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Abstract 

A problem of risk mitigation in project scheduling is formulated as a bi-objective 

optimization problem, where the expected makespan and the expected total cost are 

both to be minimized. The expected total cost is the sum of four cost components: 

overhead cost, activity execution cost, cost of reducing risks and penalty cost for 

tardiness. Risks for activities are predefined. For each risk at an activity, various levels 

are defined, which correspond to the results of different preventive measures. Only 

those risks with a probable impact on the duration of the related activity are considered 

here. Impacts of risks are not only accounted for through the expected makespan but are 

also translated into cost and thus have an impact on the expected total cost. An MIP 

model and a heuristic solution approach based on genetic algorithms (GAs) is proposed. 

The experiments conducted indicate that GAs provide a fast and effective solution 

approach to the problem. For smaller problems, the results obtained by the GA are very 

good. For larger problems, there is room for improvement. 
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1. INTRODUCTION 

In this paper, a problem of risk mitigation in project scheduling is considered. A 

mixed integer programming model and a heuristic solution approach based on genetic 

algorithms (GAs) is proposed to solve the problem. The problem is formulated as a bi-

objective optimization problem, where the expected makespan and the expected total 

cost are the two objectives both to be minimized. 

There are various objectives employed in the project scheduling literature. 

Minimization of the makespan is the most common objective. Cash flows in the form of 

expenses and payments are taken into account in the problem formulations aiming at the 

maximization of the net present value of cash flows. When the aim is to minimize costs 

resulting from the realization of an activity or resource usage, the objective of cost 

minimization is employed. Consideration of earliness and tardiness costs is relatively 

more recent (e.g., Kogan and Shtub, 1999). Incorporation of quality considerations into 

the project scheduling problem is also relatively new (Erengüç and Içmeli, 1999; Içmeli 

and Rom, 1997). The problem with the objective of quality maximization is the 

difficulty in defining quality quantitatively in such a way that different stakeholders 

agree on the resulting definition.  

Research on project scheduling incorporating two or more objectives is rather sparse, 

although project scheduling is inherently multiobjective: Project managers in real life 

deal with several objectives at once. This scarcity can be easily concluded from the 

surveys on project scheduling (Içmeli et al., 1993; Özdamar and Ulusoy, 1994; Kolisch 

and Padman, 2001).  

There are some earlier efforts to develop decision support for the scheduling of 

project activities to attain multiple objectives related to project duration and cost (Davis 
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et al., 1992; Rys et al., 1994; Slowinski et al., 1994; Ulusoy and Özdamar, 1996; Hapke 

et al., 1998). Slowinski (1989) provides a review on multiobjective project scheduling 

under multiple-category resource constraints. An application is provided by Stewart 

(1991) who develops a multicriteria decision support system for the R&D project 

selection.  

 

Viana and de Sousa (2000) investigate the applicability of two metaheuristic 

approaches, Pareto simulated annealing and multiobjective tabu search, to the resource 

constrained project scheduling problem, in order to minimize the makespan, the 

weighted lateness of activities, and the violation of resource constraints. A recent study 

by Hanne and Nickel (2005) on an evolutionary algorithm for scheduling and inspection 

planning in a software development project tries to minimize three objectives related to 

quality, time and cost. Quality of a project is measured by the number of defects; time 

by the project duration and cost by the total cost of time spent by the development team 

members are tried to be minimized.  

In another recent study, Al-Fawzan and Haouari (2005) address the issue of 

designing a project schedule which is not only short in time, but also less vulnerable to 

disruptions due to reworks and other undesirable conditions. Based on the concept of 

schedule robustness, they develop a bi-objective resource-constrained project 

scheduling model where the two objectives are the robustness maximization and 

makespan minimization. A tabu search algorithm is used to generate an approximate set 

of efficient solutions. Another bi-objective resource-constrained project scheduling 

problem with robustness and makespan criteria is investigated by Abbasi et al. (2006) 

via a simulated annealing algorithm. 

Risk is defined by the Project Management Institute (PMI) as an uncertain event or 

condition that, if it occurs, has a positive or negative effect on a project objective 
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(2000). In this study, risks with negative impacts will be considered. For example, in an 

R&D environment, the breakdown of laboratory equipment, a delay in material arrival, 

or the loss of a key research personnel might negatively affect project objectives. The 

authors are not aware of any study in project scheduling involving positive risks. In fact, 

project scheduling under risk has not been studied extensively in the literature relative 

to the problem of project scheduling under deterministic conditions (see, e.g., Đçmeli et 

al., 1993; Kolisch and Padman, 2001; Özdamar and Ulusoy, 1994; Weglarz, 1999; 

Chapman and Ward, 1999). In a more recent review on project scheduling under 

uncertainty, Herroelen and Leus (2005) also state that the literature on project 

scheduling under risk and uncertainty is rather sparse. 

Recognition of the fact that research results on problems based on certainty 

assumptions and static environments have only slim chances of implementation has 

recently led to an increasing interest on project management under uncertainty 

(Elmaghraby, 2005). Different approaches like reactive scheduling, stochastic 

scheduling, scheduling under fuzziness, proactive (robust) scheduling, and sensitivity 

analysis are employed to deal with uncertainty. For a detailed discussion, see the review 

by Herroelen and Leus (2005). 

Most of the research approaches on project scheduling involving risk do not model 

risks explicitly, but try to evaluate the risk of schedule and/or budget overruns using 

stochastic models for activity durations and/or costs. Tavares (1994) tried to assess the 

financial risk of a project using a stochastic model considering stochastic nature of 

activity durations and project expenditures. Tavares et al. (1998) introduced a model 

considering randomness of both the cost and duration of each activity and study the 

problem of project scheduling in terms of a project's discounted cost and of the risk of 

not meeting its completion time. 
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Jaafari (2001) provides a general approach to risk management within project 

management. He conjectures that a paradigm shift is needed and introduces a strategy-

based project management approach, which is called the life cycle project management. 

This is an integrated and collaborative framework, which installs life cycle objective 

functions as the basis of evaluation and decision-making throughout project life cycle.  

An approach similar to what is presented in this paper for modelling risk 

considerations in project scheduling is provided by Zafra-Cabeza et al. (2004). The 

researchers model the scheduling of tasks of a project by using a special kind of Petri 

net, the so-called p-timed Petri net. They develop a mixed integer programming model 

for minimizing a weighted sum of the cost and execution time (makespan) of the project 

under risk considerations. Risks are identified with occurence probabilities and initial 

impacts. Mitigation actions may be taken to reduce the consequences of risks. The 

researchers illustrate their technique on a research project on the assessment of energy 

saving in oil pipelines, which comprises seven activities including dummy start and end 

activities, six identified risks, and six mitigation activities. 

The outline of this paper is as follows: The problem is defined in detail in Section 2. 

In Section 3, the mathematical model and in Section 4 the solution approach are 

presented. Computational results are provided in Section 5 and concluding remarks in 

Section 6. 

2. PROBLEM DEFINITION 

In the problem considered here, the decision maker has two objectives both of which 

are to be minimized: the expected makespan and the expected total cost. The resources 

utilized in the project have no constraints imposed on them.  
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A set of activities {1,..,J} associated with a single project is given.  A set of 

predefined risks {1,..,Nj} is associated with each activity j of the project. These risks 

represent the events that may occur during the execution of activities. Only those risks 

with a probable impact on the duration of the related activity are considered here. Thus, 

the probable impacts of these risks are not only accounted for through the expected 

makespan but are also translated into cost and therefore have an impact on the expected 

total cost as well. Hence, the problem defined here is not a pure time-risk problem but a 

more general one as represented by the two objectives stated.    

Insert Figure 1 about here 

 

A project manager can decrease the probability of occurrence and impact of each risk 

by taking some preventive measures at an estimated cost. The levels of preventive 

measures taken are modelled by a set of states {1,..,Kjn} for each risk n associated with 

each activity j. State 1 corresponds to the do-nothing case of taking no preventive 

measures against the associated risk. The cost associated with this state is therefore 

zero. States with increasing indices correspond to increasing levels of preventive 

measures and hence to decreasing levels of occurrence probabilities and impacts of 

risks. The hierarchy of the relationship between the project, activities, risks, and risk 

states is displayed in Figure 1. 

If preventive measures associated with the state k of a risk n associated with an 

activity j are taken, then the risk occurs with a probability of pjnk. The impact is taken to 

be only in the direction of an expansion of the activity duration by a given factor, which 

is denoted by Ijnk. It is assumed that the preventive measures, when taken, will pay-off, 

and they will produce the expected results. It is also assumed that: 

i. The risks are independent and their impacts are additive at the activity level. 

ii. All the risks associated with an activity are identified. 
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iii. They are static throughout the project life.  

Table 1 illustrates an activity, activity X, for which there is only one risk involved 

with three states. TU and MU stand for time unit and monetary unit, respectively. The 

duration of the activity with no risks involved is 20 time units. At state 1, no preventive 

measures are taken and thus no cost is incurred. As a result, the expected duration of 

activity X becomes d’
x= 20+0.7*0.5*20=27 TU. If necessary measures are taken to 

reduce the risk level from state 1 to 2, the expected duration of the activity drops down 

to d’
x= 20+0.6*0.5*20=26 TU. The cost of taking necessary measures to reduce the risk 

level from state 1 to 2 is 150 MU.  

Insert Table 1 about here 

The cost of preventive measures against risks is only one cost component considered 

in the problem formulation.  The cost function of the model covers three other costs that 

may occur during the execution of the project. These are the overhead cost, the activity 

execution cost, and the penalty cost for tardiness and they are all assumed to be linear in 

project duration, activity duration and tardiness, respectively. The activity execution 

cost is the sum of the costs of the different resources being employed throughout the 

execution of the activity.  

3. A MATHEMATICAL MODEL 

The problem is represented on an activity-on-node (AON) network with a single 

starting and a single ending node both corresponding to dummy activities. 

 

Notation: 

j:   index for activities,  j=1,…,J; 

l:  index for resource types, l =1,…,L; 

{Pj }: Set of immediate predecessors of activity j; 
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{Nj}:  Set of risks associated with activity j; 

dj:  Duration of activity j with no risks involved; 

dj
’
:  Expected duration of activity j under associated risks; 

Cp:  Unit penalty cost of being tardy; 

Co:  Unit cost of overhead; 

Cl:  Unit cost of resource type l;                                                         

Cjnk :   Cost of reducing the risk level from state 1 to state k for risk n at activity j, 

where Cjn1=0 for j=1,…,J and n=1,..,Nj 

Kjn:   Number of states for risk n at activity j; 

pjnk:  Probability of the occurrence of risk n for activity j at state k; 

Ijnk:  Impact of risk n, if it occurs, on activity j at state k; 

Wlj: Number of units of resource type l assigned to activity j;                                    

Tplan: Due date set for the project; 

 

The decision variables are as follows: 

Tj:  Starting time of activity j; 

y: Expected tardiness of the project; 

1, if the state is chosen for risk of activity

0, otherwise

th th th

jnk

k n j
X

 
=  
 

; 

 

The mathematical programming model is given by expressions (1) through (8) 

below, where E(TC) stands for the expected total cost and E(Cmax) stands for the 

expected makespan of the project. 
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{0,1} 1,..., ; 1,..., ; 1,...,jnk j jnX j J n N k K∈ = = =              (8) 

 

The model aims to minimize objective (1) [the expected total cost] and objective (2) 

[the expected makespan of the project]. These two objectives are conflicting. The 

expected total cost is represented as the sum of four cost components: the penalty cost 

for tardiness, the cost of risk reductions, the overhead cost, and the activity execution 

cost of the project. 

Equations (3) and (4) determine the starting times of the activities. Equation (5) is 

used to calculate the expected duration of an activity by adding the additional risk 

related duration extensions to the normal activity duration. Equation (6) assures that one 

and only one state for each one of the risks is selected. 

There are (
1 1 1

1
j j nN KJ

j n k= = =
∑ ∑ ∑ ) number of 0-1 decision variables in the model 

depending on the number of risks and number of the states related. Problems of small 

size can be solved easily by a mathematical programming solver. But for larger 

problems, computational costs become prohibitive as the search space becomes very 

large very quickly. For problem sets with 15, 25 and 35 activities used in this study, the 

average number of possible solutions is on the order of 1015, 1028 and 1039 respectively. 

Therefore, a heuristic approach is proposed to solve the problem. 



 10 

4. SOLUTION APPROACH 

In multiobjective mathematical programming, the solution techniques are classified 

according to the three pure approaches of articulation of the decision maker’s preference 

structure: prior, progressive, and a posteriori articulation of preferences (Hwang and 

Masud, 1979; Hwang et al., 1980; Van Veldhuizen and Lamont, 2000). In 

multiobjective optimization with prior preference articulation, the objectives are 

combined into a scalar function prior to optimization, which effectively transfers the 

problem into a single objective optimization problem. Survey of techniques for that 

purpose can be found, for example, in Keeney and Raiffa (1976).  In the second 

approach, preference articulation is done progressively so that the decision-making and 

optimization processes are intertwined. Optimization is performed upon partial 

preference information provided by the decision maker. The “updated” set of solutions 

are submitted to the decision maker, who finetunes his/her preferences based on these 

solutions.  An early example of progressive articulation is provided by Zionts and 

Wallenius (1976).  Fonseca and Fleming (1998) present a multiobjective genetic 

algorithm (GA) approach to be employed together with progressive articulation. In a 

posteriori articulation of preferences, the decision maker is presented with a set of 

Pareto optimal candidate solutions, from which s/he chooses (see, e.g., Hwang and 

Masud, 1979). A posteriori preference articulation is a developing topic also in the 

literature on the multiobjective metaheuristics (Jones et al., 2002). 

In this paper, a posteriori preference articulation approach is employed, and a 

multiobjective GA solution procedure is developed to generate Pareto optimal solutions 

to the problem defined in Section 2. The reasons for this choice are that preference 

articulation is not required for the testing of the methodology developed and the 
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approximation of the true Pareto front provides a natural testing ground even if for 

relatively small problems.  

Evolutionary algorithms are increasingly used in multiobjective optimization (Deb, 

2001; Abraham et al., 2005; Tan et al., 2005).  GAs, in particular, constitute a popular 

solution procedure for multiobjective optimization problems (Fonseca and Fleming, 

1995; Jaskiewicz, 2002). Approximately 70 per cent of the metaheuristic approaches 

suggested and published between 1991 and 2000 are GAs (Jones et al., 2002). Since 

GAs use parallel search techniques and multiobjective optimization problems have 

several nondominated solutions, this problem class and the solution procedure make a 

good match. A recent survey of GA approaches to multiobjective optimization problems 

is provided by Coello et al. (2002).  

In this paper, a GA approach is developed to solve the bi-objective project 

scheduling problem modelled in the previous section. Two improvement heuristics are 

proposed for further improving the solutions found by the GA. They try to decrease the 

expected total cost while keeping the critical path fixed.  

4.1. The Genetic Algorithm Approach 

In the GA approach proposed here, a direct representation is used for encoding a 

solution. Each gene on the chromosome corresponds to a risk. The number in the gene 

represents the state that will be chosen for the corresponding risk. Three cells added to 

the end of the chromosome are used to display the expected makespan, the expected 

total cost and the fitness value. These cells do not undergo any evolutionary process and 

are used only for information storage purposes. The chromosome representation is 

depicted in Figure 2. 

Insert Figure 2 about here 
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The selection mechanism is the well-known roulette wheel selection, which selects 

chromosomes based on their relative fitness in the current population. One point 

crossover is used to generate two offspring from two parent chromosomes: The parts of 

the parent chromosomes on the two sides of a randomly chosen cut point are exchanged 

to generate the offspring.  The mutation operator is bit mutation, which replaces the 

value on a randomly chosen gene of the chromosome with another randomly generated 

value. 

The first population is generated randomly. For generating the subsequent 

populations, crossover, mutation and reproduction operators are applied in a parallel 

fashion contrary to the serial application in traditional GAs. First an operator is chosen: 

crossover with a probability of Pc, mutation with a probability of Pm and reproduction 

with a probability of (1-(Pc+Pm)). If the chosen operator is the crossover, then two 

chromosomes are chosen from the population by the roulette wheel selection 

mechanism. If the chosen operator is the mutation operator or the reproduction operator, 

then a single chromosome is chosen. Finally, the chosen operator is applied to the 

chosen chromosome(s). The reproduction operator simply generates a copy of the 

chosen chromosome. 

The fitness of a chromosome is computed as the product of two numbers as given in 

Equation (9). In that equation, NNR denotes the nearest neighbourhood radius. As 

represented in Equation (10), it is the ratio of the distance between the nearest 

neighbour and the chromosome in question (dnearest) to the maximum such distance in 

the population (dmaxpop). The distance is measured as the Euclidean distance in the 

phenotypic space. It is assumed that if an individual is close to its nearest neighbour, it 

is in a crowded region. Both NNR and the fitness value decrease with decreasing 
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distance to nearest neighbour, dnearest.  NNR thus plays the role of a sharing function. In 

multiobjective GA applications, a sharing function is employed to avoid crowding of 

individuals around one of several optima. A sharing function determines for a given 

chromosome the sharing values of all other individuals in the current population 

(Goldberg and Richardson, 1987). The function is a decreasing function of the distance 

between any two individuals, so that individuals close to the chromosome at hand attain 

a higher sharing value, while those farther apart attain lower values.  The fitness of the 

chromosome is computed by dividing the ‘raw’ fitness value by the sum of all sharing 

values. 

 Ndom in Equation (11) represents the number of individuals (chromosomes) 

dominated by the current individual in a Pareto domination tournament involving the 

entire population. In other words, the current individual is compared to every other 

individual in the population, and Ndom gives the number of individuals dominated by the 

current one. Npop is the population size. Both Ndom and Npop are increased by one to 

ensure a positive value for Rdom. Thus, Rdom represents a measure of the fitness in the 

domination sense. 

By multiplying Rdom and NNR, the fitness in the above sense and the sharing concept 

are combined. Thus, the fitness function is a new resolution combining the sharing 

mechanism and the dominance in the Pareto sense. 

Fitness = NNR * Rdom               (9) 

NNR = dnearest / dmaxpop                       (10) 

Rdom = (Ndom + 1) / (Npop+ 1)             (11) 

Elitism is applied by transferring all of the nondominated individuals in each 

population into the next one. 
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4.2. Improvement Heuristics 

For some of the GA solutions further improvement might be possible for decreasing 

the expected total cost, while keeping the critical path fixed. Therefore, improvement 

heuristics are developed to apply to the solutions obtained by the GA. Such heuristics 

are needed primarily to avoid trivially inferior solutions.  The aim is to prevent 

investing more resources than needed to reduce the risks of the non-critical activities by 

choosing less costly risk states for non-critical activities (i.e. by taking less precautions 

against the risks associated with them), while not changing the chosen risk levels of the 

activities on the critical path and hence the makespan. Thus, when relaxing the duration 

of the non-critical activities, a change in the makespan provided by the GA solution is 

not allowed. 

To this end, a multi-mode project scheduling problem is formulated.  Multi-mode 

project scheduling problem includes time/cost trade-offs in the form of multiple modes 

for executing the project activities. The resource-constrained version involves also 

time/resource and resource/resource trade-offs (Herroelen et al. 1998; Elmaghraby, 

1977). Here, the problem is formulated by assigning every possible combination of the 

states of the risks associated with an activity to different modes.  For example, for an 

activity with two risks having three states each, there will be nine modes. The duration 

associated with a mode represents the expected duration, which will be realized when 

the corresponding risk states are chosen. The cost represents the sum of the expected 

activity execution cost and the risk reduction costs, which constitute a local trade-off 

with the expected duration. A domination search over the modes is performed to 

eliminate the dominated modes. The resulting problem is a discrete time-cost trade-off 

problem. Table 2 and Table 3 illustrate the formulation of modes and the domination 

search over them for an example activity, say activity Y, for which there are two risks 
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with two states each. As shown in Table 3, only two out of four possible modes are non-

dominated, and these are to be used in subsequent operations. 

Insert Table 2 about here 

Insert Table 3 about here 

For solving the resulting discrete time-cost trade-off problem; the makespan of the 

solution obtained by GA is taken as a limit on the expected project duration and the 

modes of activities on the critical path are fixed, i.e., the critical activities are assumed 

to have only one mode and that as assigned by the GA solution. The expected cost is 

reduced, if feasible, by increasing the duration of non-critical activities (i.e. by choosing 

smaller numbered modes for noncritical activities), while preserving the critical path 

and makespan.  

This problem is a special case of the discrete time-cost trade-off problem, which is 

shown to be NP hard by De et al. (1997). The researchers have shown that under a due 

date constraint, multi-mode project scheduling problem with the cost minimization as 

the objective is an NP hard problem. Exact solution approaches provided by 

Demeulemeester et al. (1996) for this problem may become computationally very 

costly. Therefore, two heuristic approaches are proposed. 

In these approaches, a starting point solution is generated, which is then subjected to 

an improvement routine. The improvement routine is common to both of the 

approaches. 

4.2.1. A heuristic based on a continuous cost-versus-duration model (CCDMH) 

In this heuristic, first, a monotonically decreasing polynomial is fit to the time/cost 

scatter of the non-dominated modes for an activity resulting in a continuous time-cost 

curve. The problem is thus transformed to a continuous project compression problem, 

which is easier to solve. In the application here, all possible fits (linear, polynomial, 
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logarithmic, power, and exponential) are tried, and the best fit, i.e. the one with the 

largest R2 value, is chosen. If the best fit is linear, that linear approximation is used in 

subsequent operations. If the best fit is not linear, a piecewise linear underestimator is 

applied to the nonlinear fit. For that purpose, one of the methods proposed by Wei and 

Wang (2003) is employed. 

In the method, Wei and Wang propose to use tangents to the continuous curve. The 

first line is drawn tangent to the curve at the starting point and the last line is drawn 

tangent at the ending point. The other lines are drawn tangent at points located 

equidistant along the x-axis between the starting and ending points. The intersection 

points of the tangent lines constitute the starting and ending points of segments (Figure 

3). Obviously, as the number of segments increases, the precision of the piecewise 

linear approximation increases. To decide on this number, Wei and Wang compare the 

length of the curve and the piecewise linear underestimator and increase the number of 

segments until the ratio of their absolute difference divided by the length of the curve 

becomes smaller than some predetermined boundε . 

Insert Figure 3 about here 

 

This model is also valid for situations, where the mode scatter can best be 

represented as a single line segment (Figure 4).  

Insert Figure 4 about here 

 

The continuous form is represented by the following mathematical model for the 

case, where the time-cost curves associated with the individual activities can be 

approximated by piecewise linear segments.  
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Notation: 

{K}: Set of critical activities k (subset of J);  

{U}: Set of non-critical activities u (subset of J); 

pk: Duration of the activities on the critical path; 

su
m
: Slope of the mth segment of the time-cost curve for non-critical activities (note 

increasing negative slope as m increases in Figure 3); 

d
’
u: Duration of the non-critical activity u; 

au
m
: The endpoint of m

th segment of the time-cost curve, smallest duration of 

segment; 

bu
m
: The endpoint of mth segment of the time-cost curve, largest duration of segment; 

Mu: The number of segments of the time-cost curve for activity u; 

Xu
m
: Duration on segment m of non-critical activity u;    

CPL: Critical path length; 

 

Model: 

1
*

uM
m m

u u
u U m

Min X s
∈ =
∑ ∑             (12)  

subject to: 

1 0T =          (13) 

; 2,...,i i j jT d T i P j J′+ ≤ ∈ =                                 (14) 

' fork kd p k K= ∈         (15) 

 0 ( ) for ; 1,...,m m m
u u u uX b a u U m M≤ ≤ − ∈ =       (16) 

' 1

1
for

uM
m

u u u
m

d a X u U
=

= + ∈∑       (17) 

JT CPL≤       (18) 
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GAMS© is employed to solve the model. Using the durations assigned by the 

GAMS© solution, the modes of the non-critical activities are determined. For each non-

critical activity, if the duration assigned corresponds to the duration of a non-dominated 

mode, then that mode is assigned to the activity. Otherwise, the non-dominated mode 

with the closest but smaller duration is assigned. 

The starting point solution thus found is subjected to an improvement routine 

explained in Section 4.2.3. 

4.2.2. A heuristic based on GA results (GABH) 

In the heuristic, which is based on GA results (GABH), solutions provided by the 

GA are used to generate a starting point solution. The GA may result with a solution, 

which assigns dominated modes to non-critical activities. When this is the case, the non-

dominated mode with a lower duration is found, and this mode is assigned to the 

corresponding activity. The starting point solution thus found is subjected to the 

improvement routine explained in the next subsection.  

4.2.3. The improvement algorithm 

The starting point solution obtained by either one of the two methods explained 

above is consequently subjected to the improvement routine. For each non-critical 

activity, slacks and the so-called saving per duration value are computed. A specific 

amount of saving will result, if the activity is performed at its next higher duration 

mode. The saving per duration ratio is the ratio of the expected cost decrease to 

expected duration increase between the respective non-dominated modes of the activity. 

For the example activity illustrated in Table 3, the saving per duration ratio (from mode 

4 to mode 2) is 18.37 (=(5178.4-5034.6)/(33.39-25.56)).  
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Starting with the non-critical activity with the highest saving per duration value, the 

durations are expanded without violating the slacks until slacks diminish to zero or there 

is no further mode to expand to. Figure 5 lists the steps of the algorithm.  

 

5. COMPUTATIONAL STUDY 

To use as test cases, projects with 15, 25 and 35 activities are generated. Networks 

for these projects containing one starting and one ending node are generated randomly. 

For the sake of simplicity, labor is taken as the only resource needed to execute an 

activity and the unit cost of labor is taken to be the same for all activities. For each of 

the activities; the duration, the number of labor units, the number of risks, and for each 

risk, the number of states are chosen randomly from the integer valued sets {10,...,20}, 

{4,5,6,7}, {1, 2, 3}, {2, 3, 4}, respectively.  There are three parameters related to states: 

the probability of occurrence pjnk, the impact Ijnk and the cost of reducing the risk level 

Cjnk. These three parameters are selected such that the product of pjnk and Ijnk is 

decreasing in Cjnk.  

For each problem, unit penalty cost and unit overhead costs are taken constant over 

the project duration. The project deadline, Tplan, is chosen as a point between the 

minimum expected project duration and the maximum expected project duration. 

State1jn is employed for all risks and activities, when obtaining the maximum expected 

project duration; and StateKjn is employed for all risks and activities, when obtaining the 

minimum expected project duration. Tplan is determined by adding 20% of the gap 

between the maximum the minimum expected project durations to the minimum 

expected project duration. 
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In order to provide a base for performance comparison of the different algorithms 

proposed, a performance metric is developed based on the idea of hyperarea ratio 

(Knowles and Corne, 2002). In hyperarea ratio, the hyperarea formed by the solutions 

provided by an algorithm is divided to the hyperarea of the true Pareto front. This 

metric is a subjective but a good measure to compare the performances of algorithms on 

problems, for which true Pareto fronts are known. Since this is not the case here, a 

different metric is developed instead. The new metric, “Extreme Hyperarea Ratio” 

(EHR) is defined as the ratio of the hyperarea of the front (area H in Figure 6(a)) to the 

area bounded by the origin and the so-called reference point defined by the maximum 

values of the two objective functions (area A in Figure 6(b)) (Kılıç, 2003). EHR is used 

to compare GAs with different parameter settings in the fine-tuning process and to 

compare performances of different heuristic algorithms on test problems. 

Insert Figure 6 about here 

 

5.1. Fine-tuning of the Genetic Algorithm 

The values of four GA parameters, namely the population size, the number of 

generations, and the probabilities of crossover and mutation, are fine-tuned over a range 

of values. The population size and the number of generations are related in such a way 

that their product gives 50,000. The pairs of values for the population size and the 

number of generations used in the experiments are as follows: (100,500), (200,250), 

(250,200), (500,100). 

The values for the probabilities of crossover and mutation are chosen from among 

the set {0.15, 0.30, 0.45, 0.60, 0.75} in such a way that their sum does not exceed 1.00. 

This pattern gives rise to 15 possible value pairs for these two probabilities. Combined 

with the four possible value pairs for the population size and the number of generations, 
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there are 60 sets of parameter value combinations to be tried in the fine-tuning 

experiments. Therefore, 60 experiments on every problem (in three sets of five 

problems each) are conducted, i.e., a total of 900 experiments. The three sets of 

problems each contain five projects with 15, 25 and 35 activities, respectively.  

The results of GA runs employing different parameter value combinations are 

compared on the basis of EHR values using one-way ANOVA in Systat©. The tests 

indicate that the results are not statistically significant at a significance level of 0.05. 

Thus, the set of parameter values, for which the average EHR value is best, is used in 

the GA. The probabilities of crossover and mutation are thus determined to be 0.15 and 

0.75, respectively. The population size is taken to be 200 and the number of generations 

250. 

The fine-tuning experiments have shown that the bound of 50,000 chromosomes for 

GA runs may not be sufficient for larger problems. As the size of the search space 

increases, further exploration is needed. Therefore, the number of generations is 

increased with increasing problem size (Table 4). It should be noted that the product of 

the population size and the number of generations does not actually give the exact 

number of chromosomes generated during the evolution process. An elitist strategy is 

employed such that non-dominated chromosomes in any generation are transferred as 

they are into the next generation without being subjected to any changes. Therefore, 

depending on the problem, the number of individuals generated and evaluated is nearly 

20% less than the number indicated by the product of the population size and the 

number of generations given in Table 4. 

 

Insert Table 4 about here 
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5.2. Comparison of the GA with the Approximation of the True Pareto Front  

To provide a comparison base, the true Pareto front is approximated by employing 

GAMS©. The makespan objective is removed from the objectives set and added to the 

constraint set to obtain a single objective cost minimization model. The resulting model 

is solved repeatedly by Cplex solver embedded in GAMS©. The upper bound on the 

makespan in the initial model formulation is the maximum makespan. The maximum 

makespan is found by solving the project scheduling problem with risk states in all 

activities set to their State 1 values. In a series of runs, the limit on the makespan 

resulting from the last GAMS© run is decreased by increments of 0.01 until the 

minimum makespan is reached.   

In order to compare the proposed GA with the approximation of the true Pareto front, 

20 problems are solved for each problem size:  15-activity, 25-activity and 35-activity 

problems. For each problem, the non-dominated solutions resulting from the proposed 

GA application are plotted together with the approximate Pareto front. Figures 7, 8 and 

9 illustrate a sample of three such plots with problem sizes being 15-activity, 25-activity 

and 35-activity problems, respectively. 

The plot in Figure 8 shows that some results provided by the GA may be better than 

the ones provided by GAMS©. This may have occurred because of the fact that GAMS© 

stops the search within some tolerance limit before reaching the optimum. Also the 

decrements of 0.01 for the makespan constraint may not be small enough allowing some 

solutions to skip.  

Insert Figure 7 about here 

Insert Figure 8 about here 

Insert Figure 9 about here 
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The plot in Figure 9 illustrates results for another problem, where the solutions in the 

approximation of the Pareto front dominate the ones obtained by the GA. As Figures 7 

to 9 also illustrate, the result of the experiments indicate that the performance of the GA 

is very good for small problems with 15 activities. For larger problems with 35 

activities, the deviations are larger, and there is room for improvement.  

An analysis of the EHR values for the approximation of the Pareto front and for the 

GA is also performed. The average EHR value for the Pareto front approximation is 

0.2573. This value is close to the average EHR value for the GA, which is 0.2404. But 

they statistically significantly differ at a significance level of 0.05. In Table 5, average 

percent deviations of EHR values for the GA from the EHR values for the 

approximation of the true Pareto front are given for each problem set consisting of 20 

problems. The deviations are relatively small for 15- and 25-activity problems but 

increase substantially for 35-activity problems. 

Insert Table 5 about here 

 

5.3. Comparison of the Improvement Heuristics 

As the comparison of GA solutions to the approximation of the Pareto front also 

indicates, there is room for improving GA’s performance especially on larger problems. 

Improvement heuristics CCDMH and GABH are applied to the solutions found by the 

GA. To provide a comparison basis, two criteria are used: Average value of the 

improvement (i.e. the decrease in expected cost) and the ratio of the number of 

improved solutions to the number of non-dominated solutions found. Average value of 

improvement (AI) is expressed in percentage as in Equation (19) below, where l is the 

number of Pareto optimal solutions, Ci
GA is the expected cost of ith Pareto optimal 
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solution in which GA resulted, Ci
H is the expected cost after the improvement heuristic 

is applied to solution i. 

1
( )*100 /

GA Hl
i i

GA
i i

C C
AI l

C=

−
= ∑                                           (19) 

The improvement heuristic CCDMH improves a significant portion of the solutions. 

But, since an exact linear under-estimator to the modes of the problem has not been 

used, some of the expected cost values increase instead of decreasing. Table 6 shows 

statistics related to the performance of CCDMH. 

Insert Table 6 about here 

The results show that as the problem size increases the performance of CCDMH 

improves. This may be a result of the deteriorating performance of the GA with 

increasing problem size. Since GA cannot explore the search space adequately, there 

remains more to do for the improvement heuristic. 

Table 7 represents the performance of the improvement heuristic GABH. GABH 

improves a larger percentage of solutions than the improvement heuristic CCDMH but 

does not decrease the expected cost of the solutions as much as CCDMH does. GABH 

starts from a GA solution, which may be a local optimum. Hence it might not be able to 

move away from this local optimum. 

Insert Table 7 about here 

 

It might be conjectured that CCDMH may become more effective, if a more precise 

piecewise linear underestimator is used. But as the precision of the estimator increases, 

the effort to generate the underestimator and to solve the continuous model will 

increase. This leads to a trade-off to be resolved. 

Results given in Table 6 and Table 7 indicate that the average percentages of 

improvements in expected cost values are low. But this should be less of a concern, as 
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the primary mission of the improvement heuristics is to avoid a trivially inferior 

solution. 

An analysis into the cost breakdown of the resulting improved GA solutions might 

provide further insights. Since a change in the makespan of the project is not allowed 

during the execution of the improvement heuristics, the overhead and penalty costs 

remain the same. Improvement heuristics deal with the activity based (local) costs, 

which are the cost of preventive measures and the labor cost. As it can be observed in 

Table 8, these cost components are quite close to each other. This closeness also helps 

to understand the poor performance of improvement heuristics. For another problem set, 

in which the cost structure is different, the performance of the improvement heuristics 

may be different. 

Insert Table 8 about here 

5.4. Computational Times 

The computational times in CPU milliseconds for the GA, for the improvement 

heuristic CCDMH and for the generation of the Pareto front approximation (PFA) are 

given in Table 9. These values are the average of computational times on five problems 

each from three problem classes with 15-, 25- and 35-activities, respectively. The 

computational times for the improvement heuristic GABH are not given, since they are 

too small to be measured accurately. The program code is compiled using Visual 

Studio’s C/C++ compiler, and the runs are performed on a Celeron 800 with 128 MB 

RAM.  

As it is clearly seen from Table 9, the computational times of PFA are very high 

compared to the computational times for the GA. PFA is computationally costly even 

for the relatively small problems. For larger problems, it may become very costly to 
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generate the Pareto front approximation because of excessive computational times and 

limitations of mathematical programming software. 

6. CONCLUSIONS AND FUTURE RESEARCH TOPICS 

In this paper, the problem of project scheduling under risk has been addressed. The 

experiments conducted indicate that GAs provide a fast and effective solution approach 

to the problem. For smaller problems, the results obtained by the GA are very good. For 

larger problems, there is room for improvement. 

The problem formulation provided in this paper can easily be revised to include also 

risks with positive effects. The states for risks with positive effects would be modelled 

such that 

o Ijnk<0 

o State k, where k>1, is associated with increasing probabilities of occurrence 

and/or absolute impacts. 

No revision is needed in the mathematical model or in the solution approach.  

There are several extensions and variations to be investigated as future research 

work. Other metaheuristic approaches may be tried. A priori and progressive preference 

articulation may be used, in case real problem data and decision maker preference data 

are available. The problem may be recast in a form, where modes are to be decided 

upon rather than the risk states. The problem formulation may be made more realistic by 

allowing for dependent risks and/or resource constraints. The impacts and probability of 

occurrences of risks may be formulated using continuous functional forms. 
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Table 1. Risk states for an example activity X 

Activity X      Duration (dX): 20 TU 

State 
Probability of 

Occurrence (pjnk) 
Impact 
(Ijnk) 

Cost (MU) 
(Cjnk) 

1 0.7 0.5 0 
2 0.6 0.5 150 
3 0.6 0.4 300 
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Table 2. Risk levels for an example activity Y 

Activity Y      Duration (dY): 18 TU     1YL =      W1Y =7     Cl =20 MU/TU 

Risk 1 Risk 2 

State 

Probability 
of 

Occurrence 
(pjnk) 

Impact 
(Ijnk) 

Cost 
(Cjnk) 
(MU) 

State 

Probability 
of 

Occurrence 
(pjnk) 

Impact 
(Ijnk) 

Cost 
(Cjnk) 
(MU) 

1 0.55 0.90 0 1 0.95 0.70 0 
2 0.20 0.30 1240 2 0.90 0.40 360 
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Table 3. Mode generation and non-dominated mode selection for the example activity 

 

Mode  
State 
chosen 

for Risk 1 

State 
chosen 

for Risk 2 

Cost 
(MU) 

Duration 
(TU) 

Domination statue  

1 1 1 5443.20 38.88 dominated  
(by modes 2 and 4) 

2 1 2 5034.60 33.39 non-dominated 
3 2 1 5587.00 31.05 dominated  

(by mode 4) 
4 2 2 5178.40 25.56 non-dominated 
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Table 4. Population size and number of generations  

 

Number of activities 
in the problem 

Population 
size 

Number of 
generations  

15 200 250 
25 200 375 
35 200 500 
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Table 5. Average percent deviation of EHR values for the GA from the ones for the 
approximation of the true Pareto front and the p-values of the paired t-test 

 Problem type Average percent deviation p value 
Overall 6.44 3.94*10-15 

15 Activities  5.62 2.78*10-5 

25 Activities  4.74 2.14*10-6 

35 Activities  8.97 2.03*10-7 

 

 



 37 

 

 

Table 6. Result summary for the performance of the improvement heuristic CCDMH 

Problem type 
Number of 

non-dominated 
solutions 

Average 
improvement 

(%) 

Number of 
solutions 
improved 

Ratio of 
improved 

solutions (%) 
Overall 2546 0.50 1948 76.51 
15 Activities 717 0.16 422 58.86 
25 Activities 848 0.63 693 81.72 
35 Activities 981 0.71 833 84.91 
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Table 7. Result summary for the performance of the improvement heuristic GABH 

Problem type 
Number of 

non-dominated 
solutions 

Average 
improvement 

(%) 

Number of 
solutions 
improved 

Ratio of 
improved 

solutions (%) 
Overall 2546 0.27 2039 80.09 
15 Activities 717 0.19 421 58.72 
25 Activities 848 0.32 723 85.26 
35 Activities 981 0.30 895 91.23 
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Table 8. Labor and preventive cost percentages within the expected total cost 

  

Problem type Labor cost % Preventive cost % 
Overall 50.71 43.54 
15 Activities 46.28 46.46 
25 Activities 52.87 41.99 
35 Activities 53.00 42.18 
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Table 9. Computational times in CPU milliseconds 

 

Problem Type Proposed GA PFA CCDM 
15 Activities 6 339 167 075 17 588 
25 Activities 10 094 443 936 23 385 
35 Activities 16 291 849 036 27 976 
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Figure 1. Elements of the model for the problem of project scheduling under risk 
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Figure 2. Chromosome representation 
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Figure 3. An example of piecewise linear curve fitting 
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Figure 4. An example of linear fit for time/cost scatter of an activity 
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Figure 5. The improvement algorithm  

 

 

Step 1 - Find a starting point solution with mode assignments to all 
activities using one of the two heuristics explained in 4.2.1 
and 4.2.2. 

Step 2 - For each noncritical activity, calculate the slack and the 
saving per duration value that will result, if the activity is 
performed at its next higher duration mode. 

Step 3 - Starting with the activity with the highest saving per 
duration value, expand the activity without violating the 
slacks. 

Step 4 - If there are other activities, whose slacks allow for 
expansion, go to step 2; else stop.    
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Figure 6. Illustration of the performance metric denoted as extreme hyperarea 
ratio (EHR) 
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Figure 7. An example plot: The performance of the GA is very good (|J|=15) 
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Figure 8. An example plot: Performance of the GA is better than GAMS' results 

(|J|=25) 
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Figure 9. An example plot: Performance of the GA is poor (|J|=35) 

 


