the unsreened admittaneelements into Eqs. (56, 57) and performing an expansionin ω we get
Cµ =

Ce2ν

C + e2ν
, (59a)

G0Rq =
1

ΓN
+

D(τcl
E , τop

E , τφ)

(ΓN)2
+ O(N−3). (59b)where we additionally used the relation between the meandensity of states, ν, and the dwell time, τD = hν/(dsNΓ).The dephasing funtion D(τcl

E , τop
E , τφ) reads

D(τcl
E , τop

E , τφ) = Γe
−

τ
op
E

τD
(1−Γ)−

τcl
E

τD
e
−

τ
op
E
τφ

(1−Γφ)−
τcl
E

τφ

(

1 + τD

τφ

) .(60)We �nally onsider the e�et of a magneti �ux onthe harge relaxation resistane. Substituting Eq. (39)(the dwell time being replaed by the survival time τD1)into Eq. (56) leaves the eletrohemial apaitane Cµunhanged; only the dephasing funtion D(τcl
E , τop

E , τφ) isa�eted and replaed by
D(τcl

E , τop
E , τφ, Φ) = Γe

−
τ
op
E

(1−Γ)
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−

τcl
E
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e
−

τ
op
E

(1−Γφ)

τφ
−

τcl
E

τφ

(

1 + A2Φ2 τD

τf
+ τD

τφ

) .(61)From this semilassial investigation of the harge re-laxation resistane, we an see that the fully oherentlimit (τφ = ∞, τop
E = τcl

E = 0, Φ = 0) delivers,
Rq =

1

G0

1

ΓN

(

1 +
1

N

)

+ O(N−3). (62)Eq. (62) is the �rst derivation of the harge relaxationresitane in the large N limit in presene of tunnel bar-riers. While the leading order was guessed54, the weak-loalization orretion to Rq has never been alulatedbefore. Surprisingly, it is linear in the inverse tunnel rate
Γ−1, indiating that the alulation of the sub-leading or-der orretion annot be simply obtained by an e�etiverenormalisation of the hannel number Neff = ΓN .



12For the inoherent limit, obtained either by τE → ∞,
Φ → ∞ or τφ = 0, we get a suppression of the weak-loalization orretion and thus Rq redues to

Rq =
1

G0

1

ΓN
. (63)This value orresponds to the fully inoherent limitthat orresponds to the two-terminal resistane, and hasbeen obtained under the simple appliation of our de-phasing proess. Interestingly, this limit was not trivialto obtain in the edge state alulation14 (N = 1), whereperfet inter-hannel relaxation inside the voltage probewas assumed. This seems not to be required in the fullyhaoti ase in the limit N ≫ 1.VII. CONCLUSIONSIn this work we foused on the topi of a-transportthrough haoti ballisti ondutors, addressing in par-tiular weak loalization orretions to the admittanefrom a semilassial perspetive. Employing trajetory-based methods we on�rmed RMT results for the bareand sreened admittane and, going beyond RMT, de-rived the Ehrenfest time dependene. The Ehrenfesttimesale enters twie into the expressions for dynami-al weak loalization: �rst, as an exponential suppres-sion with an exponent given by the ratio of the Ehren-fest and dwell time, τE/τD; seond the dynamial weakloalization aquires an osillatory frequeny-dependentbehavior of period 2τE, whih may be amenable to mea-surements based on variations of the a-frequeny. Weemphasize that our results are valid for any �nite apa-itane C and hene not limited to the eletroneutralityassumption of Ref. [33℄. This extends the lass of exper-imental settings for whih the Ehrenfest time orretionan be investigated. More generally, the results presentedunderline, �rstly, the power of semilassial tehniquesto provide a lear and quantitative piture of a-driven

quantum transport in the various regimes and, seondly,they give a justi�ation of the "stub model"25 in the low-frequeny regime.Moreover we took into aount tunnel barriers in thesemilassial approah to the a-admittane, extendingthe work of Whitney45 on d-transport. This led us to ageneral formulation of a-transport. One main onlusionis that weak-loalization is more robust against e�ets oftunnel barriers in the dynamial than in the d-regime.The extension of our semilassial treatment to tunnelbarriers also enables us to aess the experimentally rel-evant ase of a quantum oherent apaitor, for whihwe provide the �rst derivation of the weak-loalizationorretion to the harge relaxation resistane in preseneof tunnel barriers.We add that, from a methodologial point of view,the semilassial approah presented might be helpful toahieve a better understanding of the proximity e�eton the density of states of haoti Andreev billiards. Fi-nally, the a-ondutane disussed here is losely relatedto problems of omputing (photo-)absorption and, moregenerally, linear-response based dynamial suseptibili-ties for mesosopi quantum systems. It appears promis-ing to apply the semilassial tehniques, developed herefor (a-)quantum transport, to re�ne earlier semilassi-al approahes51 to (photo-)absorption in losed ballistiavities or metal lusters, whih additionally poses thehallenge to semilassially ope with sreening e�etsand plasmon exitations.ACKNOWLEDGMENTSThe authors thank P.W. Brouwer, M. Büttiker,M. Gutiérrez, S. Nigg, M. Polianski and R.S. Whitneyfor valuable and stimulating disussions. We aknowl-edge funding from the DFG under GRK 638 and from theAlexander von Humboldt foundation (C. P. and J. K.).1 J. B. Pieper and J. C. Prie, Phys. Rev. Lett. 72, 3586(1994).2 W. Chen, T. P. Smith, M. Büttiker, and M. Shayegan,Phys. Rev. Lett. 73, 146 (1994).3 L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. MEuen,Y. Nagamune, J. Motohisa, and H. Sakaki, Phys. Rev.Lett. 73, 3443 (1994).4 M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu,Phys. Rev. Lett. 75, 3340 (1995).5 S. Verghese, R. A. Wyss, A. Förster, M. J. Rooks, andQ. Hu, Phys. Rev. B 52, 14834 (1995).6 R. Shoelkopf, P. Burke, A. Kozhevnikov, D. Prober, andM. Rooks, Phys. Rev. Lett. 78, 3370 (1997).7 L. Reydellet, P. Rohe, D. Glattli, B. Etienne, and Y. Jin,Phys. Rev. Lett. 90, 176803 (2003).8 J. Gabelli, G. Fève, J. Berroir, and B. Plaais, Siene
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