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Introduction

In [25; 26] it was discovered that there exist pairs of wide classes of Kéthe spaces
(X, ) such that

L(X,Y)=LB(X,Y) if XeX, Ye), (1)

whereLB(X, Y) is the subspace of all bounded operators fiorto Y. If either
any X € X is Schwartzian or any € Y is Montel, then this relation coincides
with

L(X,Y)=L.(X,Y) if XeX, Ye), )

whereL (X, Y) denotes the subspace of all compact operators.

This phenomenon was studied later by many authors (see e.g. [1; 5; 11; 12; 13;
14; 15; 20; 21]); of prime importance are Vogt’s results [24] giving a generally
complete description of the relations (1) for the general case of Fréchet spaces (for
further generalizations see also [3; 4]).

Originally, the main goal in [25; 26] was the isomorphism of Cartesian prod-
ucts (and, consequently, the quasi-equivalence property for those spaces). The pa-
pers made use of the fact that, due to Fredholm operators theory, an isomorphism
of spacesX x Y >~ X3 x Y1 (X, X1 € X, Y, Y1 € Y) that satisfies (2) also implies
an isomorphism of Cartesian factors “up to some finite-dimensional subspace”.

In the present paper we generalize this approach onto classed of prod-
ucts that satisfy (1) instead of (2). Although Fredholm operators theory fails, we
have established that—in the case of Kdthe spaces—the stability of an automor-
phism under a bounded perturbation still takes place, butin a weakened form: “up
to some basic Banach space”. In particular, we get a positive answer to Question 2
in [7]: Is it possible to modify somehow the method developed in [25; 26] in or-
der to obtain isomorphic classification of the spaggén) x E..(b) in terms of
sequences, b if a; 4 oo andb; A co?

Some of our results are announced without proofs in [9].
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1. Preliminaries

Let (air)i.xen be a matrix of real numbers such thatOa;, < a; 441 for all i, k.
We denote byK?(a;), 1 < p < oo, thel?-Kdthe space defined by the matrix
(a;x)—that is, the space of all sequences of scalats (x;) such that

p
|x ] 1= (quimik)") <00 VkeN;

with the topology generated by the system of seminofms;, &k € N}, itis a
Fréchet space. & = (a;) is a sequence of positive numbers, then the Kéthe
spaces

E§(a) = Kp(exp{—%a,-D, E? (a) = KP(explka;})

are called, respectively?-finite and/?-infinite type power series spaces. These
spaces are Schwartz if and onlydf — oo. If (a;) and (b;) are sequences of
positive numbers such that — oo andb; — oo, thenE§(a) ~ E{(b) (resp.
EZ (a) ~ ELX (b)) ifand only ifa; < b;, that is,

dc>0:q;/c <b; <cVi

(see [18]).

Each Kothe space has a natural b&sj$, wheree; = (§;;). A subspace gen-
erated by the subsequence of the natural basis is dadigidsubspace. It is well
known thatK?(a;) is not a Montel space if and only if there exigtand a sub-
sequence of indiceg,) such that

Vk ACy : ai,x < Crai,i, V1.

Therefore we have the following proposition.

ProrosiTioN 1. Anl?-K&the space is non-Montel if and only if it contains a basic
subspace isomorphic 4.

If X andY are topological vector spaces then a linear operdtoX — Y is
bounded(resp.compacj if there exists a neighborhood of zetbin X such that
T(U) is a bounded (precompact) setinWe write(X, Y) € B (resp.(X,Y) € K)
if each continuous linear operator frakinto Y is bounded (resp. compact).
We say that a paifX, Y) has thebounded(resp.compacj factorizationprop-
erty and write(X, Y) € BF (resp.(X, Y) € KF) if each linear continuous oper-
ator7T: X — X that factors througly (i.e. T = $15», whereS,: X — Y and
S1: Y — X are linear continuous operators) is bounded (resp. compact).
After Dragilev [10] and Bessaga [2], a K6the mat(ix,) is said to be of type
(dy1) or (d») if, respectively, the following condition holds:

(d1) ko Yk A(m, C) 1 af < Cauyim,
(d2) Yk Im V1 AC : agay < Ca?,.
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Let E be a Fréchet space with bagés) and fundamental system of seminorms
(| - lx). If for somep €[1, oco) we have

x=Y xiee = Y (lxilleili)” < oo Vk,
i

then the basige;) is called/”-absoluteand E is isomorphic to thé”-Kdthe space
K”(le;|x). If the corresponding Kothe matrix is of tyés) or (d2) then we say
that E is a(dy)- or (d2)-space and writéZ € (d1) or E € (d2). Recall that finite
(resp. infinite) type power series spaces@kg (resp.(d1)) spaces.

Zahariuta [26] showed thdiX, Y) € B if X andY are locally convex spaces,
with /*-absolute bases, satisfying respectively the conditidgsand(d,). By the
results of Vogt [24] (see Satz 6.2 and Prop. 5.3) it follows that the same is true for
spaces witti”-absolute basis, so the following proposition holds.

ProrosITION 2. If X is (d2)-K6the space and is (dq)-K6the space the@X, Y)
B. In particular, for anyp, g € [1, co) we have(E{ (a), EZ (b)) € B.

2. Bounded Operators in Kéthe Spaces
The following statement is crucial for our approach.

LemMma 1. If X = K(ay) is a Kdthe space and C X is a bounded set, then
for anyko and anye > 0 there exists a Banach basic subspdtsuch thatA c
B + ¢Uy,, WhereUy, = {x € X : |x[i, <1}.

Proof. We give the proof foll-Kéthe spaces; the cage > 1 can be treated
similarly. Since the sefl is bounded we may assume without loss of generality
that

A= {xeX lxle=)anlxi| < Ci Vk }
ChooseCy /' oo so thata; /C, — O for alli. Sety; = Y, (au/2*Cy); then
aix 1 aix
lZ vilxil = [Z(; Zk_Ck>|Xi| = ; §<[Z C—k|xi|) <1
for anyx € A. Fix anye > 0 and set
B =[e; : ey < aixols E =[e; i eyi > ail,

where the square brackets denote the closed linear span of the corresponding vec-
tors. Then obvioushB is a Banach space and fore A N E we have

[Xlko = ) anolxil <&y yilxil <e,
i i
which proves the statement. O

REMARK 1. It is easy to see that, under the assumptions and notations of the
lemma, if the setd is compact then for ango and for anye there exists a fi-
nite-dimensional basic subspaBesuch thatA C B + eUy,.
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TueoreMm 1. If X is a Kdthe space anfi: X — X is a boundedresp. compagt
operator, then there exist complementary basic subspBae®d E such that

(i) Bis a Banachresp. finite-dimensiongkpace and
(i) if =g andig are the canonical projection ont& and embedding int,
respectively, then the operatty — 7z Tig iS an automorphism of'.

Proof. Supposeg - |,, p € N, is a fundamental system of normsAn SinceT is a
bounded operator there exists@such thatl'(Uy,) is a bounded set iX. Hence

Vk 3Cy | Tx| < Ck|x|k0.

By Lemma 1 (resp. Remark 1) there exists a Banach (resp. finite-dimensional)
basic subspacB such tha’(Uy,) C B + %Uko. Let E be the basic subspace that
is complementary t®. Then, setting’y = nTig: E — E, we obtain that

1
|T1x|k0 < §|x|ko Vx e E.

Now it is easy to see that the operater T; is an automorphism. Indeed, for
anyx € E consider the series

Sx=x+Tx+T2x 4+ +T/x+---. 3)
This series is convergent il because, for any, we have
_ -1
T x 1k < ChlT" iy < Ci(3)" Ixlier m=12,...,

and so, by the Banach—Steinhaus theorem, (3) defines a linear continuous opera-
torS: E — E. Since(ly — T1)Sx = S(1z — Ty)x = x, the operatol is inverse
to the operatord — T3. O

3. Isomorphisms of Cartesian Products

As usual, we identify an operat@r: E; x E; — F; x F, with the corresponding
2 x 2 matrix (T;;), whose entries are operators acting between the factors of the
Cartesian products.

LeEmMA 2. LetEy, Eo, F1, F> be topological vector spaces. 1f = (Tj;): E1 x
E, — F1x Fyisanisomorphism suchth@t;: E; — Fj isalso anisomorphism,
thenEz ~ F5.

Proof. LetT ! = (S;;). Consider the operators
Soo: Fo — Eo, H:. E;, — Fy,

whereH = T, — To1Tj7 Tio. Taking into account thafy; S1p + T12822 = 0, we
obtain

HS22 = T22822 — To1Ty; " T12822 = T22522 + T21512 = 1.

In an analogous way, frorfp, 711 + S22721 = O it follows that
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SooH = S23T2p — S22T21 11 T12 = S22T22 + S21T12 = 1g,.

Hence the spacéds, and F, are isomorphic. O

The next theorem is a modification of the generalized Douady lemma in [26, Sec.
6]. In [8] an analogous modification is obtained by considering Riesz type opera-
tors instead of bounded operators.

THEOREM 2. Suppose&X; is a Kéthe space andl,, Y1, Y, are topological vector
spaces. IfX; x X, >~ Y; x Y, and (X3, Y») € BF, then there exist complemen-
tary basic subspace and B in X; and complementary subspadéandG in Y,
such thatB is a Banach space and

F~FE, BXXQZGXYQ.
If, in addition, (Y1, X») € BF, thenG is a Banach space.

Proof. LetT = (Tj;): X1 x X» — Y1 x Y> be an isomorphism, and gt =
(Si)). Then we haves 1711 + S12T21 = 1x,. Since the operatdfy»7>; is bounded,
by Theorem 1 there exist complementary basic subspaees B of X; such that
B is a Banach space and the operatoe g S11T11i IS an automorphism of.
It is easy to see that the operat®r= T3 A~17; 11 is a projection orv;. We set

F = P(YY), G = P70).

Obviously we haveF’ = T13(E) and, moreover, the restriction @f; on E is an
isomorphism betwee® and F. From Lemma 2 it now follows thaB x X, ~
G x Yz.

If, in addition, each operator acting i that factors througtX, is bounded,
then the same is true for each operator acting that factors througl(,. Suppose
H: G xY, — BxX,isanisomorphism and |€¢f;;) and(R;;) be operator % 2
matrices corresponding t8 and H~1. Then we haved = Ri1H11 + RioHo1.
Here the operatoR;,H>; is bounded because it factors througfand the oper-
ator R11Hy; is bounded because it factors through the Banach sPabkence the
operator § is bounded; that i is a Banach space. O

REMARK 2. One can easily see by the proof and by Theorem 1 that: (a) if
(X1, Y2) € KF then the spac& may be chosen to be finite-dimensional; and
(b) if, in addition, (Y1, X») € KF then the spacé€ also will be finite-dimensional.
So, in this case we obtain a statement that is known (see [8; 26]).

4. Applications

We begin with an observation showing that an infinite-dimensional complemented
Banach subspace in &+Kdthe space is isomorphic 1é.

ProrosiTiON 3. LetX be an/?-Kdthe space, and Igt andG be complementary
subspaces iX (i.e., X = F & G). If G is an infinite-dimensional Banach space
thenG ~ [? and, moreoverF andG are isomorphic to some basic subspaceX.of
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Proof. We haveX x {0} ~ F x G. By Theorem 2 there exist complementary ba-
sic subspaceg and B in X and complementary subspad&sandG; in F such
that B is a Banach space and

F]_ZE, BZG]_XG.

Since every infinite-dimensional basic Banach subspace @f-#&®the space
is isomorphic tol”, we obtain thatB ~ [?. On the other hand, each infinite-
dimensional complemented subspac@’ofl < p < oo, is isomorphic td” (see
[22] or [16]), soG is isomorphic td?. Finally, sinceB ~ 7, its complemented
subspacés; is isomorphic to some basic subspaceBadnd F >~ E @ G is iso-
morphic to some basic subspaceXof O

This result may be considered as a partial answer to the well-known Pelczyn-
ski problem: Does a complemented subspace of a space with basis have a ba-
sis? Moreover, in this case we confirm the conjecture of Bessaga [2] that each
complemented subspace of a Kéthe space is isomorphic to a basic subspace.

The following theorem answers Question 2 in [7]. In fact, we consider a more
general situation.

THEOREM 3. SupposeXi, Xo, Y1, Yo are non-Montel”-Kdthe spaces such that
X1 X Xo >~ Y1 X Yo. If X1, Y1 €(dr) andXz, Y, € (dy) thenXl ~ Y andX2 ~ Y.

Proof. By Proposition 2, each operator actingXf (resp.Yy) that factors through
Y, (resp.X,) is bounded. Thus, by Theorem 2 there exist complementary basic
subspace& andB in X; and complementary subspadésndG in Y; such that

F~FE, BXXZZGXYZ,

and B andG are Banach spaces. Th&n(resp.G) is either a finite-dimensional
space or (by Proposition 3) isomorphicito

Obviously, sincd? x [P ~ [P, we haveB x [? ~ [P andG x [? ~ [P, From
here and Proposition 1 it follows immediately that

X122 XixIP>EXBxIP>FxGxIP>YxIP>~Y,

and
X22X2XIPZX2XBXIPZYZXGXIPZYZXIPZYQ.

In [8], the isomorphic classification of Cartesian produgfsa) x E% (b) was
studied by using strictly singular operators. Necessary and sufficient conditions
were obtained for the isomorphism

El(a) x ES,(b) ~ El(a) x EL (b)

in the case where £ g or g # p. However the approach used in [8] does not
work in the case wherg = g andg = p. The previous theorem covers the case

p =q = p = q; the case wherp # g, g = p, andp = ¢ is treated in the next
theorem. We consider only the non-Montel case, since if some of the spaces are
Montel then the result is known by [26].
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THEOREM 4. Suppose # ¢ and the space&}(a), EL(b), EYa), EX(b) are
non-Montel. Then the following conditions are equivalent.
(i) Ef(a) x EL(b) = Ed@) x EL (D).
d -
(i) E§(a) x EL (D) Y E{(a) x E& (b) (where “qd” denotes quasi-diagonal).
(iii) There exist complementary subsequences’, b', b”,a’,a", b', b" respec-
tively ofa, b, a, b such thate”, b”, a”, b” are bounded

EB@")y~1P, E{@"y=~14, EL®B")=~11, EL®b")=~I";

the spacest((a), EL (D), E{(@), EZ(b') are nuclear anda) =< &, and
b =< b/. Thatis,

Ebd) ~ Ed@), E4 (b") ~ EP. (D).

Proof. Since (iii) = (ii) = (i) we prove only that (i}= (iii) . If (i) holds then,
by Proposition 2 and Theorem 2, there exist complementary subsequéaoes
a” of a and complementary subspad@sandG; of Eg(d) such thatEg(a”) and
G, are Banach spaces and

Eld)~F,  El") x EL(b) ~ Gy x EL (b).

By Proposition 3 there exist complementary subsequeti@@a” of a such that
Fi1~ Ei@'), Gi~ E{(@"), E5(a") is either finite-dimensional or isomorphic to
17, and E{(a") is either finite-dimensional or isomorphic t6. Then E{(a’) ~
E{(a"), so by [8, Prop. 4] these spaces are nuclear. From here it follows that
the space€{(a”) andE{(a") are infinite-dimensional because otherwig&a)
or E{(a) would be nuclear (hence Montel). By Mityagin's characterization of
isomorphic power series spaces, we obtain éhat a;.

Thus we have

E4 (b) x 1P ~ EP (b) x 14,

Now by Theorem 2 there exist complementary subsequéricasdb” of b and
complementary subspac&sandG; in EL (b) such thattL (b") andG,, are Ba-

nach spaces and,(b') ~ F,. Usin~g Prqposition 3, we obtain that there exist
complementary subsequenéésandd” of b such that

EP (W)~ F,  EL(b")~Ga.

Now from the same argument as before it follows that the isomorphic spaces
EL(b") and EL,(b") are nuclear, and Mityagin’s characterization of isomorphic
power series spaces shows thak b;. Finally by Proposition 3 we have

E4(b")~19 and EP(b")~I".

The methods presented here and in [8] may be used to study the isomorphic
classification of the Cartesian produ&$(A) x K4(B), whereA is (d,)-matrix
andB is (dy)-matrix. One can easily generalize the results of [8] in order to obtain
characterizations of isomorphisms

KP(A) x K4B) ~ K”(A) x K4(B)
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in the case whergp # g org # p. In fact, our Theorem 3 treats the case=
g = p = g (which is impossible to treat with the methods of [8]; see Question 2
in [7]). The next theorem is the corresponding generalization of Theorem 4.

THEOREM 5. Let p # ¢g. Suppose thaKj’(A) and K“(A) are non-Montekd,)-
Kothe spaces, and tha&?(B) and K?(B) are non-Montel(d,)-Kéthe spaces.
Then the following statements are equivalent.

(i) KP(A) x K9(B) ~ K%A) x K'(B). o
(i) There exist complementary submatricés A”, B’, B”", A’, A”, B’, B” re-
spectively ofd, B, A, B such that

KP(A") ~ 1P, KYA")~19, KUB")~19, KP(B")~I,
the spacek”(A"), K4(B'), K9(A"), K?(B') are nuclear and
KP(A)) ~ K1(A), K9(B') ~ K”(B').

Proof. Since obviously (ii}= (i), we need only prove that (& (ii). If (i) holds
then, by Proposition 2 and Theorem 2, there exist complementary submatfices
andA” of A and complementary subspadgsandG; of K4(A) such thatk 7(A")
andG; are Banach spaces and

KP(A') ~ F, KP(A”) x K9(B) ~ G1 x K”(B).

By Proposition 3 there exist complementary submatriteandA” of A such that
F1~ K9A"), G1~ K%A"), KP(A") is either finite-dimensional or isomorphic
tol?, andK4(A”) is either finite-dimensional or isomorphicith ThenK”(A’) ~
K4(A"), so by [8, Prop. 4] these spaces are nuclear. From here it follows that the
spaceX?(A”) andK4(A") are infinite-dimensional because otherwi§& A) or
K4(A) would be nuclear (hence Montel).

Now we have

K9B) x IP ~ KP(B) x 14.

Repeating the same argument as before, we obtain that there exist complementary
submatricesB’, B” of B andB’, B” of B such that

K%B') ~ K"(B"), K%B")x~1?, K"(B")~=I",
and the spacek“(B’) andK”(B’) are nuclear. O

Let us note that, in [8] and in Theorem 4, a stronger result was proved: Carte-
sian products of power series spaces may be isomorphic if and only if they are
guasi-diagonally isomorphic. The proof was based on Mityagin’s results [18; 19]
that two power series spaces are isomorphic if and only if they are quasi-diagonally
isomorphic. In general, itis an open problem whetlagy- and(d,)-Kéthe spaces
have this property.
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5. Generalizations and Comments

In the previous section we consider applications to the isomorphic classification of
Cartesian products @#,)- and(dz)-spaces. Further applications may be obtained
by using the results of Vogt [24] concerning the relatioh Y) € B for Fréchet
spaces. Namely, Vogt proved thatifandY are Fréchet spaces such tikahas

the property LB*°) andY has the propertyDN ), then each operator froiki to

Y is bounded. We refer to [24] for definitions of the propertie8°°) and(DN)

for Fréchet spaces. Here we note only that for Kéthe spaces the propevty

is equivalent to the properiyl;) and, by [24, Prop. 5.4], it is known that a Kéthe
space generated by a matfix;) has the propertyL B*°) if and only if

Vo 4 oo ¥p Ag VYng I(No, C) Vi 3k, ng <k < Np : aikaf’,f < Cail(:rp".

Obviously, it is possible to generalize Theorem 3 and Theorem 5 by considering
Kothe spaces with the propertf B*) instead of(d,)-Kothe spaces.

There are other wide classes of Fréchet spaces for which it is possible to apply
the results of Section 3. Recall that a Fréchet spaiecalled aguojectionif, for
any continuous seminorgi(-) on X the quotient spac&/Kergq is Banach. We
refer to the survey [17] for details concerning quojections.

From [3, 23] it is known that ifE is a quojection therE, F) € B if and only
if F has a continuous norm. Using this fact, we immediately obtain the following
statement from Theorem 2.

THEOREM 6. SupposeEi, E, are quojections and, F, are Kothe spaces ad-
mitting continuous norms. K1 x F; >~ E, x F,, then there exist complementary
basic subspaceB;, H; in F; and By, H, in F, such thatB; and B, are Banach
spacesH; >~ H,, and By x E1 >~ By x Ej.

We may generalize Theorem 6 by considering prequojections instead of quojec-
tions. Recall that a Fréchet spakés calledprequojectiorif its bidual spacet”
is a quojection. Each quojection is a prequojection. Itis known (see [17; 23]) that
(E, F) e Bif E is aprequojection anfl is a Fréchet space with continuous norm
and the bounded approximation property. Hence, in Theorem 6 we may replace
the requirementE, E; are quojections” by E1, E, are prequojections”.

We suspect that the results of [3; 4] may be used to obtain further generaliza-
tions.

In all applications we consider, in fact we used the relafifbimstead of the
weaker relatiorBF. It is easy to give an example of a nontrivial palt, F') with
the property3.F.

ExampLE. First we note that iz, F1, F; are Fréchet spaces such that F1) €

B and(F», E) € B, then obviously we have that each operator, acting jithat
factors throughf, x F» is bounded. We choog®, Fi, F, to be appropriate Drag-
ilev L;-spaces. Recall that if is a logarithmically convex function an@;) is

a sequence of real numbers such that* oo, then the corresponding Dragilev
space of infinite type is defined as
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L¢((a;), 00) = K(exp f(ka;)).

Let f1, f, f> be chosen in such a way that the functicfrﬂ‘s1L ofandf~to fyare
rapidly increasing. We put

E= Lf((ai)v OO), Fl = Lfl((ai)s OO), F2 = LfZ((ai)9 OO)

Then it is known by [14] thatF1, E) € K and(E, F») € K but that(E, Fy) ¢ K
and(F,, E) ¢ K. SettingF = F; x F, we obtain the desired example.

One may therefore expect further applications provided the following problem is
solved.

ProBLEM 1. Characterize pairs of Fréchet spacEs F') with the property3.F.

Our crucial argument was the observation, stated in Lemma 1, that each bounded
set in a Kéthe space is “small up to a complemented Banach subspace”. This ar-
gument was used to prove Theorem 1. Let us consider the following generaliza-
tion of this property. We say that a Fréchet sp&ceith a fundamental system of
seminormg| - |;) has the property (SCBS) if, for any bounded 4et X and for
anykg ande > 0, there exist complementary subspaé&eandE in X such that
B is a Banach space and

ACB+elU,NE. 4)

It is easy to see that the class of Fréchet spaces with property (SCBS) is larger
than the class of Kéthe spaces. Recall théatjf) is a Kbthe matrix and; is a se-
guence of Banach spaces then we can consider the corresponding “Banach-valued
Kothe space”

X={x=x):xi €k, |xllk =), aulxili < oo Vk},

where| - |; is the norm inE;. Equipped with the system of seminorifis: ||x), X
is a Fréchet space.

ProrosiTioN 4.  Each Banach-valued Kdthe space has the prop@SgBS.

The proof is the same as for Lemma 1.
Now, repeating with slight changes the proof of Theorem 1, we obtain the fol-
lowing generalization.

THEOREM 7. If X is a Fréchet space with proper(@CBS and7: X — Xisa
bounded operator, then there exist complementary subsgaees £ such that

(i) B is aBanach spaceind
(i) if 7 andig are the canonical projection ont& and embedding int&,
respectively, then the operattgy — g Tig is an automorphism of.

It is easy to see that Theorem 2 holds if the conditigh is a Kéthe space” is re-
placed by the conditionX; has the property (SCBS)". Of course, this more gen-
eral version of Theorem 2 may be used to obtain more general results on isomor-
phic classification of Cartesian products. In this context the following problem
arises.
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ProBLEM 2. Characterize the class of Fréchet spaces with the property (SCBS).

Finally, we may consider exact sequences instead of Cartesian products. Namely,
suppose that

0—F-%G6 2 E—0 ad 0— F, %G, 2 E,—0 (5)

are exact sequences of Fréchet spaces. As a natural generalization of the isomor-
phic classification problem for Cartesian products, one may consider the following
guestion.

ProBLEM 3. Is it possible to characterize (under some conditions) the isomor-
phismG; >~ G, in terms of the spaceg,, F», E1, E?

ACKNOWLEDGMENT. The authors are thankful to professor D. Vogt for his inter-
est in the paper and valuable remarks.
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