
How to determine linear complexity and k-error
linear complexity in some classes of linear

recurring sequences

Wilfried Meidl

Sabancı University, MDBF, Orhanlı, Tuzla, 34956 İstanbul, Turkey
email: wmeidl@sabanciuniv.edu; Tel: +90 216 4839583; Fax: +90 216 4839550

Abstract

Several fast algorithms for the determination of the linear complexity
of d-periodic sequences over a finite field Fq, i.e. sequences with charac-
teristic polynomial f(x) = xd − 1, have been proposed in the literature.
In this contribution fast algorithms for determining the linear complexity
of binary sequences with characteristic polynomial f(x) = (x− 1)d for an
arbitrary positive integer d, and f(x) = (x2 +x+1)2

v

are presented. The
result is then utilized to establish a fast algorithm for determining the k-
error linear complexity of binary sequences with characteristic polynomial
(x2 + x + 1)2

v

.

Keywords Linear complexity, k-error linear complexity, algorithm, linear re-
curring sequences, stream cipher

AMS Classifications 94A55, 94A60, 11B50

1

1 Introduction

A sequence S = s0, s1, s2, . . . with terms in a finite field Fq with q elements is
called a linear recurring sequence over Fq with characteristic polynomial

f(x) =
d∑

i=0

cix
i ∈ Fq[x]

of degree d, if
d∑

i=0

cisn+i = 0 for n = 0, 1,

Without loss of generality we can always assume that f(x) is monic, i.e. cd = 1.
If additionally c0 6= 0 then the recurring sequence is purely periodic. For a
comprehensive disquisition of linear recurring sequences we refer to [11, Chapter
8].

Let S be a linear recurring sequence over Fq, then its minimal polynomial
is defined to be the (uniquely determined) monic polynomial m(x) ∈ Fq[x] of
smallest degree such that m(x) is a characteristic polynomial for S. The degree
of m(x) is called the linear complexity L(S) of the sequence S. In engineering
terms, L(S) is the length of the shortest linear feedback shift register that can
generate S, with the convention that L(S) = 0 if S is the zero sequence. Lin-
ear feedback shift registers are frequently used as building blocks of keystream
generators for stream ciphers. As a consequence, insight in the nature of linear
complexity is valuable in the analysis of the security of stream ciphers.

A linear recurring sequence S with characteristic polynomial f(x) of degree
d is completely determined by f and the first d terms of S. Consequently we can
identify S with the d-tuple (s0, s1, . . . , sd−1). Clearly this first d terms also fix
the minimal polynomial of the sequence S with characteristic polynomial f(x)
of degree d, and thus its linear complexity.
We will follow the notation in [8] and denote the set of all linear recurring
sequences with characteristic polynomial f(x) by M(f).

Extensive research has been carried out on linear recurring sequences with
characteristic polynomial of the form f(x) = xd − 1 (see [4, 7, 14, 15, 16]). In
this case the first d terms exactly correspond with a period of the sequence. For
several types of integers d and finite fields Fq fast algorithms that determine
the linear complexity of a sequence S ∈M(xd − 1) over Fq have been proposed
in the literature ([1, 2, 9, 13, 20, 21]). In this contribution we initiate the
construction of algorithms for the calculation of the linear complexity in the
more general viewpoint of sequences in M(f) for arbitrary monic polynomials
f(x). In Section 2 we present some necessary background and state a simple
generalization of the Games-Chan algorithm [9] for binary sequences in M((x−
1)d) for an arbitrary positive integer d. In Section 3 we establish an algorithm
which determines the linear complexity of binary sequences inM((x2+x+1)2

v

),
v ≥ 1.

2

A related complexity measure is the k-error linear complexity. The k-error
linear complexity of a d-periodic sequence S over Fq (i.e. a linear recurring
sequence with characteristic polynomial f(x) = xd − 1 ∈ Fq[x]) is defined to
be the smallest value to which the linear complexity of S can be reduced by
performing k or fewer term changes in the first period (i.e. among the first d
terms) of S and identical changes in every period thereafter (see [19], and [6]
for the closely related and even earlier defined sphere complexity and weight
complexity of S).

In Section 4 we adapt the concept of the k-error linear complexity to se-
quences in M(f) and present an algorithm to determine the k-error linear com-
plexity (spectrum) of binary sequences in M((x2 + x + 1)2

v

), v ≥ 1.
Algorithms for determining linear complexity and k-error linear complexity

are useful in the analysis of the security of stream ciphers. However it has
to be pointed out that our algorithms, just as the Games-Chan algorithm and
the algorithms in [20, 21], require the knowledge of d terms of the sequence
S ∈ M(f) if deg(f) = d, which limits the applicability of the algorithms in
classical cryptanalysis scenario where an attacker wants to recover the whole
sequence with the knowledge of a limited amount of consecutive terms of the
sequence. (For a short discussion on this disadvantage we can refer to the
introductions of [10, 18]).

2 Preliminaries

Given a sequence S = s0, s1, s2, . . . over Fq we can associate it with its generating
function S(x) = s0 + s1x + s2x

2 + · · · =
∑∞

i=0 six
i. If S is a linear recurring

sequence with characteristic polynomial f(x) of degree d, then there exists a
unique polynomial g(x) of degree at most d− 1 such that

S(x) =
g(x)
f∗(x)

, (1)

where f∗(x) denotes the reciprocal of the characteristic polynomial f(x), i.e.
f∗(x) = xdf(1/x). Moreover equation (1) describes a one to one correspondence
between the set of polynomials of degree less than d and the set M(f) (cf. [11,
Section 8], [17]). The polynomial g(x) corresponding to a sequence S ∈ M(f)
can obviously be calculated from the first d terms of S with equation (1). We
remark that g(x) = s0 + s1x + · · ·+ sd−1x

d−1 if f(x) = xd− 1, i.e. M(f) is the
set of all d-periodic sequences over Fq.
Let S(x) = g(x)/f∗(x) be the generating function of a sequence S ∈ M(f),
then

S(x) =
g(x)
f∗(x)

=
g(x)/ gcd(g(x), f∗(x))
f∗(x)/ gcd(g(x), f∗(x))

:=
h(x)

m∗(x)
,

where m∗(x) is the reciprocal of the minimal polynomial m(x) of the sequence
S. By well known properties of reciprocals, m(x) is a divisor of f(x). The linear
complexity of S is consequently given by (cf. [3, Lemma 8.2.1], [8])

L(S) = deg(f)− deg(gcd(g(x), f∗(x))). (2)

3

For further information on linear recurring sequences we again refer to [11].
In one of the earliest contributions on determining the linear complexity of

sequences with characteristic polynomial of the form xd − 1 Games and Chan
[9] presented an algorithm which efficiently determines the linear complexity of
a binary sequence S with characteristic polynomial f(x) = x2v − 1 = (x− 1)2

v

,
i.e S is 2v-periodic. The algorithm is based on the observation that the linear
complexity L(S) of a binary sequence S = (s0, s1, . . . , s2v−1) of M(x2v − 1)
equals 2v−1 + L(S1), where S1 is the sequence in M(x2v−1 − 1) given by S1 =
(s0 + s2v−1 , s1 + s2v−1+1, . . . , s2v−1−1 + s2v−1), unless S ∈M(x2v−1 − 1). In the
second case S is of course treated as binary 2v−1-periodic sequence, i.e. as binary
sequence with characteristic polynomial x2v−1 − 1. Applying this observation
recursively one obtains the Games-Chan algorithm [9].
With some simple arguments one can generalize the Games-Chan algorithm for
binary sequences in M(x2v −1) to an algorithm for binary sequences in M((x−
1)d) for arbitrary integers d. Suppose that 2v < d < 2v+1, then we certainly
could use the first d bits of a sequence S ∈ M((x− 1)d) and the characteristic
polynomial (x − 1)d to determine 2v+1 − d further bits without changing the
linear complexity. We can then interpret S as a sequence of M((x−1)2

v+1
) and

determine L(S) with the Games-Chan algorithm. But the determination of the
further bits can be omitted:
The sequence S ∈ M((x − 1)d) is in the subset M((x − 1)2

v

) of M((x − 1)d)
if and only if the first d bits are the first bits of a sequence with period 2v. If
this is the case then L(S) is obtained with the Games-Chan algorithm applied
to the first 2v bits of S.
Else by the Games-Chan algorithm L = 2v + L(S1) where S1 is the sequence
in M((x − 1)d−2v

) ⊂ M((x − 1)2
v

) (2v-periodic) with first d1 = d − 2v bits
given by s0 + s2v , s1 + s2v+1, . . . , sd1−1 + s2v+d1−1. We note that S1 ∈M((x−
1)d−2v

) is completely determined by these d1 bits. If d1 is a power of 2 then
one obtains L(S1) directly with the Games-Chan algorithm, else one continues
recursively with the same argument as above. This yields the following obvious
generalization of the Games-Chan algorithm for sequences in M((x− 1)d). We
will use the notation GC(S) for the output L(S) of the Games-Chan algorithm
applied to the 2v-periodic binary sequence S.

Algorithm 0:
Initial values: S = (s0, s1, . . . , sd−1), d, L = 0.
Output: L, the linear complexity of the sequence S ∈M((x− 1)d).
while d ≥ 1 do

v = blog2 dc; d = d− 2v;
if d = 0

L = L + GC(S);
else

A = (s0 + s2v , s1 + s2v+1, . . . , sd−1 + s2v+d−1);
S = (s0, s1, . . . , s2v−1);
if A = (0, 0, . . . , 0)

4

L = L + GC(S);
else

L = L + 2v; S = A;
end if

end if
end while

For another technique for the same purpose that adapts the more general Stamp-
Martin algorithm [19] we refer to [18, Theorem 3.2].

3 Linear complexity for binary sequences inM((x2+
x + 1)2v

)

Let S = s0, s1, s2 . . . be a binary sequence in M((x2 + x + 1)2
v

), then with (1)
and the observation that f∗(x) = f(x) for f(x) = (x2 + x + 1)2

v

we obtain that
S(x) = g(x)/(x2 + x + 1)2

v

for a unique polynomial g(x) ∈ F2[x] of degree at
most 2v+1− 1. With equation (2) the linear complexity L(S) of S is then given
by

L(S) = 2v+1 − deg(gcd(g(x), (x2 + x + 1)2
v

)).

Since x2 + x + 1 is irreducible over F2 the linear complexity is determined by
the largest power of x2 + x + 1 by which g(x) can be divided. We note that
L(S) = 2j for an integer 0 ≤ j ≤ 2v.
We start with the description of the algorithm for determining the linear com-
plexity of a sequence S ∈ M((x2 + x + 1)2

v

), and prove its correctness after
giving an example.

Suppose that S = (s0, s1, . . . , s2v+1−1) ∈M((x2 + x + 1)2
v

), then the linear
complexity of S can be evaluated with the following procedure. With the same
arguments as for the Games-Chan algorithm it is seen that also this procedure
evaluates the linear complexity in linear time.

Algorithm 1:
Initial values: S = (s0, s1, . . . , s2v+1−1), l = 2v+1, L = 0.
Output: L, the linear complexity of the sequence S ∈M((x2 + x + 1)2

v

).
while l > 2 do

A = (sl/2, sl/2+1, . . . , sl−1);
B = (s0 + sl/4 + sl/2, s1 + s1+l/4 + s1+l/2, . . . , sl/2−1 + s3l/4−1 + sl−1);

if B = (0, 0, . . . , 0)
S = A; l = l/2;

else
S = B; l = l/2; L = L + l;

end if
end while
if S 6= (0, 0)

L = L + l;

5

end if

Example 1 S = (1000110000100011), l = 16, L = 0.
According to the algorithm the string B is determined by adding componentwise
modulo 2 the first half of the period, the centre part, and the second half of
the period (i.e. string A). The initial string for the next step is either A or B
depending whether B is the zero string or not.

Step 1:
1 0 0 0 1 1 0 0
1 1 0 0 0 0 1 0

A : 0 0 1 0 0 0 1 1
B : 0 1 1 0 1 1 0 1

S = B, l = 8, L = 8

Step 2:
0 1 1 0
1 0 1 1

A : 1 1 0 1
B : 0 0 0 0
S = A, l = 4, L = 8

Step 3:
1 1
1 0

A : 0 1
B : 0 0
S = A, l = 2
L = 8

Final Step: S = (01) 6= (00), consequently L = 8 + 2 = 10.

For proving the correctness of the algorithm we need some lemmas.

Lemma 1 Let S = (s0, s1, . . . , s2v+1−1) be a sequence in M((x2 + x + 1)2
v

),
then the polynomial g(x) =

∑2v+1−1
i=0 aix

i with S(x) = g(x)/(x2 + x + 1)2
v

is
determined by

ai =
{

si : 0 ≤ i ≤ 2v − 1
si + si−2v : 2v ≤ i ≤ 2v+1 − 1 . (3)

Proof. Clearly the coefficients of g(x) coincide with the first 2v+1 coefficients of
(x2 + x + 1)2

v

S(x). Using (x2 + x + 1)2
v

= x2v+1
+ x2v

+ 1 the lemma follows.
2

Lemma 2 Let g(x) =
∑2v+1−1

i=0 aix
i ∈ F2[x] be a polynomial of degree at most

2v+1 − 1 for an integer v ≥ 1, let q(x) =
∑2v−1

i=0 qix
i be the quotient and r(x) =∑2v−1

i=0 rix
i be the remainder of g(x) at division by (x2 + x + 1)2

v−1
, i.e. g(x) =

q(x)(x2 + x + 1)2
v−1

+ r(x). Then

qi =
{

ai+2v + ai+3·2v−1 : 0 ≤ i ≤ 2v−1 − 1
ai+2v : 2v−1 ≤ i ≤ 2v − 1 ,

ri =
{

ai + ai+2v + ai+3·2v−1 : 0 ≤ i ≤ 2v−1 − 1
ai + ai+2v−1 : 2v−1 ≤ i ≤ 2v − 1 . (4)

Proof. The proof easily follows by comparing the coefficients ai of xi in g(x)
with the coefficients of xi in q(x)(x2 + x + 1)2

v−1
+ r(x), where one has to

distinguish between the cases 0 ≤ i < 2v−1, 2v−1 ≤ i < 2v, 2v ≤ i < 3 · 2v−1

and 3 · 2v−1 ≤ i < 2v+1. 2

6

Remark 1 Let S ∈M((x2 + x + 1)2
v

) and let g(x) be the polynomial of degree
less than 2v+1 for which we have S(x) = g(x)/(x2 + x + 1)2

v

. Then with (3)
and (4) we obtain

ri =
{

si+2v−1 + si+2v + si+3·2v−1 : 0 ≤ i ≤ 2v−1 − 1
si−2v−1 + si + si+2v−1 : 2v−1 ≤ i ≤ 2v − 1 (5)

for the remainder r(x) defined in Lemma 2. As easily seen, in the important
case that r(x) = 0 the quotient q(x) defined as in Lemma 2 is determined by

qi =
{

si+3·2v−1 : 0 ≤ i ≤ 2v−1 − 1
si+2v−1 : 2v−1 ≤ i ≤ 2v − 1 .

Before we show the correctness of Algorithm 1 we outline a general procedure
based on (2) to obtain the linear complexity of a binary sequence S ∈ M(f2v

)
if f(x) is an irreducible polynomial of degree d in F2[x].
Let g(x) be the unique polynomial of degree at most d2v − 1 with S(x) =
g(x)/f∗(x)2

v

, and suppose that

g(x) = q(x)f∗(x)2
v−1

+ r(x), deg(r) < d2v−1.

Clearly if r(x) = 0, then

S(x) = q(x)/f∗(x)2
v−1

,

and consequently S ∈M(f2v−1
).

If r(x) 6= 0 then

gcd(g(x), f∗(x)2
v

) = gcd(r(x), f∗(x)2
v−1

),

and thus with equation (2) we obtain L(S) = d2v−1 + L(S1) with S1(x) =
r(x)/f∗(x)2

v−1
. This yields a procedure in v steps (plus a final step) for the

evaluation of L(S). Putting g(x) = r0(x), step m, 1 ≤ m ≤ v, is performed as
follows:
Determine qm(x), rm(x) with rm−1(x) = qm(x)f∗(x)2

v−m

+ rm(x), deg(rm) <
d2v−m.
If rm(x) = 0 then L(Sm−1) = L(Sm) with Sm(x) = qm(x)/f∗(x)2

v−m

. Put
rm = qm.
Else L(Sm−1) = d2v−m + L(Sm) with Sm(x) = rm(x)/f∗(x)2

v−m

.

Theorem 1 Algorithm 1 is correct.

Proof. We show that Algorithm 1 accomplishes the above described procedure
for f(x) = x2 + x + 1.
Clearly, Algorithm 1 operates in v steps plus the final step. We fix the following
notation: Am(S) and Bm(S) shall be the strings A and B, respectively, in step
m of Algorithm 1. Evidently each of these strings has length 2v+1−m. The

7

polynomial rm(x) shall be defined as above, its coefficients shall be denoted by
r
(m)
i , i.e.

rm(x) = r
(m)
0 + r

(m)
1 x + · · ·+ r

(m)
2v+1−m−1x

2v+1−m−1.

As above Sm denotes the sequence with generating function Sm(x) = rm/(x2 +
x + 1)2

v−m

, its terms shall be denoted by s
(m)
i .

Let S = (s0, s1, . . . , s2v+1−1). By equation (5) the string B1(S) calculated as
described in Algorithm 1 exactly contains the coefficients of r1(x), namely

B1(S) = (r(1)
2v−1 , . . . , r

(1)
2v−1, r

(1)
0 , . . . , r

(1)
2v−1−1). (6)

Consequently if B1(S) 6= (0, 0, . . . , 0) := 0, then L(S) = 2v + L(S1).
In the next step instead of using the initial terms of the sequence S1 as input
for the calculation of B2(S) we directly use the string (6). We claim that then

B2(S) = (s(2)
0 , s

(2)
1 , . . . , s

(2)
2v−1−1).

This claim will be shown (for general m) below at the end of the proof. Clearly
again B2(S) 6= 0 implies r2(x) 6= 0. As required, Algorithm 1 then increases
the value L by 2v−1. The string B3(S) for the next step is then calculated with
the terms of the sequence S2, hence B3(S) exactly contains the coefficients of
the next remainder r3(x). Certainly the same argument works at any step m of
Algorithm 1.
Now we consider the case that in a step m, 1 ≤ m ≤ v, we have Bm(S) = 0.
Then rm(x) = 0 and Sm−1 = Sm ∈M((x2+x+1)2

v−m

). We have to distinguish
two cases.
If we obtained Bm(S) from the coefficients of rm−1(x) then
Am(S) = (r(m−1)

0 , r
(m−1)
1 , . . . , r

(m−1)
2v+1−m−1) which by (3) coincides with the string

(s(m−1)
0 , s

(m−1)
1 , . . . , s

(m−1)
2v+1−m−1) of the first 2v+1−m terms of the sequence Sm =

Sm−1. Since Sm ∈ M((x2 + x + 1)2
v−m

), we arrive at an initial situation for
Algorithm 1, where the first terms of the sequence whose linear complexity has
to be determined are the input for the algorithm.
If we obtained Bm(S) directly from the terms of the sequence, then Am(S) =
(s(m−1)

2v+1−m , s
(m−1)
2v+1−m+1, . . . , s

(m−1)
2v+2−m−1). Taking the string Am(S) as starting val-

ues we obtain a shifted version of Sm−1 = Sm ∈ M((x2 + x + 1)2
v−m

), which
of course has the same linear complexity. Consequently we again arrive at an
initial situation for Algorithm 1 to determine L(Sm).

It remains to prove the correctness of the claim stated above.
Suppose at step m we obtained , Bm(S) = (r(m)

2v−m , . . . , r
(m)
2v+1−m−1, r

(m)
0 , . . . , r

(m)
2v−m−1) 6=

0. If we denote the ith term of the string Bm+1(S) by bi, 0 ≤ i ≤ 2v−m − 1,
then

bi =

{
r
(m)
i + r

(m)
i+2v−m + r

(m)
i+3·2v−m−1 : 0 ≤ i ≤ 2v−m−1 − 1

r
(m)
i + r

(m)
i−2v−m−1 + r

(m)
i+2v−m : 2v−m−1 ≤ i ≤ 2v−m − 1

.

8

We have to show that bi = s
(m+1)
i , 0 ≤ i ≤ 2v−m−1. Since s

(m+1)
i are the terms

of the sequence with the generating function Sm+1 = rm+1(x)/(x2+x+1)2
v−m−1

we first determine the coefficients of rm+1(x) from the coefficients of rm(x). By
equation (5) we obtain

r
(m+1)
i =

{
r
(m)
i + r

(m)
i+2v−m−1 + r

(m)
i+3·2v−m−2 : 0 ≤ i ≤ 2v−m−2 − 1

r
(m)
i + r

(m)
i+2v−m−2 : 2v−m−2 ≤ i ≤ 2v−m−1 − 1

.

Since by (3) we have s
(m+1)
i = r

(m+1)
i for 0 ≤ i ≤ 2v−m−2 − 1, and s

(m+1)
i =

r
(m+1)
i + r

(m+1)
i−2v−m−2 for 2v−m−2 ≤ i ≤ 2v−m−1− 1 we see that bi = s

(m+1)
i holds

for 0 ≤ i ≤ 2v−m − 1. 2

We remark that similar algorithms can be established for binary sequences in
M(f2v

) for other irreducible polynomials f(x) ∈ F2[x] based on the procedure
described before the proof of Theorem 1. One of the reasons of the particular
simplicity and beauty of Algorithm 1 where f(x) = x2 + x + 1 is the fact
that we can use the initial terms of the sequence as input, and arrive at the
linear complexity with recursively repeating the initial step without the necessity
of transforming sequence terms into coefficients of corresponding polynomials.
This simple structure of Algorithm 1 allows further analysis. In the next section
we make use of this simple structure and present an algorithm for the calculation
of the k-error linear complexity of binary sequences in M((x2 + x + 1)2

v

).

4 k-error linear complexity for binary sequences
in M((x2 + x + 1)2v

)

First we have to give an interpretation for the k-error linear complexity of a
sequence S ∈ M(f) for an arbitrary characteristic polynomial f(x) ∈ F2[x]:
The k-error linear complexity of S is the smallest linear complexity of a sequence
T in M(f) we can obtain by changing at most k terms in the initial string of
S. This definition precisely coincides with the definition of the k-error linear
complexity of the finite initial string z of S in the set M(f) given in the article
[18].
We recall that M(f), deg(f) = d, is a d-dimensional vector space (see [11,
Chapter 8]) whose elements can naturally be identified with strings of length
d. For each divisor f1(x) of f(x), M(f1) is a subspace of M(f) of dimension
d1 = deg(f1). Hence we can interpret the k-error linear complexity of a sequence
S ∈ M(f) as the lowest dimension of a subspace of M(f) that contains a
sequence T such that the initial strings of S and T have Hamming distance at
most k.

The basic idea for the algorithm to determine the k-error linear complexity
of sequences in M((x2 + x + 1)2

v

) is as follows: Since Bm(S) = 0 in the mth
step of Algorithm 1 prevents 2v+1−m of being added to the value for the linear
complexity and the total of all remaining possible additions is only 2v+1−m, we
have to convert Bm(S) to the zero string if we can. This has to be made by

9

appropriate bit changes in the original string without that results of previous
steps are destroyed, and the total number of bit changes in the original string
must not exceed k. For this purpose we observe that the sets of bits of Bm−1

(Am−1) from which we calculate bi and bi+2v−m of the string Bm(S) are not
distinct. One bit-change in Bm−1 (Am−1) may convert both bits, bi and bi+2v−m .
Consequently we consider the pair of bits bi and bi+2v−m of Bm(S) (Am(S)),
and assign two 2-tuples (µ, δ) and (ν, δ) to bi and bi+2v−m . We indicate this
with the notation

(bi)(µ,δ) (bi+2v−m)(ν,δ).

The parameter µ is defined to be the minimal number of bit changes in the
original string required in order to change bi but not bi+2v−m , without adversely
affecting any intermediate results. The parameter ν is defined to be the minimal
number of bit changes in the original string required in order to change bi+2v−m

but not bi, without adversely affecting any intermediate results, and δ is the
minimal number of bit changes in the original string required in order to change
both bits, bi and bi+2v−m , without adversely affecting any intermediate results.
Clearly by this definition we have to assign (1, 2) to each bit in the initial string,
the string containing the first 2v+1 bits of S.
It is evident how to use the cost-tuples to determine the total ”costs” for con-
verting the complete string Bm(S) into the zero string. The crucial question is
how to determine the cost-tuples in Bm(S) and if necessary in Am(S) from the
cost-tuples in step m− 1.

From Algorithm 1 we can see that the pair bi, bi+2v−m of bits in Bm(S) is
determined from four bits from the previous step m− 1. For simplicity we call
these bits β1, β2, β3 and β4 and we let bi, bi+2v−m be calculated by

(β1)(µ1,δ1) (β2)(µ2,δ2)

(β2)(µ2,δ2) (β3)(ν1,δ1)

(β3)(ν1,δ1) (β4)(ν2,δ2)

bi bi+2v−m .

(7)

We remark that the bits β1, β3 (β2, β4) from step m − 1 are not independent.
Accordingly, these bits share the second component δ1 (δ2) in their cost-tuples.
If for instance β1 shall be changed but not β3, then µ1 describes the costs, but
if β1 and β3 shall both be changed, then the costs are given by δ1 (compare the
second and the fourth table in Case 00 given below).
From the following illustrations we can see the ”costs” for all possible cases,
case 00 where both bits bi, bi+2v−m are not changed, case 01 where bi is not
changed but bi+2v−m , i.e 1 is added to bi+2v−m modulo 2, case 10 where bi is
changed but not bi+2v−m , and case 11 where the tuple (11) is added modulo 2 to
(bibi+2v−m) component wise, i.e. both bits are changed. In the following tables
0 shall stand for ”keeping” the value of the bit in the respective position in (7),
and 1 means that the bit in the respective position in (7) is changed, i.e. 1 is
added modulo 2 to the bit. In the case of a change we indicate the cost of the
change with a subscript. For instance the second table of Case 00 describes the
following situation: Firstly the bit β1 in (7) is changed but β3 is not changed,

10

for which the ”costs” are given by µ1 by definition. Secondly both bits, β2 and
β4 in (7) are changed, which by definition costs δ2. The sums of bits determined
according to Algorithm 1 are then unchanged (Case 00).

Case 00: (bibi+2v−m) → (bibi+2v−m)

0 0
0 0
0 0
0 0

1µ1 1δ2

1δ2 0
0 1δ2

0 0

0 1µ2

1µ2 1ν1

1ν1 0
0 0

1δ1 0
0 1δ1

1δ1 1ν2

0 0

Case 01: (bibi+2v−m) → (bibi+2v−m) + (01)

1µ1 1µ2

1µ2 0
0 0
0 1

0 0
0 0
0 1ν2

0 1

1δ1 0
0 1δ1

1δ1 0
0 1

0 1δ2

1δ2 1ν1

1ν1 1δ2

0 1

Case 10: (bibi+2v−m) → (bibi+2v−m) + (10)

1µ1 0
0 0
0 0
1 0

0 1δ2

1δ2 0
0 1δ2

1 0

1δ1 1µ2

1µ2 1δ1

1δ1 0
1 0

0 0
0 1ν1

1ν1 1ν2

1 0

Case 11: (bibi+2v−m) → (bibi+2v−m) + (11):

0 1µ2

1µ2 0
0 0
1 1

1µ1 0
0 0
0 1ν2

1 1

0 0
0 1ν1

1ν1 0
1 1

1δ1 1δ2

1δ2 1δ1

1δ1 1δ2

1 1

We point out that in each case there are exactly four possibilities of changing
(bibi+2v−m), one case which leaves the bits in the last of the three rows un-
changed, one case each for changing exactly one of these two bits and one case
in which both of these bits are changed. This is of importance since these bits
precisely form the bit pairs in the string Am(S). We choose the letters K and C
to indicate keeping and changing bits in the third row, and refer to the possible
cases with the notation KK, KC, CK and CC.
The cost for each of the cases can easily be seen from the illustrations above. For
instance the third table in case 10 says that the ”costs” for changing (bibi+2v−m)
into (bibi+2v−m) + (10) such that additionally the first bit in the third row is
changed and the second one is unchanged (case CK) is given by µ2 +δ1. For this
value we will use the notation cost(CK). (Strictly speaking one should write
cost(CK)(10) for cost(CK) in the case 10, but we will omit this distinction since
it will not be necessary at describing the algorithm.)
We will mostly be interested into converting (bibi+2v−m) into (00). If for in-
stance (bibi+2v−m) = (01) we evidently have to choose one of the options in case

11

01. The minimal costs for changing (bibi+2v−m) into (00) will be denoted by
cost[i]. The following table summarizes these ”costs” for all 16 possible cases.

KK KC CK CC cost[i]
00 0 µ1 + δ2 µ2 + ν1 ν2 + δ1 0
01 µ1 + µ2 ν2 δ1 ν1 + δ2 min(µ1 + µ2, ν2, δ1, ν1 + δ2)
10 µ1 δ2 µ2 + δ1 ν1 + ν2 min(µ1, δ2, µ2 + δ1, ν1 + ν2)
11 µ2 µ1 + ν2 ν1 δ1 + δ2 min(µ2, µ1 + ν2, ν1, δ1 + δ2)

By convention at calculating the minimum we take the first number in the list,
if two or more are equal.
Obviously the total costs for converting the complete string Bm(S) into the
zero string are then given by cost =

∑2v−m−1
i=0 cost[i]. If cost does not exceed

the number of allowed bit changes in step m, then Bm(S) is converted into the
zero string and according to Algorithm 1 we use Am(S) as input for the next
step. We note that some bits of Am(S) have been changed in order to produce
Bm(S) = 0.

We have the necessity of assigning appropriate cost-tuples (µ, δ), (ν, δ) to
each bit pair aiai+2v−m , 0 ≤ i ≤ 2v−m − 1, in Am(S).
Let us consider the case that cost[i] = cost(KC), and thus we used option KC
for converting (bibi+2v−m) into (00). If we now want to alter bit ai and keep bit
ai+2v−m we have to change our strategy and use option CC to convert (bibi+2v−m)
into (00). The cost µ for changing ai and keeping ai+2v−m in the next step is
thus given by cost(CC) − cost[i]. Similarly we obtain ν = cost(KK) − cost[i],
δ = cost(CK)−cost[i] in the case that cost[i] = cost(KC). The parameters µ, ν, δ
for the other cases, i.e. the cases cost[i] = cost(KK), cost[i] = cost(CK) and
cost[i] = cost(CC), are obtained analogously and are collected in the following
table.

cost[i] µ ν δ
cost(KK) cost(CK)− cost[i] cost(KC)− cost[i] cost(CC)− cost[i]
cost(KC) cost(CC)− cost[i] cost(KK)− cost[i] cost(CK)− cost[i]
cost(CK) cost(KK)− cost[i] cost(CC)− cost[i] cost(KC)− cost[i]
cost(CC) cost(KC)− cost[i] cost(CK)− cost[i] cost(KK)− cost[i]

Combining the two tables above yields the subsequent procedure for the
determination of pairs of bits of the (adapted) string Am(S) and their cost-
tuples (µ, δ), (ν, δ).

Procedure A(µ1, ν1, δ1, µ2, ν2, δ2, β3, β4, bi, bi+l/2)
Input: bits β3, β4, bi, bi+l/2, cost-integers µ1, ν1, δ1, µ2, ν2, δ2.
Output: ai, ai+l/2, a pair of bits in an (adapted) string A(S), the corresponding
costs (µ, ν, δ) := (µ, ν, δ)iA

.

if bibi+l/2 = 00
cost(KK) = 0; cost(KC) = µ1 + δ2; cost(CK) = µ2 + ν1; cost(CC) = ν2 + δ1;

else
if bibi+l/2 = 01

12

cost(KK) = µ1 + µ2; cost(KC) = ν2; cost(CK) = δ1; cost(CC) = ν1 + δ2;
else

if bibi+l/2 = 10
cost(KK) = µ1; cost(KC) = δ2; cost(CK) = µ2 + δ1;
cost(CC) = ν1 + ν2;

else
cost(KK) = µ2; cost(KC) = µ1 + ν2; cost(CK) = ν1;
cost(CC) = δ1 + δ2;

end if
end if

end if
cost[i] = min(cost(KK), cost(KC), cost(CK), cost(CC));
if cost[i] = cost(KK)

µ = cost(CK)− cost[i]; ν = cost(KC)− cost[i]; δ = cost(CC)− cost[i];
ai = β3; ai+l/2 = β4;

else
if cost[i] = cost(KC)

µ = cost(CC)− cost[i]; ν = cost(KK)− cost[i]; δ = cost(CK)− cost[i];
ai = β3; ai+l/2 = β4 + 1 mod 2;

else
if cost[i] = cost(CK)

µ = cost(KK)− cost[i]; ν = cost(CC)− cost[i]; δ = cost(KC)− cost[i];
ai = β3 + 1 mod 2; ai+l/2 = β4;

else
µ = cost(KC)− cost[i]; ν = cost(CK)− cost[i]; δ = cost(KK)− cost[i];
ai = β3 + 1 mod 2; ai+l/2 = β4 + 1 mod 2;

end if
end if

end if

If cost exceeds the number of allowed bit changes in step m, then we cannot
convert Bm(S) into the zero string and according to Algorithm 1 we use Bm(S)
as input for the next step. Thus we have to assign appropriate cost-tuples
(µ, δ), (ν, δ) to each bit pair bibi+2v−m , 0 ≤ i ≤ 2v−m − 1, in Bm(S). The
costs µ for changing bi but not bi+2v−m are obtained from the tables in case
10. Thus µ = min(µ1, δ2, µ2 + δ1, ν1 + ν2), and similarly we see that ν =
min(µ1 + µ2, ν2, δ1, ν1 + δ2) and δ = min(µ2, µ1 + ν2, ν1, δ1 + δ2). With these
considerations we obtain the following algorithm to determine the k-error linear
complexity of binary sequences S in M((x2 + x + 1)2

v

).

Algorithm 2:
Initial values: S = (s0, s1, . . . , s2v+1−1), l = 2v+1, L = 0, k, and (µ, ν, δ)i =
(1, 1, 2) for i = 0, 1, . . . , l − 1.
Output: L, the k-error linear complexity of the sequence S ∈M((x2+x+1)2

v

).
while l > 2 do

13

ai = sl/2+i, bi = si + sl/4+i + sl/2+i for i = 0, 1, . . . , l/2− 1;
B = (b0, b1, . . . , bl/2−1);
for i = 0, 1 . . . , l/2− 1 do

(µ1, ν1, δ1) = (µ, ν, δ)i; (µ2, ν2, δ2) = (µ, ν, δ)i+l/2;
µB = min(µ1, δ2, µ2 + δ1, ν1 + ν2); νB = min(µ1 + µ2, ν2, δ1, ν1 + δ2);
δB = min(µ2, µ1 + ν2, ν1, δ1 + δ2); (µ, ν, δ)iB

= (µB , νB , δB);

cost[i] =


0 : (bibi+l/2) = (00)

νB : (bibi+l/2) = (01)
µB : (bibi+l/2) = (10)
δB : (bibi+l/2) = (11)

;

T =
∑l/2−1

i=0 cost[i];
if T ≥ k

L = L + l/2; l = l/2; S = B;
(µ, ν, δ)i = (µ, ν, δ)iB

, for i = 0, 1, . . . , l − 1;
else

for i = 0, 1 . . . , l/2− 1 do
(µ1, ν1, δ1) = (µ, ν, δ)i; (µ2, ν2, δ2) = (µ, ν, δ)i+l/2;
β3 = ai; β4 = ai+l/4;
Procedure A(µ1, ν1, δ1, µ2, ν2, δ2, β3, β4, bi, bi+l/2);

k = k − T ; l = l/2; S = (a0, a1, . . . , al−1);
(µ, ν, δ)i = (µ, ν, δ)iA

, for i = 0, 1, . . . , l − 1;
end while
if S = (01) and ν > k or S = (10) and µ > k or S = (11) and δ > k

L = L + l;
end if

Next we analyse the time complexity of Algorithm 2:
The expensive parts in Algorithm 2 are the calculation of T , the calculation
of the integers giving the ”costs”, and Procedure A. We first remark that at
each step of the algorithm the values in the cost tuples can at most double.
Consequently in the step of Algorithm 2 when l takes the value 2v+1−m (step
m) every integer in the cost tuples has bit length at most m + 2. Hence in step
m the calculation of T requires at most (m + 2)2v−m bit operations.
For each i = 0, 1, . . . , l/2 − 1 = 2v−m − 1 (step m) in the first ”for” loop in
Algorithm 2, the calculation of the cost integers µB , νB , δB is accomplished by
a constant number of additions and comparisons of (m+2)-bit integers (step m),
and thus c1(m+2)2v−m bit operations for a constant c1. In the mth step of the
algorithm, Procedure A is performed (if at all) l/2 = 2v−m times. Procedure A
consists of a constant number of operations with (m+2)-bit integers, which again
gives c2(m + 2)2v−m bit operations for a constant c2. Using this observations
and the fact that for constants c, b we have

c
v∑

m=0

(m + b)2v−m = Kc,b2v+1 + λ(v),

where Kc,b is a constant only depending on c, b, and λ is a linear polynomial in

14

v, we see that Algorithm 2 is a linear time algorithm.
In [10], Lauder and Paterson show how to transform the algorithm in [19]

that determines the k-error linear complexity of a sequence S ∈ M(x2v − 1)
for a fixed value of k, into an efficient algorithm that determines the k-error
linear complexity for all values of k simultaneously. We can adapt Algorithm 2
similarly to an algorithm determining the k-error linear complexity for all values
of k simultaneously. Here we follow precisely the approach in [10], thus we may
refer to [10] for details and only present an example for Algorithm 2, respectively
its adaption to an algorithm for determining the k-error linear complexity for
all k simultaneously.

We first recall some definitions and notations from [10]. The k-error linear
complexity spectrum ELCS(S) of a binary sequence S is the ordered list of the
k-error linear complexities of S, i.e. L0(S) = L(S), L1(S), . . . , Lwt(S)(S) = 0
where wt(S) denotes the number of nonzero elements in the initial string of S.
Clearly ELCS(S) is given by all points (k, Lk(S)) for which we have Lk′(S) >
Lk(S) for all k′ < k. We call these points critical points (CP), include (0, L(S)),
and call the list of these points the critical error linear complexity spectrum
CELCS(S). In the example below we determine the CELCS(S) of a given
sequence S ∈M((x2 + x + 1)2

v

). The procedure explores parts of a binary tree
since in every step of Algorithm 2 the following step is either performed with
the sequence corresponding to the string A or with the sequence corresponding
to the string B. At each depth of the tree - following the notation in [10] -,
the parameter tsf in CELCS(S, tsf, lim, L) refers to the total costs of changes
made to the sequence so far, and the variable lim marks a limit to the total
costs of changes one should consider when searching the corresponding part of
the tree. The last variable L is the current value for L (which at the end of the
algorithm gives the linear complexity) at that part of the binary tree. In the
example below, T denotes the costs for converting B into the zero string.

Example 2 S = (0110110011100011).

0(1,2) 1(1,2) 1(1,2) 0(1,2) 1(1,2) 1(1,2) 0(1,2) 0(1,2)

1(1,2) 1(1,2) 0(1,2) 0(1,2) 1(1,2) 1(1,2) 1(1,2) 0(1,2)

1(1,2) 1(1,2) 1(1,2) 0(1,2) 0(1,2) 0(1,2) 1(1,2) 1(1,2)

B : 0(1,1) 1(1,1) 0(1,1) 0(1,1) 0(1,1) 0(1,1) 0(1,1) 1(1,1)

A : 1(2,3) 1(2,1) 1(2,3) 0(2,1) 0(3,3) 0(1,1) 1(3,3) 0(1,1)

T : 2

CELCS(B, 0, 1, 8)
0(1,1) 1(1,1) 0(1,1) 0(1,1)

0(1,1) 0(1,1) 0(1,1) 0(1,1)

0(1,1) 0(1,1) 0(1,1) 1(1,1)

B : 0(1,1) 1(1,1) 0(1,1) 0(1,1)

A : 0(2,2) 1(1,2) 0(2,2) 0(2,2)

T : 1

CELCS(A, 2, 16, 0)
1(2,3) 1(2,1) 1(2,3 0(2,1)

1(2,3) 0(2,1) 0(3,3) 0(1,1)

0(3,3) 0(1,1) 1(3,3) 0(1,1)

B : 0(2,2) 1(1,1) 0(3,2) 0(1,1)

A : 0(5,6) 0(1,2) 1(5,6) 1(1,2)

T : 1

15

CELCS(B, 0, 0, 12)
0(1,1) 1(1,1)

1(1,1) 0(1,1)

0(1,1) 1(1,1)

B : 1(1,1) 0(1,1)

A : 0(2,1) 1(1,1)

T : 1

CELCS(A, 1, 1, 8)
0(2,2) 0(1,2)

0(1,2) 0(2,2)

0(2,2) 1(2,2)

B : 0(2,1) 1(2,1)

A : 0(2,0) 0(1,0)

T : 2

CELCS(B, 2, 2, 4)
0(2,2) 1(1,1)

1(1,1) 0(3,2)

0(3,2) 0(1,1)

B : 1(1,1) 1(1,1)

A : 0(3,2) 0(2,2)

T : 1

CELCS(A, 3, 16, 0)
0(5,6) 0(1,2)

0(1,2) 1(5,6)

1(5,6) 1(1,2)

B : 1(2,1) 0(1,1)

A : 1(4,5) 0(3,5)

T : 2

CELCS(B, 0, 0, 14)
S : 1(1,1)0(1,1)

CP : (0, 16)

CELCS(B, 1, 1, 10)
S : 0(2,1)1(2,1)

CP : (1, 12)

CELCS(B, 2, 2, 6)
S : 1(1,1)1(1,1)

CP : (2, 8)

CELCS(B, 3, 4, 2)
S : 1(2,1)1(1,1)

CP : (3, 4)

CELCS(A, 5, 16, 0)
S : 1(4,5)0(3,5)

CP : (5, 2), (9, 0)

Observe that in this example in the last step only at one position of the tree
(the rightmost) both is possible, continuing with the string B = 1(2,1)0(1,1) and
continuing with the string A = 1(4,5)0(3,5).

Remark 2 In [10] the authors considered the more general concept of costed
binary sequences, where any nonnegative real numbers are allowed as costs for
changing a bit in the initial string of S. We emphasize that Algorithm 2 can
also be applied to arbitrarily costed binary sequences.

Similarly as pointed out in [10] for the case of sequences in M(x2v − 1) one
can define a binary code C(v, u) to be the (2v−u+1− 2)-dimensional subspace of
M((x2 + x + 1)2

v

) containing all sequences of M((x2 + x + 1)2
v−u−1) (or more

generally C̄(v, w) = M((x2 + x + 1)w) for a positive integer w ≤ v).
The distance of a received sequence S (which we can identify with a binary
vector of length 2v+1) to the closest codeword is then the minimal value of k
for which Lk(S) ≤ 2v−u+1 − 2. Evidently one obtains k from CELCS(S).
For instance if we consider the code C(3, 1) and receive the word 0110110011100011,
then from Example 2 we see that the smallest k such that Lk(S) ≤ 6 is given
by the critical point (k, Lk(S)) = (3, 4). Therefore at least 3 transmission errors
occurred.
Without going into the details of decoding we remark that a decoding algorithm
can be established similarly as for the code considered in [10]. For an efficient
decoding algorithm for the code in [10] we refer the reader to [18, Algorithm
5.1].
Unique decoding depends of course on the minimum distance of the code C(v, u).
The above considered code C(3, 1) has minimum distance 4 and thus is a [16, 6, 4]
binary code, having a somewhat smaller information rate than the comparable
[16, 7, 4] binary code obtained in [10]. In general the calculation of the mini-
mum distance for C(v, u) does not seem to be a straight forward adaption of
the procedure in [12] giving the minimum distance of the [2n, 2n−u+1 − 1, 2u]
subcodes of the Reed-Miller code obtained in [10].

16

5 Conclusions

A lot of research has been performed on the linear complexity of d-periodic
sequences over a finite field Fq. Recently, in [8] a more general framework has
been provided. Instead of the set of d-periodic sequences over Fq, the set M(f)
of sequences over Fq with a fixed characteristic polynomial f ∈ Fq[x] has been
considered. In this context the set of d-periodic sequences is precisely the set
M(f) with f(x) = xd − 1.
In this contribution we initiate the development of algorithms for the determi-
nation of the linear complexity of a given sequence in M(f) and f(x) is not of
the form xd−1. We present algorithms for binary sequences with characteristic
polynomial f(x) = (x−1)d and f(x) = (x2 +x+1)2

v

. Moreover a basic concept
for establishing algorithms for binary sequences in M(f2v

), with f(x) ∈ F2[x]
irreducible is outlined.
The particular simplicity of the algorithm for f(x) = (x2 + x + 1)2

v

enables
us to advance the algorithm to an algorithm for calculating the k-error linear
complexity (spectrum). On the basis of the discussions in [10] we point to a
possible application of this algorithm in coding theory.

The generalization of the Games-Chan algorithm to sequences over arbitrary
finite fields presented in [5], suggests the possibility of a generalization of our
considerations for binary sequences to sequences over arbitrary finite fields. In
general, the new approach of considering the set of sequences M(f) with a
given characteristic polynomial f(x) may lead to a large variety of algorithms
for analysing the linear complexity of sequences over a finite field Fq.

Acknowledgement

The author would like to thank the anonymous referee for suggestions that
helped to improve the paper.

References

[1] Chen, H.: Fast algorithms for determining the linear complexity of sequences
over GF (pm) with period 2tn. IEEE Trans. Inform. Theory 51, 1854–1856
(2005)

[2] Chen, H.: Reducing the computation of linear complexities of periodic se-
quences over GF (pm). IEEE Trans. Inform. Theory 52, 5537–5539 (2006)

[3] Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory.
North-Holland Publishing Co., Amsterdam, The Netherlands (1998)

[4] Dai, Z.D., Yang, J.H.: Linear complexity of periodically repeated random
sequences. In: Advances in Cryptology - EUROCRYPT’91, (Davies, D.W.,
Ed.). Berlin: Springer-Verlag, 1991, Lecture Notes in Computer Science 547,
168–175 (1991)

17

[5] Ding, C.: A fast algorithm for the determination of linear complexity of
sequences over GF (pm) with period pn. In: The Stability Theory of Stream
Ciphers. Berlin: Springer-Verlag 1991, Lecture Notes in Computer Science
561, 141–144 (1991)

[6] Ding C., Xiao, G., Shan, W.: The Stability Theory of Stream Ciphers.
Lecture Notes in Computer Science 561. Springer-Verlag, Berlin, Germany
(1991)

[7] Fu, F.W., Niederreiter, H., Su, M.: The expectation and variance of the
joint linear complexity of random periodic multisequences. J. Complexity
21, 804–822 (2005)

[8] Fu, F.W., Niederreiter, H., Özbudak, F.: Joint linear complexity of multi-
sequences consisting of linear recurring multisequences. Cryptography and
Communications - Discrete Structures, Boolean Functions and Sequences,
to appear

[9] Games, R. A., Chan, A.H.: A fast algorithm for determining the complexity
of a binary sequence with period 2n. IEEE Trans. Inform. Theory 29, 144–
146 (1983)

[10] Lauder, G. B., Paterson, K.G.: Computing the linear complexity spectrum
of a binary sequence of period 2n. IEEE Trans. Inform. Theory 49, 273–280
(2003)

[11] Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading, MA
(1983)

[12] Massey, J. L., Costello, D. J., Justesen, J.: Polynomial weights and code
constructions. IEEE Trans. Inform. Theory 19, 101–110 (1973)

[13] Meidl, W.: Reducing the calculation of the linear complexity of u2v-
periodic binary sequences to Games-Chan algorithm. Designs, Codes, Cryp-
togr. 46, 57–65 (2008)

[14] Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity,
and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)

[15] Meidl, W., Niederreiter, H.: On the expected value of the linear complexity
and the k-error linear complexity of periodic sequences. IEEE Trans. Inform.
Theory 48, 2817–2825 (2002)

[16] Meidl, W., Niederreiter, H.: The expected value of the joint linear com-
plexity of periodic multisequences. J. Complexity 19, 61–72 (2003)

[17] Niederreiter, H.: Sequences with almost perfect linear complexity profile.
In: Advances in Cryptology - Proceedings of EUROCRYPT 1987, (Chaum,
D., Price, W. L., Eds.). Berlin: Springer-Verlag, 1988, Lecture Notes in Com-
puter Science 304, 37–51 (1988)

18

[18] Salagean, A.: On the computation of the linear complexity and the k-error
linear complexity of binary sequences with period a power of two. IEEE
Trans. Inform. Theory 51, 1145–1150 (2005)

[19] Stamp, M., Martin, C. F.: An algorithm for the k-error linear complexity of
binary sequences with period 2n. IEEE Trans. Inform. Theory 39, 1398–1401
(1993)

[20] Xiao, G., Wei, S., Lam, K. Y., Imamura, K.: A fast algorithm for determin-
ing the linear complexity of a sequence with period pn over GF (q). IEEE
Trans. Inform. Theory 46, 2203–2206 (2000)

[21] Xiao, G., Wei, S.: Fast algorithms for determining the linear complexity of
period sequences. In: Progress in Cryptology - INDOCRYPT 2002 (Menezes,
A., Sarkar, P., Eds.). Berlin: Springer-Verlag, 2002, Lecture Notes in Com-
puter Science 2551, 12–21 (2002)

19

