
An integral equation based numerical solution 
for nanoparticles illuminated with collimated 

and focused light 

Kürşat Şendur 
 

Sabancı University, Istanbul, 34956, Turkey  
sendur@sabanciuniv.edu  

Abstract: To address the large number of parameters involved in nano-
optical problems, a more efficient computational method is necessary. An 
integral equation based numerical solution is developed when the particles 
are illuminated with collimated and focused incident beams. The solution 
procedure uses the method of weighted residuals, in which the integral 
equation is reduced to a matrix equation and then solved for the unknown 
electric field distribution. In the solution procedure, the effects of the 
surrounding medium and boundaries are taken into account using a Green’s 
function formulation. Therefore, there is no additional error due to artificial 
boundary conditions unlike differential equation based techniques, such as 
finite difference time domain and finite element method. In this formulation, 
only the scattering nano-particle is discretized. Such an approach results in a 
lesser number of unknowns in the resulting matrix equation. The results are 
compared to the analytical Mie series solution for spherical particles, as well 
as to the finite element method for rectangular metallic particles. The 
Richards-Wolf vector field equations are combined with the integral 
equation based formulation to model the interaction of nanoparticles with 
linearly and radially polarized incident focused beams. 
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1. Introduction  

Nano-optics is a rapidly growing field with a diverse set of existing and emerging practical 
applications. Near-field optical techniques that enhance localized surface plasmons may 
obtain intense optical spots beyond the diffraction limit for optical data storage [1]. The 
magnetic storage industry is also interested in sub-wavelength optical spots for heat assisted 
magnetic recording to overcome the superparamagnetic limit [2-4]. The interaction of light 
with nanostructures reveals unique information about the structural and dynamic properties of 
matter, and is of great importance for biological and solid-state applications. Nano-optical 
transducers have been widely used in near-field scanning optical microscopy [5,6]. Hartschuh 
et al. [7] obtained 20 nm resolution images of carbon nanotubes using an apertureless 
configuration. The resolution and scanning time of the scanning near-field optical 
microscopes, however, are limited by the spot size and transmission efficiency of the nano-
optical systems. Therefore, advances in nano-optical transducers benefit scanning near-field 
optical microscopes and applications that utilize these microscopes. In addition, intense sub-
wavelength optical spots have potential applications in nanolithography [8] and bio-chemical 
sensing [9]. All of these applications benefit from small optical spots. The transmission 
efficiency of nano-optical systems should also be maximized for practical applications since 
transmission efficiency of the nano-optical system will determine the data transfer rate of 
storage devices and scan times of near-field scanning microscopes. 
      Various parameters have to be optimized in order to achieve large transmission efficiency 
while keeping the optical spot size well below the diffraction limit. These parameters include 
not only geometry-dependent parameters and the material composition of the nano-optical 
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transducer, but also source-dependent parameters, such as operational wavelength and the 
numerical aperture of the incident beam. Selecting an optimum set of parameters for a nano-
optical transducer is important in achieving small spots and large transmission efficiencies. 
Optimizing the performance of nano-optical parameters requires modeling and simulation of 
these structures through 3-D full-wave solutions of Maxwell’s equations. An extensive 
parametric study of the aforementioned transducers requires efficient and accurate solutions of 
Maxwell’s equations. 
      Due to the large number of geometry, material composition, and source-related 
parameters, the development of efficient and accurate modeling and simulation tools for near-
field optical systems is necessary. In this study, an integral equation based numerical solution 
is developed for nano-optical particles when they are illuminated with collimated and focused 
incident beams. The numerical technique developed in this study requires only the 
discretization of the nano-optical transducer, rather than the entire structure. Therefore, it 
results in a fewer number of unknowns than the numerical algorithms currently being utilized 
for solutions of nano-optical systems, such as finite difference time domain and finite element 
method. This study is organized as follows: In Sec. 2, a detailed formulation of the integral 
equation based numerical solution is provided. The integral equation is discretized into a 
matrix equation using the method of weighted residuals. In Sec. 3, the results of the numerical 
technique are compared to the results of the analytical Mie series solution for spherical 
particles and the finite element method for rectangular metallic particles. In Sec. 4, the 
formulation is extended to incident focused beam excitation. Richards-Wolf vector field 
equations are combined with the integral equation based formulation to model linearly and 
radially polarized focused beams. Concluding remarks appear in Sec. 5.  

2. Method of weighted residuals 

In this section, we provide a formulation for an integral equation based modeling and design 
tool for nano-optical systems. Similar tools have been successfully used for the analysis and 
design of other nano-optical systems in the literature. Nano-optical system modeling studies in 
the literature utilize differential equation based approaches, such as finite difference time 
domain (FDTD) [10-15] and finite element method (FEM) [4,15], as well as integral equation 
based techniques [16-20]. Previous integral equation based techniques have not presented 
three-dimensional results when the incidence excitation is composed of linearly and radially 
polarized tightly focused beams. A tightly focused beam of incident light provides a large 
incident electric field onto nanoparticles, improving the near-field radiation in the vicinity of 
the particle. Therefore, it is desirable to obtain integral equation based solutions when the 
incidence excitation is composed of linearly and radially polarized tightly focused beams. In 
this study, a three-dimensional integral equation based solution is obtained when the incidence 
excitation is composed of linearly and radially polarized tightly focused beams. 

A full-wave implementation of the method of weighted residuals (MWR) [21-25], which 
is also known as the method of moments (MoM), has a number of advantages over FDTD and 
FEM for nano-optical system analysis. In MWR, the effects of the surrounding medium and 
boundaries are taken into account using a Green’s function formulation. Therefore, MWR 
requires only the discretization of the nano-optical transducer, whereas FDTD and FEM 
require the discretization of the entire computational space. Therefore, the resulting matrix 
equations of the MWR are smaller in size. An additional advantage of an integral equation 
based approach is the reduction of the additional error due to the discretization of the 
boundaries. In an integral equation based approach, the boundary conditions are handled in 
Green's function formulation; therefore, there is no additional error due to the discretization of 
the boundaries. In a differential equation based approach, such as FDTD and FEM, however, 
there is additional error introduced into the solution due to artificial boundary conditions. In 
addition, the integration of complicated excitation functions, such as focused beams in a dense 
medium, is easier in an integral equation based MWR compared to FDTD. 

In this study, an integral equation based full-wave solution of Maxwell’s equation is 
developed. To discretize the integral equation into a matrix equation, we employ MWR in this 
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work. In the rest of this section, the details of the solution are given when the incident beam is 
a collimated beam, which is approximated by a plane wave. In Sec. 4, the formulation will be 
extended to linearly and radially polarized focused incident beams, which are represented by 
the Richards-Wolf vector field equations.  

The total electric field is a result of the interaction of an incident optical beam with a 

nanoparticle. The total electric field )(rEtot

��
 is composed of two components 

            (1) 

where )(rEinc

��
 and )(rEscat

��
 are the incident and scattered electric field components, 

respectively. The incident electric field can be defined as the electric field propagating in 

space in the absence of a scattering object. The scattered electric field )(rEscat

��
 in Eq. (1) 

represents the fields resulting from the interaction of the incident field )(rEinc

��
 with the 

particles. In three-dimensional space, the scattered field )(rEscat

��
 can be written as 

 
            (2) 
 

where )(rJ
��

 is the induced current over the particle, ω  is the angular frequency, µ  is the 

permeability, and  

            (3) 
 

is the dyadic Green’s function in free space at point r
�

 due to a point source at point 'r
�

. By 
applying the boundary conditions at the surface of a conducting metal, the electric field 
integral equation is obtained as 
 

            (4) 
 

In Eq. (4), )(rE
tng

inc

��
 is the tangential component of the known incident electric field on the 

particle and the )(rJ
��

 is the unknown induced current on the nanoparticle. This is a 

Fredholm’s-type integral equation of the first kind since the unknown appears inside the 

integral. To solve Eq. (4) for )(rJ
��

, we will expand it into a summation  

 

            (5) 
 

where ( )rb j

��
 represents known basis functions with unknown coefficients jI .  

In this work, triangular rooftop basis functions are used to discretize the induced current 
over the nanoparticle. These basis functions are originally proposed by Glisson and Wilton 
[26] on rectangular domains and used on triangular domains by Rao et al. [27]. Triangular 
rooftop basis functions have been very popular due to their ability to model realistic 
geometries. Particle geometry is discretized in order to expand the induced current with 
triangular basis functions. Discretization examples for particles are shown in Figs. 1 (a) and 
(b) for spherical and rectangular particles, respectively. Over these triangular domains the 
induced current can be discretized using the triangular rooftop basis functions, which is 
illustrated in Fig. 2.  
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            (6) 
 
 
 
 
 

where nℓ  is the length of the edge, 
+
nA is the area of the triangle 

+
nT , and 

−
nA  is the area of 

the triangle 
−

nT . In Fig. 2, two triangles 
+

nT  and 
−

nT are the two triangles associated with the 

n
th

 edge of the discretized particle. 

     
 
  (a)                            (b) 

Fig. 1. Example surface triangulation of (a) a sphere with a radius of R=350 nm and (b) a cube 
with a side length of L=200 nm. Triangulations are performed in Fortran and visualization 
performed via Matlab. 

Substituting the expansion given in Eq. (5) back into the Eq. (4), and changing the order of 
the integration and summation we obtain 

    

                        (7) 
 

Due to the approximation of the induced current with the summation in Eq. (5), there is a 
residual error in Eq. (7). The residual error in space can be written as 
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              (9) 
 

The weighting function ( )rwi

��
 in Eq. (9) can be selected in a number of different ways 

[23]. In this study, Galerkin’s weighting method is chosen, in which weighting functions are 
selected as identical to basis functions. Such a selection yields the best result in the minimum 
mean square sense. 

            

Fig. 2. To discretize the induced current, triangular rooftop basis functions are used. 

By placing the weighting functions into Eq. (9) we can obtain the resulting equations for 
the unknown coefficients of the basis functions. After mathematical manipulations, the result 
can be expressed as a system of linear equations as  

 

          (10) 
 

where jiZ ,  is the impedance matrix element on the i
th

 row and j
th

 column which is given as 

 

          (11) 
 
 

and iV  is the excitation source element on the i
th

 row given as 

 

          (12) 
 

By solving the matrix equation in Eq. (10), we obtain the unknown coefficients of the basis 
functions in the induced current expansion in Eq. (5).  

The matrix and vector elements in Eq. (11) are obtained using numerical integration 
techniques over triangular domains. An important issue in evaluating Eqs. (11) and (12) is the 

singularity in the kernel of the integrals. For the diagonal elements iiZ , , the observation point 

and source point can be very close to each other or even coincide. In such instances, the 
numerical integration diverges, even though the integrals in Eq. (11) are integrable. To avoid 
this numerical problem, the singularity extraction technique is applied in Eq. (11). The 
integrals in Eq. (11) are divided into two parts: (1) the part that can be treated using the 
numerical integration, and (2) the part that is evaluated analytically. For example, the first 
term on the right hand side of Eq. (11), which has a first order singularity, can be separated 
into numerically- and analytically-treatable parts as 
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          (13) 

 
 

In this study, the singularity extraction technique for triangular domains [28] is employed to 
avoid numerical inaccuracy. 

The singularity in the second term on the right hand side of Eq. (11) is third order, which 
is more difficult to handle analytically compared to a first order singularity. However, for the 
triangular rooftop basis functions used in this study, the second term on the right hand side of 
Eq. (11) can be simplified as 

 

           (14) 
 
 

which has a first order singularity and is handled with the formulations given in the literature 
[28]. 

3. The interaction of metallic nanoparticles with a collimated beam 

Using the integral equation based formulation given in the previous section, the interactions of 
a collimated beam with both a conducting metallic sphere and cube are studied. The 
collimated beam is modeled as a linearly polarized plane wave propagating in the z direction, 
which is mathematically represented as 

           (15) 
  
The results of the integral equation based solution are compared to the results of the analytical 
Mie series solution for spherical particles and the finite element method for rectangular 
metallic particles [29].  

To compare the results, the radar cross sections of particles are calculated for different 
cross sections of the far-field. The radar cross section is defined as  

 

           (16) 
 
 

where )(rEinc

��
 and )(rEscat

��
are the incident and scattered fields, respectively. The incident 

field for this problem is defined by Eq. (15) and the scattered field is obtained using a far-field 
approximation of Eq. (2). In the far-field region, the distance between the source and the 
observation point can be approximated by 

           (17) 
 
Substituting Eq. (17) back into Eq. (2), the scattered field in the far-zone can be written as 

           (18) 
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             (a)                  (b)  

  
             (c)                  (d) 

Fig. 3. A comparison of the MWR results with the Mie series solution for the RCS of a 

conducting sphere with a radius of 140 nm. The operating wavelength is 700 nm. θ and 

φ components of the radar cross section are plotted on various cuts: (a) RCSθ as a function of φ 

on θ=90
°
 cut, (b) RCSθ as a function of θ on φ=0

°
 cut, (c) RCSφ as a function of φ on θ=90

°
 cut, 

and (d) RCSφ as a function of θ on φ=90
°
 cut. 

   
             (a)                      (b)  

    
             (c)                  (d) 

Fig. 4. Percent relative error of MWR results in Fig. 3 compared to the Mie series solution for : 

(a) RCSθ on θ=90
°
 cut, (b) RCSθ on φ=0

°
 cut, (c) RCSφ on θ=90

°
 cut, and (d) RCSφ on φ=90

°
 

cut.  
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         (a)                           (b)  

   
         (c)                           (d) 

Fig. 5. A comparison of the MWR results with the Mie series solution for the RCS of a 

conducting sphere with a radius of 350 nm. The operating wavelength is 700 nm. θ and 

φ components of the radar cross section are plotted on various cuts: (a) RCSθ as a function of φ 

on θ=90
°
 cut, (b) RCSθ as a function of θ on φ=0

°
 cut, (c) RCSφ as a function of φ on θ=90

°
 cut, 

and (d) RCSφ as a function of θ on φ=0
°
 cut. 

     
        (a)                               (b)  

     
        (c)                              (d) 

Fig. 6. Percent relative error of MWR results in Fig. 5 compared to the Mie series solution for : 

(a) RCSθ on θ=90
°
 cut, (b) RCSθ on φ=0

°
 cut, (c) RCSφ on θ=90

°
 cut, and (d) RCSφ on φ=90

°
 

cut. 
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Substituting the coefficients obtained from the solution of the matrix equation into the induced 
current expansion in Eqs. (5) and (18), and changing the order of the integration and 
summation, the expression for the far-zone scattered field can be simplified as 

           (19) 
 
 

Using Eqs. (15), (16), and (19), the scattering cross section of various particles now can be 
obtained. 

In Fig. 3, the radar cross section of a sphere with a radius of 140 nm is presented to 
compare MWR results with the analytical Mie series solution. The operating wavelength of 
the laser source is 700 nm. A comparison of the MWR results with the analytical Mie series 
solution shows a good agreement between the results. The percent relative error between the 
MWR results and Mie series solution is presented for the 140 nm particle in Fig. 4. The results 
suggest that the error is smaller than 1.7 % on various cuts. The main source of this error is 
the discretization of the nanoparticle. This error can be further reduced by increasing the 
number of unknowns. A similar comparison is provided in Fig. 5 for a larger sphere with a 
radius of 350 nm. The results in Fig. 5 also show a good agreement between the results. The 
relative error between the results is presented in Fig. 6. The results suggest that the maximum 
error for this case is about 2.5 %. 

In Fig. 7, the scattering cross section of a conducting metallic cube with a side length of 
200 nm is obtained on various cuts in the far-field. There is no analytical solution for a cube, 
therefore, we utilized an FEM solution as a reference. Similar to the previous calculations, a 
linearly polarized plane wave is utilized. The operating wavelength is 700 nm. In Fig. 7 (a) 

and (b) the θ component of the radar cross section is plotted on φ=0
°
 and φ=90

°
 cuts. The 

MWR and FEM results show a good agreement. 
 

  
                                    (a)                                    (b) 

Fig. 7. A comparison of the FEM and MWR results for the radar cross section of a conducting 
cube with a side length of 200 nm. The operating wavelength for the incident beam is 700 nm. 

θ component of the radar cross section is plotted on various φ cuts: (a) RCSθ as a function of θ 

on φ=0
°
 cut, (b) RCSθ as a function of θ on φ=90

°
 cut. 

The method in this study is capable of addressing the near-field computations. Once the 
unknown coefficients in Eq. (5) are calculated, these equations can be substituted back into 
the electric field integral to calculate the near-field distributions. 

4. Linearly and radially polarized focused beam 

It is also very desirable to obtain solutions when the incidence excitation is composed of 
linearly and radially polarized focused beams. In the previous sections, the integral equation 
based solutions are provided when the incident beam is a plane wave. In this section, the 
formulation is extended to the case where the incident beam is a focused beam. In the 
previous formulation, the incident electric field in Eq. (15) was substituted in Eq. (12) to find 
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the excitation vector elements. The main difference in the formulation in this section is that 
instead of Eq. (15), we utilize the electric field distribution for a focused beam obtained from 
a lens system. 

Richards and Wolf developed a method for calculating the electric field semi-analytically 
near the focus of an aplanatic lens [30, 31]. Using the Richards-Wolf method, we can obtain 
both transverse and longitudinal components near the focus for both linear and radial 
polarizations. The total electric field in the vicinity of the focus is given as 

   rki

inc eadd
i

rE
�����

⋅−∫ ∫−=
α π

φθφθθ
λ

0

2

0

),(sin)(    (20) 

where α  is the half angle of the beam. In Eq. (20), ),( φθa
�

 is the weighting vector for a plane 

wave incident from the θ , φ  direction. Here it should be noted that ),( φθa
�

 is a polarization 

dependent quantity, which is given as 
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for linear and radial polarizations, respectively. The interaction of a focused beam with linear 
or radial polarization can be obtained by substituting Eq. (20) back into Eq. (12).  

In Fig. 8, various components of the near-field radiation from a sphere are plotted when 
the incident beam is a linearly polarized focused beam obtained from an optical lens system 
with a numerical aperture of 0.85. The operating frequency is 700 nm.  The results are plotted 

for spherical particles with radii 70 and 140 nm. The 
xE  and 

zE  components are plotted on 

the 2/πφ =  cut as a function of θ . For small spheres, the 
xE  component has a maximum at 

2/πθ = . As the spherical particle gets larger, we observe a shift of the location at which the 

xE  component has a maximum field. This is due to the increased interaction between a larger 

sphere and a wider range of angular components of a focused beam. As the size of the 
spherical particle gets larger, the particle interacts more with components that are incident to 

larger angles. A similar shift is also observed in the
zE  component, as shown in Fig. 8. 

In Fig. 9, various components of the near-field electric field are plotted for a radially 
polarized incidence beam.  The results are plotted for spherical particles with radii 70 and 140 

nm. 
xE  and 

zE  components are plotted on the 2/πφ =  cut as a function of θ . The incident 

beam parameters are identical to the previous set of results with the exception that a radial 

polarization is used instead of a linear polarization. Contrary to the results in Fig. 8, 
xE  

shows a minimum at 2/πθ =  in Fig. 9. This is due to the difference in the strength of 

various components of the linearly and radially polarized incident focused beams. For the 
linearly polarized focused wave, the x-component of the electric field is much stronger than 
the other two components. The radially polarized wave, on the other hand, has a strong z-
component in the focal region. 
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Fig. 8. Electric field components when a linearly polarized focused beam of light interacts with 
spheres of various sizes. The linearly polarized focused beam is obtained from an optical lens 
system with a numerical aperture of 0.85. The operating frequency is 700 nm. 

 

                         

Fig. 9. Electric field components when a radially polarized focused beam of light interacts with 
spheres of various sizes. The radially polarized focused beam is obtained from an optical lens 
system with a numerical aperture of 0.85. The operating frequency is 700 nm. 

5. Conclusion 

In this work, an integral equation based numerical solution was developed. The formulations 
for both plane waves and focused beams were given. For focused beams, the Richards-Wolf 
vector field equations were combined with the integral equation based formulation to model 
both linearly and radially polarized focused beams. The results of the integral equation based 
solution were compared to the results of the analytical Mie series solution for spherical 
particles and the finite element method for rectangular metallic particles. The methods showed 
a good agreement. 
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