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1. Introduction
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is called a linear recurring sequence over g with characteristic polynomial
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of degree [, if

l

Zcisn+i:0 forn=0,1,....
i=0

Without loss of generality we can always assume that f(x) is monic, i.e. ¢, = 1. In accordance with the
notation in [2] we denote the set of sequences over Iy with characteristic polynomial f by Mél)( .
The minimal polynomial of a linear recurring sequence S € ./\/lél)(f) is defined to be the (uniquely
determined) monic polynomial d(x) € Fg[x] of smallest degree such that S € M((;)(d). We remark that
then d is a divisor of f. The degree of d is called the linear complexity L(S) of the sequence S.

Motivated by the study of vectorized stream cipher systems (see [1,3]) we consider the set of m
parallel sequences over Iy, each of them being in /\/lf,”(f). As usual we call this set the set of m-fold
multisequences over g with joint characteristic polynomial f and denote it by M,S"”( f). The joint
minimal polynomial of an m-fold multisequence S = (01,03,...,0m) € ./\/lém)(f) is then defined to be
the (uniquely determined) monic polynomial d of least degree which is a characteristic polynomial
for all sequences o, 1 <r < m. The joint linear complexity Lém)(S) of S is then the degree of d.

Let §$ = (01,02,...,0m) € Mg")(f) and suppose that or = Sy 0Sr,15r,2..., 1 <r <m. Then there
exist unique polynomials g; € Fq[x] with deg(g,) < deg(f) and g:/f =sro0 + sr1x + sr,2x2-~-, 1<
r <m. By [7, Lemma 1] this describes a one-to-one correspondence between the set Mflm)(f) and the
set of m-tuples of the form (g1/f,82/f,..., 8n/f), & € Fqlx] and deg(g;) < deg(f) for 1 <r<m.

If §e Mém)(f) corresponds to (g1/f,g2/f,...,&m/f), then the joint minimal polynomial d of §
is the unique polynomial in Fy[x] for which there exist hy, ..., hy € Fg[x] with g./f =h;/d for 1 <
r<m, and gcd(hy, ..., hy,d) = 1. Therefore the joint linear complexity of S is then given by

LM (S) = deg(f) — deg(ged(g1, &2, - -+ &m, f))-

Since the [Fg-linear spaces IFZ7 and [Fgm are isomorphic, the multisequence S can be identified with a
single sequence S having its terms in the extension field Fgm, namely S = S(S, &) = so, 51, ... with

sn=&S1n+ - +&mSmn € Fgn, n=>0, (1.1)
where § = (&1, ...,&ny) is an arbitrary but fixed ordered basis of Fgm over IFy. This describes a one-to-
one correspondence between the sets Mém) (f) and Mé}n)( H.

Let S e Mflm)(f) correspond to (g1/f,g2/f....,&n/f), then it is easily seen that the single se-

quence S € Mé}n)(f) defined as in (1.1) corresponds to the 1-tuple (G/f) with

Gx)=gi161 + g6+ + gmém.

The minimal polynomial of & is then d = f/gcd(G, f) € Fgm[x] and the linear complexity of the
sequence S, which we will call the generalized joint linear complexity of S and denote by Lgm ¢(S), is
given by

Lgn £(S) = deg(f) — deg(ged(G, f)),

where the greatest common divisor is now calculated in Fgn[x]. The dependence of the generalized
joint linear complexity Lgm ¢(S) on the ordered basis & follows from the definition (cf. [5, Example 3]).
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Clearly we always have Lgm ¢(S) < Lf]m)(S), in some cases Lqm ¢(S) can be considerably smaller
than Lflm)(S). However in [5, Theorem 2] it has been pointed out that

deg(ri)
ek () 2 ;al ged(deg(ri), m)

if $e MU (f), F=rSre.. -T¢¥ is the canonical factorization of f into irreducibles over Fy, and the

joint minimal polynomial of § is d = r;”rgz rz", 0<a; <ej for 1 <i<k. As one consequence we

will always have Lgm ¢(S) = Lém)(S) if gcd(deg(rj)),m)=1 for i =1,2,...,k (cf. [5, Theorem 1]). In
[4, Theorem 3] the expected value for the generalized joint linear complexity of a random m-fold
multisequence $§ with minimal polynomial x¥ — 1 for a given integer N has been determined. In this
article with a different method we obtain much more general results and present expected value and
variance for the generalized joint linear complexity of a random m-fold multisequence S with an
arbitrary given minimal polynomial. Moreover we present results on the expected value of D(S) :=
LY (S)—Lym £(S)
1" (s)

relation to the value for the joint linear complexity of an m-fold multisequence S, which estimates
the expected drop of linear complexity if one switches from conventional joint linear complexity to
generalized joint linear complexity.

The rest of the paper is organized as follows. In Section 2 we fix some notation and we give some
basic results that we use later. We obtain our main results in Section 3.

, the difference of joint linear complexity and generalized joint linear complexity in

2. Preliminaries

We first recall an important function on the set of monic polynomials in Fg[x] and some of its
properties (see [2, Section 2]). For a monic polynomial f € [Fy[x] and a positive integer m we let
<1>ém)(f) denote the number of m-fold multisequences over Fy; with joint minimal polynomial f.
Then we have [2, Lemmas 2.1 and 2.2]

Z d’ém)(d) = gmdeg(f) (2.1)
d|f
o™ (f1f2) =™ (F@{" (f2) if ged(f1, f2) =1. (2.2)

Let ./\/q(m)(f) denote the subset of Mém)(f) consisting of multisequences S € M,(Jm)(f) such that
Lém)(S) =deg(f). It is clear that

NG ()] =™ ().

For an ordered basis & = (£1,...,&n) of Fgm over Fq let /V‘“)g(f) be the subset of M(l)(f) given
by

Nph(H={s=5(5.8): seN" ().
It is obvious that [N “)g( Al=INT () =™ (f).

Proposition 2.1. Let f € IFy[x] be a monic polynomial with deg(f) > 1 and suppose that

€1.,.€2 Ck
=
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is the canonical factorization of f into irreducibles over Fy. Let § = (&1, ...,&n) be an ordered basis of Fgm

over IFg, let S be a sequence in M;}n)(f) and let d € Fgm[x] be its minimal polynomial. Then S € J\/'( )E(f) if
and only if d is of the form

d=dqdy---dy,

wheredy, d, ..., d € Fgn[x]and dy | 17", dy [152, ..., di |1}*, and

dyfr§ od, 2 L itk I

Proof. Suppose that S corresponds to G/f and let g1, g2, ..., &n be the unique polynomials in Fg[x]
for which G =&1g1 +&282 + - + &mgm. If d is the minimal polynomial of S then trivially d is of the
form d =did; - - -di, where dy,d, ..., dx € Fgm[x] and

e e e
di|ri', dalry?, ..., di |1~

Suppose that without loss of generality d; | rel ~! Then r1 divides f/d, and consequently G/ f = G1/d
implies that ry divides G = G f/d. With [5, Proposition 1.2] we obtain that r; divides g1, g2, ..., &m,

thus (g1, 82,...,8&m, f)# 1 and f is not the minimal polynomial of S € M,Sm)(f) for which we have
S=5(S,8).

Suppose conversely that d; fre"_] fori=1,2,...,k but (g1, 82,...,8&m, f) # 1. Then r; divides g;,
1< j<m, for an integer i, 1 <i<k. Consequently by [5, Proposition 1.2] r; divides G, and d =

f/8cd(G, f) (where the greatest common divisor is calculated over Fgn) contradicts d; J(re’ g

Remark 2.2. Note that Proposition 2.1 implies that, amongst others, N @ ( f) is independent from
the choice of the ordered basis &, and we can simply write ﬁ(l)(f) mstead of /V(]) (f). Similarly
the expectation Eqm( f) and the variance Varqm( f) are independent from the ch01ce ofAthe ordered

basis &, and hence in the following we will not include & in the notations Eqm(f) and Vargm(f) for
the expected value and the variance.
The following definitions are useful.

Definition 2.3. Let f € Fy[x] be a monic polynomial with canonical factorization

€1..62 Ck
f=rrtr

into irreducibles over Fy. We define ’S\qu(f) and /S\qm,z(f) as

Spath= > > o Y oLl didy-- dy)degidrdy ),
dy |t dy | 152 die | ¥
dq TT?_] dy J(ngq d 'M’Ek !

and

-~ 2
Sea(N =Y. > o Y @iy di)(deg(didy - dp)”
dp |1 dy | 152 dy | Tk
it T et rh-t

where the summations are over monic polynomials d; € Fgm[x] such that d; | rfi and d; J(rf‘_1.

Please cite this article in press as: W. Meidl, F. Ozbudak, Linear complexity over Fq and over Fgn for linear recurring
sequences, Finite Fields Appl. (2008), doi:10.1016/.ffa.2008.09.004




YFFTA:697

W. Meidl, E Ozbudak / Finite Fields and Their Applications eee (esee) see—see 5
The identities in the following lemma will be used in Section 3.

Lemma 2.4. Let 1,13, ..., 1y be distinct irreducible polynomials in Fg[x] and eq, e, .. ., e be positive inte-
gers. We have

Sqm (552 -rz") _ 2‘: Sqm,l(rf')
nile (qmei deg(r) — gm(ei—T)deg(r)y £ gmei deg(ri) — gm(e;—1)deg(ri)”’

(2.3)

and

< e1..e2 ek
Sqm2(ry'ry* 1)

nf:l (gmei deg(ri) — gm(e;—1)deg(r))

. i §qm,2(rfi)
I < qmei deg(ri) _ gm(e;—1) deg(r)
i=

-~ . - ej
+2 Y Sqna(rf") Sqn1(ry)
i qme,- deg(ri) _ qm(ei—l)deg(rf) qmej deg(rj) _ qm(ej—l)deg(rj) :
RI<IS

(2.4)

Proof. The identities are trivial if k = 1. Assume that k = 2. With (2.2) we have

Sea(r'ry)= > Y o @)y (d)(deg(dr) + deg(dy)).
d1 \ T?] dz | r;z
ditr ™t dp e

Then we get

Sea(fr) = Y. oW dndegd) Y @u(dy)
dp |1} dy | 52

atr! s

1 1
+ Y duld)degd) Y b )
dy \TSZ di | r?
d2 )(rzl’z—l d] )(T?_1

- ’S*qm,l (rfl?l ) (quz deg(r2) _ qm(Ezfl)deg(rz))

+§qm’] (rgz)(qmm deg(r1) _ qm(el—udeg(rl))’ (2.5)

where the identity

Z ‘p((fln) d;) = (qme,- deg(ry) _ qm(e,-—1)deg(ri)) (2.6)
di|rf'
ditri!

for i = 1,2 follows from (2.1). Dividing both sides of (2.5) by []Z,(q™e deg() — gmei—Ddegr)y yye
obtain (2.3) for k = 2. We complete the proof of (2.3) by induction on k using similar arguments.
Again for k =2, we have
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< e e 1 1
Sqm2(r§'r5?) = Z Z D) (d) D (d2)
dy | r dy | 1’

atr ™

x ((deg(dn)” + (deg(d2))® + 2 deg(dy) deg(d>)).

Then we get
= 2
Sra(r'r2) = Y oW d)(deg@n)” Y @l d2)
d1 \ r‘;‘ dz | r;z
d]frilil d2fT§271
+ Z o (d2)(deg(d)” Y @G dp)
dy | 13 dy ]!
dzfi’;zil d]fri171
+2 ) @ulddegd) Y P (dy)deg(da),
dy 15! dy |15
d]frilil dzfr§271
and hence

Sym 2 (rE1r52) = Syn 5 (rS1) (g2 deBr2) _ gmiea—1)deg(ra))

+ fqm_z(rgz)(qme‘ deg(r) _ gm(er—1) deg(”)) + 2§qu1 (ry )§qm,1 (r3?)- (2.7)

Dividing both sides of (2.7) by []2_, (g™ de8(i) —gm(ei—1) deg(ri)y we obtain (2.4) for k = 2. We complete
the proof of (2.4) by induction on k using similar arguments. 0O

3. Main results

In [2, Theorem 3.4] exact formulas for the expected value EM™(f) and the variance Var™(f) of
the joint linear complexity of a random m-fold multisequence S € Mg")(f) has been presented: Let

f=r{"r52-..r* be the canonical factorization of f into monic irreducible polynomials over Fy, then

k —e;

1—a«;
E™(f) = deg(f) — 3 ——i— deg(ry), (31)

. ai—1
i=1

Var™ (f) = Z( feg(r’)) (Qer+ (@2 o) a2 Lo,
o

i=1 i

where o; = gmdeg) for 1 <i < k. In this section we present the expected value Eqm(f) and the
variance Vargn (f) for the generalized joint linear complexity of a random m-fold multisequence § €
Mém)(f) with the maximal possible joint linear complexity deg(f). The result on the expected value
generalizes the result on N-periodic multisequences given in [4, Theorem 3].

Theorem 3.1. Let rq, 13, ..., Ty be distinct irreducible polynomials in Fg[x] and eq, e3, .. ., e be positive inte-
gers. We have

Please cite this article in press as: W. Meidl, F. Ozbudak, Linear complexity over Fq and over Fgn for linear recurring
sequences, Finite Fields Appl. (2008), doi:10.1016/.ffa.2008.09.004




YFFTA:697

W. Meidl, E Ozbudak / Finite Fields and Their Applications eee (esee) see—see 7
1,62 ek _ T i
Egn (1152 1) = D Egn (1))
and
k
~ e e ~
Vargn (r{'r? - --1i¥) Z Vargn (r
i=1

Proof. With Definition 2.3, (2.6) and (2.3) we obtain

k S i S
E - q 1(re q 1(1‘1 T2 ) 'rzk) 3.2
Z q Z me; deg(r;) m(e;—1) deg(r;) k ! (3.2)
qmei deg(ri qmeei 8(Ti l—[i 1(qme‘,-deg(r,) qm(ei—l)deg(ri))

Hence it remains to show that

k
H(qmei deg(ri) _ qm(fi*”dEg(ri)) = Z Z Z q)é,}f(dﬂz oedy). (3.3)
i=1 di |t dy 12 dy |
Gt e depr
For k =2 with (2.6) and (2.2) we obtain
2 2
l_[(qmei deg(ri) _ qm(ei—l)deg(ri)) _ 1_[ Z (D(l)(d )= Z Z ¢(1)(d1d2)
i=1 i=1 d; |l difryt  da |
ditry™! ditrf T dp !

We complete the proof on the expectation by induction on k. Next we consider the variance. With
Definition 2.3, (2.4), (3.2) and (3.3) we obtain

Varqm (ri'rs?-- ~er) =

Sgna(f) (’s‘qm,«f))z
o™y \a™(f)
k

. Z Sqmyz(r )
- me; deg(r;) _ gm(e;—1) deg(ri)
iz1 4 1

S 1 Sqna(r)
+2 Z q”',](l) q j

e qmei deg(ri) _ qm(eﬁ])deg(rf) qmej deg(rj) _ qm(ejfl)deg(rj)
i<t

k ~ . 2
(v Sqna(ry)
P gmei deg(ri) _ gm(ei—1)deg(ri)

k < i < i
Sqm 2§ Sqm 1 (5 2
; gmeideg(ri) — gm(e;—deg(r)  \ gme;deg(ri) — gm(e;—1) deg(r;)

v l'qm ( ) O
1

=
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Before we present formulas for Eqm (f) and Varqm (f) if f =1 r eFqlx] irreducible, we recall some
definitions and identities from [2]: For a monic polynomial f € Fgy[x], let

Sg1(f) =Y @5 (d) deg(d), (34)
dif

and

Se2(N) =Y @y d)(deg(d))’.
dif

where the summation is over monic polynomials d € Fy[x] dividing f. If f = r;”r;z rZ" is the canon-

ical factorization of f into monic irreducible polynomials over F; and «; = qdestr) | then (see [2,
Proposition 3.2])

€i
Sga(f) = deg(hzsql(r ), 55)
3 _ gdeg(h) qu(r +2 sql(r ) Sqa(ry) 16
q,Z(f)—q Z Z = (3.6)
i=1 @ 1<i<j<k o o;

Particularly, if f =r® with r € Fy[x] irreducible, then (see [2, Egs. (3.9) and (3.12)])

e _ €
Sq.1(r) :deg(r)(e_ 1-a ) (3.7)
af a—1
e 2
% = (ieg_(rl)) (e%a® — (26 +2e —1)a+ e+ D*—a' ™ —a™®), (3.8)

where o = gde8®,

Proposition 3.2. Let r be an irreducible polynomial in F¢[x], and e, m be positive integers, and suppose that
u = gcd(deg(r), m). Then with 8 = q% deg( ye have

~ ‘1 __R—€ 1 _ R—€
Eqn (r°) = edeg(r) — deg(r)< 5 _'31 T f ] ), (3.9)
and
Gor ey _ 1 deg(r) 2 e I
Vargn (r°) = 5(W) (B—Qe+ 1)+ @2e+1)p*—B
BB -N)[2B+B BT —u(B -1 (B7C —1)] +2ep7°(B> — 1))
+B7(B— (26— 1) + e — B¢ — g27%)). (3.10)
Proof. Note that
T e\ _ /gqm,l(re)
Eqn(r°) = G _ gD a0 (3.11)
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and
Sqm1(r?) = Sqn.1(r°) = Sgma (7). (3.12)

By [6, Theorem 3.46] the canonical factorization of r into irreducibles over Fgm is of the form
r=p1p2- Pu, (313)

where deg(p;) = deg(r)/u. With (3.5) we have

u
Sgm e
Sqmﬁ‘l(re) :qmedeg(r)§ : q ;;fpl ). (3.14)
i=1

For 1 <i<u, from EV(pf) = Sqn 1(pf)/p° and (3.1) we get

Sqm1(pf d 1-p¢
gn1(p) _degn) (0 1-B7°Y (315)
Be u B—1
Using (3.14) and (3.15) we obtain that
e me deg(r) 1- ﬁ_e
Sqn.1(r¢) =g deg(n) e — — - ). (3.16)
and similarly
1 1d 1—pet!
Sqm’] (re7 ) = qm(e7 ) deg() deg(r) (e —-1- ﬁ) (317)
Note that
1-p 1-p° -
—1——=(e— —(1-p87%). 3.18
‘ p—1 (eﬂ—l(ﬂ) G18)
Combining (3.16)—(3.18) we get
Sqn1(r®) — Sgn 1 (™) 1-p¢ 1-p¢
qmedeg — gmee—1)degn =edeg(r) — deg(r) 51 + deg(r) BT (3.19)
We complete the proof of (3.9) using (3.11), (3.12) and (3.19).
Next we consider the variance Vargm (r€). Note that
- Sgm 2 (r¢ Sgm 1(r¢ 2
Vargn (1) = —020)__(_Sqna @) (3.20)
el — =) gLl —pg74)
and as in (3.12) we have
§qm’2 (Te) = Sqm’z (re) — Sqm’z (T'e_l). (3.21)

Please cite this article in press as: W. Meidl, F. Ozbudak, Linear complexity over Fq and over Fgn for linear recurring
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We consider A(e, 8) and B(e, 8) as functions on the integer variables e and B given by
Ae,p)=e’p*> — (22 +2e—1)p+(e+1)* - B —p~°, and
B(e,f)=ef—(e+1)+p7°. (3.22)

Recall that the canonical factorization of r € Fq[x] into irreducibles over Fgm is given in (3.13). For
each 1 <i<u, using Egs. (3.8) and (3.7), we obtain

Sqn2(pf)  ( deg() \?
ﬂe _<u(ﬂ—l)> A(e,ﬁ),
and
Sqn1(pf) _ deg(r)
= B(e. B).
pe ug—1 P

respectively. By (3.6) we have

u

m 2P} m 1(08) Sqm.1(p°
Sqm’z(re):ﬂLw(ZSq;e(pl)_’_z Z Sqm,1(0;) q,l(,0])>’

e e
i=1 p 1<i<j<u p p

and hence using (3.21) we get

(uAce, B) + (u? — u)B(e, p)*

’S\qm,z(re) ( deg(r) )2 1

pre(l—p=4)  \u(B-1) 1-p¢
— B (uA(e —1,B) + (u* —u)Be — 1, B)?)). (3.23)
Similarly
Sgra() _ degm 1 (uB(e. B) —up™Ble —1.p)). (3.24)

pUe(l—p74) u(B-1)1-p"
We complete the proof of (3.10) using (3.20), (3.22)-(3.24). O
Combining Theorem 3.1 and Proposition 3.2 we obtain the following result.
Theorem 3.3. Let f € Fy[x] be a monic polynomial with deg(f) > 1 and canonical factorization

__ €162 €k
f=rry-n

into irreducibles over Fg. For 1 <i < k let u; = gcd(deg(r;), m) and

™ deg(r;)

Bi=q .

Then we have

- k 1-47% 1-p"
Eqm(f)=deg(f)—§deg(ri)( T ﬂi“fl)’
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and

k 2
S 1 deg(r;) 1—e; —e; —2e;
Vargn (f) = {—(—,) Bi — Qei+ DB + 26+ 1B — g
! ; ui \ (g — 1)(1— B ) ( i i ki
2—81'

BB = D28+ B BT B = DR (B = 1) ]+ 208 (B - 1))

+ B2 (B — Qe — DB + e — DB = ) }

In the following we want to estimate the expected drop of the linear complexity if one switches
from conventional joint linear complexity to generalized joint linear complexity. We consider the term

LIV(S) — Lgm £(S)

D(S) :=
Ly (S)

the difference of joint linear complexity and generalized joint linear complexity in relation to the
value for the joint linear complexity, where we put D(0) =0 by convention if § is the zero sequence

0 (or, equivalently, if Lf{")(S) =0). In [5, Corollary 1] it has been shown that D(S) <1 — —— if

Umax
Se M{V(f), f=r"152--1f* and umax = max{ged(deg(ri), m): 1<i<k}. We are now interested
in the expected value of D(S) for a random multisequence S € M((Im)(f). The results confirm that
though the bound on D(S) has been shown to be tight (see [5, Proposition 3]), in average linear
complexity does not decrease dramatically if one switches from conventional joint linear complexity
to generalized joint linear complexity.

Proposition 3.4. Let f € Fy[x] be a monic polynomial with deg(f) > 1, then the expected value E™ hH

drop, q
of D(S) for a random multisequence S € Mf,m)(f) is given by

1 Eqn (d)
(m) _ (m) _
Edrop,q(f) ~ gmdeg(f) Z Pq(d) <l deg(d) )’
dlf, d#1

where the summation is over all monic polynomials d € Fy[x] dividing f, exceptd = 1.

Proof. From the definition of Egr"gp, q( f) we get
LI(S) — Lgm £(S)

(m) _
Edmpvq(f) - L(m) (S)
q

2

SeMI (FH\{0)

1 Lyn £(S)

= —dmd (1—7@) ) (3.25)
q - L"(s)

seMg" (F\0)

IMI™ ()]

Recall that

M (=N @), (3.26)
d|f

is the disjoint union over all monic polynomials d € F¢[x] dividing f. Furthermore for a monic poly-
nomial d € [Fg[x] dividing f we have
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ING™(d)| = @™ (d) and

_ Lgn (S
Epd= Y %fﬁi) (3.27)
seri Wi @)

Moreover if § e/\/:;m) (d), then by definition
L{M(S) = deg(d). (3.28)
Combining (3.25)-(3.28) we complete the proof. O

We recall that for a monic polynomial d € Fg[x], we have (see [2, Lemma 2.2])
dﬁém) d) = mdeg(d) 1_[ —mdeg(rl ) (3.29)

if d=r{'r3?---r}" is the canonical factorization of d over Fq. Moreover Egn(d) is given by Theorem 3.3.

Therefore Proposition 3.4 gives a procedure to determine EéTgp q( f) in the general case. In the follow-

ing corollaries we present closed formulas on the expected drop of the linear complexity for two
special cases.

Corollary 3.5. Let r be an irreducible polynomial in IF¢[x], let e, m be positive integers and suppose that u =

gcd(deg(r), m). Then Eg?gp q(re) is given by

m e ‘Bufl -1 u u—
Eqrop. () = W(”e(ﬂ ) = He(8*)),

where B = q% de2(™ and H, (x) is the real valued function defined by

pe x€
He() =X+ =+ 4 —.
2 e

Proof. From Eq. (3.29) we obtain
@ém) (rj) — qmjdeg(r) _ qm(j—1)deg(r) — /3“] _ lgu(j—l)’ 1<j<e
and consequently with Proposition 3.4

m (e 1 (gl gui-1) Egn(r)
Edrop q( ):qmedm;(’g -8 )<17m>

Using Theorem 3.3 we get

1 ¢ . o
EéTgP q( e) = qmedeg(r) Z(ﬂw - ﬂu“ 1))(1 -
j=1

jdeg(r) — deg(r)(\52 — AT >>
Jjdeg(r)

1_/3 i 1_1B_j uj —u
qmedeg(r)z ( Bt —1 )’B j(l_ﬁ )
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With
(1 -p7 1 —ﬂ‘f)( _pmy = - BB -
p-1  pr-1 BB —1)
we obtain

(m) ) = 1 ° 1 u’(l_ﬁ_j)(ﬂu_]_
Edrop q( )_ngﬁ] ﬂ”—l(ﬁ—l)

and the claim of the corollary follows. O

Corollary 3.6. Let rq, ..., 1y € Fg[x] be distinct irreducible polynomials such that deg(r;) =1 for each 1 <
i<kletf=ry---1p € IFq [x], m be a positive integer, and u = gcd(l, m). Then Edrop q(f) is given by

mdeg(f) ~1/1- -1 1— -1
B q () =12 P12,
P.q qmdeg(f) lg_] ﬁ”—l

where 8 = q% deg(),

Proof. Assume that p1,..., pr € Fq[x] are distinct irreducible polynomials of degree I and put d =
01 -+ pr € Fg[x]. Then with Theorem 3.3 we obtain

1 _ a1
Eqm(d)_lt—Zl( ﬁ 1ﬂufl ) (330)

where B =g 98" From Eq. (3.29) we obtain
o @ = (@™ -1)",

and thus

1—

~ ﬁ*
(1 B @D _ o efy X lCE — 1)>
oo gl ) - -y ( n
t -1 -1
_ml il (18 18
_(q 1)tz< B—1 ﬂLl_])

i=1

ol ¢ ]_,8_1_1_ﬂ_1
= ()

Consequently, for f as defined in the corollary, using Proposition 3.4 we obtain that

m Ny 1-p7 _1-p"
qmdeg(f)E(ro)p q(f)ZZ(t)(qml_])t( ‘3_‘31 - ﬂUf])

t=1

_ (mlk 1_/371 1_/371
_(q —1)( 51 _/3”—1>' O

Please cite this article in press as: W. Meidl, F. Ozbudak, Linear complexity over Fq and over Fgn for linear recurring
sequences, Finite Fields Appl. (2008), doi:10.1016/j.ffa.2008.09.004




YFFTA:697

14 W. Meidl, E. Ozbudak / Finite Fields and Their Applications eee (esee) see—see

Remark 3.7. Let N be a prime and [ be the order of ¢ modulo N, then the canonical factorization of
N — 1€ Fqlx] is given by

N 1=@x—1rr, c e T(NZ1)/Is

where r1,72,...,7(v—1); are distinct irreducible polynomials of degree . Let S be an N-periodic
sequence, then S e Mé”(f) with f =riry---r(v_1yy if and only if S has the zero sum property,

i.e. the elements of one period of S sum up to zero. Conversely every sequence in S € ./\/l‘(]])(f),
f=rira---rqv—1yy1, is N-periodic. Consequently Corollary 3.6 also gives the expected value for D(S)
for a random N-periodic m-fold multisequence with zero sum property in each component.

(m)

dr()p.q(f) is equal to

Remark 3.8. At a first glance one might think that E
Ee" () — Egn (f)
B¢ (f)

However they are different. For example let ¢ = 2. Using Corollary 3.5 for f = (x* + x -+ 1)? we obtain
that

mp ,(f) = 2% =0.1289062. and
E(2> )—ED
M = 2 =0.1272727....
B (f)

Similarly, using Corollary 3.6 for f = (x> + x+ 1)(x3 + x*> + 1) we obtain that

32319
(3) —
Earop.2(f) = 55154 = 01232872, and
(3) gD
E;"(f) ) 9
2? — =0.1232876....
E; () 3
In the following example we illustrate how to use Proposition 3.4 as a procedure to determine
Eror. o (f)-

Example 3.9. Let g =2, m=6 and f = (x* +x+ 1)2(3 +x+ 1). Note that the closed formulas in
Corollaries 3.5 and 3.6 do not apply for the computation of E mp 5(f) in this case. Let dq = X +x+1,

= +x+1D3 d3=x34+x+1,ds=x+x+ D> +x+1), and ds = (X2 +x + 123 +x+ 1).
Then using (3.29) we obtain that
@9 (dy) = 4095,
@9 (dy) = 16773120,
@9 (ds) = 262143,
@ (dy) = 1073475585,
@9 (ds) = 4396955996160. (3.31)
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Moreover from Theorem 3.3 we get

Eea(dy) = 128/65 = 1.9692307 . ...,

Eea(da) = 127/32 = 3.96875,

Eea(d3) = 4096/1387 = 2.9531362. ..,

Ee4(ds) = 443776/90155 = 4.9223670. ..,

Eea(ds) = 307221/44384 = 6.9218862.. ... (3.32)

Therefore using Proposition 3.4, (3.31) and (3.32) we obtain that

£©)

drop.2 (¥ +x+ 1)% (33 4 x+ 1)) = 245414480283/21990232555520 = 0.0111601 ...
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