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Abstract. The main theorem of this note is the following re�nement of the
well-known Lelong-Bremermann lemma:

Let u be a continuous plurisubharmonic function on a Stein manifold 

of dimension n: Then there exists an integer m � 2n + 1, natural numbers

ps, and analytic mappings Gs =
�
g
(s)
j

�
: 
! Cm; s = 1; 2; :::; such that the

sequence of functions

us (z) =
1

ps
max

�
ln
���g(s)j (z)

��� : j = 1; : : : ;m�
converges to u uniformly on each compact subset of 
.

In the case, when 
 is a domain in the complex plane, it is shown that
one can take m = 2 in the theorem above (section 3); on the other hand, for
n-circular plurisubharmonic functions in Cn the statement of this theorem is
true with m = n+ 1 (section 4). The last section contains some remarks and
open questions.

1. Introduction

An important consequence of Oka�s Theorem about characterization of do-
mains of holomorphy in terms of pseudoconvexity is the result on the coincidence
of the class Psh (D) of all plurisubharmonic functions in a pseudoconvex domain
with the class of all Hartogs functions in D (Bremermann [5], see also [7, 16]; the
one-dimensional case has been investigated considerably earlier by Lelong [11]). In
equivalent form this result says that every plurisubharmonic function in a pseudo-
convex domain D is the regularized upper limit of some sequence �i ln jfi (z)j with
fi analytic in D and �i > 0.

An immediate corollary of the above result is the following statement known
also as Lelong-Bremermann Lemma:

Proposition 1. Let u be a continuous plurisubharmonic function on a pseudo-
convex domain D. Then for each compact subset K of D and " > 0 there exists a
natural number N; an analytic mapping F = (fi) : D ! CN ; and numbers �i > 0
such that

ju (z)�maxf�i ln jfi (z)j : i = 1; :::::; Ngj < "; z 2 K:
For more recent related results of this type in various modes of convergence

we refer the reader to [10] and [6]. Proposition 1 does not say anything about the
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behavior of the numbers N = N (K; "). However information about the bound for
N is welcomed in certain investigations like attempts to approximate simultaneously
a pluriregular pair by a sequence of similar analytic polyhedral pairs (see, [12, 13,
18]).

The main result of this paper (Theorem 1) says that the number N in the
above proposition can be taken � 2n + 1, where n is the dimension of D. The
proof is based on a generalization of the reduction argument given in [18], Lemma
2, combined with a perturbation argument for smooth mappings.

In Section 3 we examine the one-dimensional case in more detail and prove that
for the set of all continuous subharmonic functions the least upper bound of the
number of analytic functions involved is just two.

In Section 4 we consider some special classes of plurisubharmonic functions for
which the number N can be better estimated. In the last section we give �nal
remarks and discuss some unsolved questions.

2. Main theorem

Theorem 1. Let u be a continuous plurisubharmonic function on a Stein man-

ifold 
 of dimension n: Then there is a sequence of analytic mappings Gi =
�
g
(i)
j

�
:


! C2n+1 and a sequence of natural numbers pi such that the sequence

(2.1)
1

pi
max

n
ln
���g(i)j (z)

��� : j = 1; 2n+ 1o ; i 2 N
converges to u (z) uniformly on each compact subset of 
.

Proof. Fix a compact subsetK of 
 and � > 0: In view of Lelong-Bremermann
lemma we can �nd analytic on 
 functions fj and �j > 0, j = 1; : : : N such that

(2.2) u (z)� �

4
� v (z) � u (z) ; z 2 K;

where v (z) := max
�
�j ln jfj (z)j : j = 1; N

	
. The natural number N , in general,

depends upon K and �. Since v (z) is continuous on K; we can assume, without

loss of generality, that �j = 1
q ; 1 � j � N with some natural number q:

Set k = 2n + 2 and suppose that N � k. Consider the set Jk of all k-tuples
J = (j1; : : : jk) such that 1 � j1 < : : : < jk � N and introduce the set

�k := fw = (w�) 2 Ck : jw1j = : : : = jw� j = : : : = jwkjg;
For each J = (j�) 2 Jk we de�ne the mapping �J : 
 ��k ! Ck by the formula
�J (z; w) := (fj� (z)� w�). Since the real dimension of the manifold 
 ��k is
2n+k+1; in view of Sard�s Theorem, the closed set �J

�
K ��k

�
in Ck = R2k has

Lebesgue measure zero and hence is nowhere dense in Ck. Therefore all the sets

SJ :=
�
� =

�
�j
�
2 CN :

�
�jv
�
2 �J

�
K ��k

�	
; J = (j�) 2 Jk;

are closed and nowhere dense in CN . So the set S = [
J2Jk

SJ is also closed and

nowhere dense in CN . Thus for each " > 0 there is � =
�
�j
�
2 CN n S with

(2.3) max
����j�� : j = 1; N	 < ":

Then the mapping h = (hj) :=
�
fj + �j

�
has the property:

(2.4) fz 2 K : jhj1 (z)j = : : : = jhj� (z)j = : : : = jhjk (z)jg = ?
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for every J = (j�) 2 Jk. Due to (2.3), (2.2), one can choose " su¢ ciently small to
provide the estimate

(2.5) ju (z)� w (z)j < �

2
; z 2 K;

where w (z) := 1
q max fln jhj (z)j : 1 � j � Ng.

Now set m = k � 1 = 2n+ 1: The property (2.4) helps us to use an idea from
[18] how to reduce the number of functions from N to m. Namely, we construct a

sequence of mappings h(s) =
�
h
(s)
r

�m
r=1

2 A (
)m ; s 2 N; by the formula

(2.6) h(s)r (z) :=
X

J=(j�)2Jr

(hj1 (z) � : : : � hjr (z))
sm!
r ; 1 � r � m

and consider the sequence of functions

(2.7) ws (z) :=
1

qsm!
max

�
ln
���h(s)r (z)

��� : r = 1; : : : ;m� ; s 2 N:
We shall show that there is S0 > 0 such that

(2.8) ju (z)� ws (z)j < �; z 2 K ; s � S0:

It is easily seen that
���h(s)r (z)

��� � 2N max
n
jhj (z)jsm! : 1 � j � N

o
. Hence,

taking into account (2.5), we get the estimate from above

(2.9) ws (z) � u (z) +
�

2
+
N ln 2

qsm!
� u (z) + �; z 2 K; s � S1

with some S1 > 0. Now we will estimate the sequence (2.7) from below. Fix z 2 K:
Then there is r = r (z) � m and J = (j�) 2 Jr such that

jhj1 (z)j = : : : = jhjr (z)j > jhi (z)j , i =2 J:

We choose an open neighborhood Uz b 
 of z so that

d (z) := max
I

sup
�2Uz

����� hi1 (�) � : : : � hir (�)hj1 (�) � : : : � hjr (�)

����� < 1;

where the outer maximum is taken over all r-tuples I = (i�) 2 Jr, I 6= J . By
continuity, we can suppose also that Uz is such that the conditions

jw (z)� w (�)j < �; (1� �) jhj (z)j < jhj (�)j ; � 2 Uz; j 2 J

hold with � > 0 (this number will be chosen later). Then the inequality

���h(s)r (�)
��� � jhj1 (�) � : : : � hjr (�)j

sm!
r

0@1�X
I 6=J

����hi1 (�) � : : : � hir (�)hj1 (�) � : : : � hjr (�)

����s
1Am!

r

� ((1� �) jhj1 (z)j)
sm! �

1� 2N d (z)
s�m!

r

holds for all � 2 Uz with r = r (z). Thus, for � 2 Uz, we have

ws (�) =
1

qsm!
max

�
ln
���h(s)j (�)

��� : j = 1;m� � 1

qsm!
ln
���h(s)r (�)

���
� 1

q
(ln (1� �) + ln jhj1 (z)j) +

1

qsr
ln
�
1� 2N d (z)

s�
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for su¢ ciently large s. Since w (z) = 1
q ln jhj1 (z)j � w (�) � �; we can choose

� = � (z) and S = S (z) so that

ws (�) � w (�)� �=2; � 2 Uz; s � S:

A compactness argument together with (2.5) now gives S2 such that

ws (�) � w (�)� �=2 � u (�)� �; � 2 K; s � S2:

Taking into account (2.9), this yields (2.8) with S0 = max fS1; S2g. Hence, setting
gj := h

(s)
j , j = 1; : : : ;m, and p = qsm! with some s � S0, we obtain an analytic

mapping G = (gj)
2n+1
j=1 : 
! C2n+1 and a natural number p such that

(2.10) sup
z2K

����u (z)� 1

p
max

�
ln jgj (�)j : j = 1; 2n+ 1

����� � �:

Now consider an exhaustion of the Stein manifold by compact sets fKig1i=1 and
a sequence of positive numbers f�ig1i=1 that converges to zero. Let Gi =

�
g
(i)
j

�
:


 ! C2n+1 and pi be constructed as above for K = Ki and � = �i, i 2 N. Then,
due to (2.10), the sequence (2.1) converges to u uniformly on each compact subset
of the Stein manifold 
. �

3. Approximation of subharmonic functions

Here we show that in the one-dimensional case Theorem 1 is true with N = 2.
First we consider two lemmas. During the preparation of this paper for publica-
tion, we became aware about the result (see, preprint [3], Theorem 1.2 ), which
is somehow stronger than Lemma 1 below. We decided to keep our proof of this
lemma since it is more direct and does not use the Yulmukhamedov Lemma (see,
e.g., [3], Lemma A).

Lemma 1. Suppose that � is a positive Borel measure with a compact support
K and the potential

(3.1) v (z) :=

Z
K

ln j� � zj d� (�)

is continuous on C. Then there exist sequences of polynomials Ps and Qs of a
common degree Ns such that the sequence

(3.2) vs (z) :=
M

Ns
max fln jPs(z)j; ln jQs(z)jg ;

where M = � (K), converges to v (z) uniformly on C.

Proof. Without loss of generality we suppose that v 2 C2 (D), hence � = w d�
where w is a continuous function in C, vanishing outside ofK, and � is the Lebesgue
measure on C = R2. Let ds := 2�s. Given s 2 N and � = (�1; �2) 2 Z2 we denote
by �s (�) the square

(3.3) fx+ iy : �1ds < x � (�1 + 1) ds;�2ds < y � (�2 + 1) dsg
and set �s (�) = 1+i

2s+1 +�s (�). Let as (�) be a center of the square (3.3), bs (�)
its upper-right vertex (that is the center of the square �s (�)) and As be the set of
all � 2 Z2 provided that the distance of the square �s (�) from K does not exceed
2ds. The last assumption implies the conditions:

(3.4) K \�s (�) = K \ �s (�) = ?; if � =2 As:
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For � 2 As we choose non-negative integers ms (�) and ns (�) so that the inequal-
ities

(3.5) jMms (�)� 8s� (�s (�))j �M ; jMns (�)� 8s� (�s (�))j �M

hold with M = � (K) and
P
ms (�) =

P
ns (�) = 8

s. We show that the sequences
of polynomials

Ps(z) = u
�2As

(z � as (�))ms(�); Qs(z) = u
�2As

(z � bs (�))ns(�)

are sought-for ones with Ns = 8s.
We introduce Es (respectively Fs) as a set of all points z 2 C with the dis-

tance � 2�(s+2) from all zeros of the polynomial Ps (respectively, Qs). By the
construction we have Es [ Fs = C.

Using the notation ps (z) := M
Ns
ln jPs(z)j, we want to show that

(3.6) jv (z)� ps (z)j � " (s) ; z 2 Es
with " (s)! 0 as s!1.

First we prove this estimate with eps (z) := P
�2As

� (�s (�)) ln jas (�)� zj
instead of ps (z). Fix z 2 Es and introduce the notation:

A0s :=
n
� 2 As : jas (�)� zj �

p
ds

o
; A00s := As nA0s; Bs := [�2A00

s
�s (�) :

Then

jv (z)� eps (z)j �
X
�2As

Z
�s(�)

jln j� � zj � ln jas (�)� zjj d� (�)

� I1 + I2 + I3;

where

I1 := �
X
�2A0

s

Z
�s(�)

ln

�
1� j� � as (�)jjas (�)� zj

�
d� (�) ;

I2 := C

Z
Bs

jln j� � zjj d� (�) ;

I3 := C � (Bs)max fjln jas (�)� zj j : z 2 Bsg
with C := max fw (z) : z 2 Kg, where w is de�ned in the very beginning of the
proof. Since j� � as (�)j � ds < 1=2 if � 2 �s (�), we have I1 � 2M

p
ds =:

"1 (s). On the other hand, I2 � 2�C
R 2pds
0

� jln �j d� =: "2 (s). Finally, due to the
de�nition of Es, we have jas (�)� zj � ds=4, therefore I3 � 4�Cds (s+ 2) ln 2 =:
"3 (s).

Now we set Rs := 4smax fjzj : z 2 Kg. Taking into account that #As � C 04s

with some constant C 0 and applying (3.5), we obtain the estimate:

jps (z)� eps (z)j � lnRs
X
�2As

����� (�s (�))� Mms (�)

8s

����
� MCC 04�s lnRs =: "4 (s)

for all z 2 Es such that jzj � Rs. Combining the above estimates, we obtain that
the estimate (3.6) holds for all z 2 Es such that jzj � Rs with " (s) :=

P4
j=1 "j (s) ;

which tends to 0 as s!1.
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The function  (z) := v (z) � ps (z) is harmonic for jzj > Rs and  (z) =
c ln z + h (z), where h (z) is harmonic at 1. But

c = � (K)

 
1� 8�s

X
�2Ls

ms (�)

!
= 0:

Therefore, by the maximum principle, the estimate (3.6) is true also if jzj > Rs.
In the same way one can prove the estimate

(3.7) jv (z)� qs (z)j � � (s) ; z 2 Fs
for qs (z) := M

Ns
ln jQs (z)j with � (s)! 0 (we may assume that " (s) = � (s)). Then,

combining (3.6), (3.7), we obtain that

(3.8) qs (z)� 2" (s) � ps (z) � qs (z) + 2" (s) ; z 2 Es \ Fs:

Moreover, due to the maximum principle, the right inequality in (3.8) is true
also on every disc fjz � as (�)j < ds=4g, while the left one is so in every disc
fjz � bs (�)j < ds=4g. Since vs (z) = max fps (z) ; qs (z)g, we obtain that the es-
timate jv (z)� vs (z)j � 3" (s) holds for all z 2 C, what completes the proof. �

Lemma 2. Let 
 be a domain in bC with the boundary @
 formed by a �nite
number of disjoint smooth Jordan curves and M = fa1; : : : ; ak; : : : ; amg be a �nite
subset of bCn
, containing just one point from each connected component . Suppose
that ' is a continuous on 
 and harmonic in 
 function. Then for each � > 0 there

is a function g 2 A
�bC nM�, such that g (z) 6= 0 in bC n 
 and a natural number q

such that

(3.9)

����' (z)� 1q ln jg(z)j
���� < �; z 2 
:

Proof. By Keldysh�s approximation theorem (see, e.g., [2], 7.9), for each � > 0
there is a function  (z) harmonic in bC nM and such that

j' (z)�  (z)j < �=2; z 2 
:

On the other hand, due to Logarithmic Conjugation Theorem (see, e.g., [1], 9.15),
there exist s 2 A

�bC nM� and real numbers b1; : : : ; bk; : : : ; bm such that

 (z) = Re s (z) + b1 ln jz � a1j+ : : :+ bm ln jz � amj

for all z 2 bC nM . Now, choosing integers pk and q 2 N so that
max

(
mX
k=1

����bk � pk
q

���� jln jz � amjj : z 2 

)
<
�

2
;

we obtain (3.9) with g (z) = (z � a1)p1 � : : : � (z � a1)pm exp ps (z). �

Theorem 2. Let u be a continuous subharmonic function in a domain D � bC,
D 6= bC. Then for any compact subset K � D and each " > 0 there exist functions
f1; f2, analytic in D; and � > 0 such that

(3.10) ju(z)� �max fln jf1(z)j; ln jf2(z)jg j < "; z 2 K:
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Proof. We may assume that1 =2 D, otherwise we apply a change of variables
w = 1

z�a with a =2 D. On the other hand, we may suppose, without loss of
generality, that K = 
 , where 
 is a domain with the boundary @
 formed by a
�nite number of disjoint smooth Jordan curves. By Riesz Representation Theorem
(see, e.g., [14]) there exist a unique Borel measure � in D and a function ' 2 h (
)
such that

u (z) =

Z
K

ln j� � zj d� (�) + ' (z) ; z 2 
:

It is easy to see that the function v (z) :=
R
K
ln j� � zj d� (�) is continuous on K;

hence (by [9], Theorem 5.1) in C. So, the function ' is continuously extendible
onto K. Therefore, applying Lemmas 1, 2 with � = "=2, we choose � > 0; a couple
of polynomials (P;Q) and a function g 2 A (D) ; so that the relation (3.10) will be
ful�lled if we set

f1(z) := P (z) e�g(z); f2(z) := Q (z) e�g(z);

what completes the proof. �

4. Approximation of n-circular plurisubharmonic functions

Let D be a pseudoconvex n-circular (Reinhardt) domain in Cn. Any plurisub-
harmonic function u : D ! [�1;1) depending only on moduli of coordinates
(we will call such functions n-circular) is convex with respect to the variables
t� = ln jz� j. It is easily seen that this function can be represented in the form

(4.1) u (z) = sup

(
nX
�=1

�� ln jz� j � � : (�1; : : : ; �� ; : : : ; �n;�) 2M
)

with some setM =M (u) � Rn+1. Notice that if D is complete then �� are always
non-negative in (4.1).

Theorem 3. Let u be a continuous n-circular plurisubharmonic function in
a pseudoconvex n-circular domain D. Then there exists a sequence of rational

mappings Q(r) =
�
Q
(r)
j

�
: Cn ! Cn+1 such that the sequence

(4.2) ur (z) = max
n
ln
���Q(r)j (z)

��� : j = 1; n+ 1o ; r 2 N

converges to u (z) uniformly on each compact subset of D. If the domain D is
complete, then all Q(r)j are polynomial.

Proof. Fix any compact set K � D. Since u is continuous, we conclude from
the representation (4.1), following [18], that for each � > 0 there is a function

(4.3) v (z) =
1

q
sup

(
nX
�=1

m�;j ln jz� j+ �j : j = 1; N
)
;

where m�;j are integers and q is a natural number, such that

ju (z)� v (z)j < �; z 2 K:
We will use the notation

(4.4) lj (t) :=

nX
�=1

m�;j ln t� + �j ; Rn+
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where t = (t�) 2 Rn+ = [0;+1)n.
Now we want to choose numbers �j so that

���j�� < �, j = 1; N , and for each
z 2 D the supremum in the expression

(4.5) w (z) :=
1

q
sup

�
lj ((jz� j))� �j : j = 1; N

	
is attained for no more than n + 1 indices j. Set k = n + 2 and denote by Jk
the set of all k-tuples J = fj1; : : : ; jkg such that 1 � j1 < ::: < jk � N . Given
J 2 Jk, we set 
J :=

�
t 2 Rn+ : lj (t) > �1; j 2 J

	
and introduce the real analytic

mapping �J : 
J � R ! Rk so that �J (t; �) := (ljs (t)� �)
k
s=1. Then, applying

the considerations similar to the used in the proof of Theorem 1, we conclude that
there is a nowhere dense set S � RN such that for each J 2 Jk and every t 2 
J
there are at least two di¤erent among the numbers lj (t)� �j ; j 2 J for any choice
of
�
�j
�
2 RN n S, in particular, we can assume that

���j�� < � for all j. Taking into
account that the supremum in (4.3) can be attained only if lj ((jz� j)) > �1, we
conclude now that for any z 2 D the supremum in (4.5) is attained for no more
than n+ 1 indices j.

The function (4.5) can be written in the form

w (z) =
1

q
sup

�
ln jhj (z)j : j = 1; N

	
;

where hj (z) := e�j��j unj=1 z
m�;j
� ; j = 1; N; are analytic in D. Now, applying

the construction (2.6) with m = n + 1 to this functions we obtain the sequence
(2.7) converging to the function w (z) uniformly on the compact K. Finally, taking
a sequence of compact sets Kr exhausting D, �r ! 0 and choosing properly s =
s (r), we obtain the desired sequence ur (z) with rational functions Q

(r)
j (z), by the

construction. If the domain D is complete, then in the above considerations all
integers m�;j must be non-negative, therefore the functions hj (z) and hence the
functions Q(r)j (z) will be polynomials. �

Using the representation of Green pluripotential as a plurisubharmonic n-
circular function ([17], Proposition 1.4.3) yields

Corollary 1. Suppose that K is a pluriregular polynomially convex n-circular
compact subset of a logarithmically convex bounded n-circular domain D. Then the
Green pluripotential

(4.6) ! (z) := lim sup
�!z

fsup fu (�) : u 2 Psh (D) ; ujK � 1; u < 1 in Dgg

can be approximated by some sequence (4.2), with polynomial mappings Q(r); uni-
formly on any compact subset of D.

5. Final remarks

5.1 The following problem arises in connection with Theorems 1,2.

Problem 1. What is the smallest upper bound for N that works for the class
of all continuous plurisubharmonic functions on a given manifold?

Naturally, such a bound is expected to be � 2n, but in order to prove that some
more delicate methods are needed. For certain speci�c classes of plurisubharmonic
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functions the technique used here might yield more re�ned bounds as it was shown
in the previous section.

5.2 Another important example has been considered in [18]: using the con-
struction similar to (2.6) in a combination with some algebraic considerations (see
Lemma 6 there), it is shown there that, in the conditions of Corollary 1, the func-
tion (4.6) can be approximated uniformly on any compact subset of D n K by a
sequence

ur (z) =
1

qr
lnmax

n���Q(r)j (z)
��� : j = 1; no ; r 2 N;

with polynomial mappings
�
Q
(r)
j

�
: Cn ! Cn and natural numbers qr. Further

reducing of the number of polynomials Q(r)j to n = dimD is due to the fact
that the pluripotential (4.6) is a maximal plurisubharmonic function ([15]) in the
annulus D rK.

5.3 Suppose that a sequence

(5.1) ur (z) =
1

qr
lnmax

n���f (r)j (z)
��� : j = 1; no ; r 2 N;

with f (r)j analytic on a given Stein manifold D and qr 2 N, converges uniformly on
each compact subset of a subdomain G � D to a continuous function u (z). Then
it is easily seen that u must be a maximal plurisubharmonic function in D, that
is (ddcu (z))n � 0 in D ( [4, 15]). In connection with 5.2 the following general
question arises

Problem 2. Does the above approximation property characterize the maximal-
ity of a continuous plurisubharmonic function? In other words, given Stein manifold
D and a continuous function u 2 Psh (D) such that (ddcu (z))n � 0 in a domain
G � D; does there exist a sequence (5.1) with f (r)j 2 A (D) , converging uniformly
on each compact subset of G to the function u (z)?

As follows from Lemma 2, the question is answered positively for any plane
domain. For several variables the positive answer to this question is known only in
some particular cases, like that considered in 5.2.

5.4 Let u be a plurisubharmonic function on a Stein manifold 
, dim
 = n,

which can be represented in the form u (z) = lim sup
�!z

lim sup
s!1

ln jhs (�)j
qs

; z 2 
 with

qs > 0 and hs from a given subalgebra L of A (
), that contains the constants.
Then Proposition 1 is true with all the functions fi belonging to the algebra L.
Examining the proof of Theorem 1, one can see that all the functions g(s)j in (2.1)
will belong to the algebra L as well. Therefore Theorem 1.2 of Gamelin-Sibony [8],
combined with such a version of Theorem 1, yields

Theorem 4. Let D be a bounded domain in Cn with smooth boundary, such
that D has a Stein neighborhood basis. Let u be a real-valued continuous function
on D that is plurisubharmonic on D. Then u can be approximated uniformly on D
by functions of the form max

�
�� ln jg� j : � = 1; 2n+ 1

	
; where �� > 0 and g� are

analytic in some neighborhood of D; � = 1; 2n+ 1.
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