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FILLER MODEL BASED WORD LEVEL CONFIDENCE MEASURES FOR
SPOKEN DIALOGUE SYSTEMS

Abstract

In conversational dialogue applications it is critical to understand the requests ac-
curately. However, the performance of current speech recognition systems are far
from perfect. In order to function effectively with imperfect speech recognition, an
accurate confidence scoring mechanism should be employed. To determine a confi-

dence score for a hypothesis, certain confidence features are combined.

In this thesis, the performance of filler-model based confidence features have been
investigated. Five types of filler model were defined: triphone-network, phone-
network, phone-class network, 5-state catch-all model and 3-state catch-all model.
First all models were evaluated in terms of their ability to correctly tag (recognition-
error or correct) recognition hypotheses. Here, the best performance was obtained
from triphone recognition network. Then the performance of reliable combinations
of these models were investigated and it was observed that certain reliable combi-
nations of filler models could significantly improve the accuracy of the confidence

annotation.

On the practical side of the work, a dialogue management system was implemented
for Turkish. For acoustic model training, a 3-hour speech data was collected. To in-
crease the speech recogntion accuracy, some parameters were tied by using decision
trees. For an accurate clustering, an efficient set of questions was constructed for

Turkish triphones. With this setup we obtained %97.2 word recognition accuracy.

Keywords: Confidence Scoring/Measuring, Filler/Garbage Models, Dialogue Sys-

tems, Confidence Measures/Features, Speech Recognition



DIYALOG SISTEMLERI ICIN KELIME BAZINDA GUVENILIRLIK
OLCUTLERI

szet

Otomatik diyalog sistemlerinin yetkinligi i¢in konugmacinin isteklerinin tam olarak
anlagilmasi biiyiik onem tasimaktadir. Buna karsin giiniimiiz otomatik ses tanima
sistemlerinin performansi bu yetkinligi saglamaktan ¢ok uzaktir. Ses tanimadaki bu
eksiklige ragmen diyalog sistemlerinin yiiksek performansla ¢aligmalarini saglamak

icin ses tanimadaki giivenirliligi tam olarak tespit edebilecek mekanizmalarin geligtirilmeleri
gerekmektedir. Bu tiir mekanizmalar1 olusturmak icin ses tanimanin giivenirliligi
hakkinda bilgi veren 0zellikler belirlenir ve bu bilgiler birlegtirilerek tanimanin dogrulugu

tizerine bir deger belirlenir.

Bu tezde, filler/garbage model tabanh giivenilirlik dlgiitlerinin performanslar: in-
celenmektedir. Bes tiir filler/garbage modeli tanimlanmigtir: baglam igerikli ses agi,
baglamdan bagimsiz ses agi, ses sinifi agi, 5-durumlu yigin modeli ve 3-durumlu
yigin modeli. Ilk olarak tiim bu modeller ses tammadan cikan sonuclari, dogru veya
tamma hatas1 olarak dogru siiflayabilmedeki bagarilarina gore degerlendirildiler.
Daha sonra bu 6zellikler cesitli kombinasyonlarda biraraya getirilip, ortak performanslari
incelendi ve kimi kombinasyonlarin ses tanima sonuclarinin giivenilirligini tespit

etmedeki dogrulugu onemli derecede arttirdigi gozlemlendi.

Tezin uygulama tarafinda Tiirkge icin bir diyalog sistemi gerceklendi. Bu sistem
icin, ses-birimlerinin modellenmesinde kullanilmak iizere 3 saatlik ses verisi toplandi.
Ayrica ses tanimadaki performansi arttirmak i¢in bazi model parametrelerinin deci-
ston tree yontemiyle birlegtirilmesi yoluna gidildi. Bu noktada dogru birlegtirmelere
karar verebilmek icin, Tiirkce seslere yonelik etkin bir soru seti hazirlandi. Bu sekilde

gergeklegtirilen ses tanmima sisteminde %97.2 lik kelime tanima dogruluguna ulasildi.

Anahtar Kelimeler: Guvenilirlik Belirleme/élgme, Filler/Garbage Model, Diya-
log Sistemleri, Ses Tamma, Guvenilirlik Olgdtleri/ézellikleri
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Chapter 1

Introduction

1.1 Motivational Consideration

Sophisticated interaction with speech understanding system require the use of dia-
logue management systems. Human-computer dialogue systems guide the user by
strategies to provide necessary elements of a task description that the system knows
and considers practically feasible and try to accomplish the required task by per-

forming the appropriate (communicative and/or non-communicative) actions [34].

Today dialogue systems usually are employed in restricted domains, since this makes
speech recognition more robust. The speaker responds to questions or asks her ques-
tions to a proposed menu by using a small set of allowable words. Current heavy
research in this area aims to make dialogue systems more friendly by allowing the

user speak with more freedom.

For such dialogue applications it is critical to understand the user’s requests ac-
curately, since the rest of the system acts based on this recognized utterance. On
the other hand, the performance of current speech recognition systems are far from
perfect. In order to function effectively with imperfect speech recognition, dialogue
management systems should have an accurate confidence scoring mechanism to eval-
uate each recognized utterance. A robust recognition confidence estimator improves
the efficiency of the dialogue system by requesting confirmation or repetition of
uncertain words. For example, assume that the user asks such a question to the
dialogue system;

What is the name of the instructor for the course, EE2017



It is possible for the speech recognizer to hypothesize this question;

What is the name of the instructor for the course, ME2017?

In such a case if we fully trust the recognizer’s results, then the next action of the
dialogue manager would be searching the instructor for the course ME201. On the
contrary the user had requested the information for another course. In order to not
allow such kind of misinformative dialogues, each recognition should be evaluated

in terms of certain recognition confidence measures.

In this work first a dialogue management system for Turkish was developed to be
used as the baseline system for this research. The dialogue system is developed to
automatically respond to enquiries about the university courses. Then, certain con-
fidence features were defined and the performance of these and their combination in

confidence annotation were investigated.

1.2 Problem Definition

Robust confidence measures, which provide information about the accuracy of the
recognition, are critical to make speech applications more accurate and usable since
recognition performance is less than perfect. Even when the accuracy is high, they
are needed to detect out-of-vocabulary words or non-speech sounds. Thus, an ac-
curate confidence scoring technique should take into account various factors which
can contribute to misrecognitions and give reliable estimate of which words in the
output from the recognizer are likely to be correct and which can probably be dis-

regarded as incorrect.

A typical approach for confidence scoring includes two steps. First, a confidence
feature vector is formed by combining one or more basic features correlated with
word confidence. Then one of a variety of classifiers is applied to this vector to
determine confidence for the word. Quality of the extracted features is the main
determinant of the performance of a confidence annotator. So by defining informa-
tive features and forming a reliable set of such features, it is possible to increase the
performance of the confidence annotation. In literature, many features have been

defined [17,18,19,20,25,27]. They have been grouped with respect to their extrac-



tion sources, like acoustic model, language model, semantic, recognition lattice, or
n-best list [25]. The use of acoustic features can be very useful for most speech
recognition systems. In this thesis we have investigated the performance change in
confidence annotation by defining and combining certain acoustic features based on

filler-models with differing level of acoustic details.

1.3 Review of the Literature

The correctness of recognition results has been broadly studied by several authors.
From many different perspectives this field has been addressed. These works can be
grouped mainly into two broad classes: those based on verifying keywords, in other
words keyword spotting applications, and those who build confidence measures out
of feature compilation procedure on grammar based conversation systems. Since
this thesis is included by the second category, in this section we present some works
from literature related with confidence measuring using certain combinations of fea-

tures on grammar based systems.

The normalized decoder score is a milestone in the generation of confidence mea-
sures [35,39], but it is not the only way to reliably label recognition results as correct
or incorrect. To attack this problem a set of confidence features are extracted from
the computations performed during recognition. The extraction of multiple con-
fidence features has been investigated in many research efforts [17,26,19,18,20,25].
These features can be obtained; before recognition ( a priori, e.g. language model)
[17,20,27], after recognition (a posteriori, e.g. semantic parsing) [18,19], or dur-
ing recognition process ( e.g. acoustic scores, N-best hypotheses or word lattices)
[27,25,20]. All this accumulated information can be compiled and combined to gen-
erate confidence measures on recognition. Here the key problem is the selection of
effective features, since it is not desirable to include any knowledge source as feature
because many of them do not provide any further information with the disadvantage

of increasing the complexity of the system.

The widely used way to discriminate the useful features is to consider those whose

magnitudes show a high correlation level to the recognition certainty. In this way



Schaaf and Kemp [27] extracted a 20 dimensional feature vector for each hypothe-
sized word. In this work, the correlation matrix of this 20-dimensional feature space
was computed and the features were eveluated as to the absolute value of this cor-
relation coefficient. If the coefficient was high, then the corresponding feature was
regarded as good. By combining the good features they have managed to decrease
the error rate %27.2 as compared to the baseline system. Also Chase [17] provides
us a wide variety of confidence features (he defined about 16 features for confidence
annotation) to examine. After constructing predictor variables, he compared vari-
ous combinations in their ability to assign probabilities of error class membership to
words hypothesized. With a base rate of %84 of words in class correct, he achieved
a %20.9 reduction in the labeling of this class. A recent study was conducted by
Cox and Dasmahapatra [19]. Their main approach was to attempt to decouple the
language modelling and acoustic modeling in the recognizer in order to generate
independent information from these two sources for estimation of confidence. To
isolate these two sources they have used a phone recognizer working parallel with
the word recognizer. They have used metamodels, which generate alternative word
hypotheses for an utterance, to estimate confidence measures using the phone recog-
nizer output in conjunction with the word recognizer output. With metamodels they
obtained %31.1 confidence gain. Although the question about which features to use
is answered, the underlying question of how to combine the knowledge sources into
effective confidence measures remains unresolved. A simple Bayesian classifier has
been employed in [36] to build up a post-classifier of correct and incorrect results.
Some early works [23,27,25] trained a neural network (more specifically, a multi-
layer perceptron) under the back propagation scheme as a useful means to combine
different types of knowledge. Also, a similar unification system can be obtained
from linear discriminant analysis [37]. Although effective, these systems exhibit a
common drawback: their performances depend on the amount of samples given for
their training and, therefore, they need databases of previous recognition examples

to adjust their parameters and in consequence they become application-dependent.

Another way is analyzing a decision tree in which each of the features is represented

as a branch. It is possible to count which are the relevant features to be taken into



account when considering a recognition result as correct. This is a schematic way
to represent multiple choices among multiple values of variables. With a tree like
this, it is possible to estimate the a posteriori probability that a speech segment has
been correctly recognized. Taking advantage of this knowledge, in [38,23] several
systems have been proposed that, with remarkable results, apply the decision trees

to the generation of confidence measures.

1.4 Discussion

The previous studies showed that the most important confidence feature is the nor-
malized decoder score [19,20,33,35,39]. The confidence of an utterance is determined
by a comparison in between the best path from the acoustic unit network, or called
as filler network, and the best path from the regular decoder. Filler model recogni-
tion is important since it matches all units belonging to the observation with models
in the network without any dependency. Even when the observation sequence is not
in the grammar or in the LM, filler network can generate the correct transcription
for the input utterance by concatenating the hypothesized sub-unit transcriptions.
However the normal decoder makes its matching by considering the contectivity of
the trained models. Then it can be concluded that filler models can provide valu-
able information to detect misrecognitions. In this work we investigate the effect
of filler networks in different detail on confidence estimation. Also combining such
kind of filler models could provide better estimates for the hypothesis confidence.
Although there are some overlapping information between the models, there could
also be discriminative information specific to that model. To make both information
useful in the decision process we look for the the best combination in between these
models and the other acoustic features, not related with filler models, in addition

to their individual contributions.

1.5 Introduction to Dialogue Systems

Automated dilaogue systems require the use of many different subsystem with a
wide variety of functions. A typical dialogue system combines continuous speech

recognition, confidence scoring, natural language understanding, natural language



generation and text to speech systems [30].

Language Speech
Generator Recognizer

Speech
Database Synthesizer
Confidence I Semantic
Server Parser

Dialogue

===l —»|Audio Server
B Manager

Figure 1.1: Block diagram of the functional components of a typical automatic

dialogue sytem

Figure 1.1 depicts the main components of a dialogue system. A central hub controls
all of the system servers through a scripting language. This kind of dialogue system
structure brings flexibility to the system. If you need to change a component in the
current net of the components, other components don’t need to be modified. Some
commercial applications provide this flexibility by a GUI supported hub script [29].
Below we present, overview for each component but here, we note that in this thesis,

the main focussed components are speech recognizer and confidence server.

Audio Server

The audio server is responsible for answering the incoming call, playing prompts
and recording user input. This uses special hardware components such as Dialogic

hardware environment.

Speech Recognizer

The speech recognizer receives the input vectors of the acoustic data from the audio

server. In general, the recognizer produces a word lattice from which a single best



hypothesis is picked and sent to the hub for processing by the dialogue manager. In
this work we used the HMM toolkit HTKv3.0, from Campbridge University [8].

Confidence Server

Current speech recognition systems are far from perfect. To be able to predict
whether a hypothesis provided by automated speech recognition (ASR) system is
correct or not, some confidence measures are extracted during recognition or during
a separate post-processing phase. These measures can be extracted by using acoustic
data, or language model or recognizer’s output lattice or semantic. In Chapter 3 we

examine confidence measures in more detail.

Language Understanding

The language understanding (LU) performs a syntactic and semantic analysis of an
utterance using linguistic and world-knowledge constraints. For example, in our ap-
plication we assume that the utterances come from a large but finite set of possible
sentences. We represent such a regular set of sentences with an annotated structure,

which is used to map it to a meaning representation.

The main idea of a typical semantic parser is semantically tagged context-free gram-
mar(CFQG) [31]. The nodes in a syntactic parse tree are tagged with semantic class
information like Course Name or Question Word, and so on. After such a semantic
parse for each recognized utterance a meaning representation is obtained. In addi-
tion to CFG, some recent parsers includes additional features like trace mechanisms

to handle movement and syntactic constraints [31].

Dialogue Manager

Typical dialogue manager (DM) controls the system’s interaction with the user and
the application server. The DM is responsible for deciding what action the system
will take at each step. The first function of a dialogue manager is that of resolving
the ambiguities in the interpretation. In our application this is not very hard, since
the domain of the application is quite restricted and in this restricted domain there

are not many alternatives. Other functions of the DM are as:



e Extracting confidence information as an input to the confidence server.

e Interpreting the current information with previously obtained user or dialogue spe-

cific informadtion.

e Building database queries and sending this information to Language Generation

component to prompt the user.

An other point related with DM is their mode. The mode of the DM can be user-
initiative or system-initiative or mixed. Deciding the mode of the DM before the
construction is important since the structures and effciency of the methods used in

DM varies according to the purpose of the system.

The simplest way of managing a dialogue is building a dialogue script. Another
way is building a dialogue network which covers the whole dialogue framework [9].
Also Pellom et al. [30] made some works on event-driven dialogue managers in
Colorado University. It uses the current context to decide to the next step. In this
approach context consists of a set of frames and a set of global variables. The system

provides a general purpose routine library to manipulate frames.

Language Generation

Language generation uses templates and information that comes from database
queries to generate text based on dialog speech acts. Then the generated text

is sent to the TTS system via hub.

Speech Synthesizer

Text-to-Speech (TTS) systems are used for audio output. They take text as input
and synthesize an audio for this text. In this work we used the pre-implemented TTS
system by Vural [32]. During the implementation of the TTS system the Festival
toolkit had been used.

1.6 Outline of the Thesis

In Chapter 2, we provide a review of necessary theoretical background in some de-

tail. This chapter includes an introduction to the main issues in signal processing



for speech recognition.

Chapter 3 gives a detailed discussion of the theory behind of the confidence scoring
mechanism. The two main topics discussed are the confidence feature types and

confidence feature selection.

In Chapter 4, we present practical implementation issues as well as information
regarding the scope of the system. We also describe the construction of the speech
corpora used for the experiments, filler models and the confidence scoring mecha-

nism.

Chapter 5 forms the central part of this thesis in presenting filler model types de-
veloped to extract acoustic confidence information. For each filler model, training

issues, model topology and performance evaluation are presented.

In Chapter 6, we introduce the extacted features to be used for confidence anno-
tation. We discuss issues regarding classfiers used during feature combination and
confidence score determination together with the results of experiments by which

the performance of combined filler-model confidence features are evaluated.

In Chapter 7, we present a discussion of our results. Also some future plans to

improve the performance of the suggested confidence vector are presented.



Chapter 2

Speech Recognition

2.1 Overview

Over the last few decades there has been increasing research activity in speech recog-
nition (SR) technology. Research in automatic speech recognition (ASR) aims to
develop methods and techniques that enable computer systems to accept speech

input and to transcribe the recognized utterances into orthography.

Current SR systems are based on the principles of statistical pattern recognition
[1]. The speech signal is a time-varying and therefore nonstationary signal. When
the speech signal is divided into block of samples (called frames) it can be considered
stationary and some analysis can be performed with this frame methodology. The
first step of speech recognition is to convert an unknown speech waveform into a se-
quence of acoustic vectors, O = 01, 0, ..., 0; (here each vector denotes the parametric
equivalent of a frame in the acoustic data). If we assume that the acoustic data is
produced by a sequence of words, W = wq, ws, ..., w,, then we can define the aim of
a speech recognition system as determining the most probable word sequence, W,
given the observed acoustic signal, O. This is represented by the Bayes’ equation
(2.1);

W = arg g}naxP(W|O) = arg g}nax%

This equation indicates that the most probable sentence, W, given some observation

= arg g}naxP(O|W)P(O) (2.1)

sequence, O, can be found taking the product of two probabilities for each sentence,
and chosing the sentence for which this product is greatest. These two probabilities

are P(W), the prior probability, computed from a language model, and, P(O|W),
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the observation likelihood, computed from an acoustic model.

Figure 2.1 shows the main components of a typical speech recognition system. The

digitized speech signal is first transformed into a sequence of acoustic vectors at

a fixed rate, typically once every 10 milliseconds. These vectors are then used to

search for the most likely word candidate, making use of constraints imposed by the

acoustic, lexical, and language models. Throughout this process, training data are

used to determine the values of the model parameters.

Speech Samples
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Figure 2.1: Components of a typical speech recognition system
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Hypothesis

2.2  Front-End Signal Processing and Acoustic Feature Extraction

Speech signal is identified by two properties, frequency and amplitude. Frequency

determines the pitch value of the speech signal and amplitude determines the inten-

sity and the amount of energy in the signal. The speech signal is the superposition of

many sinusoidal signals of different frequencies. Each of these sinusoidal signals are

the harmonics and in general, ASR systems benefit from the analysis and decom-
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posion of these overlapped harmonics. The harmonic which has the same frequency
with the speech signal is called as Fundamental Frequency and is denoted by F0.

F0 is quiet important in the process of boundary determination.

This section presents the whole processing of speech signal features. Although there
are many other processing schemes in literature [44], in this work Mel-Frequency
Cepstral Coefficients [MFCC] was used. MFCC has generally obtained a better ac-
curacy and a minor computational complexity with respect to the other methods

[44]. Figure 2.2 depicts the MFCC processing of the speech signal.

—=2—— preemphasis %}( window >
Speech signal

Mel-
DFT Filter- Log(] | 3 IDFT MFCCs —p
Bank
Long-
energy e Term
features

A 4

MFCCs, e
N (MFCCs,e)

A (MFCCs,e )

Figure 2.2: MFCC processing of the speech signal

2.2.1 Speech Signal Processing

Acoustic feature extraction follows the front-end processing of the signal. There can
be different signal processing techniques for different feature extraction methods.
The first stage of signal processing is converting the acoustic signal to its digital
equivalent. In this conversion the sampling rate is chosen as at least two-times of

the highest frequency harmonic in the signal by regarding the Nyquist criterion [9].

12



After the sampling, the signal is coded using a coding method like PCM (Pulse Code
Modulation), Log-PCM, APCM(Adaptive PCM), DPCM (Differential PCM), AD-
PCM(Adapted Differential PCM) or DM(Delta Modulation) [9]. The coded signal
is then processed by some additional processes to increase the distinguishability of

the feature vectors. The main processes are the following:

e Windowing: Windowing is applied on the acoustic data which is used in param-
eter calculation during feature extraction. When the acoustic data is directly used
in parameter calculation process, this means that rectangle windowing is chosen. In
other windowing methods, the acoustic data is multiplied by certain coeffients be-
fore processing. The determination of these coefficients done with some windowing
methods. While window functions such as Barlett, Triangular, Prolate Spheroidal,
Blackman, Kaiser and Hanning appear in literature, the Hamming Window is the
most widely used [9]. Also for this thesis the Hamming Windowing method has
been used. This method is used to emphasize the central information of the signal

and defined by the equation 2.2;

2
w(n) = 0.54 — 0.46 cos NLnl,o <n<N-1 (2.2)

Here, w(n) denotes the impulse response and N is the period.

e Preemphasis: To cancel the spectral contributions of the larynx and the lips to
the speech signal, the speech signal is preemphasised to increase the relative energy

of the high-frequency spectrum. Typically a first order FIR filter,
H(z)=1—az"" (2.3)

is used with ¢ = 0.97. The minimum-phase component of the glottal signal which
serves as the excitation for the vocal tract, can be modelled by a two-real-pole
filter whose poles are near z = 1. By adding the preemphasis filter, the spectral
contribution of the other pole is effectively canceled, eliminating the effect of the

larynx and the lips on the speech signal [9].

e DC Removal: DC offset in a speech wave is typically an artifact of the recording
process. This can easily be removed by subtracting the mean of the speech signal. If

this is done in real time, a short time estimate of the mean must be used. This can
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be done with a simple first oder FIR (finite-impulse response) or ITR (finite-impulse

response) low pass filter [34].
e Filtering: Filtering is used to distinguish the data from the unwanted frequencies.

e Zero-Crossing-Rates: Zero-Crossing-Rates are used to observe frequency varia-

tions.

e Center Clipping: Center Clipping is a method used in noise cancelation. In this
method it is assumed that noise signals have high frequencies and low amplitudes.

With this assumption zero near signals are eliminated from the signal.

2.2.2 Speech Signal Feature Extraction

The purpose of the feature extraction stage is to derive a set of parameters from the
speech signal suitable for the subsequent recognition stage. This set of parameters
forms a feature vector. A feature vector is the smallest fundamental unit of the
speech data and generally includes 15-39 features. There are two kinds of feature
vectors, short-time and long-time feature vectors. Long-time feature vectors consist
of the combination of many successive short-time feature vectors. There exists many
possiblities to extract short-time feature vectors [2]. Commonly used ones are the

following;

e Spectrum

Cepstrum

Linear Predictive Coding(LPC)

Perceptual Linear Prediction(PLP)

Relative Spectra(RASTA)

RASTA+PLP

Spectrum

To use the spectrum content of the speech signal is one of the important methods
in speech recognition. FFT is one of the efficient methods in spectrum calculation.

Spectrum calculation is done by measuring the intensity of frequency in short time
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periods. Thus in addition to FFT, it is possible to use a filterbank. The selected
filter should reflect all characteristics of the sound data by a vector in an efficient
way. Now, the best performance is obtained from Mel-Scale filterbanks. Mel-Scale
filterbank consists of 100Hz length triangular filters in between 0-1000Hz. After

1kHz logarithmically increasing filters are used, as in Figure 2.3.

H(f)

Figure 2.3: Mel-Scale filterbank for 8kHz signal

An approximate conversion to mel-scale is given in (2.4);

_ 1000 Fu
" Jog 2 1000

(2.4)

In addition to mel-scale also it is possible to build filterbanks by using bark-scale.

Bark-scale conversion can be done by using (2.5);

0.76 Fy, F?
Fyorr = 13atan ( il ) + 3.5a tan ( H ) (2.5)

1000 75002

Each unit in mel/bark scale is called as the critical bandwidth. To be able to build
a filterbank with mel/bark scale the critical bandwidths should be known. Equation
(2.6) helps to find these critical bandwidths.

BWeritics = 25 + 75[1 + 1.4(f/1000)%] (2.6)

The filterbanks constructed by mel/bark scale are called as critical band filterbanks.
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The other method of obtaining spectrum is FFT Based Spectral Analysis. Its im-
plementation is relatively easier than the previous method. FFT based spectral
analysis bases on applying a Fourier transformation on the speech signal and select-
ing samples for some certain values. Furthermore to obtain better spectral intensity,
weighted summation of each spectral value is calculated. During the calculation of

this summation mel-scale is used for determining the neighbourings.

Cepstrum

In this method the speech signal is represented as a linear equeation; S(f) =
V(f).G(f). Here S(f) denotes the acoustic data, V' (f) models the acoustic channel,
namely larynx, and G(f) models the original pure signal produced by vocal cords.
Thus it becomes possible to cancel the effects of larynx on the pure sound signal.
Cepstral coefficients are generally complex but most of the contemporary systems
use real cepstrum coefficients. Computation of real cepstrum coefficients using Dis-

crete Fourier Transform (DFT) is given in Figure 2.4.

[ncoming speech

] Real Cepstrum
frame, s(nr—1m DTFT —4 Log|.| _— IDTFT

— W Coefficients, cin)

Figure 2.4: Computation of real cepstrum coefficients by DFT

Short-term cepstral coefficients computed either directly from FFT spectra or from
LP(Linear Prediction) coefficients. In Eq. (2.7) FFT based calculation is formulated.

Ng—1

1
c(n) = N Z logo |S(k)|e®™ Nk 0 <pn < N, —1 (2.7)
¥ k=0

Here, S(k) denotes the Fourier transform of the frequency interval and N is the
wide of the current frame. Also ¢(n) is called as the n'* Cepstrum Coefficient. These
coefficients are called as fourier transform based cepstral coefficients. Another set of
cepstrum coefficients can also be computed from linear predictive (LP) parameters

using the recursion given in Fq. (2.8) [4];

16



i—1

wrl0) =Inc®  eupli) = aer(i) = S (earGasrli =) (28)

J=1

% .

CLP(O) = —CLLP(]_) CLP Z - CLP aLP(Z _.])

At first LP modelling was the most popular method for spectral representation. But
it has some drawbacks, such as having sharp peaks at formant frequencies, which

degrades the performance.

In general first 20 cepstrum value are used in feature vectors. Since cepstrum values
are calculated by non-linear equations it can be said that they are noise-tolerant,

for noisy environment speech recognition applications this method is not suggested.

If the frequency used in Fourier transformation is sampled in mel scale then the
obtained cepstrum coefficients are called as Mel-Cepstrum values. Furthermore to
calculate mel-cepstrum values mel-scale filterbank can be used instead of Fourier

transform [3].

melc(i Zlog |Sk| cos {@(k - —)%] (2.9)

k=0

Linear Predictive Coding (LPC)

Linear predictive modelling is one of the most accurate analysis techniques and most
of today’s speech recognizers support LPC to parameterize the speech signal. The
fundamental idea of LPC is that a speech sample can be obtained approximately as a
linear combination of past speech samples. The distance between the current signal
and the linearly predicted one is minimized by finding certain coefficients. They are
called as LP coefficients. The effect of vocal tract (spectral shaping) is modelled by
an all-pole filter. Generally an order (number of poles) of 8-10 is chosen as the filter
order for telephone applications, where a sampling frequency of 8kHz is used and
the filter coefficients are determined by minimizing the MSE(mean-squared error)

between the speech samples and predicted ones [4]. The vocal tract model can be
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given as in (2.10).

S(2) 1

HE) = o = T o

(2.10)

Here X(z) is the z-transform of the excitation driving the source filter model of
speech production, S(z) is the z-transform of the speech signal, axs are the linear
predictor coefficients and p is the order of the LPC analysis. The linear estimation
of the next speech sample can be calculated by using the weighted summation of

the past samples as in (2.11).
5, = Z Ui Sni (2.11)

The transfer function of a lossless tube can be modelled by using all-pole model. Al-
though in speech processing context larynx is assumed as a lossless tube, actually it
is lossness and its shape can not be thought as a complete cylinder. Larynx contains
some small holes. Also some consonants are formed with lips without any effect of
vocal chords. Despite these drawbacks, there are some approaches to approximately
estimate the actual parameters of the speech signal by using enough number LP

coefficients.

Let’s assume that the speech signal consists of N samples. The ultimate goal is
estimating the a; coefficients which produce the most accurate result. The accuracy

is tested by finding the minimum-square error, (2.12).

P
€n = Sp — Sp = Sp — Zaisn,i (2.12)
i=1

And the summation of the squares of errors is calculated by (2.13).

-1 -1 p 2
E= Z e = Z <3n — aksn_k> (2.13)
k=1

n— n—
The minimum value of E can be found by making its derivative equal to zero as in
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This equation determines the LP coefficients, ay, for the speech sample. Robinson

et al. [5] propose three ways to solve this equation;
e Autocorrelation Method
e Covariance Method

o Lattice Method

For speech recognition generally autocorrelation method is preffered. LPC Cep-
strum values are obtained from the direct use of predicted LP coefficients. The

equation for LPC cepstrum values are given in (2.16).

k-1
1 .
cr = ay + % iC;Qp—; (2.16)

i=1
Perceptual Linear Prediction (PLP)

PLP method is the combination of DFT(Discrete Forurier Transform) and LP meth-
ods. In LLP method it is assummed that all sounds in all frequencies are equal. But
this assumption does not reflect the actual behaviour of human ear. Under 800Hz
hearing decreases in parallel with the frequency. Human ear is more sensitive for
middle frequencies of the hearing range. One of the proposed solutions for this
problem predicts the LP coefficients in mel-scale. Another method is finding power
spectrum of speech signal before the application of LP technique [6] and PLP method

is based on this approach.
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Relative Spectra (RASTA)

The main idea of RASTA is modelling the environmental effects. This method is an
effort to filter out distortions and noises caused by unexpected environmental factors
so as to improve speech recognition performance. This method can be obtained by
adding a noise modelling technique to the aforementioned PLLP method. In RASTA
it is assumed that human perception strictly depends on the previously heard sounds.
In other words perception is dependent to the spectral difference between current

sound and the past sound [9].

2.3  Acoustic Modelling and Training

Modelling of the acoustic data is generally performed in a statictical framework.
An inventory of elemantary probabilistic models of basic linguistic units (in this
work, triphones) is used to build word representations. Acoustic Models (AM) are
stochastic models used with language models to find the correct transcription for

the given acoustic data. There are mainly three methods used in acoustic modelling.
e Hidden Markov Models(HMM)
e Dynamic Time Warping(DTW)
e Artificial Neural Networks(ANN)

The most effcient and widely used method for the past decade is HMM method and

also in this work HMMs are used for acoustic modelling.

2.3.1 Hidden Markov Models

In ASR, HMMs were first used by Baker and Jelinek in 1975 [11]. Rabiner gave a
detailed application methodology of HMMs for ASR in 1989 [7]. The fundamen-
tal assumption of HMM is that the data samples can be well characterized as a
parametric random process, and the parameters of the stochastic process can be

estimated in a precise and well-defined framework.

An HMM model is defined by three parameters; M = (A, B,1I). Letting o € O
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be a variable representing observations and 7, 7 € X be variables representing model

states, the model parameters can be represented as in (2.17);

A={a;jli,j € X}  transition probabilities (2.17)
B={bli,j € X} output distributionprobabilities

II={mlie X} initial probabilities

and they can be defined as in (2.18);

ai’j = p(Xt = j|Xt71 = Z) (218)
bij(0) = p(Or = 0| Xy 1 =i, X; = j)

T = p(Xo = 1)

A graphical representation of an HMM is given in Figure 2.5.

byfoy) bafor)
Dh:’EI‘LJ“D” [ Rl LLL] LRl LLLE]} dddddaiNNN dddddain
vector sequence
n= ﬂl ﬂ: LLLIR]]] EERad NERdd e ‘}I

Figure 2.5: A three-state left to right HMM with observation vectors [8]

According to the definition set of the observation vector, two kinds of HMM structure
can be defined; Discrete HMM (DHMM) and Continuous Density HMM (CDHMM).
The difference betwwen the discrete and continuous HMM lies in a different form of

output probability functions. In discrete HMMs, distributions are defined on finite
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spaces. Observations, such as acoustic feature vectors, are vectors of symbols in
a finite alphabet of N different elements. For each one of the vector components,
a discrete density w(k)/k = 1...N is defined, and the distribution is obtained by
multiplying the probabilities of each component. In continuous density HMMs, dis-
tributions are defined as probability densities on continuous observation spaces. In
this case, functional form of the distributions has to have certain characteristics,
in order to have a manageable number of statistical parameters to estimate. The
density functions are usually Gaussian or Laplacian as in (2.19). The statistics can

be characterized by the mean vector and the covariance matrix.

M M
bi(0) =D kN (0, ik, Six) = D cjibje(0) (2.19)
k=1 k=1

Here N(o; 11; %) denotes a single Gaussian density function with mean vector x , and
covariance matrix ¥ for state j, M denotes the number of mixture components and
¢y is the weight of the k” component. The Gaussian probability density function
N(o; 13 Y) is defined as in 2.20.

1

1 —1 t
N(oj ;%) = —— e 3(07W¥ (0=p) 2.20
(05 1; X0) CaEd] (2.20)

For speech recognition, continuous density HMMs are used since the extracted fea-
ture vectors are defined in an N-dimensional space. But in order to model complex
distributions in this way, a rather large number of base densities have to be used
in every mixture. This may require a very large training acoustic data for the es-
timation of the distribution parameters. Problems arising when the available data
is not large enough can be alleviated by sharing distributions among transitions of
different models. In semicontinuous HMMs, for example, all mixtures are expressed
in terms of a common set of base densities. Different mixtures are characterized

only by different weights. This method is called as tied-mixture modelling.

A common generalization of semicontinuous modeling consists of interpreting the
input vector o as composed of several components o[1]---0[Q] , each of which is

associated with a different set of base distributions. The components are assumed
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to be statistically independent, hence the distributions associated with model tran-

sitions are products of the component density functions.

Computation of probabilities with discrete models is faster than with continuous
models, nevertheless it is possible to speed up the mixture densities computation by

applying Vector Quantization (VQ) on the gaussians of the mixtures.

[t is necessary to estimate accurate parameters M = (A, B,II) to describe the
acoustic data effectively. Actually there is no analytical method that maximizes the
joint probability of the acoustic data in a closed form. Instead the eproblem can be
solved by the iterative Froward-Backward or Baum-Welch algorithm [9], a special

case of the Expectation Maximization (EM) algorithm.

Before we describe the forward-backward algorithm, we first define a few useful

terms. Consider the forward variable, o, (i), defined as in 2.21.

ai (i) = P(0102.. .04, xp =1 |M) (2.21)

Here the ay(7) is the partial observation sequence, 0105 .. .0, and state i at time ¢ |

given the model M. «4(i) can be found inductively as in 2.22.

N
a(j) = (Z atl(i)aij) bilo) 2<t<T 1<j<N
i=1

P(O[M) = ZaT(i)

In a similar manner, the backward variable ,(i) can be defined as;

ﬁt(l) = P(Ot+10t+2 ... 07, T = 1 |M) (223)
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B:(7) is the probability of the partial observation sequence from ¢ + 1 to the end,
given the state ¢ at time ¢ and the model M. (i) can be solved inductively by 2.24.

pr(i)=1/N  1<i<N (2.24)

ﬁt(l) = <Zaijbj(0t+1)ﬁt+1(j)) t=T-1...1 1<i<N

j=1

Now we define v,(4, j), which is the probability of taking the transition from state i

to state 7 at time ¢, given the model, M, and the observation sequence O.

P(xy_y =i,2, = j,0 | M) _ a1 (1) aijb;(or) By (5)
P(Of|M) Sy ar(k)

(i, J) = (2.25)

The equation above can be illustrated as shown in Figure 2.6.

t- t-1 t t+1

i t+1)

. a.b(o

a, L(i) a, (i) B3,(1) B.,,(0)

Figure 2.6: Illustration of the operations required for the computation of 7;(i, j)

Lastly, we define the a posteriori variable d;(i) as the probability of being in state i
at time ¢, given the observation sequence O and model M,

()= Plr=i10,M) = <y AL =3 nig) )
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Using this formation the estimated models can be defined as follow;

Zf:l %ﬁ(iv ])

(i = : (2.27)
! Zthl Zl]cvzl "e(i, k)
X M
bj(or) = Z ik N (045 ks Xijk) (2.28)
k=1
T k(-
gy = iz O U)o ,E]).Ot (2.29)
> 107 (7)
80 = 2 H)0r = fin) 00— i) 2.30)
> =107 (7)
T k(-
Cip = 1=1 97 (J) (2.31)

Sy Yol 0F ()

The forward-backward algorithm guarantees a monotonic likelihood improvement
on each iteration, and eventually the likelihood converges to a local maximum.
Although the forward-backward algorithm described above is based on one training
observation sequence, it can easily be generalized to multiple training observation
sequences. To train an HMM from N data sequences is equivalent to finding the
HMM parameter vector M that maximizes the joint likeliood [9];

N

[[ P M) (2.32)

1=1

The training procedure performs the algorithm on each dependent observation se-

quence to calculate the expectations in Equations 2.27 and 2.28 [9].

Decoding of an HMM is the process of finding the best path, which generates the
certain observation sequence, in the HMM framework of hidden states. The most
widely used criterion is to find the state sequence that has the highest probability of
being taken while generating the observation sequence. In other words, we want to

find the most likely state sequence X = x; ...z, for a given sequence of observations,
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O =o0,...0, and a model M = (A, B,1I), (2.33).

Vi(i) = argmaxP(r1xg . .. 41, T4 = 01,0109 . ..0i| M) (2.33)

T1...Tt—1

This problem is very similar to the optimal-path problem in dynamic program-
ming. As a consequence, a formal technique based on dynamic programing, known
as Viterbi algorithm[10] can be used to find the best path for an HMM. Viterbi
algorithm computes the observation likelihood of the total of the all paths through
the HMM and searches for the optimal path simultaneously. In addition to Viterbi
algorithm, there is another search method, A* Decoding or Stack Search [11] used in
some speech recognizers. A* decoding algorithm is a kind of best-first search for the
lattice or tree which implicitly defines the sequence of allowable words in a language.
The algorithm performs a search from the root of the tree to the towards the leaves,
looking for the highest probability path, and hence the highest probability sequence.
In A* decoding, a path probability is defined as the product of its language model
probability and its likelihood. It does this by keeping a priority queue of partial
paths. A simple decoding process of this method is illustrated in Figure 2.7.

@, o

”
~
~

Optimal

v

Figure 2.7: Illustration for the optimal path with stack decoder
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2.3.2 Artificial Neural Nets

Neural Networks can be seen as a succesful modelling technique since they produce
accurate recognition results with some of the most difficult phoneme identifications,
such as stop consonant pairs, nasals and sonarants and fricatives [12]. The best
performance has been obtained from Recursive or Time-Delay network approaches,
which are well suited to ignoring the temporal variability that is undesirable in
speech, while capturing the temporal features that mark prosodic distinctions within
words [13]. Although neural network algorithms provides significant progress in
phoneme-based recognition, they need further improvement to be as accurate as

HMDMs in modelling of speech signals.

In ANN approach there exist several layers and each layer includes several nodes
(Each layer can have different number of nodes). The coded speech enters the net-
work and the network is updated synchronuously at some time intervals, receiving
new inputs and propagating information through the rest of the network. The out-
put nodes represent output status, or response, which signals that a particular event
has been recognized. Between the input and output nodes there are one or more
hidden layers of nodes. Connections between nodes may go forward towards output
nodes, sideways within hidden layers, or backwards, and can be recursive or have

delays built in.

2.3.3 Dynamic Time-Warping

The two speech signal of an utterance produced by the same speaker can be quite
different. The length of the utterance can distort in time non-linearly. DTW [14]
is used to derive the overall distortion between two speech templates. In these
template-based systems, each speech template consists of a sequence of speech vec-
tors. The overall distortion measure is computed from the accumulated distance
between two feature vectors that are aligned between two speech templates with
minimal overall distortion. Indeed DTW is a special kind of Dynamic Program-
ing Technique. Let’s consider two array in time domain; A = aq,as,...,ay and
B =by,b,...,by. If we assume that the start time is same for both array, a; = by,

then the aim is to overlap the end times, a;; and by. To make the and times equal
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a funcion is defined by using dynamic programming techniques. And this function

is applied on the sound data iteratively untill the boundaries are equal.

2.4  Speech Recognition Toolkits

There are toolkits available for building speech recognition systems. The most
important,widely accepted and publicly available speech recognition toolkits are
HTK and SPHINX. HMM is the common modelling structure for both systems
but they differ in many details. In this work HTK has been chosen as the speech

recognition toolkit.

HTK

HTK [8] has been developed in Cambridge University as an integrated suite of
software tools for building and manipulating continuous density HMMs. It consists
of a set of library modules and a set of more than 20 tools. It is written in ANSI
C. Although HTK is general-purpose, it also encourages a particular approach to
building speech recognition systems. Firstly, HTK is restricted to continuous density
HMMs for the purpose of practical application believed to be more robust. Secondly,
HTK provides a generalised mechanism which allows tying at all levels. Thirdly,
HTK fosters an incremental approach to model building whereby a system of HMMs
is refined through a number of stages involving interleaved model manipulation and
model re-estimation. Lastly, it provides a rich set of integrated tools to manipulate

a diverse range of data.

SPHINX

CMU Sphinx [15] is a large vocabulary, speaker independent speech recognition
codebase and suite of tools. The code is available for download and use. Sphinx
is implemented using a 5-state phonetic model; each phone model has exactly five
states. At run-time, frames of the input audio are compared to the distributions in

the states to see which ones the sound could have come from.
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Chapter 3

Confidence Scoring

3.1 Overview

For many practical applications of speech recognition systems, it is desirable to have
an estimate of confidence for each hypothesized word since the current speech recog-
nition systems are far from perfect. With an accurate confidence measure for each
recognized word, the language understanding and generating part can repair poten-
tial speech recognition errors, can reject out-of-vocabulary (OOV) words, and can
identify key words (for word-spotting applications) that are relevant to the language
understanding and generation. Also this information can be used in word selection
for unsupervised adaptation schemes like MLLR to better match acoustic channel

variations [16].

In Bayes’ rule, Eq. (3.1), the denominator is the same for any sequence of recognized
words, so that most practical speech recognition systems simply ignore P(O).

PW)P(O|W)
P(0)

P(W|0) = (3.1)

This means that the recogniser likelihoods are not absolute measures for the proba-
bility of O but relative measures with respect to different decodings of O. Equation
3.2 provides a solid framework for measuring confidence levels [9]. It is the ratio
between the score for the word hypothesis, W, P(W)P(O|W) and the acoustic prob-
ability sum, > . P(w)P(O|w), (3.2), where the summation is over all possible word

sequences.
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P(W)P(O|W)

I WG]

(3.2)

3.2 Confidence Features

Chase [17] proposes a framework for incorporating a confidence measure into a

conversational dialog system:

At what level should the confidence annotation be made?

What is the right way to define what is a recognition error and what isn’t?

What features are useful and how useful?

How to build a model combining the various features to create a confidence anno-

tation?

How to measure the goodness of the feature and model?

Although the answers to these questions depend on the particular application that
incorporates the confidence annotator, in this section generic approaches for each

question are presented.

The confidence annotations (error predictions) consist of labeling either phones,
words, or utterances with probabilities that correspond to the likeliness that the
phone, word or utterance in question belongs to each of the classes under consider-

ation, namely correct or recognition error.

Mainly, there are three types of levels on which confidence features can be de-
fined, phonetic level, word level, and utterance level. Phonetic level features are the
raw acoustic scores produced by the recognizer’s acoustic model at phonetic level.
Because the raw acoustic scores are usually not particularly useful as confidence
measures [18], these scores are normalized by some methods[19,20,21]. Utterance
level features are the features which have been observed to provide information
about the correctness of an utterance hypothesis and they are extracted for each
utterance. And similiarly word level features are derived from each word to provide

information about the correctness of a word hypothesis.
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Another grouping on confidence measures/features can be done as to the informa-
tion source; acoustic, language model (LM), N-best list, word lattice or semantic.
All except the last one are based on the information derived from the decoder. The

last one is extracted during language understanding or parsing.

All these features (in the remaining of the thesis, features refers to confidence fea-
tures, not to speech signal features) unavoidably overlap in the information that they
use. The performance achieved by all the features together isn’t much better than
that with only the best feature. So it is important to decide that which features
should be used and where the thresholds should be placed, namely how to com-
bine the knowledge sources into effective confidence measures. A simple gaussian-
mixture-model (GMM) classifier can be employed to build up a post-classifier of
correct and incorrect results. In some early works a neural network (NN) has been
trained under the back propagation scheme as a useful means to combine different
types of knowledge [23]. Also, a similar unification system can be obtained from lin-
ear discriminant analysis [24]. A recent technique, support-vector-machine (SVM)
[22] has been shown as an effective post-classifier to find the best combination of fea-
tures. Lastly, Zhang et al. [25] have proposed several systems that, with remarkable
results, apply the decision trees to the generation of confidence measures. Although
effective, these systems, including ours, exhibit a common drawback: their perfor-
mance depend on the amount of samples given for their training and, therefore, they
need databases of previous recognition examples to adjust their parameters and in
consequence they become application-dependent. In this work, we experiment with
two kinds of classifiers, GMM and ANN to observe the variations in performance

with different classifiers.

P(O) in Bayes’ equation (3.1) can be approximated by general-purpose recogniz-
ers. These kind of recognizers should be able to recognize anything, so that they
can fill the holes of the grammar in the normal speech recognizer. One of the most
widely used is all-phone network. All possible phonetic and nonspeech models are

trained and connected in parallel to each other and a loop is added, thus any word
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sequence can be recognized. Also, for word-spotting applications a network of an-
tiword models trained with all the data that are not associated with the key words
of interest can be used as a filler model. In this thesis, new kind of filler models
are constructed and are used to derive robust confidence estimators in combinations

with other extracted acoustic information.

Another method of determining confidence information is based on the impacts
of different phones on human perception of words [9]. Then the confidence measure

can be defined as in (3.3) for the word, w;

CS(w) = Z ©i(x;) /N (3.3)

Where z; is the recognition score of phone ¢ and N denotes the number of frames
for the word, w. p(x) is the mapping function and it determines the weight for each
phone score.

The parameters a; and b; can be optimized by using discriminative training.

The most common way of obtaining confidence information is using the combi-
nations of features. In Appendix A a long-list of confidence features compiled from
the related work in the literature is presented. The features are categorized accord-
ing to their information source and the level of the usage. Information sources can

be defined in five goups;

e Acoustic Features: Many confidence features focus on an examination of the
scores produced by the recognizer’s acoustic models at different levels. Because the
raw acoustic scores are usually not particularly useful in confidence annotation [18].
So before the use, they are normalized by using various methods [19,20]. Normalizing

the score against a filler model is one of the widely used techniques.

e Languge Model Features: The knowledge of the pragmatics of language (what
people are likelly to say in particular contexts) can be important to achieving the

goal of confidence annotation.
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e N-Best List Features: The decoder can generate results until it finds NV complete
paths, namely sentences, and these N complete sentences form the N-best list. The
fundamental idea is to maintain separate records for paths with distinct histories.
The history is defined as the whole word sequence up to the current time ¢ and
word w. When two or more paths come to the same state at the same time, paths
having the same history are merged and their probabilities are summed together;

otherwise, only the N-best paths are retained for each state [9].

e Lattice-Based Features: The set of hypotheses considered by the recognizer is
represented as a directed graph with exactly one start node and one end node. Each
arc carries a word along with its log-likelihood score and each possible path in the

graph denotes one hypothesis.

e Semantic Features: Features of the parse of the decoding hypothesis suggest
themselves as a new information source for confidence annotation. The correct
recognition results would be more grammatical than the incorrect recognition result,

given the assumption that the speaker is cooperative.

Although there are three levels to define a feature; phone,word, and utterance, while
grouping the fetaures at the phone level is not considered as a separate level since
its impact is realized on word level. So they are included in word-level features. (
In the list level categorisation is shown by W, refers to word-level, and U, refers to

utterance-level. )

3.3 Feature Selection and Classification

A classifier can be viewed as a network or machine that computes many discriminant
functions and selects the category corresponding to the largest discriminant [26]. A

network representation of a classifier is illustrated in Figure 3.1.

In this representation each g;(z) is called as discriminant function and gives the
probability of observation belonging to the class i. As to the Figure 3.1, the choice
of discriminant functions is not unique, all the functions are multiplied by some

constants. But for most cases in speech the costs are chosen equal.
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Figure 3.1: Functional structure of a general statistical classifier[26]

For two class case, the decision is taken according to the comparison of the re-
sults of discriminant functions as in Eq. (3.5). Equation (3.5) is also called as
Bayesian Decision Rule.

P(olh;) P(hs)
X5 Plolhy) P(hy)

gi(0) = P(hilo) = P(o|h;)P(h;)(3.5)

Several kinds of classifiers can be used to compute the confidence scores from a set of
features. The widely used ones in literature are classifiers based on GMMs, Neural
Networks (NN), Linear Discriminant Analysis and Decision Trees. Previous research
has shown that although in general the difference between classifiers is insignificant,
for some specific applications certain classifiers improve the performance much more

than the others. We have used GMM and NN classifiers for our experiments.

3.3.1 GMM-Based Classifier

A Gaussian classifier is a Bayes’ classifier where conditional probability density
function P(z|h;) for each class, h;, is determined by Gaussian distributions. Each
Gaussian density function, p(z), also called as Gaussian component, is determined

by three variables, ¢;, the weight of the component, y, the mean and o2, the variance.
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A gaussian density function is represented by the formula in (3.6).

" [—; (= “)] (3.6)

= /_OO xp(z)dx (3.7)

oo

o’ = /_OO (z — p)?p(z)dx (3.8)

In a GMM classifier, the discriminant function of the class is calculated as the

weighted summation of gaussian density functions, (3.9).

P(z|h =) = ch(i)N(x,uk(i), 2k (7)) (3.9)

k=1

In our experiments we have used a GMM-based classifier. (The classifier was used
to decide on the input vector of confidence features, maximum 12 features.) Also all
covariance matrices have been assumed as diagonal matrices. The number of com-
ponents for each class have been determined by a set of experiments with different
component combinations. Maximum-likelihood-estimation (MLE) method [8] has

been used for the training of the GMM parameters.

3.3.2 Neural-Net Classifier

In confidence measure calculation, it is popular to combine different features with
multi-layer neural networks. In Figure 3.2 a two-layer perceptron classifer is illus-

trated.

There are works that conduct research on determining the best neural network
topology for the discrimination of confidence features [27] and they report us that
there is no significant difference between simple topologies and more complex topolo-

gies.

In Figure 3.2, the inputs of the network are the confidence features relative to
a word. The hidden layers can be viewed as feature extractors and it is not re-

quried to have the same number of perceptrons in each layer. The value of each
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Figure 3.2: Illustration of a Neural Net classifier

node/perceptron in the network is computed as a linear weighted sum of the input
nodes and passed to a sigmoid type of threshold function. In Equation (3.10) the

computational model for each level in the network is formulated.

hy = sigmoid(gni(hi—1)) (3.10)
gmoid(z) = 1

sigmoid(z) =
g 1+e®

N
gj(l‘) = UJ()j + Zw”xz
i=1

Here, N is the number of inputs labeled as z1, zs, ..., x5 and wy;, wy;, ..., wy; denotes

the weights for the class j.

3.4 Performance Evaluation Methods

Although there is no reliable way of measuring and comparing performance of con-

fidence annotation systems, since the performance of such systems depends on the
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application specific parameters like the quality of the data, in literature various

methods for the evaluation of confidence measuring systems have been proposed.

A confidence measure is used to determine whether a recognized word or sequence of
words should be trusted or rejected. Since words are accepted or rejected according
to a threshold, ranks are used. The quality of the confidence measure resides in
its ability to distinguish correct and wrong words [42]. Here, two different types
of errors can occur, Flase-Acceptance and False-Rejection. In a false-accept case,
a false word is tagged as correct. Similiarly, in a false-reject case, a correct word
is tagged as false. There is a trade-off between the two types of errors, and this

trade-off depends on the choice of the tagging threshold.

Number of false assigned tags for class CORRECT
Number of total tags for class CORRECT

FR Rate = (3.11)

Number of false assigned tags for class FALSE

F A Rate =
are Number of total tags for class FALSE

(3.12)

The simplest measure is the confidence error rate (CER). It is the number of cor-
rectly tagged words divided by the total number of words as seen in Equation (3.13).
The baseline for CER is the ratio of the total number of recognition errors (substi-
tutions and insertions) and the number of recognized words. The main drawback of
the CER is that it depends on the prior probability of the two classes correct and

incorrect [43].

Number of correctly tagged words

CER = (3.13)

Number of words

Another criterion is the equal-error-rate (EER). It is the operating point where the
False-Accept (FA) rate is equal to the False-Reject (FR) rate. It is the point of the
reciever operating characteristic (ROC) curve closest to the origin of the axes. The
ROC curves are used to represent the performance of a confidence measure. (The
ROC curve intersects the axes of FA and FR and plots the EER over decision thresh-

old.) In this work to evaluate the confidence measures, EER criterion was used, since
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it contains a high amount of information for different operating points of the system.

The normalized cross entropy (NCE) is another method and it is defined as the
relative decrease in uncertainty brought by the confidence measure about the status
of the words (correct or false). For a detailed explanition of the criterion, the reader

is referred to [27,42].

These are the most common methods to evaluate confidence measures. The other

methods can be listed as:
e NMCE, a variation of NCE [42]
e Mean Square Error (MSE) [23]
e Normalized NCE [23]

e Net recognition performance (NERP) [23]
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Chapter 4

Experimental Setup

In this chapter, we present a detailed description of the dialogue system at which

the performance of the investigated confidence vectors are evaluated.

4.1 Task Description

The dialogue system developed in the thesis responds to enquiries about courses. To
increase the recognition performance and overall robustness of the dialogue system
we defined a restricted word network, grammar, for both the speech understanding
and speech generation parts. Although regular grammar was used, we tried to cover
all possible question types in this domain. A detailed explanation of the grammar

is presented in Section 4.3.
In Figure 4.1 a sample scenario defined in this handcrafted grammar is illustrated.

Main components of a typical dialogue system had been introduced in Section 1.4.
In a typical system, each task is managed by separate sub-systems like, speech recog-
nizer, speech synthesizer, language generator, language understanding component,
audio server, dialogue manager, and all these sub-systems are connected to each
other by a hub script. For our system, we have used this flexible design scheme. In
the remaining of this chapter, details for each component in the main system are

presented.
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S: Merhaba, Sabanci Universitesi otomatik ders S: Hi, welcome to the Sabanc University automatic

sorgulama sistemine hos geldiniz. course enquiry service. What do you want to learn?
U: C dersini veren ogretim uyesinin adi nedir? U: Who is the instructor of the C course?

S: CS201 dersini veren ogretim uyesi adi Albert S: Albert Levi is the instructor of the CS201 course.
Levi.

U: What is the class hours for Introduction to
U: Introduction to Computing dersi hangi Computing?

saatlerde veriliyor?
S: Class hours for the course CS201 are Monday 9-
S: CS201 dersinin verildigi saatler Pazartesi 9-11 11 and Friday 10-11.

ve Cuma 10-11.
U: Does the course CS201 have laboratory session?
U: CS201 dersinin laboratuvari var mi?
S: Yes, the CS201 course has laboratory session on
S: Evet, CS201 dersinin Sali 9-10 laboratuvari Tuesday at 9-10.

var.

Figure 4.1: A scenario defined on the task grammar. S denotes the system and U

refers to the user.

4.2 Data Collection

To train the acoustic models we have used two separate data-sets. Since research on
ASR for Turkish is relatively new, there is no common speech database like TIMIT
or SWITCHBOARD for Turkish yet. But in a study by Umit Yapanel [4] about
an hour telephony speech data, called TurTel, was collected for Turkish. It is a
general-purpose database and based on statistical modelling of Turkish triphones.
In our experiments we used this database and additionally, since the content of our
domain is a bit far from the scope of the generic model, we needed to collect a new

set, of speech data. But at the end, we used both data to train our acoustic models.

4.2.1 TurTel

Turtel is a general purpose Turkish speech database collected over the public tele-
phone network. Its corpus is based on statistical triphone modelling. It assumes that
%80 of Turkish languge can be represented by 1000 triphones. Table 4.1 presents the
language coverage rates of some triphone sets. Another assumption in the database
is that the pronunciation of words in continuous speech do not dramatically differ
from isolated ones. So the mentioned 1000 triphones are captured using 15-sentence
and 343-isolated-word corpus.

The design structure of the database collection system for TurTel is given in Figure
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Table 4.1: Number of triphones included vs. covered language

Num. of Triphones | Coverage of the Lang.
100 31.80
500 64.44
1000 80.88
1500 87.80
2000 92.15
3000 96.66
4000 98.51
5000 99.33

4.2.

SPEAKER RECORDING SYSTEM

8,000 kHz
l48,000 kHz
SONY -
DAT , DATLink+

Figure 4.2: Data collection structure of Turtel

The database includes speech of people from many different ages. The speaker set
consists of 57 male and 36 female from different age groups and origins in Turkey.

Speaker age distributions of the database is given in Figure 4.3.

To provide an even distribution of different microphone types, three different tele-
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Figure 4.3: Age structure of the speakers in TurTel

phone machines, normal local phones, hands-free phones and cellular phones have
been used. Each of these phones have different type of microphones with consid-
erably different specifications. In Table 4.2, the distribution of telephone types in
TurTel is illustrated.

Table 4.2: Telephone type distribution of TurTel

Gender | Normal | Hands-Free | Cellular
Male 25 8 7
Female 12 6 7

4.2.2 Collected Data

After an analysis we determined that about 500 different triphones used in the task
grammar are not included by TurTel corpus. So we have decided to collect a set of
separate data in addition to TurTel. We collected a 3-hour speech data specific to
our system. First we have constructed a 1000-sentence corpus by using our word
network. Then we have separated the corpus into 10 different sentence groups. Each
group was read by a different speaker. We have used 45 speakers, 31 male and 14
female. Since the dialogue system is designed for use of students, all speakers are

selected from students in different levels, undergraduate, masters and Phd. In our
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campus all students have the same kind of telephone machine, so that in our record-

ings we have used only a such kind of telephone microphone.

From the 45 speakers, 4500 different sentences were recorded. %50 of the database
was used for training the acoustic models. For confidence vector classifier training
%30 of the data was used and the remaining %20 was reserved for overall system
test. In addition to this 4500 sentence database, we also collected another database

of 2000 sentences from only two speakers to use in other projects.

4.2.3 Construction of the Corpus

At first we have tried to train our acoustic models by using the TurTel database.
After the training we have observed that this database was insufficient to model
our specific domain. This was expected because it is quite probable for TurTel
not to cover many triphones from our grammar. The corpus of TurTel had been
constructed after a statistical modelling study on some novels and a newspaper, so
that it mostly covers daily words and context dependent phones. But in our case
there are lots of different context-dependent phones because the grammar includes
many course codes, English pronounciations, and other similar exceptional cases.
For example we need models of such triphones, n-t+r, y-z, s-i+e, that are too rare
to be seen in a generic Turkish text corpus. The abundance of such kind of unseen

triphones forced us to build our own corpus and speech database.

First we produced 100,000 random sentences from our grammar. Then we applied
a statistical method to cover as many triphones as possible using 1000 sentences.
The Maximum Entropy criteria was used in the selection of these sentences. The
concept, Entropy describes the quantity of information and is defined as the amount

of information after seeing an event.

Suppose S denotes a sentence from the set of 100,000 sentences and X = z1,25...2,

denotes the set of uncovered triphones. Then the entropy H (X)) of this random vari-
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able S can be defined by the equation in (4.1).

H(S) = Y P(a;) log % (4.1)

T, €S

Here the entropy H(S) is the amount of information required to specify what kind

of triphone has occurred on average and P(z;) is the probablity for that symbol z;.

At the end we have determined 1000 sentences to cover the remaining of the ti-
phones, not included in TurTel. After that we separated these sentences into 10
equal sets since it is not suitable to give all 1000 sentences to only one speaker for

reading. During data collection each 100-sentence group was used in equal amounts.

4.2.4 System Setup

After the determination of training corpus we built a data collection system. To
create equivalant training conditions with the real use environment we have designed
our data collection system to work over telephone lines without using any other
interfaces like tape recorders or filters. For the system we have used Intel Dialogic
telephone cards and a GUI was designed for easy use. Also by considering future
needs we have designed the system to work in background and to be available to
collect data without an administrator. For each speaker, we assigned a user-id and
a sentence-group number. The speaker invokes the application by calling the system
over public telephone systems. Then the system prompts the instructions for robust
recording and after from this prompt the speaker begins to record by dialing his id

and sentence set-id. The overall algorithm of the system is given in Figure 4.4.
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Figure 4.4: Flow diagram of the data collection system, implemented in Dialogic

CT-ADE environment

45



All speech was recorded in 8kHz sampling rate with 8 bit resolution in mono
quality. By a post-processing procedure all recordings have been checked and the

erroneous parts were removed from the database.

4.3 Training Issues

In this study, triphones were chosen as sub-word units for modelling the acoustic
data. Because triphone modeling considers both left and right context, it models
the most important coarticulation, namely the transitions at the beginning and end

of each phone.

Mel-Frequency Cepstral Coefficients (MFCCs), introduced in Section 2.1.3, are the
parameterisation choice for this application. The parameter set for each frame con-
tains 39 features; CO as the energy component, 12 MFCCs, 13 delta coefficients and
13 acceleration coefficients as in Figure.4.5. Details about the extraction of these

coeffcients has been presented in section 2.1.

M"\N\-ﬂ Speech

FFT based
nﬂmﬂ“nmmr,m spectrun

X

Mel scale
ZM’ triangular filters

Log |—= DCT >
39 Element
A —» Acoustic
5 Vector
A—s

Figure 4.5: Feature Extraction by using MFCCs

All triphones were modelled by using 5-state (with 3 emitting states) and 5-mixture
semi-continuous HMMs. Gaussian distribution function was used to define the dis-

tribution of each mixture. In Figure 4.6 the state topology of a triphone HMM is
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illustrated.

v \/ \j
b,() bi()  by()

Figure 4.6: 5-state left-to-right HMM model topology

One of the important issues in speech recognition with HMMs is training. Here,
Baum-Welch re-estimation has been adopted for training of sub-word HMMs. But
before training a task-grammar, to be used in decoding, and a pronounciation dictio-
nary were defined. The task grammar is constructed for user convenience. Actually
the recogniser requires a word network to be defined using low-level representa-
tions in which each word instance and each transition is listed explicitly. And this
low-level representation can be easily derived from a high level representation auto-
matically. Below the details about the task grammar and pronounciation dictionary

are presented.

4.3.1 Task Grammar

For our application, inputs to the system are generally questions related with courses.
So in the grammar we have tried to cover all types of information requests. Mainly
7 types of questions were covered and for each question type, we have defined vari-
ous styles of asking. Figure 4.7 provides some idea about the design scheme of the

grammar in some extent.
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Figure 4.7: Representation of the task grammar, in some extent.
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While designing the grammar, we had to consider some task-specific problems.
The most important one is the pronounciation of course names. Between students
it is common to describe a course by using its code like CS201, its formal name
like Introdcution to Computing, its Turkish formal name like Bilgisayara Giris or its
possible slang names like C' dersi or Bilgisayar or C++. Another problem was the
pronounciation of the course codes. The most popular way to pronounce a course
code is saying the department-info (ie. CS) by using its English pronounciation and
saying the number part by Turkish pronounciation. In addition to this also there
are people who pronounce the code by using only the Turkish pronounciation. The
variability of the pronounciation of the number part in the course codes is another
significant problem in grammar design. For example there are many ways to pro-

nounce such three-numeral numbers like 201 as illustrated in Figure 4.8.

ce se iki yuz bir
cese ikiyuz bir
sies ikiyuzbir
sies iki sifir bir

Figure 4.8: 4*4=16 possible pronounciations of CS201 in Turkish. Also the network

can be more complicated for the numbers which don’t include zero, like 211.

By considering all these problems we have prepared a grammar by using HTK
grammar definition languge. This simple language provides the ability of defining
variables and writing regular expressions on these variables. After from the con-
struction of the grammar via an HTK tool, the grammar is converted into a word

network for use in training and recognition.

4.3.2 Pronounciation Dictionary

Pronounciation Dictionary is a generic database of words together with their pho-
netic transcriptions. It is used in finding matches between phone sequences and
words. The first step in building a dictionary is to create a sorted list of the re-
quired words. We have created this list from the sentences used in the training via

a simple script. Finding the phonetic transcriptions for each word can be hard for
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some languages but for Turkish it is not. Because Turkish is a phonetic language,
each phone is read as it is written. For languages that are not phonetic, either each
word is processed manually or some rules, if it is possible, should be extracted to

find the correct phone transcriptions.

Although we use context-dependent phones to model acoustic data, during the con-
struction of the pronounciation database we use context-independent phone units.
The main idea of this behaviour underlies the philosophy of system construction.
In HTK all HMMs are refined incrementally. Thus, a typical progression is to start
with a simple set of single Gaussian context-independent phone models and then
iteratively refine them by expanding them to include context-dependency and use

multiple mixture component Gaussian distributions.

4.3.3 Parameter Tying

The single biggest problem in building context-dependent HMM systems is always
the insufficiency of the training data. The more complex the model set, the more
data is needed to have robust estimates of its parameters, and since data is usually
limited, a balance must be struck between complexity and the amount of available
data. For continuous density systems, this balance is achieved by tying parameters
together. For parameter tying, HTK provides two methods, Data-Driven clustering
and Tree-Based clustering. The main idea of data-driven clustering is tying equiv-
alent states across different models [8]. For example one way to reduce the total
number of parameters without significantly altering the models’ ability to represent
the different contextual effects might be to tie all of the centre states across all

models derived from the same monophone as in Figure 4.9.

The limitation of data-driven is that it does not deal with triphones which were

not seen in the training data.

All data corresponding to a monophone is gathered together and a tree is con-
structed where at each node we ask questions about left and right contexts. The

best question that reduces the entropy is chosen at each node. This provides a
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Figure 4.9: Data-Driven clustering of triphone model states

natural clustering of triphones. Tree-based clustering can provide a better quality
of clustering if an efficient set of questions can be defined. For English, qualified
questions had been defined to cluster triphones. Also for Turkish there are works
about clustering of phones [28]. By regarding these works we have derived a set of
triphone-based rules for decision tree clustering in Turkish. The proposed question
set is given in Appendix B. To measure the quality of the rules we have made two ex-
periments. In the first one, called exp1, we have used a basic set of questions during
clustering. Then we have improved the question set and made an other experiment,
called exp2 by using this proposed question set. In Table 4.3 the improvement in

the recognition is illustrated.

Table 4.3: Recognition results obtained from expl,for which a basic set of questions

was used, and exp2, for which the proposed set of questions was used.

Recognition Type expl | exp2

Utterance Recognition Rate | % 82 | % 91
Word Recognition Rate % 91 | % 97

Table 4.3 shows the quality of the proposed question set and it can be used for any

kind of speech recognition application in Turkish.
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4.4  Filler Models and Confidence Measuring

One of the most important components of a dialogue management system is Confi-
dence Server and for this thesis it forms the main interested area. Since recognition
errors can not yet be avoided, it alternatively becomes important for a system to be
able to detect when recognition errors have occurred and take appropriate actions
to recover from these errors. For example, suppose that the system received such a
question;

EFE662 dersini veren dgretim tyesinin adr nedir?

(What is the name of the instructor for the course EE662¢%)

And again let’s suppose that EE662 is not included by the task grammar. Although
the word FE662 is not in the grammar, the recognizer produces its best guess for
this word and it hypothesizes a sentence;

CS201 dersini veren ogretim tyesinin adi nedir?

(What is the name of the instructor for the course CS201%)

After passing from the confidence server, the course code C'S201 would probably be
tagged as incorrect. Here, the language understanding component would need to
be able to determine that for which course the user asks the instructor name. To
make clear the missing information it sends a message to the Language Generator
to prompt the user by asking a targetted question, like;

Hangi ders icin 6gretim tiyesi ismini 6grenmek istiyorsunuz?

(For which course do you request the instructor name?)

As to the answer the Language Understanding component searchs for the database
and sends the related information to the Language Generator to return the requested

information.

The most common way to determine the confidence of a hypothesis is extracting
some features either during recognition or during a post-recognition process like
filler model recognition. By using such features a confidence classifier is trained.
In this thesis 12 word-level candidate confidence measures were extracted for each
hypothesis. Most of the features are derived from a number of different filler models.
In this thesis, performances of different filler-mode-based confidence features were

investigated. To determine a reliable decision boundary, a classifier was trained .
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We have tried two different classifier types, GMM-based classifier and ANN clas-
sifier, to observe the effects of using different type of classifiers. In the following
chapter, more detailed information about the used features, the filler models and

the classifier design issues is presented.

4.5 Testing Issues

In our experiments we used a set of 1080 utterances from 12 speakers and 10 of them
were not used neither in recognizer training nor in classifier training. All sentences
in this data were recorded over public telephone lines in 8kHz and none of them was

an out-of-grammar request.

4.6 Issues about the Other Dialogue Components

As audio server, we used the Dialogic hardware environment. This interface card
receives the calls and records the requests. Also after from the speech synthesis this
card plays the answer to the caller. Dialogic hardware set includes a function library

written in C language. So that it can be easily managed by the Hub script.

The hub script of the system, coded in C++4, connects the other components. Mostly

it consists of system calls to invoke the other components.

Although there is heavy research in language generation and various complex tech-
niques have been proposed, since our grammar is not so complex, we did not need
to build such complex methods for language generation. Instead we used a pre-
defined set of sentence prototypes and according to the request we search for the
best prototype. After the determination of the best prototype, we adapt the proto-

type sentence as to the answer and we send it to the speech synthesizer.

For speech synthesis we used a pre-implemented TTS system by Vural [32]. This

system uses the Festival speech recognition toolkit in the background.

Simply, semantic parser of the system searchs for some contextual clues in the re-
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ceived request and tagged each recognized word with a semantic representation.

Dialogue manager receives semantic tags from the semantic parser and confidence
information from the confidence server. Then it evaluates the recognition accuracy
of the input utterance and it decides on the appropriate action. If there are misrec-
ognized words the action would be requesting this misrecognized information from
the user. But if the user request was understood then it searches the course database
for the requested information and sends this information to the language generation

component to produce the reply.
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Chapter 5

Filler Models

5.1 Overview

As mentioned before, in theory, the confidence information for an hypothesis can be
computed from the denominator part, P(O), of the fundamental formula of Bayes’
theory (3.1).
N
P(O) = Z PO|U)P(U) ~ argglaxP(O|U)P(U) A arg max HP(Oli|uZ~).1/M
=1

I
Ui=u1un
U=u1-uns i=

(5.1)
In Eq. (5.1), U represents the all unit sequences and U; denotes the units used in
the null-grammar unit decoder and M, N are the numbers of units respectively.

Also O, represents the observation sequence that match with that unit model.

In most recognisers the denominator, acoustic probability of the observation is as-
sumed equal for all observations and it is not considered during the calculation of
the likelihood. The aim of filler models is giving an accurate calculation for the

acoustic probability of the observation.

The design philosophy of filler models should be consistent with their common pur-
pose, filling the holes of the grammar in the normal speech recognizer. In order
to do this the acoustic world is modelled in some units and these unit models are
connected to each other within a loop structure (null-grammar). Thus the recogni-
tion process is made free from any effect of constrained unit networks like, grammar
or language model. In other words, filler models output the best unconstrained

acoustic path from the unit networks. In this thesis we have defined filler models
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consisting of units in different details.

In general, the confidence of an utterance is determined by a comparison in between
the best path from the acoustic unit network and the best path from the regular
decoder. The desired ratio between the two should be equal to one or greater than
one. This means that the filler model result is more trustworthy than that of the
regular decoder. This is because filler model matches all units belonging to the
observation with models in the loop without any dependency. However the normal
decoder makes its matching by considering the connectivity of the trained models.
Even if the observation sequence is not in the grammar or in the LM, according to
the dependency of the models it generates an output in any way. For example let’s
assume that the word work is not included in our grammar or LM but the word
verb is included. Also let’s design our filler model as all-phone network, in which all
phones are connected to each other without considering any dependency. For the
acoustic observation of the word work, the normal decoder will give a transcription

)

such as "verb”. However in filler model decoding each phone is matched with a
phoneme model and the concatenation of these best models are returned as ”work”
even if the work is not in the grammar/LM. Then it can be concluded that filler
models are well on detecting the out of vocabulary errors. Also in grammar-based

cases, they can successfully detect the out of grammar sentences or divisions.

In this work five filler models, each of which have different structures, are built
and their contributions, either individually or in combinations with other models
or features, on the robustness of speech recognition are investigated. In general, as
filler model, all-phone networks or catch-all models are used and the output is used
in the normalisation of the normal decoder’s result. In our approach, we propose
to use an all-triphone network, a phone-class decoder in addition to them with dif-
ferent scoring techniques. It is expected that with the increasing detail used in the
unit models, we approximate P(O) better. For example all-triphone network will
have much more confidence information than the all-phone network. Although there
are some overlapping information between the models, there are also discriminative

information specific to that model. To make both information useful in the deci-
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sion process we look for the the best combination in between these models and the
other acoustic features, not related to filler models, in addition to their individual

contributions.

5.2 Triphone Recognition Network

Context-dependent phonemes, called triphones, have been widely used for speech
recognition and they significantly improve the accuracy and trainability. A triphone
model is a phonetic model that takes into consideration both the left and the right
neighboring phones. Triphone models are powerful because they capture the most
important coarticulatory effects. However, as context dependent models generally
have increased parameters, trainability becomes challenging. If we have less data to
train, then the models become overfit to the data and thus the trained models can

not be sensitive to the variations.

To construct a filler model which contains all triphones used in our training data,
first, all different triphones were counted. Then, in order to decrease data-overfitting,
a unit clustering technique was applied and the models were clustered as told in Sec-
tion 3.3. Thus the number of parameters to estimate was decreased. After that, a
null-grammar recognition network was built as in Figure 5.1. The network consists

of 1673 triphone models, a generic silence model and a generic pause model.

Each word belongs to the input utterance is passed from this network and a filler
model score is produced by summing all per-frame scores of the matched triphone
models. Now let’s look at this score calculation in more detail; In traditional filler
model score calculations the word score is computed between the frame boundaries
without normalising the unit durations. But in this approach we calculate per frame
likelihood score for each phone of the word and then these scores are summed up

and the result is assigned to that word as its filler model score.

Assume that the normal decoder search hypothesized word; with a log-likelihood
score S(word;). Although in literature there are some works which use this score,

it is more common to use the per-frame scores Spr(word;) as in (5.2). Here f, and
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Figure 5.1: Triphone-Filler Netwok

fs denote the end and start frames of the hypothesis.

Spr(word;) = w (5.2)

Filler model score for the same acoustic part of the input utterance is calculated as
the summation of the per-frame scores of each sub-unit. Thus, first we normalise
included phones and then we use these normalised phones. It is important to nor-
malise the data in phone level since while speaking people emphasize some phones
much more than the other and this can badly effect the score. Assume that the filler
network found an alignment for the same input utterance as seen in the right part of
the Figure 5.2. The equations (5.3) and (5.4) are used to calculate the filler model
score, Spg(word;) for the word word; and here, Spp(tri) denotes the normalized

viterbi score for the triphone, ¢ri, obtained from the triphone recognition network.
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Figure 5.2: Scoring

Spr(tri;) = 5.3
PF( ) fendtm- - fstarttri ( )
SFs(wOTdi) = ZT (54)

Here, N is the number of triphones in between hypothesized word boundaries. For

this example, filler model score of word; can be calculated as below;

Srs(word;) = % Spr(trig) + Spr(tris) + Spr(trig) + % (S(trig)_(ba— fs) + S(tri;)ffz — 6)>}

In traditional filler score calculations, only the scores of included models are summed
and then this summation is normalized by the the number of frames as in (5.5).
However considering the effect of the emphasis on phones in the word could be
helpful to increase the robustness of the estimate. For this filler model and the

following filler models we used this proposed calculation scheme (5.4).

Srs(word;) = A i 7 S(trig) + S(tris) + S(trig) + S(trig,)_(ba_ ) + S(t”;)ffz =
(5.5)

The derived confidence features from the all-triphones filler network are; pure all-
triphone loglikelihood score, Sps(word;), and the ratio between the normal decoder’s

likelihood score and the filler model’s score (5.6), called as log-likelihood ratio score.

SRs(’UJOTdi) == Spp(wordi) — SFS(wordi) (56)
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The given scatter plot in Figure 5.3 shows the distribution of the test data according
to the triphone filler score. The vertical axis denotes the values of the filler model
score and the other axis denotes the normal decoder score. The blue o represents

correctly recognized words and the red x is used for recognition errors.
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Figure 5.3: Distribution of the test data. X axis denotes the per frame viterbi score

of the normal decoder, and Y axis denotes the triphone filler score.

As to the Figure 5.3 it seems that there is not an obvious separation between the
two classes of hypotheses. This result was an expected one because we can not trust
fully to the used triphone models in the filler model. However, it is also clear that

this information carries some discriminative information.

In this chapter, only the individual contributions of filler models are presented.
But in Chapter 6 the results of some reliable combinations are investigated. All
performances in this thesis are compared according to the EER (defined in Sec-

tion 2.3). And the test data consists of 1080 utterances collected from 12 speakers
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and ten of them were not used neither in decoder training nor in confidence training.

The ROC curve (defined in Section 2.3) in Figure 5.4 was obtained from the sys-
tem which uses the log-likelihood ratio score for triphone filler network as the single

confidence feature.
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Figure 5.4: ROC curve for the single feature ( triphone log-likelihood ratio score)
confidence tagger. Obtained EER value : % 27.12

During the test, we have used two types of classifiers, GMM-classifier and ANN
classifier. In Table 5.1, the EERs obtained from both classifiers for the mentioned

feature, log-likelihood ratio score, are presented.

Table 5.1: EERs obtained from GMM and ANN classifiers for the feature, triphone

log-likelihood ratio score.

GMM Classifier | ANN Classifier
% 27.82 % 27.12

In theory the best performance can be obtained from the network of all possible
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unit models as in Eq. (5.1). But in practice, it is impossible to build and use such a

network. In this case, using detailed sub-unit models can be seen as a good solution.

In this section, we have proposed to use the most detailed practical sub-units, tri-
phones with a new score calculation scheme as a practical alternative to the all-words
network. By using only the triphone filler score we have obtained an acceptable de-
termination. But we expect that using this score, in a combination with other scores
will give much better results. In the remaining of this chapter we follow to define
some filler models and to evaluate their individual performances, and in the next
chapter we will present the results of their combinations either together with other

filler models, or together with other feature types.

5.3  All-Phones Network

In the previous case, in order to increase the detail of acoustic modeling, we used
the network of context-dependent phones as the filler model and its result was the
highest EER in between individual confidence contributions of filler models. But
together with this case, during the remaining filler models, we continuously decrease
the number of models. For example in this case we have only 29 monophone models
and 2 more models to represent pause and silence, instead of having 1673 separate

triphone models, as seen in Figure 5.5.

All-phone network is one of the most widely used filler models. In word-spotting
applications it is added to the word network as an alternative word model and it
works parallel with the normal decoder. But, in other cases like in our approach,
a separate decoding process is used to evaluate the filler model score. We derive
two kind of confidence features from this separate decoding: (i) all-phone network
score and (i7) phone log-likelihood ratio score. To increase the discriminatory effect
of the features, we use the proposed scoring scheme, finding per frame scores for
each phone and then summing this scores to calculate the word score. As men-
tioned before, the main purpose of this scheme is to handle the effect of abnormal
duration lengths of some phones. However, in literature there are results claiming

that phone lengths include confidence information [39,17,41]. If we want to add the
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Figure 5.5: All-Phones Filler Netwok

phone length information to our confidence score, then the best way is to define the
phone-duration information as a separate confidence feature in the feature vector.
In our work, we derive the all-phone network score from the summation of per-frame
scores as defined in Equation (5.4) and use the average phone duration information
as a separate feature. The performance of the feature derived from the all-phone

filler network is evaluated by the ROC curve in Figure 5.6.

In Table 5.2 results obtained from different classifiers are given. Such an EER:%
33.49 means that this feature gives us partially useful information about the confi-
dence of the hypotheses. But as it will be seen later, the best performance will be
obtained from a reliable combination of such features. Although all features include
some overlapping information, they also include some discriminatory information.
A good combination aims to decrease the overlap and increase the discriminatory

information.
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Figure 5.6: ROC curve for the single feature (phone log-likelihood ratio score) con-
fidence tagger. Obtained EER value : % 33.49

Table 5.2: EERs obtained from GMM and ANN classifiers for the feature, phone

log-likelihood ratio score.

GMM Classifier | ANN Classifier
% 33.49 % 33.62

5.4 Monophone Class Filler Model

In this filler model, we decreased the acoustic detail in the model a bit more. In
all-phone filler network, we had used 31 phone models. Now we cluster these phones

into six groups by considering their lingusitic characteristics [8] as in the Table 5.3.

The models of the groups were trained and they were placed in a fully connected

network with two more models, silence and pause as in Figure 5.7.

Because of the reduction in the acoustic detail, the expected discrimination will
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Table 5.3: Phone classes used as garbage models

Name of Phone Class | Phones Included
Stops p,t,Ck,b.d,c,g
Fricatives f,8,5,v,z,j
Nasals m,n
Liquids Lr

Glides y, G, h
Backvowels a, I, 0, u
Frontvowels e, i, 0, U

hopefully be less than the previous filler models. However, less detailed modelling
can provide extra information about the confidence of the word. Sensitivity to the
variations is one of them. It is quite possible to have variations on the acoustic data
and these variations can cause to the rejection of the data by its own model. Such
kind of cases increase the number of False-Rejects. By more general models this

problem can be handled in some extent.

Figure 5.8 is given to show the relationship between the detail in filler models and
FA and FR rates. To prove the above claim, by more general models FRs can be
decreased, the desired behaviour should be that the curve of the less detailed models,
monophone filler network, should have a better performance after the EER point
and it should be more nearer to the FR axis. In Figure 5.8, this desired behaviour is
shown in some extent, but here, while interpreting the figure, the effect of the test

data characteristic should also considered.

In this point it can be said that in some extetnt acoustically detailed filler model
features would be useful in decreasing the False Accepts and similiarly, generic mod-
els would be helpful in decreasing the False-Rejects. Then it would be reasonable to
claim that the best trade-off between the False-Accepts and False-Rejects would be
obtained from an optimal combination of generic and detailed models. In Chapter

5 the performance of filler model feature combinations is investigated.
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Figure 5.7: Phone Class Filler Netwok

The ROC curve in Figure 5.9. is obtained from the confidence evaluation system
which uses only phone-class filler model score as the confidence measure. The EER

is found as %38.78.

5.5 Catch-All Model

This filler model is the simplest and the widely used one among the filler models.
The idea is to model all acoustic variability inside only one model. First such a
model is trained and then it is placed in a loop structure as the only element of the

loop, Figure 5.10.

A catch-all model can be designed with different number of states and different
number of mixtures. In this work two different topologies were tried. In the first
one 5-state topology, seen in Figure 5.10, was used and for the other we used 3-state
structure, seen in Figure 5.11. Two types of confidence features were derived from
these topologies: (i) per-frame recognition score of the 5-state catch all model, and

(i7) per-frame recognition score of the 3-state catch-all model.
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Figure 5.8: Comparison of two model types in the same ROC curve

Again in the evaluation of the system performance, we use ROC curves as in Figure
5.12. and Figure5.13. For 5-state structure the EER was found as %38.37 and for
the 3-state structure it was found, %42.78.
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Figure 5.9: ROC curve for the single feature (phone-class filler score) confidence

tagger. Obtained EER value : % 38.78
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Figure 5.10: Catch-All Filler Netwok, 5-state topology
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Figure 5.11: Catch-All Filler Netwok, 3-state topology
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Figure 5.12: ROC curve for the single feature (5-state catch-all score) confidence
tagger. Obtained EER value : % 38.37
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Figure 5.13: ROC curve for the single feature (3-state catch-all score) confidence
tagger. Obtained EER value : % 42.78

70



Chapter 6

Confidence Vector Extraction and Results

6.1 Overview

In the previous chapter, the individual performance of certain filler models were
investigated. It was concluded that with more detailed acoustic modelling better
results, namely lower EERs, could be obtained. Also it was emphasized that despite
the decrease in performance, each filler model type could provide different informa-
tion about the data. In other words, all filler model types can contain overlapping
information but on the other hand they can also contain some specific information,
which can not be obtained from the other filler model types. For example, detailed
models could be successful on decreasing the False-Accept rate. However generic
models could be relatively more useful in decreasing the False-Reject rate than the
detailed ones. Then combining both information would be a reasonable attempt to

reach better EERs.

In this chapter, the performance of different combination schemes are investigated to
understand the trade-off between the overlapping and discriminating information.
First we introduce the features extracted and then the results on the analysis of

their combinations are presented.

6.2 Extracted Features

We extract 12 different candidate features for each hypothesis. All features are
acoustic word-level features. We focused especially on acoustic features, because

they are generic ones so that they can be used in any kind of application. In Chapter
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3 about 30 acoustic features were presented. Most of these features were derived
from the normal decoding process. However, most of our features are derived from
filler models. The reason for giving higher importance to filler models underlies
the fact that filler models provide the pure, unconstrained acoustic information.
The comparison of this information with the actual decoding result would give us a
quite reliable measure. In addition to filler model features, we have also used normal
decoder based features like the standart deviation of frame scores. Below we list the

features used in our experiments;
1. Per-Frame log-likelihood Score (LL)
2. Per-Frame log-likelihood Score of the triphone recognition network (TL)
3. Per-Frame log-likelihood Score of the monophone recognition network (PL)
4. Per-Frame log-likelihood Score of the phone-class recognition network(CL)
5. Per-Frame log-likelihood Score of the 5-state catch-all model (CF)
6. Per-Frame log-likelihood Score of the 3-state catch-all model (CT)
7. Triphone log-likelihood ratio score (TR)
8. Monophone log-likelihood ratio score (PR)
9. Maximum frame score (MA)
10. Minimum frame score (MI)
11. Standart deviation of frame scores in the hypothesis (SD)

12. Number of phones in the hypothesis (NP)

6.3 Feature Combinations

After the evaluation of features in terms of their ability, in this part these features are
combined into feature vectors and classified by a vector classifier into tags for each
hypothesis to decide if the recognition is correct or not. The selection of features

can be divided into two steps:

1. Selection of appropriate knowledge sources
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2. classification of these feature vectors into the classes recognition-error and correct

In the remainder of this section, we first discuss some issues about the classifiers
used. Then we present experiment on different candiadate feature combinations

with different classifiers.

6.3.1 Classifier Issues

To train the classifier and confidence scoring mechanism, a set of confidence training
data must be used and this data should be independent of the data used to train
the recognizers. In our experiments the confidence training data consists of 1620
sample utterances. Each utterance was passed through the normal decoder and the
filler models. For each word of the utterance a feature vector was extracted. Then
each word hypothesis is labeled as correct or incorrect. The label correct means
this hypothesis should be accepted, while the label incorrect means the hypothesis
should be discarded. For utterance level tagging, certain measures are defined in
language understanding part of the dialog system and they are not based on such
kind of probabilistic methods. Although there are prior results [17,18,19,27] that
propose the use of probabilistic methods, we use only semantic weights for each
word and the summation of these wieghted scores helps us to determine whether

the confident words are enough to understand the meaning of the utterance or not.

We designed two classifiers, a classifier based on GMMs, and a multilayer perceptron
classifier. For each type of classifier we have two classes to be trained, correct and

incorrect.

In the GMM classifier, we first trained both the correct hypotheses class and in-
correct hypotheses class by using the confidence training data. For each class we
determined different number of Gausssian components since in most cases the num-
ber of training data for incorrect hypotheses is much less than the number of correct
ones. While determining the optimum numbers for classes we used a long list of
component number combinations (see in Appendix C, 40 combinations). For each
component combination, a new training process with a testing process was employed

and the best performance component combination was found. During tests, we used
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another independent data, which consisted of 1080 utterances, and we compared the
best EERs found in each test. For each test process, since we did not yet known the
reliable thresold value, we used a list of threshold values( 140 values between -40
and 8) and for each threshold a separate point on the ROC curve was produced. At
last, the EER and the threshold value was found and assigned as the performance
for that combination of component numbers. To find the EER value for a feature
combination, 40 different mixture combinations are tried, and for each mixture com-

bination, we tested by trying 140 different thresholds.

In addition to the GMM classifier, a 2-layer neural network classifier with sigmodial
transfer function units was trained, using a mean square error performance func-
tion and standart backpropagation. There are works[27,18] which report that such
a simple classifier using one single unit in the hidden layer could not be signifi-
cantly outperformed by more complex topologies. After training, to determine the
threshold for the EER value, we have made decision experiments on the test data

as described for the GMM classifier.

6.3.2 Combinations and Results

The problem of determining the best feature combination is two folds, curse of di-
mensionality and information overlapping. Having many features can be seen as
an advantage if the amount of the training data is not limited. But in most cases
the data is limited and so it is not sufficient to accurately define classes on high
dimensional spaces. To combat the curse of dimensionality, the size of the feature
vector should be reduced as much as possible. The other problem is information
overlapping. Only the features providing different discriminating information should
be combined in the same vector, because the overlapped information could decrease

the joint discrimination of the feature vector.

We have determined 59 logical combinations of the 12 candidate features, described
earlier, to get a sense of the tradeoff between the best EER and the other constraints
like, computation time, curse of dimensionality, information overlapping, etc. In Ta-

ble 6.1, EERs obtained for each feature combination by using GMM classifier are
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presented. To find the EER value for a feature combination, 40 different mixture
combinations were tried, and for each mixture combination, 140 different threshold

values were tested.

Below some interpretations on the results are listed;

The Feature TR, triphone log-likelihood ratio, provides the best EER, % 27.82,
among the individual performance. The difference between the best result in the
table, Combination 33 (TR,PR,NP): % 24.32, is only %3.50, and also it is included
by the best combination. Then it is reasonable to say that the most of the discrimi-
nating information in the best feature combination comes from this feature. It is an
expected result as told in Section 5.1 since the feature TR uses the information of
the most detailed modelling of unconstrained speech. The substantial contribution
of Feature TR can be also seen from the good performance of the other combinations
which include TR. From this interpretation, it can be concluded that for a reliable

measure, the Feature TR must definitely be included.

Also the Feature PR provides valuable contribution for its combinations. It is in-
cluded by almost every reliable combination in the table. However its single con-
tribution is less than the one of the Feature TR since it uses less detailed acoustic

models.

Another interpretation can be made on the relation between the number of fea-
tures included by a combination and the increase on the performance. For the
Combination 6 (TR), a single feature combination, the EER is 27.82 and the best
EER in the table is %24.32, Combination33 (TR,PR,NP). The improvement ob-
tained by adding extra two feature is about % 3.5. This improvement is significant
if we think that the cost of extracting these extra features is much less than the
one of the baseline feature. For triphone log-likelihood ratio score, Feature TR, we
search on a network of 1675 models but for phone log-likelihood ratio score, Featre
PR, we search on a network of only 31 models. Now let’s define a case for which %

3.5 improvement could not be considered as significant. For this case assume that
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the EER of the most efficient single feature combination (a) is % 33.49 and the best
EER, % 30, is provided by the combination of a,b and c¢. Again assume that we
extract the information a from a network of 31 models. In such a case, if we need
a search on a network of 1600 models for the feature b, then the improvement can

be considered as insignificant.

Although the Combination 58 (CL,CF,TR,PR,SD,NP) includes the best combina-
tion (TR,PR,NP), its performance (% 26.73) is less than the performance of its
subset, (% 24.32). This means that the Combination 58 includes some overlapping
information and this overlapping badly effects the overall confidence of the feature
vector. Another reason for this case could be the curse of dimensionality problem.
It is possible that the classifier training data is insuffcient to determine a boundary

on such a 6-dimensional space.

Lastly, let’s consider the Combination 50 (CF,TR,PR,SD,NP). Its EER is % 25.15
and it is one of the best performances in the experiment Table 6.1. This combination
can be seen as the ideal combination of all features. Because it includes the normal
decoder information (TR,PR), a generic filler model (CF), two detailed filler models
(TR,PR), distribution of frame scores (SD) and the average phone duration informa-
tion (NP), and thus it covers the whole candidate feature set. Actually it is expected
that this ideal vector would have a better score than the set of (TR,PR,NP), since
it includes features from all possible source types. Curse of dimensionality could be
considered as the probable reason of the decrease in performance . Although it does

not have the highest score, we have adapted this vector into our dialogue system.

In Table 6.1, for all experiments a GMM classifier has been used. We have deter-
mined 12 reliable combinations from the results in Table 6.1, and these combinations

were also experimented by a ANN classifier. The results are compared in Table 6.3.

By considering the results in Table 6.3, it can be concluded that ANN classifier
becomes more efficient with the increase in the dimension of the vector. The par-

allelism between the feature number and the performance of the ANN classifier
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justifies the assumption that each examined feature represents distinct information
about the confidence of the hypothesis and the combination of these distinct infor-

mation improves the confidence annotation accuracy.

7



Table 6.1: Feature combination results for GMM classifier. Feature codes are given

in Section 6.2

Combination Code | Included Features | EER(% )
1 TL 49.87
2 PL 49.53
3 CL 47.01
4 CF 45.61
5) CT 50.00
6 TR 27.82
7 PR 33.49
8 MA 46.40
9 MI 38.72
10 SD 44.24
11 NP 44.16
12 LL,TL 43.22
13 LL,PL 41.18
14 LL,CL 38.78
15 LL,CF 38.37
16 LL,CT 42.78
17 LL, TR 26.98
18 LL,PR 34.42
19 LL,MA 44.53
20 LL,MI 36.22
21 LL,SD 38.21
29 LL,NP 40.10
23 TR,PR 25.62
24 CL.CF 46.68
25 LL,TR,PR 26.52
26 LL,TL,PL 44.11
27 LL,MA MI 37.03
28 LL,CL,CF 41.45
29 TL,PL,CL 45.79
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Table 6.2: Table 6.1-Continued

Combination Code | Included Features EER(% )
30 TL,PL,CF 46.47
31 PL,CL,CF 46.01
32 TR,PR,SD 25.35
33 TR,PR,NP 24.32
34 TL,TR,PR 26.41
35 CL,TR,PR 95.35
36 CF,TR,PR 25.34
37 LL,CF,TR,PR 26.47
38 LL,CL, TR,PR 27.47
39 LL,CT, TR,PR 30.04
40 LL,CL,CF, TR 27.81
41 LL,CL,CF,SD 41.45
42 LL, TR,PR,SD 25.55
43 CL,CF,TR,PR 26.23
44 TR,PR,MA /MI 26.43
45 CL,CF,MA,MI 37.57
46 TR,PR,SD,NP 26.19
47 TL,PL,TR,PR 927.75
48 LL,TL,SD,NP 39.83
49 LL,CL,CF,TR,PR 98.57
50 CF,TR,PR,SD,NP 95.15
51 CF,TR,PR,MA,MI 26.71
52 CL,TR,PR,MA MI 97.39
53 LL,TR,PR,MA,MI 28.81
54 CL,CF,TR,PR,MA MI 27.64
%) LL,CF,TR,PR,MA MI 27.94
56 LL,CL,CF,TR,PR,SD 27.78
57 LL,CL,CF, TR,PR,NP 28.98
58 CL,CF,TR,PR,SD,NP 26.73
99 CL,CF,TR,PR,MA MI,NP | 27.43
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Table 6.3: Experimental results with GMM and ANN classifiers

Combination Code | Included Features GMM(% ) | ANN(% )
6 TR 27.82 27.12
17 LL, TR 26.98 27.03
23 TR,PR 25.62 27.11
25 LL,TR,PR 26.52 27.08
32 TR,PR,SD 25.35 27.93
33 TR,PR,NP 24.32 28.50
43 CL,CF,TR,PR 26.23 27.21
50 CF,TR,PR,SD,NP 25.15 25.34
ol CF, TR,PR,MA ,MI 26.71 24.90
54 CL,CF,TR,PR,MA,MI 27.64 24.88
58 CL,CF,TR,PR,SD,NP 26.73 24.92
59 CL,CF,TR,PR,MA,MI,NP | 27.43 93.42
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

On the practical side of this thesis a dialogue management system was implemented
for Turkish, described in Chapter 4. In this system we focused especially on the
speech recognition and the confidence annotation parts. For speech recognition we
obtained %97.2 word recognition rate. Although an objective comparison is not
feasible for such kind of applications, since the result depends on many application-
dependent parameters, this result is quite satisfactory when compared with other

results in the literature.

On the theoretical side, we investigated the performance of filler models in dif-
ferent details for grammar-based continuous speech recognition systems. After the
evaluation of features in terms of their ability to increase the confidence annotation
accuracy, we investigated the performance improvement when they were combined

in the same feature vector.

The first important contribution of the thesis is the use of a null-grammar triphone
recognition network as a filler model. Among the filler model types investigated, the
best individual performance was obtained from this filler model, triphone recogni-
tion network, with a significant improvement, %5.67 as compared to the all-phone
network, a popular filler model type in literature. The main reason of the improve-
ment is that the triphone network uses much more detailed acoustic models than
the other filler model types. Although this detailed modelling brings some problems

like trainability or computation cost, these disadvantages can be alleviated by some
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implementation tricks like parameter-tying and pruning.

Another contribution is the evaluation of the combinatory performances of filler
models in different details. In general, one type of filler model is used to define a
reliable confidence information for the hypothesis. But it was observed that com-
binations of different filler model types increased the confidence annotation perfor-
mance, %3.5 as compared to the best filler model performance (triphone recognition

network).

Implementation of a dialogue system for Turkish is another important contribu-
tion of this thesis. A framework was defined to build Turkish dialogue systems. In
this framework, a set of decision questions were derived for efficient triphone clus-
tering in Turkish. Also a 3-hour speech data was collected. The database consists
of 45 speakers, 31 male and 14 female, therefore it can also be used for speaker iden-
tification purposes. For data collection an automatic mechanism was implemented

by using Dialogic interface card, and CT-ADE software environment.

7.2 Recommendations for Future Work

This thesis has opened up many new research possibilities on increasing the con-
fidence annotation performance. First, alternative filler model types can be con-
structed like all-syllable network or null-grammar uni-gram network. Since these
topologies also provide detailed modelling of the acoustic data, improvement on the
determination of the confidence on the hypothesis can be expected. Also the per-
formances of reliable combinations of filler models and other type of scores, listed

in Appendix A, can be investigated.

To increase the accuracy in Turkish speech recognition systems, maybe using a
more detailed phone-set can be useful. Oflazer et al. [40] proposed a new phone-set
for Turkish, which consists of 45 different phones instead of standart 29 phone defi-
nitions. To be able to observe the real contribution of this phone set, the experiment

should be done on a sufficiently large training data-set.
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Appendix A

List of Some Confidence Features

(In the list level categorisation is shown by W, refers to word-level, and U, refers to

utterance-level, letters.)

e Acoustic Features

1.

10.

Per-Frame LogLikelihood Score[35]-(W): If we denote W = q1, q2,, 9K,
then the basic measure which is provided by the Viterbi Decoding is defined
as;

POV) = < 3 log(P(gk| XK))

where P(qk|Xk) is the posterior probability of being in state g for acoustic
vector X; and N is the number of frames of the hypothesized word.

. Mean Acoustic Likelihood Score[18]-(W): The mean of the acoustic like-

lihood scores( not the log scores) across all acoustic observations in the word
hypothesis.

. Minimum/Maximum Acoustic Score[18]-(W): The minimum log like-

lihood score across all acoustic observations(frames) in the word hypothesis.
Also it is possible to use the maximum one.

. Acoustic Score Standart Deviation (W): The standart deviation of the

log likelihood acoustic scores across all acoustic observations.

. Mean Difference From Maximum Score[18]-(W): The average differ-

ence, across all acoustic observations in the word hypothesis, between the
acoustic score of a hypothesized phonetic unit and the acoustic score of high-
est scoring phonetic unit for the same observation.

. Utterance Score[18]-(W): The utterance confidence score generated from

the utterance features.

. Number of Acoustic Observations[18]-W: The number of acoustic obser-

vations within the word hypothesis.

. Mean Catch-All Score[18]-(W): Mean score of the catch-all model across

all observations in the word hypothesis.

. Top-Choice Total Score[18]-(U): The total Score from all models(acoustic,

language, pronunciation models)

Top-choice Average Score[18]-(U): The average score per word from all
models for the top-choice hypothesis.
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11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

Top-Choice Number of Words[18]-(U): The number of words in the hy-
pothesized choice

LogAWE-end[27]-(W): The logarithm of the number of active final word
states in the search, averaged over a three-frame window araound the last
frame of the hypothesized word.

NscoreQ[27]-(W): The log-score of the word divided by the log a-priori prob-
ability of the time segment Tw.

NScore[27]-(W): The normalized version of NscoreQ. The log-score of the
word minus the log a-priori probability of time Tw.

LogNPhones[27]-(W): The log of the number of phones of the word.

Top-choice Total N-gram Score[18]-(U): The Total Score of the n-gram
model for the top choice.

Top-choice Average N-gram Score[18]-(U): The average score per word
of the N-gram model for the top choice.

Top-Choice Total Acoustic Score[18]-(U): The total acoustic score summed
over all acoustic observations.

Top-Choice Average Acoustic Score[18]-(U): : The average acoustic
score per acoustic observation for the top-choice

LogAWE-beg[27]-(W): It is the log of the number of active final word states
in the search, averaged over a three-frame window around the first frame of
the hypothesized word.

NDisfluent[27]-(W): The number of surronding non-word entities to the left
and to the right of the word W.

A-Entrop[27]-(W): The average score per word of the N-gram model for the
top choice.

PercPhAll-Frame[17]-(W): The percentage of frames in the hypothesized
word which base phones match the base phones in the phone-only decoding.

PerchPhAll-Phone[25]-(W): Similar to the previous feature except the per-
centage is computed for phones rather than frames.

Phone loglikelihood ratio score[25]-(W): The ratio between the acoustic
scores from the normal decoding and phone-only decoding.

SpkRate[27]-(W): Speaking rate computed by the quotient of the length of
Tw and the expected word length. The expected word length is computed on
the acoustic training set.

SNR[27]-(W): maximum SNR(speak to noise ratio) value with in Tw.

SNR-MinMax[27]-(W): The difference of the minimum and maximum SNR
per frame within the Tw.

Log-Train[27]-(W): The number of times the word was observed in the train-
ing material.

Duration[27]-(W): Reciprocal of SpkRate

N-active-leaf[27]-(W): The average number of active final word atates in
the search during the Tw, into which the word was aligned by the search.

Triphone loglikelihood ratio score (W): The ratio between the acoustic
scores from the normal decoding and triphone-only decoding.
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e Languge Model Features

1.

LM-Ngram[27]-(W): The number of times a backoff in the language model
occurs

. Lexical Score Drop[18]-(U): The drop in the total Ngram score between

the top hypothesis and the second best.

e N-Best List Features

1.

10.

11.

A-stabil[27]-(W): A number(typically 100) of alternative hypothesis with
different weighting between acoustic scores and language model scores is com-
puted. Each of these hypotheses is aligned against the reference output of
the recognizer, where the reference output is defined as the output with the
best weighting between acoustics and language model. For each word of the
reference output, the number of times the same word occurs in the set of al-
ternative hypothesis, normalized by the number of alternative hypotheses, is
taken as feature value. A-stabil-before is the same feature, computed on the
hypothesis before vocal-tract normalization.

Total Score Drop[18]-(U): The drop in the total score between the top
hypothesis and the second hypothesis in the N-best list

. Acoustic Score Drop[18]-(U): The drop in the total acoustic score between

the second best hypothesis.

. Top-Choice Average N-Best Purity[18]-(U): The average N-best purity

of all words in the top-choice hypothesis. The N-best purity for a hypothesized
word is the fraction of N-best hypotheses in which that particular hypothesized
word appears in the same location in the sentence.

. Top-Choice High N-best Purity[18]-(U): The fraction of words in the

top-choice hypothesis which have an N-best purity of greater than one half

. N-Best-Homogeneity[25]-(W): The raito between the score of the paths

containing the hypothesized word to the total path score of N-Best list

. N-Best Word-Rate[25]-(W): The ratio between the number of the paths

containing the hypothesized word to the total number of paths in the N-Best
list

. Average N-best Purity[18]-(U): The average N-best purity of all words in

all of the N-best list hypothesis

. High N-Best Purity[18]-(U): The percentage of words across all N-best list

hypotheses which have an N-best purity of greater than one half

Number of N-best Hypotheses[18]-(U): The number of sentence hypothe-
ses in the N-best list. This number is usually N but sometimes it can be less if
fewer than N hypotheses are left after the search prunes away highly unlikely
hypotheses.

N-best Purity[18]-(W): The fraction of the N-best hypotheses in which the
hypothesized word appears in the same position in the utterance

e Lattice-Based Features
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1. Lattice-PWP-Acoustic / Link Probability [43]-(W): The log posterior
word probability computed from the word lattice by summing and normalizing
the scores of paths passing through the hypothesized word. It is computed
using only acoustic score.

2. Lattice-PWP-LM[43]-(W): The log posterior word probability computed
from the word lattice but using only the language model score

3. Lattice-PWP[43]-(W): Lattice-PWP-Acoustic + Lattice-PWP-LM

4. Hypothesis Density[45]-(W): High number of hypothesis with similar like-
lihood implies a higher probability of error. The number of links that span
the time segment of a word in the most likely hypothesis should be strongly
correlated with the word error. For each word three numbers of competing
links are computed: at the word beginning, at the word end, and at the av-
erage number over the time segment into which the was aligned. To capture
the effects of high or low confidence of the neighbouring words, the hypothesis
density at the last frame and the first frame of the successor word are also
calculated

e Semantic Features

1. Parsing Mode [25]-(W): This feature indicates if a word is parsed by the
grammar. For a parsed word, it further indicates the position of the word
within the slot, either edge or middle.

2. Slot-Backoff-Mode [25]-(W): Using a bigram language model for the slots,
each parsed word is assigned the back-off mode of the slot that it belongs to.
This feature is computed on a two-word window that contains both the current
word and the next word.
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Appendix B

List of Decision-Tree Questions for Triphone Clustering in Turkish

"R_NonBoundary” { *+* }

"R_Silence” { *+sil }

"R_Consonants” { *+b *+c,*+d,*+g,*+G,*+j,*+L*+m, *+n,*+r *+v *+y*+z,
%4 O£, 5+ bk S p, F s, 8,54t )
"R_Resonance” { *+b,*+c *+d,*+g,*+G,*+j,*+1,*+m,*+n *+r ¥ +v *+y*+z }
"R_Non_Resonance” { *+C,*+f*+h *+k *+p,*+s*+S*+t }
"R_Stop” { *+p,*+t,*+C,*+k,*+b,*+d,*+c,*+g }
"R-Nasal” { *+m,*+n }

"R_Fricative” { *+f *+s*+S*+v *+z,*+j }
"R_Liquid” { *+1,*+r }

"R_Glide” { *+y,*+G,*+h }

"R_Vowel” { *+a,*+1,*+0,*+u,*+e,*+1,*4+0,*+U }
"R_Back_Vowel” { *+a,*+I,*+0,*+u }
"R_Front_Vowel” { *+e,*+i,*+0,*+U }
"R_Non_Round_Vowel” { *+a,*+e,*+I,*+i }
"R_Roun_Vowel” { *+0,*+0,*+u,*+U }
"R_-W_Vowel” { *+a,*+e,*+0,*+U }

"R_N_Vowel” { *+u,*+U*+I,*+i }

"R-Voiced” { *+b,*+d,*+g *+v,*+7,%+j,*+c }
"R_UnVoiced” { *+p,*+t,*+k *+£f*+s,*+S *+C }
"R_Double lip” { *+p,*+b,*+m }

"R_Up_teeth” { *+f*+v }

"R_Back_teeth” { *+t,*+d }

"R_.Gum” { *+s,*+z,*+n *+r*+1*+C,*+c }
"R_Hard_Palate” { *+S,*+j,*+y }

"R_Palate 7 { *+k,*+g }

"R_Larynx ” { *+h }

"R_Burst_Palate ” { *+b,*+p }

"R-Gum_Palate ” { *+s,*+z }

"R_Leakeage_Palate ” { *+S,*+j }
"R_Burst_Gum_Palate 7 { *+¢,*+C }

"R-a” { *+a }

"R_b” { *+b }

"Rc” { *+c }

"R_.C” { *+C }

"R.d” { *+d }

"R-e” { *+e }

"RE{ F4f )

"Rg” { *+g }

"R.G” { *+G }
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"R_b” { *+h }

PRI { F41 )

"R { *4i )}

"R {4 )

"R { *+k }

PRI { %41}

"R.m” { *+m }

"Rn” { *4n }

"R.0” { *+o0 }

"R.O” { *+0 }

"Rp” { *+p }

"Ra” { *+r }

"Rs” { *+s }

"RS” { *+S }

"Rt” { ¥+t }

"R_u” { *4u }

"RU” { *4+U }

"Rv” { *+4v }

"Roy” { *+y }

"Rz” { *+z }

"L_NonBoundary” { *-* }

"L _Silence” { sil-* }

"L_Consonants” { b-* c-*,d-*,g-* G-* j-* 1-* m-* n-* r-* v-* y-* 7% C-* £-* h-* k-* p-*s-* S-
*,t_* }

"L_Resonance” { b-*c-*,d-*g-* G-* j-*1-* m-* n-* r-* v-* y-* z-* }
”L_Non_Resonance” { C-* f-* h-* k-* p-*g-* S-* t* 1
PL_Stop” { p-* t-*,C-* k-* b d-* c-¥ g % )
"L_Nasal” { m-*n-* }

"L_Fricative” { f-*s-*S-* v-* z-*j-* }

"L Liquid” { 1-%,0-* }

"L_Glide” { y-*,G-*h-* )

"L_Vowel” { a-*I-* o-* u-*e-*i-* O-* U-* }
"L_Back_Vowel” { a-*I-*o-*u-* }
"L_Front_Vowel” { e-*i-* O-*U-* }
"L_Non_Round_Vowel” { a-*e-*I-*i-* }
"L_Round_Vowel” { o-*O0-*u-*U-* }
"L_W_Vowel” { a-*e-*0-*u-* }
"LN_Vowel” { u-*U-*[*i* 1
"L_Voiced” { b-*,d-*g-* v-* z-* j-* c-* }
"L_UnVoiced” { p-*t-* k-*f-* s-* S-* C-* }
"L_Double lip” { p-*,b-* m-* }
"L_Up_teeth” { f-*v-* }

"L_Back_teeth” { t-*,d-* }

"L_.Gum” { s-*z-* n-*r-*1-* C-*c-* }
"L_Hard Palate” { S-*j-*y-* }

"L_Palate ” { k-*,g-* }

"L_Larynx ” { h-* }

”L_Burst_Palate ” { b-*p-* }
"L_Gum_Palate ” { s-*z-* }
"L_Leakeage_Palate ” { S-*j-* }

"L _Burst_Gum_Palate ” { c-*,C-* }
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"L.a” { a-* }
"L.b” { b-*}
"Le” {ce*}
"L.C” { C-*}
"Ld” {d-*}
"Le” {e*}
"L {£* )
L { g% )
"L.G” { G-* }
"L { h-* }
LI { 1F )
L7 { i}
L7 {5}
"Lk” {k-*}
L { 1* )
"L.m” { m-* }
"Ln” { n-* }
"L.o” {o-*}
"L.O” { O-% }
"Lp” { p-* }
"La” {r-*}
"Ls” {s-*}
"L.S” { S-*}
"Lt” { t-F }
"Lou” { u-*}
"L.U” { U-*}
"Lv? { v-* }
Ly { v+ }
"Lz” {z-*}
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Appendix C

List of Used GMM Component Combinations

Table C.1: Experimented combinations of mixture numbers for the classes, correct
and incorrect

Combination Code | Class, Correct | Class, Incorrect
1 80 10
2 60 20
3 60 10
4 60 5
5 50 25
6 50 15
7 50 10
8 50 5
9 40 25
10 40 15
11 35 20
12 30 20
13 30 15
14 30 10
15 30 5
16 30 1
17 25 25
18 25 20
19 25 10
20 25 5
21 20 20
22 20 10
23 20 5
24 15 15
25 15 10
26 15 5
27 10 10
28 10 5
29 10 3
30 10 2
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Combination Code

Class, Correct

Class, Incorrect

31

10

32

33

34

35
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