
Bounded Operators and Isomorphisms of
Cartesian Products of Fréchet Spaces

P. Djakov, T. Ter z ioğlu, M. Yurdakul,
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Introduction

In [25; 26] it was discovered that there exist pairs of wide classes of Köthe spaces
(X ,Y ) such that

L(X, Y ) = LB(X, Y ) if X ∈X , Y ∈Y, (1)

whereLB(X, Y ) is the subspace of all bounded operators fromX to Y. If either
anyX ∈ X is Schwartzian or anyY ∈ Y is Montel, then this relation coincides
with

L(X, Y ) = Lc(X, Y ) if X ∈X , Y ∈Y, (2)

whereLc(X, Y ) denotes the subspace of all compact operators.
This phenomenon was studied later by many authors (see e.g. [1; 5; 11; 12; 13;

14; 15; 20; 21]); of prime importance are Vogt’s results [24] giving a generally
complete description of the relations (1) for the general case of Fréchet spaces (for
further generalizations see also [3; 4]).

Originally, the main goal in [25; 26] was the isomorphism of Cartesian prod-
ucts (and, consequently, the quasi-equivalence property for those spaces). The pa-
pers made use of the fact that, due to Fredholm operators theory, an isomorphism
of spacesX × Y ' X1× Y1 (X,X1∈X , Y, Y1∈Y ) that satisfies (2) also implies
an isomorphism of Cartesian factors “up to some finite-dimensional subspace”.

In the present paper we generalize this approach onto classesX × Y of prod-
ucts that satisfy (1) instead of (2). Although Fredholm operators theory fails, we
have established that—in the case of Köthe spaces—the stability of an automor-
phism under a bounded perturbation still takes place, but in a weakened form: “up
to some basic Banach space”. In particular, we get a positive answer to Question 2
in [7]: Is it possible to modify somehow the method developed in [25; 26] in or-
der to obtain isomorphic classification of the spacesE0(a) × E∞(b) in terms of
sequencesa, b if ai 6→ ∞ andbi 6→ ∞?

Some of our results are announced without proofs in [9].
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1. Preliminaries

Let (aik)i,k∈N be a matrix of real numbers such that 0≤ aik ≤ ai,k+1 for all i, k.
We denote byKp(aik), 1 ≤ p < ∞, the lp-Köthe space defined by the matrix
(aik)—that is, the space of all sequences of scalarsx = (xi) such that

|x|k :=
(∑

i

(|xi|aik)p
)1/p

<∞ ∀k ∈N;

with the topology generated by the system of seminorms{| · |k, k ∈ N}, it is a
Fréchet space. Ifa = (ai) is a sequence of positive numbers, then the Köthe
spaces

E
p

0(a) = Kp

(
exp

{
−1

k
ai

})
, Ep∞(a) = Kp(exp{kai})

are called, respectively,lp-finite andlp-infinite type power series spaces. These
spaces are Schwartz if and only ifai → ∞. If (ai) and (bi) are sequences of
positive numbers such thatai → ∞ andbi → ∞, thenEp0(a) ' E

p

0(b) (resp.
E
p
∞(a) ' Ep∞(b)) if and only if ai � bi, that is,

∃c > 0 : ai/c ≤ bi ≤ c ∀i
(see [18]).

Each Köthe space has a natural basis(ej ), whereej = (δji). A subspace gen-
erated by the subsequence of the natural basis is calledbasicsubspace. It is well
known thatKp(aik) is not a Montel space if and only if there existk0 and a sub-
sequence of indices(in) such that

∀k ∃Ck : aink ≤ Ckaink0 ∀n.
Therefore we have the following proposition.

Proposition1. Anlp-Köthe space is non-Montel if and only if it contains a basic
subspace isomorphic tolp.

If X andY are topological vector spaces then a linear operatorT : X → Y is
bounded(resp.compact) if there exists a neighborhood of zeroU in X such that
T(U) is a bounded (precompact) set inY.We write(X, Y )∈B (resp.(X, Y )∈K)
if each continuous linear operator fromX into Y is bounded (resp. compact).

We say that a pair(X, Y ) has thebounded(resp.compact) factorizationprop-
erty and write(X, Y ) ∈ BF (resp.(X, Y ) ∈KF ) if each linear continuous oper-
atorT : X → X that factors throughY (i.e. T = S1S2, whereS2 : X → Y and
S1: Y → X are linear continuous operators) is bounded (resp. compact).

After Dragilev [10] and Bessaga [2], a Köthe matrix(aik) is said to be of type
(d1) or (d2) if, respectively, the following condition holds:

(d1) ∃k0 ∀k ∃(m,C) : a2
ik ≤ Caik0aim,

(d2) ∀k ∃m ∀l ∃C : aik ail ≤ Ca2
im.
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LetE be a Fréchet space with basis(ei) and fundamental system of seminorms
(| · |k). If for somep ∈ [1,∞) we have

x =
∑
i

xiei ⇒
∑

(|xi||ei |k)p <∞ ∀k,

then the basis(ei) is calledlp-absoluteandE is isomorphic to thelp-Köthe space
Kp(|ei |k). If the corresponding Köthe matrix is of type(d1) or (d2) then we say
thatE is a (d1)- or (d2)-space and writeE ∈ (d1) or E ∈ (d2). Recall that finite
(resp. infinite) type power series spaces are(d2) (resp.(d1)) spaces.

Zahariuta [26] showed that(X, Y ) ∈ B if X andY are locally convex spaces,
with l1-absolute bases, satisfying respectively the conditions(d2) and(d1). By the
results of Vogt [24] (see Satz 6.2 and Prop. 5.3) it follows that the same is true for
spaces withlp-absolute basis, so the following proposition holds.

Proposition 2. IfX is (d2)-Köthe space andY is (d1)-Köthe space then(X, Y )∈
B. In particular, for anyp, q ∈ [1,∞) we have(Ep0(a), E

q
∞(b))∈B.

2. Bounded Operators in Köthe Spaces

The following statement is crucial for our approach.

Lemma 1. If X = K(aik) is a Köthe space andA ⊂ X is a bounded set, then
for anyk0 and anyε > 0 there exists a Banach basic subspaceB such thatA ⊂
B + εUk0, whereUk0 = { x ∈X : |x|k0 ≤ 1}.
Proof. We give the proof forl1-Köthe spaces; the casep > 1 can be treated
similarly. Since the setA is bounded we may assume without loss of generality
that

A =
{
x ∈X : |x|k =

∑
i

aik|xi| ≤ Ck ∀k
}
.

ChooseCk ↗∞ so thataik/Ck → 0 for all i. Setγi =
∑

k(aik/2kCk); then∑
i

γi|xi| =
∑
i

(∑
k

aik

2kCk

)
|xi| =

∑
k

1

2k

(∑
i

aik

Ck
|xi|
)
≤ 1

for anyx ∈A. Fix anyε > 0 and set

B = [ei : εγi ≤ aik0 ], E = [ei : εγi > aik0 ],

where the square brackets denote the closed linear span of the corresponding vec-
tors. Then obviouslyB is a Banach space and forx ∈A ∩ E we have

|x|k0 =
∑
i

aik0|xi| < ε
∑
i

γi|xi| < ε,

which proves the statement.

Remark 1. It is easy to see that, under the assumptions and notations of the
lemma, if the setA is compact then for anyk0 and for anyε there exists a fi-
nite-dimensional basic subspaceB such thatA ⊂ B + εUk0.
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Theorem 1. If X is a Köthe space andT : X→ X is a bounded(resp. compact)
operator, then there exist complementary basic subspacesB andE such that:

(i) B is a Banach(resp. finite-dimensional) space; and
(ii) if πE and iE are the canonical projection ontoE and embedding intoX,

respectively, then the operator1E − πETiE is an automorphism onE.

Proof. Suppose| · |p, p ∈N, is a fundamental system of norms inX. SinceT is a
bounded operator there exists ak0 such thatT(Uk0 ) is a bounded set inX. Hence

∀k ∃Ck : |Tx|k ≤ Ck|x|k0.

By Lemma 1 (resp. Remark 1) there exists a Banach (resp. finite-dimensional)
basic subspaceB such thatT(Uk0 ) ⊂ B + 1

2Uk0. LetE be the basic subspace that
is complementary toB. Then, settingT1= πETiE : E→ E, we obtain that

|T1x|k0 ≤ 1
2|x|k0 ∀x ∈E.

Now it is easy to see that the operator 1E − T1 is an automorphism. Indeed, for
anyx ∈E consider the series

Sx = x + T1x + T 2
1 x + · · · + T m1 x + · · · . (3)

This series is convergent inE because, for anyk, we have

|T m1 x|k ≤ Ck|T m−1
1 x|k0 ≤ Ck

(
1
2

)m−1|x|k0, m = 1,2, . . . ,

and so, by the Banach–Steinhaus theorem, (3) defines a linear continuous opera-
tor S : E → E. Since(1E − T1)Sx = S(1E − T1)x = x, the operatorS is inverse
to the operator 1E − T1.

3. Isomorphisms of Cartesian Products

As usual, we identify an operatorT : E1×E2→ F1×F2 with the corresponding
2× 2 matrix (Tij ), whose entries are operators acting between the factors of the
Cartesian products.

Lemma 2. LetE1, E2, F1, F2 be topological vector spaces. IfT = (Tij ) : E1×
E2→ F1×F2 is an isomorphism such thatT11: E1→ F1 is also an isomorphism,
thenE2 ' F2.

Proof. Let T −1= (Sij ). Consider the operators

S22: F2→ E2, H : E2→ F2,

whereH = T22− T21T
−1

11 T12. Taking into account thatT11S12+ T12S22 = 0, we
obtain

HS22 = T22S22− T21T
−1

11 T12S22 = T22S22+ T21S12 = 1F2.

In an analogous way, fromS21T11+ S22T21= 0 it follows that
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S22H = S22T22− S22T21T
−1

11 T12 = S22T22+ S21T12 = 1E2.

Hence the spacesE2 andF2 are isomorphic.

The next theorem is a modification of the generalized Douady lemma in [26, Sec.
6]. In [8] an analogous modification is obtained by considering Riesz type opera-
tors instead of bounded operators.

Theorem 2. SupposeX1 is a Köthe space andX2, Y1, Y2 are topological vector
spaces. IfX1× X2 ' Y1× Y2 and (X1, Y2) ∈ BF, then there exist complemen-
tary basic subspacesE andB inX1 and complementary subspacesF andG in Y1

such thatB is a Banach space and

F ' E, B ×X2 ' G× Y2.

If, in addition,(Y1, X2)∈BF, thenG is a Banach space.

Proof. Let T = (Tij ) : X1× X2 → Y1× Y2 be an isomorphism, and letT −1 =
(Sij ). Then we haveS11T11+ S12T21= 1X1. Since the operatorS12T21 is bounded,
by Theorem 1 there exist complementary basic subspacesE andB ofX1 such that
B is a Banach space and the operatorA = πES11T11iE is an automorphism ofE.
It is easy to see that the operatorP = T11A

−1πES11 is a projection onY1. We set

F = P(Y1), G = P−1(0).

Obviously we haveF = T11(E) and, moreover, the restriction ofT11 onE is an
isomorphism betweenE andF. From Lemma 2 it now follows thatB × X2 '
G× Y2.

If, in addition, each operator acting inY1 that factors throughX2 is bounded,
then the same is true for each operator acting inG that factors throughX2.Suppose
H : G×Y2→ B×X2 is an isomorphism and let(Hij ) and(Rij ) be operator 2×2
matrices corresponding toH andH−1. Then we have 1G = R11H11+ R12H21.

Here the operatorR12H21 is bounded because it factors throughX2 and the oper-
atorR11H11 is bounded because it factors through the Banach spaceB. Hence the
operator 1G is bounded; that is,G is a Banach space.

Remark 2. One can easily see by the proof and by Theorem 1 that: (a) if
(X1, Y2) ∈ KF then the spaceB may be chosen to be finite-dimensional; and
(b) if, in addition,(Y1, X2)∈KF then the spaceG also will be finite-dimensional.
So, in this case we obtain a statement that is known (see [8; 26]).

4. Applications

We begin with an observation showing that an infinite-dimensional complemented
Banach subspace in anlp-Köthe space is isomorphic tolp.

Proposition 3. LetX be anlp-Köthe space, and letF andG be complementary
subspaces inX (i.e.,X = F ⊕G). If G is an infinite-dimensional Banach space
thenG ' lp and, moreover,F andGare isomorphic to some basic subspaces ofX.
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Proof. We haveX× {0} ' F ×G. By Theorem 2 there exist complementary ba-
sic subspacesE andB in X and complementary subspacesF1 andG1 in F such
thatB is a Banach space and

F1' E, B ' G1×G.
Since every infinite-dimensional basic Banach subspace of anlp-Köthe space
is isomorphic tolp, we obtain thatB ' lp. On the other hand, each infinite-
dimensional complemented subspace oflp, 1≤ p <∞, is isomorphic tolp (see
[22] or [16]), soG is isomorphic tolp. Finally, sinceB ' lp, its complemented
subspaceG1 is isomorphic to some basic subspace ofB andF ' E ⊕G1 is iso-
morphic to some basic subspace ofX.

This result may be considered as a partial answer to the well-known Pelczyn-
ski problem: Does a complemented subspace of a space with basis have a ba-
sis? Moreover, in this case we confirm the conjecture of Bessaga [2] that each
complemented subspace of a Köthe space is isomorphic to a basic subspace.

The following theorem answers Question 2 in [7]. In fact, we consider a more
general situation.

Theorem 3. SupposeX1, X2, Y1, Y2 are non-Montellp-Köthe spaces such that
X1×X2 ' Y1×Y2. If X1, Y1 ∈ (d2) andX2, Y2 ∈ (d1) thenX1' Y1 andX2 ' Y2.

Proof. By Proposition 2, each operator acting inX1 (resp.Y1) that factors through
Y2 (resp.X2) is bounded. Thus, by Theorem 2 there exist complementary basic
subspacesE andB in X1 and complementary subspacesF andG in Y1 such that

F ' E, B ×X2 ' G× Y2,

andB andG are Banach spaces. ThenB (resp.G) is either a finite-dimensional
space or (by Proposition 3) isomorphic tolp.

Obviously, sincelp × lp ' lp, we haveB × lp ' lp andG × lp ' lp. From
here and Proposition 1 it follows immediately that

X1' X1× lp ' E × B × lp ' F ×G× lp ' Y1× lp ' Y1

and
X2 ' X2 × lp ' X2 × B × lp ' Y2 ×G× lp ' Y2 × lp ' Y2.

In [8], the isomorphic classification of Cartesian productsE
p

0(a)×Eq
∞(b) was

studied by using strictly singular operators. Necessary and sufficient conditions
were obtained for the isomorphism

E
p

0(a)× Eq
∞(b) ' Ep̃0(ã)× Eq̃∞(b̃)

in the case wherep 6= q̃ or q 6= p̃. However the approach used in [8] does not
work in the case wherep = q̃ andq = p̃. The previous theorem covers the case
p = q = p̃ = q̃; the case wherep 6= q, q̃ = p, andp̃ = q is treated in the next
theorem. We consider only the non-Montel case, since if some of the spaces are
Montel then the result is known by [26].
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Theorem 4. Supposep 6= q and the spacesEp0(a), E
q
∞(b), E

q

0(ã), E
p
∞(b̃) are

non-Montel. Then the following conditions are equivalent.

(i) Ep0(a)× Eq
∞(b) ' Eq

0(ã)× Ep∞(b̃).
(ii) Ep0(a)× Eq

∞(b)
qd' Eq

0(ã)× Ep∞(b̃) (where “qd” denotes quasi-diagonal).
(iii) There exist complementary subsequencesa′, a′′, b ′, b ′′, ã′, ã′′, b̃ ′, b̃ ′′ respec-

tively ofa, b, ã, b̃ such thata′′, b ′′, ã′′, b̃ ′′ are bounded;

E
p

0(a
′′) ' lp, E

q

0(ã
′′) ' lq , Eq

∞(b
′′) ' lq , Ep∞(b̃

′′) ' lp;
the spacesEp0(a

′), Eq
∞(b ′), E

q

0(ã
′), Ep∞(b̃ ′) are nuclear; and a′i � ã′i and

b ′i � b̃ ′i . That is,

E
p

0(a
′) ' Eq

0(ã
′), Eq

∞(b
′) ' Ep∞(b̃ ′).

Proof. Since (iii)⇒ (ii) ⇒ (i) we prove only that (i)⇒ (iii) . If (i) holds then,
by Proposition 2 and Theorem 2, there exist complementary subsequencesa′ and
a′′ of a and complementary subspacesF1 andG1 of Eq

0(ã) such thatEp0(a
′′) and

G1 are Banach spaces and

E
p

0(a
′) ' F1, E

p

0(a
′′)× Eq

∞(b) ' G1× Ep∞(b̃).
By Proposition 3 there exist complementary subsequencesã′ andã′′ of ã such that
F1' Eq

0(ã
′), G1' Eq

0(ã
′′), Ep0(a

′′) is either finite-dimensional or isomorphic to
lp, andEq

0(ã
′′) is either finite-dimensional or isomorphic tolq . ThenEp0(a

′) '
E
q

0(ã
′), so by [8, Prop. 4] these spaces are nuclear. From here it follows that

the spacesEp0(a
′′) andEq

0(ã
′′) are infinite-dimensional because otherwiseEp0(a)

or Eq

0(ã) would be nuclear (hence Montel). By Mityagin’s characterization of
isomorphic power series spaces, we obtain thata′i � ã′i .

Thus we have
Eq
∞(b)× lp ' Ep∞(b̃)× lq .

Now by Theorem 2 there exist complementary subsequencesb ′ andb ′′ of b and
complementary subspacesF2 andG2 in Ep∞(b̃) such thatEq

∞(b ′′) andG2 are Ba-
nach spaces andEq

∞(b ′) ' F2. Using Proposition 3, we obtain that there exist
complementary subsequencesb̃ ′ andb̃ ′′ of b̃ such that

Ep∞(b̃
′) ' F2, Ep∞(b̃

′′) ' G2.

Now from the same argument as before it follows that the isomorphic spaces
E
q
∞(b ′) andEp∞(b̃ ′) are nuclear, and Mityagin’s characterization of isomorphic

power series spaces shows thatb ′i � b̃ ′i . Finally by Proposition 3 we have

Eq
∞(b

′′) ' lq and Ep∞(b̃
′′) ' lp.

The methods presented here and in [8] may be used to study the isomorphic
classification of the Cartesian productsKp(A)×Kq(B), whereA is (d2)-matrix
andB is (d1)-matrix. One can easily generalize the results of [8] in order to obtain
characterizations of isomorphisms

Kp(A)×Kq(B) ' Kp̃(Ã)×Kq̃(B̃)



606 P. Djakov, T. Ter z ioğlu, M. Yurdakul, & V. Z ahar iuta

in the case wherep 6= q̃ or q 6= p̃. In fact, our Theorem 3 treats the casep =
q = p̃ = q̃ (which is impossible to treat with the methods of [8]; see Question 2
in [7]). The next theorem is the corresponding generalization of Theorem 4.

Theorem 5. Letp 6= q. Suppose thatKp(A) andKq(Ã) are non-Montel(d2)-
Köthe spaces, and thatKq(B) andKp(B̃) are non-Montel(d1)-Köthe spaces.
Then the following statements are equivalent.

(i) Kp(A)×Kq(B) ' Kq(Ã)×Kp(B̃).

(ii) There exist complementary submatricesA′, A′′, B ′, B ′′, Ã′, Ã′′, B̃ ′, B̃ ′′ re-
spectively ofA,B, Ã, B̃ such that

Kp(A′′) ' lp, Kq(Ã′′) ' lq , Kq(B ′′) ' lq , Kp(B̃ ′′) ' lp;
the spacesKp(A′),Kq(B ′),Kq(Ã′),Kp(B̃ ′) are nuclear; and

Kp(A′) ' Kq(Ã′), Kq(B ′) ' Kp(B̃ ′).

Proof. Since obviously (ii)⇒ (i),we need only prove that (i)⇒ (ii) . If (i) holds
then, by Proposition 2 and Theorem 2, there exist complementary submatricesA′

andA′′ ofA and complementary subspacesF1 andG1 ofKq(Ã) such thatKp(A′′)
andG1 are Banach spaces and

Kp(A′) ' F1, Kp(A′′)×Kq(B) ' G1×Kp(B̃).

By Proposition 3 there exist complementary submatricesÃ′ andÃ′′ of Ã such that
F1 ' Kq(Ã′), G1 ' Kq(Ã′′), Kp(A′′) is either finite-dimensional or isomorphic
to lp, andKq(Ã′′) is either finite-dimensional or isomorphic tolq .ThenKp(A′) '
Kq(Ã′), so by [8, Prop. 4] these spaces are nuclear. From here it follows that the
spacesKp(A′′) andKq(Ã′′) are infinite-dimensional because otherwiseKp(A) or
Kq(Ã) would be nuclear (hence Montel).

Now we have

Kq(B)× lp ' Kp(B̃)× lq .
Repeating the same argument as before, we obtain that there exist complementary
submatricesB ′, B ′′ of B andB̃ ′, B̃ ′′ of B̃ such that

Kq(B ′) ' Kp(B̃ ′), Kq(B ′′) ' lq , Kp(B̃ ′′) ' lp,
and the spacesKq(B ′) andKp(B̃ ′) are nuclear.

Let us note that, in [8] and in Theorem 4, a stronger result was proved: Carte-
sian products of power series spaces may be isomorphic if and only if they are
quasi-diagonally isomorphic. The proof was based on Mityagin’s results [18; 19]
that two power series spaces are isomorphic if and only if they are quasi-diagonally
isomorphic. In general, it is an open problem whether(d1)- and(d2)-Köthe spaces
have this property.
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5. Generalizations and Comments

In the previous section we consider applications to the isomorphic classification of
Cartesian products of(d1)- and(d2)-spaces. Further applications may be obtained
by using the results of Vogt [24] concerning the relation(X, Y ) ∈ B for Fréchet
spaces. Namely, Vogt proved that ifX andY are Fréchet spaces such thatX has
the property(LB∞) andY has the property(DN), then each operator fromX to
Y is bounded. We refer to [24] for definitions of the properties(LB∞) and(DN)
for Fréchet spaces. Here we note only that for Köthe spaces the property(DN)

is equivalent to the property(d1) and, by [24, Prop. 5.4], it is known that a Köthe
space generated by a matrix(aik) has the property(LB∞) if and only if

∀ρk ↑ ∞ ∀p ∃q ∀n0 ∃(N0, C) ∀i ∃k, n0 ≤ k ≤ N0 : aik a
ρk
ip ≤ Ca1+ρk

iq .

Obviously, it is possible to generalize Theorem 3 and Theorem 5 by considering
Köthe spaces with the property(LB∞) instead of(d2)-Köthe spaces.

There are other wide classes of Fréchet spaces for which it is possible to apply
the results of Section 3. Recall that a Fréchet spaceX is called aquojectionif, for
any continuous seminormq(·) onX the quotient spaceX/Kerq is Banach. We
refer to the survey [17] for details concerning quojections.

From [3, 23] it is known that ifE is a quojection then(E, F ) ∈ B if and only
if F has a continuous norm. Using this fact, we immediately obtain the following
statement from Theorem 2.

Theorem 6. SupposeE1, E2 are quojections andF1, F2 are Köthe spaces ad-
mitting continuous norms. IfE1×F1' E2×F2, then there exist complementary
basic subspacesB1, H1 in F1 andB2, H2 in F2 such thatB1 andB2 are Banach
spaces,H1' H2, andB1× E1' B2 × E2.

We may generalize Theorem 6 by considering prequojections instead of quojec-
tions. Recall that a Fréchet spaceE is calledprequojectionif its bidual spaceE′′

is a quojection. Each quojection is a prequojection. It is known (see [17; 23]) that
(E, F )∈B if E is a prequojection andF is a Fréchet space with continuous norm
and the bounded approximation property. Hence, in Theorem 6 we may replace
the requirement “E1, E2 are quojections” by “E1, E2 are prequojections”.

We suspect that the results of [3; 4] may be used to obtain further generaliza-
tions.

In all applications we consider, in fact we used the relationB instead of the
weaker relationBF . It is easy to give an example of a nontrivial pair(E, F ) with
the propertyBF .
Example. First we note that ifE,F1, F2 are Fréchet spaces such that(E, F1)∈
B and(F2, E) ∈ B, then obviously we have that each operator, acting inE, that
factors throughF1×F2 is bounded. We chooseE,F1, F2 to be appropriate Drag-
ilev Lf -spaces. Recall that iff is a logarithmically convex function and(ai) is
a sequence of real numbers such thatai ↑ ∞, then the corresponding Dragilev
space of infinite type is defined as
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Lf ((ai),∞) = K(expf(kai)).

Let f1, f, f2 be chosen in such a way that the functionsf −1
1 ◦ f andf −1 B f2 are

rapidly increasing. We put

E = Lf ((ai),∞), F1= Lf1((ai),∞), F2 = Lf2((ai),∞).
Then it is known by [14] that(F1, E) ∈ K and(E, F2) ∈ K but that(E, F1) /∈ K
and(F2, E) /∈K. SettingF = F1× F2 we obtain the desired example.

One may therefore expect further applications provided the following problem is
solved.

Problem 1. Characterize pairs of Fréchet spaces(E, F ) with the propertyBF .
Our crucial argument was the observation, stated in Lemma 1, that each bounded
set in a Köthe space is “small up to a complemented Banach subspace”. This ar-
gument was used to prove Theorem 1. Let us consider the following generaliza-
tion of this property. We say that a Fréchet spaceX with a fundamental system of
seminorms(| · |k) has the property (SCBS) if, for any bounded setA ⊂ X and for
anyk0 andε > 0, there exist complementary subspacesB andE in X such that
B is a Banach space and

A ⊂ B + εUk0 ∩ E. (4)

It is easy to see that the class of Fréchet spaces with property (SCBS) is larger
than the class of Köthe spaces. Recall that if(aik) is a Köthe matrix andEi is a se-
quence of Banach spaces then we can consider the corresponding “Banach-valued
Köthe space”

X = { x = (xi) : xi ∈Ei, ‖x‖k =
∑

i aik|xi|i <∞ ∀k },
where| · |i is the norm inEi. Equipped with the system of seminorms(‖ · ‖k), X
is a Fréchet space.

Proposition 4. Each Banach-valued Köthe space has the property(SCBS).

The proof is the same as for Lemma 1.
Now, repeating with slight changes the proof of Theorem 1, we obtain the fol-

lowing generalization.

Theorem 7. If X is a Fréchet space with property(SCBS) andT : X→ X is a
bounded operator, then there exist complementary subspacesB andE such that:

(i) B is a Banach space; and
(ii) if πE and iE are the canonical projection ontoE and embedding intoX,

respectively, then the operator1E − πETiE is an automorphism onE.

It is easy to see that Theorem 2 holds if the condition “X1 is a Köthe space” is re-
placed by the condition “X1 has the property (SCBS)”. Of course, this more gen-
eral version of Theorem 2 may be used to obtain more general results on isomor-
phic classification of Cartesian products. In this context the following problem
arises.
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Problem 2. Characterize the class of Fréchet spaces with the property (SCBS).

Finally, we may consider exact sequences instead of Cartesian products. Namely,
suppose that

0−→ F1
i1−→ G1

j1−→ E1−→ 0 and 0−→ F2
i2−→ G2

j2−→ E2 −→ 0 (5)

are exact sequences of Fréchet spaces. As a natural generalization of the isomor-
phic classification problem for Cartesian products, one may consider the following
question.

Problem 3. Is it possible to characterize (under some conditions) the isomor-
phismG1' G2 in terms of the spacesF1, F2, E1, E2?
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Mat. 10 (1986), 338–344.

[24] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt
ist, J. Reine. Angew. Math. 345 (1983), 182–200.

[25] V. P. Zahariuta,On isomorphisms of Cartesian products of linear topological
spaces,Funktsional. Anal. i Prilozhen 4 (1970), 87–88 (Russian).

[26] , On the isomorphism of Cartesian products of locally convex spaces,
Studia Math. 46 (1973), 201–221.

P. B. Djakov T. Terziŏglu
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