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ABSTRACT. The main theorem of this note is the following refinement of the
well-known Lelong-Bremermann lemma:

Let u be a continuous plurisubharmonic function on a Stein manifold Q
of dimension n. Then there exists an integer m < 2n + 1, natural numbers

ps, and analytic mappings Gs = (g§s)) :Q—>C™, s=1,2,..., such that the
sequence of functions

us (2) = imam (ln)g](.s) (z)‘ D j= 1,...,m)

S
converges to u uniformly on each compact subset of €.

In the case, when €2 is a domain in the complex plane, it is shown that
one can take m = 2 in the theorem above (section 3); on the other hand, for
n-circular plurisubharmonic functions in C" the statement of this theorem is
true with m = n + 1 (section 4). The last section contains some remarks and
open questions.

1. Introduction

An important consequence of Oka’s Theorem about characterization of do-
mains of holomorphy in terms of pseudoconvexity is the result on the coincidence
of the class Psh (D) of all plurisubharmonic functions in a pseudoconvexr domain
with the class of all Hartogs functions in D (Bremermann [5], see also [7, 16]; the
one-dimensional case has been investigated considerably earlier by Lelong [11]). In
equivalent form this result says that every plurisubharmonic function in a pseudo-
convex domain D is the regularized upper limit of some sequence «; In | f; (z)| with
fi analytic in D and a; > 0.

An immediate corollary of the above result is the following statement known
also as Lelong-Bremermann Lemma;:

PROPOSITION 1. Let u be a continuous plurisubharmonic function on a pseudo-
convex domain D. Then for each compact subset K of D and & > 0 there exists a
natural number N, an analytic mapping F = (f;) : D — C~, and numbers a; > 0
such that

lu(2) —max{a;In|f; (2)]:i=1,....,N}| <e, ze K.
For more recent related results of this type in various modes of convergence

we refer the reader to [10] and [6]. Proposition 1 does not say anything about the
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behavior of the numbers N = N (K, ¢). However information about the bound for
N is welcomed in certain investigations like attempts to approximate simultaneously
a pluriregular pair by a sequence of similar analytic polyhedral pairs (see, [12, 13,
18]).

The main result of this paper (Theorem 1) says that the number N in the
above proposition can be taken < 2n + 1, where n is the dimension of D. The
proof is based on a generalization of the reduction argument given in [18], Lemma
2, combined with a perturbation argument for smooth mappings.

In Section 3 we examine the one-dimensional case in more detail and prove that
for the set of all continuous subharmonic functions the least upper bound of the
number of analytic functions involved is just two.

In Section 4 we consider some special classes of plurisubharmonic functions for
which the number N can be better estimated. In the last section we give final
remarks and discuss some unsolved questions.

2. Main theorem

THEOREM 1. Let u be a continuous plurisubharmonic function on a Stein man-

ifold Q) of dimension n. Then there is a sequence of analytic mappings G; = (g§i)) :

Q — C?"*! and a sequence of natural numbers p; such that the sequence
1 i JRe—

(2.1) —max{ln‘gj(-)(z)‘: j:1,2n—|—1}7 ieN
Y2

converges to u (z) uniformly on each compact subset of Q.

PrOOF. Fix a compact subset K of Q2 and § > 0. In view of Lelong-Bremermann
lemma we can find analytic on 2 functions f; and o; > 0, j = 1,... N such that

(2.2) u(z)—ggv(z)gu(z), z e K,

where v (2) := max {a;In|f; (2)| : j = 1, N}. The natural number N, in general,
depends upon K and 0. Since v (z) is continuous on K, we can assume, without
loss of generality, that a; = %7 1 < 5 < N with some natural number q.

Set k = 2n + 2 and suppose that N > k. Consider the set Jj of all k-tuples
J = (J1,...Jr) such that 1 < j; < ... < jr < N and introduce the set

AF = {w=(w,) €CF:u|=...=|w,| =... = |wgl},
For each J = (j,) € Jr we define the mapping ®; : Q xAF — C* by the formula
@ (2,w) := (fj, (2) —w,). Since the real dimension of the manifold Q xA* is

2n+k+1, in view of Sard’s Theorem, the closed set ® ; (K X Ak) in C* = R?* has
Lebesgue measure zero and hence is nowhere dense in C*. Therefore all the sets

Syp={C=(¢;) €CN:(¢;,) €@y (K x A"}, J=(jy) € T,
are closed and nowhere dense in CV. So the set S = JeUJkS 7 is also closed and
nowhere dense in C. Thus for each € > 0 there is 7 = (77]-) € CN'\ S with
(2.3) max{|77j| :j=1,N} <e.
Then the mapping h = (h;) := (f; + nj) has the property:
(2.4) {ze K:fhj () =...= [, ()| = ... = [h;, (2)[} = &
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for every J = (j,) € Jx. Due to (2.3), (2.2), one can choose ¢ sufficiently small to
provide the estimate

0
=, 2€K
27 z )
where w (z) := %max{ln\hj (2)|:1<j< N}

Now set m = k — 1 = 2n + 1. The property (2.4) helps us to use an idea from
[18] how to reduce the number of functions from N to m. Namely, we construct a

sequence of mappings h(*) = (hgs)) € A(Q)™, s €N, by the formula
r=1

(2.5) lu(z) —w(z)] <

(2.6) WO ()= Y (hy(2) e by ()T 1< r<m
J:(.jV)EJr

and consider the sequence of functions

(2.7) ws (2) = ﬁmax (1n)h£5) (z)‘ cr=1,... ,m) , seN.

We shall show that there is Sy > 0 such that
(2.8) lu(z) —ws(2)| <98, z€ K, s> S.

It is easily seen that ‘hgs) (2)

< 2N rnax{|hj ())™:1<5< N}. Hence,
taking into account (2.5), we get the estimate from above

6 NIn2
. < —
29w su@E+g ol

<wu(z)4+4, z€K, s>5;
with some S; > 0. Now we will estimate the sequence (2.7) from below. Fix z € K.
Then there is r =7 (2) <m and J = (j,) € J; such that
hj, ()| == [y, ()| > [hi ()], i ¢ T
We choose an open neighborhood U, € € of z so that

hi, (C) ..+ hi, (€)
7 (O hﬂ(o‘}“’

where the outer maximum is taken over all r-tuples I = (i,) € J., I # J. By
continuity, we can suppose also that U, is such that the conditions

[w(2) —w(Q| <o, (L=0a)lh; ()| <[h; (OI, C€V:, je
hold with o > 0 (this number will be chosen later). Then the inequality

d(z) == max sup {
I cev.

hi, (€) -+ hi, (O)
hiy (Q)+v By, (C)

> ((1=a)|hy, ()™ (1-2V d(2)7) "
holds for all ¢ € U, with r = r(z). Thus, for ¢ € U,, we have

w, (C) !

gsm!

OO = s (© - by O1F (1=

I£J

Y

In

1 -
= o max (ln‘hg.s) (C)‘ gy = 1,m) >

> 3(111(1 — o) +Inlhy, (2))) + q% In (12" d(2)7)

P ()]
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for sufficiently large s. Since w(z) = %ln|hj1 (z)] > w(¢) — o, we can choose
oc=o0(z) and S = S (z) so that
ws () 2 w(() =0/2, (€ Us, 5285
A compactness argument together with (2.5) now gives Ss such that
ws (() 2w () =6/2 >u(() =0, (€K, s> 5.
Taking into account (2.9), this yields (2.8) with Sy = max {S1, S2}. Hence, setting
gj = hés), j=1,...,m, and p = gsm! with some s > Sy, we obtain an analytic

mapping G = (gj)?gL1 : 0 — C?**! and a natural number p such that

(2.10) sup |u(z) — 1max (Inlg; (Q): j=T1.2n+ 1)‘ <.
zeK p

Now consider an exhaustion of the Stein manifold by compact sets {K;};-, and

a sequence of positive numbers {4d;};-, that converges to zero. Let G; = (g;-i)) :

Q) — C?>**! and p; be constructed as above for K = K; and § = 6;, i € N. Then,
due to (2.10), the sequence (2.1) converges to u uniformly on each compact subset
of the Stein manifold 2. a

3. Approximation of subharmonic functions

Here we show that in the one-dimensional case Theorem 1 is true with N = 2.
First we consider two lemmas. During the preparation of this paper for publica-
tion, we became aware about the result (see, preprint [3], Theorem 1.2 ), which
is somehow stronger than Lemma 1 below. We decided to keep our proof of this
lemma since it is more direct and does not use the Yulmukhamedov Lemma (see,
e.g., [3], Lemma A).

LEMMA 1. Suppose that p is a positive Borel measure with a compact support
K and the potential

(3.1) 0= [ lc=2du(0)

is continuous on C. Then there exist sequences of polynomials Ps; and Qs of a
common degree Ng such that the sequence

max {In | P;(z)[, In [Qs(2)[},

where M = p (K), converges to v (z) uniformly on C.

(3.2) vs (2) 1= ]]\\74

S

PROOF. Without loss of generality we suppose that v € C? (D), hence = w d\
where w is a continuous function in C, vanishing outside of K, and ) is the Lebesgue
measure on C = R2. Let d, :=27°. Given s € N and a = (a1, a») € Z? we denote
by Ag («) the square
(3.3) {z+iy:ards <z < (a1 +1)ds;aads <y < (az+1)ds}
and set Ag (o) = 35 + A, (). Let as (a) be a center of the square (3.3), b, ()
its upper-right vertex (that is the center of the square As (o)) and As be the set of

all a € Z? provided that the distance of the square A, («) from K does not exceed
2ds. The last assumption implies the conditions:

(3.4) KnNnAs(a)=KNA;(a) =2, if a ¢ As.
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For o € A, we choose non-negative integers my () and ng (@) so that the inequal-
ities

(35)  [Mmyg (o) =8 u(As ()] < M; [Mng (o) =8 (As ()] < M

hold with M = p (K) and Y mg (o) = > ns (o) = 8. We show that the sequences

of polynomials

Pi(z) = 1 (2= as (@)™ Quz) = 11 (2 by (@)™

are sought-for ones with Ny = 8°.

We introduce Es (respectively Fy) as a set of all points z € C with the dis-
tance > 27+2) from all zeros of the polynomial P, (respectively, @Q,). By the
construction we have F, U Fy = C.

Using the notation py (2) := NMS In | Ps(2)|, we want to show that

(3.6) |v(2) —ps (2)] <e(s), z € Es

with € (s) — 0 as s — oo.
First we prove this estimate with ps (2) 1= >0 c4 #(As (@) In]as (@) — 2|
instead of ps (#). Fix z € E, and introduce the notation:

A= {ac Al (@)~ 21 2 VA |, ALi= AN\ AL By i=UncarAs (@)
Then
[0 (2) =ps (2)] < Z/ I [¢ =2 = Infas (@) = 2[| dp (C)

a€Ag
< I1+12+I3,
where
(-l
1w (C) s
Z;/ < ACEE

1, :=C/B ¢ — 2] dA (Q),

I3 := C\(Bs)max {|ln|as (o) — 2] | : z € Bs}
with C' := max{w (z) : z € K}, where w is defined in the very beginning of the
proof. Since |¢ —as (a)] < ds < 1/2 if ( € Ay(a), we have I; < 2M+/d, =:
e1 (s). On the other hand, I, < 27C foz‘/@p [In p| dp =: €2 (s). Finally, due to the
definition of E,, we have |as (o) — z| > ds/4, therefore Is < 4rCds (s +2)In2 =:
es (s).

Now we set Ry := 4° max {|z| : z € K}. Taking into account that #A, < C'4°
with some constant C’ and applying (3.5), we obtain the estimate:

Ips (2) —ps (2)] < InRs Z a)) — ngiz(a)
a€A,

< MCC'4™° InRg =: g4 (5)

for all z € E; such that |z| < R,. Combining the above estimates, we obtain that
the estimate (3.6) holds for all z € E; such that |z| < Rs with e (s) := 2?21 gj(s),
which tends to 0 as s — oo.
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The function v (z) := v (2) — ps (2) is harmonic for |z| > R, and v (2) =
clnz + h(z), where h (z) is harmonic at co. But

c=p(K) (1—8_5 Z ms(a)> = 0.

a€lLg

Therefore, by the maximum principle, the estimate (3.6) is true also if |z| > Rs.
In the same way one can prove the estimate

(3.7) |v(2) —qs(2)| <6(s), z€ F;

for gs (2) := NM In |Qs (2)| with § (s) — 0 (we may assume that € (s) = 6 (s)). Then,
combining (3.6), (3.7), we obtain that

(3.8) gs (2) —2e(s) <ps(2) <gs(2) +2(s), z€ Es N F.

Moreover, due to the maximum principle, the right inequality in (3.8) is true
also on every disc {|z —as ()| < ds/4}, while the left one is so in every disc
{]z = bs ()| < ds/4}. Since vs (z) = max{ps(z),qs (z)}, we obtain that the es-
timate |v (z) — vs (2)| < 3¢ (s) holds for all z € C, what completes the proof. O

LEMMA 2. Let Q be a domain in C with the boundary 092 formed by a finite
number of disjoint smooth Jordan curves and M = {ay,...,ak,...,am} be a finite
subset of@\Q, containing just one point from each connected component . Suppose
that ¢ is a continuous on Q and harmonic in Q function. Then for each § > 0 there
is a function g € A (@ \ M), such that g (z) # 0 in C \ Q and a natural number q
such that

(3.9 'gp(z) - éln lg(2)|| <0, 2 €.

ProOF. By Keldysh’s approximation theorem (see, e.g., [2], 7.9), for each § > 0
there is a function v (z) harmonic in C\ M and such that

lo(2) =¥ (2)] <4/2, z€
On the other hand, due to Logarithmic Conjugation Theorem (see, e.g., [1], 9.15),
there exist s € A ((E \ M) and real numbers by,..., bk, ..., by, such that

P(z)= Res(z)+biln|z—a1|+...+ by In|z — ap|

for all z € C \ M. Now, choosing integers p; and ¢ € N so that

el

k=1

— )
bk—m’|lnz—am||:z69}<,
q 2

)Pl . )p'm.

we obtain (3.9) with ¢ (2) = (z —ay v (z—a1)’™ expps (2). O
THEOREM 2. Let u be a continuous subharmonic function in a domain D C @,
D # C. Then for any compact subset K C D and each € > 0 there exist functions

f1, f2, analytic in D, and o > 0 such that
(3.10) |u(z) — amax {In|f1(2)|,In]f2(2)|}| <e, z € K.
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PROOF. We may assume that oo ¢ D, otherwise we apply a change of variables

w = i with @ ¢ D. On the other hand, we may suppose, without loss of

generality, that K = Q , where € is a domain with the boundary 9} formed by a
finite number of disjoint smooth Jordan curves. By Riesz Representation Theorem
(see, e.g., [14]) there exist a unique Borel measure p in D and a function ¢ € h (Q)
such that

u<z>=/Kln|<—z| () +9(2), zeR.

It is easy to see that the function v (z) := [, In|¢ — 2| du (¢) is continuous on K,
hence (by [9], Theorem 5.1) in C. So, the function ¢ is continuously extendible
onto K. Therefore, applying Lemmas 1, 2 with 6 = ¢/2, we choose a > 0, a couple
of polynomials (P, Q) and a function g € A (D), so that the relation (3.10) will be
fulfilled if we set

fi(z) =P (2) e"g(z); f2(2) == Q(2) e9(2)
what completes the proof. 0

4. Approximation of n-circular plurisubharmonic functions

Let D be a pseudoconvex n-circular (Reinhardt) domain in C”. Any plurisub-
harmonic function v : D — [—00,00) depending only on moduli of coordinates
(we will call such functions n-circular) is convex with respect to the variables
t, =In|z,|. It is easily seen that this function can be represented in the form

(4.1) u(z) :sup{ZaV In|z,| = B: (a1, . auy ..., an; 8) EM}
v=1

with some set M = M (u) C R""1. Notice that if D is complete then «,, are always
non-negative in (4.1).

THEOREM 3. Let u be a continuous n-circular plurisubharmonic function in
a pseudoconvex n-circular domain D. Then there exists a sequence of rational

mappings Q") = (Q;T)) : C" — C™*! such that the sequence

(4.2) Uy (z):max{ln‘Q;r) (2)‘ :jzl,n—l-l}, reN

converges to u(z) uniformly on each compact subset of D. If the domain D is
complete, then all ng») are polynomial.

PrOOF. Fix any compact set K C D. Since u is continuous, we conclude from
the representation (4.1), following [18], that for each ¢ > 0 there is a function

1 n )
(4.3) U(z):qsup{me» In|z, |+ B, :j:l,N},

v=1

where m,, ; are integers and ¢ is a natural number, such that
lu(z) —v(z)| <9, z € K.
We will use the notation

(4.4) () :=> my;Int, +5;, R}

v=1
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where ¢ = (t,) € R} = [0, +00)™.
Now we want to choose numbers §; so that |§J’ < 6,7 =1,N, and for each
z € D the supremum in the expression

(4.5) w(z) = gsup{lj (2]) — ¢ :j=T.N)

is attained for no more than n + 1 indices j. Set £k = n + 2 and denote by Jj
the set of all k-tuples J = {j1,...,Jx} such that 1 < j; < .. < jr < N. Given
J € Ty, weset Q= {t ERY :1;(t) > —o0, j € J} and introduce the real analytic
mapping ®; : Oy x R — R¥ so that @ (¢,7) := (I, (t) — 7')]::1. Then, applying
the considerations similar to the used in the proof of Theorem 1, we conclude that
there is a nowhere dense set S C RY such that for each J € J; and every t € Q
there are at least two different among the numbers I; (¢) — ¢ j» J € J for any choice
of (gj) € RV \ S, in particular, we can assume that {§j| < 9§ for all j. Taking into
account that the supremum in (4.3) can be attained only if I; ((|z,])) > —o0, we
conclude now that for any z € D the supremum in (4.5) is attained for no more
than n + 1 indices j.
The function (4.5) can be written in the form

w(z) = ésup{ln|hj (z)|:j=1,N},
where h; (z) 1= %% M7y 2,7, j = 1,N, are analytic in D. Now, applying
the construction (2.6) with m = n 4+ 1 to this functions we obtain the sequence
(2.7) converging to the function w (z) uniformly on the compact K. Finally, taking
a sequence of compact sets K, exhausting D, §, — 0 and choosing properly s =
s(r), we obtain the desired sequence u,. (z) with rational functions Qg»r) (2), by the
construction. If the domain D is complete, then in the above considerations all
integers m,, ; must be non-negative, therefore the functions h; (z) and hence the
(r)

functions @’ (z) will be polynomials. O

Using the representation of Green pluripotential as a plurisubharmonic n-
circular function ([17], Proposition 1.4.3) yields

COROLLARY 1. Suppose that K is a pluriregular polynomially convex n-circular
compact subset of a logarithmically convex bounded n-circular domain D. Then the
Green pluripotential

(4.6) w(z) = lirélsup {sup{u(¢):ue€ Psh(D); ulxg <1; u<1in D}}

can be approzimated by some sequence (4.2), with polynomial mappings Q") uni-
formly on any compact subset of D.
5. Final remarks
5.1 The following problem arises in connection with Theorems 1,2.

PROBLEM 1. What is the smallest upper bound for N that works for the class
of all continuous plurisubharmonic functions on a given manifold?

Naturally, such a bound is expected to be < 2n, but in order to prove that some
more delicate methods are needed. For certain specific classes of plurisubharmonic
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functions the technique used here might yield more refined bounds as it was shown
in the previous section.

5.2 Another important example has been considered in [18]: using the con-
struction similar to (2.6) in a combination with some algebraic considerations (see
Lemma 6 there), it is shown there that, in the conditions of Corollary 1, the func-
tion (4.6) can be approximated uniformly on any compact subset of D\ K by a
sequence

up (2) = 1 In max { ’QET) (2)

T

;j:ﬁ}, reN,

with polynomial mappings (Q;T)) : C" — C™ and natural numbers ¢,.. Further

reducing of the number of polynomials Qg-r) to n = dim D is due to the fact
that the pluripotential (4.6) is a mazimal plurisubharmonic function ([15]) in the
annulus D \ K.

5.3 Suppose that a sequence

(5.1) ur(z):llnmax{’f;” (z)‘j:ﬁ}, reN,

with fjm analytic on a given Stein manifold D and ¢, € N, converges uniformly on
each compact subset of a subdomain G C D to a continuous function « (z). Then
it is easily seen that u must be a mazimal plurisubharmonic function in D, that
is (dd°u(2))" = 0 in D ( [4, 15]). In connection with 5.2 the following general
question arises

PROBLEM 2. Does the above approximation property characterize the maximal-
ity of a continuous plurisubharmonic function? In other words, given Stein manifold
D and a continuous function u € Psh (D) such that (dd°u(z))" = 0 in a domain
G C D, does there exist a sequence (5.1) with fjm € A(D) , converging uniformly
on each compact subset of G to the function u(z)?

As follows from Lemma 2, the question is answered positively for any plane
domain. For several variables the positive answer to this question is known only in
some particular cases, like that considered in 5.2.

5.4 Let u be a plurisubharmonic function on a Stein manifold 2, dim Q = n,

In [y (€)]

which can be represented in the form u (2) = lim sup lim sup T, z € Q with
§—z §—00 s

gs > 0 and hg from a given subalgebra L of A (f2), that contains the constants.

Then Proposition 1 is true with all the functions f; belonging to the algebra L.

Examining the proof of Theorem 1, one can see that all the functions g](-s) in (2.1)

will belong to the algebra L as well. Therefore Theorem 1.2 of Gamelin-Sibony [8],

combined with such a version of Theorem 1, yields

THEOREM 4. Let D be a bounded domain in C" with smooth boundary, such
that D has a Stein neighborhood basis. Let u be a real-valued continuous function
on D that is plurisubharmonic on D. Then u can be approzimated uniformly on D
by functions of the form max {al, Inlg,|:v=1,2n+ 1} , where o, > 0 and g, are
analytic in some neighborhood of D, v =1,2n + 1.
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