
High Performance Hardware Architectures for

A Hexagon-Based Motion Estimation Algorithm

Ozgur Tasdizen
1,2,a

, Abdulkadir Akin
1,2,b

, Halil Kukner
1,2,c

, Ilker Hamzaoglu
1,d
, H. Fatih Ugurdag

3,e

1
Electronics Engineering, Sabanci University, 34956 Tuzla, Istanbul, Turkey

2
Vestek Electronic Research & Development Corp., 34469 Maslak, Istanbul, Turkey
3
Faculty of Engineering, Bahcesehir University, 34353 Besiktas, Istanbul, Turkey

a
tasdizen@su.sabanciuniv.edu,

b
abdulkadir@su.sabanciuniv.edu,

c
shalil@su.sabanciuniv.edu.tr,

d
hamzaoglu@sabanciuniv.edu,

e
fatih.ugurdag@bahcesehir.edu.tr

Abstract—Motion Estimation is the most computationally

intensive part of video compression and video enhancement

systems. For the recently available high definition frame sizes

and high frame rates, the computational complexity of full search

motion estimation algorithm is prohibitively high, while the

PSNR obtained by fast search algorithms is low. Therefore, in

this paper, we propose a hexagon-based motion estimation

algorithm and two high performance hardware architectures for

implementing this algorithm. The proposed algorithm has lower

computational complexity than full search algorithm, and the

simulation results showed that the PSNR obtained by this

algorithm is better than the PSNR obtained by other fast search

algorithms. Both hardware architectures are implemented in

VHDL and mapped to Xilinx FPGAs. Both hardware

architectures can run at 144 MHz when implemented on an

XC3S1200E-5 FPGA, and they can process 25 1920x1080 frames

per second for the largest search range (±32, ±16). Various fast

search algorithms can be implemented using the first hardware

architecture. But, it uses 80 Block RAMs. Only the hexagon-

based algorithm proposed in this paper can be efficiently

implemented using the second hardware architecture. However,

it uses 16 Block RAMs and fits into XC3S1200E-5, a low cost

Xilinx Spartan-3E FPGA. In addition, a novel data reuse method

is used in the second architecture to reduce the number of

internal memory accesses, and it has low control overhead

because of its regular data flow. Therefore, it can be used in

consumer electronics products.

I. INTRODUCTION

Motion Estimation (ME) is the most computationally intensive

part of video compression and video enhancement systems. ME is

used to reduce the bit-rate in video compression systems by

exploiting the temporal redundancy between successive frames, and it

is used to enhance the quality of displayed images in video

enhancement systems by extracting the true motion information. ME

is used in video compression standards such as ITU-T H.261/263/264

and ISO MPEG-1/2/4, and it is used in video enhancement algorithms

such as frame rate conversion, de-interlacing and de-noising.

Block Matching (BM) is the most preferred method for ME. BM

partitions current frame into non-overlapping NxN rectangular blocks

and tries to find a block from a reference frame in a given search

range that best matches the current block. Sum of Absolute

Differences (SAD) is the most preferred block matching criterion

because of its suitability for hardware implementations.

Full Search (FS) ME algorithm finds the reference block that best

matches the current block by computing the SAD values for all

search locations in a given search range. The computational

complexity of FS algorithm is very high, especially for the recently

available consumer electronic devices such as High Definition (HD)

digital video broadcasting and high resolution & high frame rate flat

panel displays. Because there are fast movements between successive

frames in these applications which requires an increased search range

and the frame sizes in these applications are very large.

Several fast search ME algorithms are developed for low bit-rate

applications, which use small frame sizes and require small search

ranges, in consumer electronics products. These algorithms try to

obtain the same PSNR as FS algorithm by computing the SAD values

for fewer search locations in a given search range. The most popular

fast search algorithms are New Three Step Search (NTSS) [1], Four

Step Search (FSS) [2], Diamond Search (DS) [3] and Hexagon Based

Search (HEXBS) [4].

Fast search ME algorithms perform very well for low bit-rate

applications such as video phone and video conferencing. However,

fast search ME algorithms do not produce satisfactory results for the

recently available consumer electronic devices such as HD digital

video broadcasting and high resolution & high frame rate flat panel

displays, because, in these applications, there are fast movements

between successive frames. Among the fast search algorithms, DS

and HEXBS may find satisfactory enough motion vectors if the

motion between successive frames are very small. However, for fast

moving objects, they find motion vectors which give a locally

minimum block distortion due to the sequential nature of these

algorithms.

Therefore, in this paper, we propose a ME algorithm which is a

generalization of HEXBS ME algorithm proposed in [4] and two high

performance hardware architectures for implementing this algorithm.

The proposed algorithm has lower computational complexity than FS

algorithm and the simulation results showed that the PSNR obtained

from this algorithm is better than the PSNR obtained from other fast

search algorithms.

Both hardware architectures are implemented in VHDL and

mapped to Xilinx FPGAs using Xilinx ISE 9.2.04. Both hardware

architectures can run at 144 MHz when implemented on an

XC3S1200E-5 FPGA and, for the largest search range (±32, ±16),

they can process 127 frames per second (fps), 57fps, and 25fps for

720x576, 1280x720, and 1920x1080 resolutions, respectively.

Various fast search algorithms can be implemented using the first

hardware architecture. But, it uses 80 Block RAMs (BRAMs). Only

the hexagon-based ME algorithm proposed in this paper can be

efficiently implemented using the second hardware architecture.

However, it uses 16 BRAMs and fits into XC3S1200E-5, a low cost

Xilinx Spartan 3E FPGA. In addition, a novel data reuse method is

used in the second architecture to reduce the number of internal

memory accesses, and it has low control overhead because of its

regular data flow. Therefore, it can be used in consumer electronics

products.

Many hardware architectures for FS ME algorithm are proposed

in the literature [5-8]. However, only a small number of hardware

architectures for fast search ME algorithms are proposed [9, 10]. To

the best of our knowledge, no hardware architecture is proposed for

HEXBS ME algorithm in the literature.

The rest of the paper is organized as follows. Section II describes

the proposed hexagon-based ME algorithm and presents the

simulation results. The proposed hardware architectures are presented

in Sections III and IV. Section V concludes the paper.

II. PROPOSED HEXAGON BASED ME ALGORITHM

We propose a ME algorithm which is a generalization of HEXBS

ME algorithm proposed in [4]. Our algorithm consists of main and

fine search patterns. The main search patterns consist of all the search

locations that can be checked by HEXBS algorithm during several

iterations in the horizontal and vertical directions.

We propose 10x9, 12x12, 14x15 and 32x16 main search patterns.

The search locations of 10x9 search pattern are shown in Fig. 1.

32x16 search pattern consists of all the search locations that can be

checked by HEXBS algorithm during 16 iterations in the horizontal

direction and 8 iterations in the vertical direction. The difference

between 32x16 pattern and the other patterns is that the other patterns

have a gap of two pixels in the vertical direction compared to the one

pixel gap of 32x16 pattern and they have less computational load than

32x16 pattern.

We tried the three fine search patterns shown in Fig. 2 and the

results of our analysis show that “DoubleCross” fine search pattern

improves the results up to 1% over the “Plus” fine search pattern,

which is used in [4]. Therefore we used this fine search pattern with

our main search patterns.

We compared the performance of our search patterns with the

performance of FS, DS and HEXBS algorithms based on Mean

Absolute Difference (MAD) metric. We used Flowers, Mobile

Calendar, Table Tennis, Susie, Spider and Irobot videos for

simulation. Each video has 100 frames. Spider and Irobot videos,

which have large motion between frames, are taken from “Spiderman

2” and “Irobot” films respectively. The resolution of these two videos

is 720x576 pixels and their frame rate is 25 fps. The other videos

have a resolution of 704x480 pixels and a frame rate of 29 fps. The

simulations are done using 8 bit luminance data and for a 16x16

block size.

The simulation results are shown in Table I and Table II. The

results show that our search patterns outperform DS and HEXBS

algorithms. The reason for this achievement is that our patterns are

able to find the search location that has globally minimum block

distortion by checking more search locations in the search range than

DS and HEXBS algorithms.

Our search patterns perform better than DS and HEXBS

algorithms especially for videos that have large motion. In order to

show this, we analyzed the performance of the algorithms for

different Frame Distances (FD). FD is the gap between the frames on

which motion estimation is done. Since increasing FD is identical to

lowering the frame rate of the video, large movements between

successive frames are introduced by increasing FD.

Figure 1. Search Locations of 10x9 Search Pattern

Figure 2. Fine Search Patterns: (a) Plus (b) Side (c) DoubleCross

TABLE I. MAD SIMULATION RESULTS FOR FD=2

Algorithm
Search

Range
Flowers

Mobile

Calendar

Table

Tennis
Susie

FS ±10,±9 8.4195 11.2900 4.6473 4.3346

DS ±10,±9 9.8227 12.6452 4.8269 4.6230

HEXBS ±10,±9 10.3674 13.4550 4.8955 4.8455

10x9 ±10,±9 8.7374 12.8067 4.7380 4.5742

10x9
Pattern’s

Improvement

over HEXBS

%15.72 %4.82 %3.22 %5.60

FS ±12,±12 8.3397 11.2614 4.5486 4.0801

DS ±12,±12 9.7948 12.6405 4.7750 4.4327

HEXBS ±12,±12 10.3355 13.4469 4.8189 4.5951

12x12 ±12,±12 8.6715 12.8671 4.6367 4.3139

12x12

Pattern’s
Improvement

over HEXBS

%16.10 %4.31 %3.78 %6.12

FS ±14,±15 8.3248 11.2413 4.4929 3.9142

DS ±14,±15 9.7930 12.6386 4.7524 4.3191

HEXBS ±14,±15 10.3330 13.4436 4.7898 4.4681

14x15 ±14,±15 8.6679 12.9005 4.5955 4.1723

14x15
Pattern’s

Improvement

over HEXBS

%16.11 %4.04 %4.06 %6.62

FS ±32,±16 8.3118 11.1220 4.4157 3.5597

DS ±32,±16 9.7925 12.6360 4.7334 4.1450

HEXBS ±32,±16 10.3324 13.4396 4.7623 4.2753

32x16 ±32,±16 8.4789 11.9386 4.4449 3.6496

32x16

Pattern’s
Improvement

over HEXBS

 %17.94 %11.17 %6.66 %14.64

TABLE II. MAD SIMULATION RESULTS FOR FD=1

Algorithm
Search

Range
Spider Irobot

FS ±10,±9 9.2939 7.5873

DS ±10,±9 9.7210 8.1208

HEXBS ±10,±9 10.2413 8.4511

10x9 ±10,±9 9.3473 7.6989

10x9 Pattern’s

Improvement over
HEXBS

 %8.73 %8.90

FS ±12,±12 8.2719 7.1467

DS ±12,±12 8.9874 7.7959

HEXBS ±12,±12 9.3317 8.0455

12x12 ±12,±12 8.3012 7.2488

12x12 Pattern’s
Improvement over

HEXBS

 %11.04 %9.90

FS ±14,±15 7.4357 6.8214

DS ±14,±15 8.4644 7.5768

HEXBS ±14,±15 8.8051 7.8295

14x15 ±14,±15 7.4848 6.9352

14x15 Pattern’s
Improvement over

HEXBS

 %14.99 %11.42

FS ±32,±16 5.4335 5.6620

DS ±32,±16 7.6574 6.9723

HEXBS ±32,±16 7.9547 7.2144

32x16 ±32,±16 5.5317 5.7265

32x16 Pattern’s

Improvement over

HEXBS

 %31.23 %20.62

III. PROPOSED GENERIC ARCHITECTURE

The block diagram of the proposed generic architecture for a

16x16 block size is shown in Fig. 3. In order to calculate the SAD of

a 16x16 block in one clock cycle, we used 256 Processing Elements

(PEs) and the outputs of all PEs are added using an adder tree. This

hardware has 7 pipeline stages.

In order to calculate the SAD of a 16x16 block in one clock cycle,

the pixels in the memories are organized to be able to bring the pixels

belonging to a particular search location to the datapath in one clock

cycle. The data layout in BRAMs is shown in Fig. 4. In the figure,

each box represents a pixel and the number in a box shows the

BRAM storing that pixel. We use 5 BRAMs to store one line of

search range in order to avoid data collisions that occur during the

access of a search location that is not aligned with BRAMs. Since the

maximum word length of BRAMs can be configured as 32 bit wide,

each memory location stores four pixels.

In order to be able to access the reference data of an arbitrary

search location, outputs of the BRAMs have to be aligned. This is

done by horizontal and vertical rotators. Dark shaded area in Fig. 4

shows the required reference data for an example search location. In

this example, the horizontal rotator must rotate the outputs of

BRAMs left by 10 pixels and the vertical rotator, which combines the

output of the horizontal rotators, must rotate its inputs left by 6 lines.

The proposed hardware architecture is implemented in VHDL and

mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The

implementation is verified with RTL simulations using Mentor

Graphics Modelsim 6.3c. RTL simulation results matched the results

of a MATLAB model of the proposed hexagon-based ME algorithm.

The proposed hardware can work at 144 MHz on a Xilinx

XC3S1200-5 FPGA. Therefore, for the largest search range (±32,

±16), it can process 206743 16x16 blocks per second. Therefore, it

can process 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and

1920x1080 resolutions respectively.

Figure 3. Proposed Generic Architecture

Figure 4. Data Layout in BRAMs

Instead of calculating the SAD of a 16x16 block in one clock

cycle, if a 16x16 block is divided into subblocks and one subblock is

processed in a clock cycle, the datapath of the generic architecture

(the number of PEs, adders and rotators) and the number of BRAMs

required can be reduced at the expense of increasing the number of

clock cycles required for calculating the SAD value of a 16x16 block.

The datapaths for different block sizes are implemented in VHDL

and mapped to a Xilinx Spartan-3E FPGA using Xilinx ISE 9.2.04.

The datapath area and the required number of BRAMs for each block

size are shown in Table III.

The bottleneck for a high performance motion estimation

hardware design that will be mapped to an FPGA is the number of

BRAMs available in the FPGA. Since 16x16 and 16x8 generic

architectures use large number of BRAMs, it is not possible to

implement them using a low cost FPGA family. Although 16x4 and

16x2 generic architectures can be implemented using a low cost

FPGA family, they are not suitable for real-time implementation of

high frame size and high frame rate applications, since they require

more clock cycles to compute an SAD value. Therefore, in the next

section, we propose a systolic array architecture which is suitable for

real-time implementation of high frame size and high frame rate

applications and can be implemented using a low cost FPGA family.

TABLE III. COMPARISON OF GENERIC ARCHITECTURES FOR VARIOUS

BLOCK SIZES

Block

Size

Number

of

BRAMs

Number

of

PEs

SAD of

a 16x16

Block

(Cycles)

Total PE

Area with

Adder Tree

(LUTs)

Total

Area

(LUTs)

16x16 80 256 1 6940 31416

16x8 40 128 2 3463 14675

16x6 30 96 3 2580 9447

16x4 20 64 4 1726 6304

16x2 10 32 8 857 2889

Figure 5. Proposed Systolic Array Architecture

TABLE IV. SEARCH PATTERNS

Search Range

Number of

Search

Locations

Required

Clock

Cycles

±10,±9 73 122

±12,±12 113 176

±14,±15 159 236

±32,±16 553 672

Fine Search

Pattern

Number of

Search

Locations

Required

Clock

Cycles

Plus 4 25

Side 6 27

DoubleCross 8 29

IV. PROPOSED SYSTOLIC ARRAY ARCHITECTURE

The block diagram of the proposed systolic array architecture for a

16x16 block size and its datapath are shown in Fig. 5 and Fig. 6

respectively. In order to calculate the SAD of a 16x16 block in one

clock cycle, we used 256 PEs and the outputs of all PEs are added

using an adder tree. This hardware has 6 pipeline stages.

The main difference between this architecture and the

architecture proposed in the previous section is that all PEs do not

receive their reference data directly from BRAMs. In order to fit the

ME hardware into a low cost Xilinx Spartan-3E FPGA, we used 16

BRAMs. These BRAMs are configured for a port width of 16 bits

and they are connected to 32 PEs. The remaining 224 PEs receive

their reference data from their neighboring PEs. Reference data is

shifted to the right in the PE array. Loading the reference data of a

search location has a start-up cost of 8 cycles. After the PE array is

loaded, SAD values of the search locations in the same line is

obtained in each clock cycle.

BRAMs are configured as dual port RAMs for overlapping

motion estimation of current 16x16 block with loading of search

range of next 16x16 block. One port is used only for write operations

and the other port is used only for read operations.

The number of search locations checked by each search pattern

and the number of clock cycles required to complete checking these

search locations using the proposed systolic array architecture is

shown in Table IV.

The data flow through the proposed systolic array architecture is

shown in Table V. Let A - L shown in Fig. 1 denote the pixels in

these columns. A1 denotes the pixels in the column A and A2 denotes

the pixels in the column next to A (the right neighbor). Assuming that

D is the first search location in the line, in the first clock cycle, the PE

array is filled with the pixels in columns L1 and L2. In the second

clock cycle, these pixels are shifted to the right in the PE array by two

and the pixels in columns K1 and K2 are loaded into two left end

columns of the PE array, and so on. Therefore, in the 8th clock cycle,

the SAD value of search location D is obtained. In the 9th, 10th and

11th clock cycles, SAD values of search locations C, B and A are

obtained.

The proposed hardware architecture is implemented in VHDL and

mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The

implementation is verified with RTL simulations using Mentor

Graphics Modelsim 6.3c. RTL simulation results matched the results

of a MATLAB model of the proposed hexagon-based ME algorithm.

The proposed architecture uses 6648 LUTs and 16 BRAMs, and it

fits into a state of the art low cost Xilinx Spartan-3E FPGA. Because,

in the proposed architecture horizontal rotators are not used, the

number of pixels in each input line of vertical rotator is 16, and due to

the regular data flow control unit uses only 265 LUTs.

The proposed hardware can work at 144 MHz on a Xilinx

XC3S1200-5 FPGA. Therefore, for the largest search range (±32,

±16), it can process 206743 16x16 blocks per second. Therefore, it

can process 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and

1920x1080 resolutions respectively.

V. CONCLUSIONS

In this paper, we proposed a hexagon-based ME algorithm which

has lower computational complexity than FS ME algorithm, and the

simulation results showed that the PSNR obtained by this algorithm

is better than the PSNR obtained by other fast search algorithms. We

also proposed two high performance hardware architectures for

implementing this algorithm. Both of these hardware architectures are

implemented in VHDL and mapped to Xilinx FPGAs. Both hardware

architectures can run at 144 MHz when implemented on an

XC3S1200E-5 FPGA, and they can process 25 1920x1080 fps for the

largest search range (±32, ±16). Various fast search ME algorithms

can be implemented using the first architecture. But, it uses 80

BRAMs. Only the hexagon-based ME algorithm we proposed can be

efficiently implemented using the second architecture. However, it

uses 16 BRAMs and fits into XC3S1200E-5, a low cost Xilinx

Spartan-3E FPGA. In addition, a novel data reuse method is used in

the second architecture to reduce the number of internal memory

accesses, and it has low control overhead because of its regular data

flow. Therefore, it can be used in consumer electronics products.

REFERENCES

[1] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 4, pp. 438–442, 1994.

[2] L.M. Po and W.C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 6, pp. 313–317, 1996.

[3] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block
matching motion estimation,” IEEE Trans. Image Processing, vol. 9, pp.
287–290, 2000.

[4] C. Zhu, X. Lin, and L.P. Chau, “Hexagon-based search pattern for fast
block motion estimation,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 12, pp. 349–355, 2002.

[5] T. Komarek and P. Pirsch, “Array Architectures for Block Matching
Algorithms,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 36, pp. 301-1308, 1989.

[6] K.M. Yang, M.T. Sun, and L. Wu, “A family of VLSI designs for the
motion compensation block-matching algorithm,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 36, pp. 1317- 1325, 1989.

[7] Y.S. Jehng, L.G. Chen, and T.D. Chiueh, “An efficient and simple VLSI
tree architecture for motion estimation algorithm,” IEEE Trans. on
Signal Processing, vol. 41, no. 2, 1993.

[8] L. Vos and M. Schobinger, “VLSI architecture for a flexible block
matching processor,” IEEE Trans. Circuits and Systems for Video
Technology, vol. 5, pp. 417-428, 1995.

[9] D. Xu, J.M. Noras, and W. Booth, “A simple and efficient VLSI
architecture for a very fast high performance three step search
algorithm,” IEE Colloquium on High Performance Architectures for
Real-Time Image Processing, pp. 6/1 - 6/6, Feb. 1998.

[10] S.-T. Jung and S.-S. Lee, “A 4-way Pipelined Processing Architecture
for Three-Step Search Block-matching Motion Estimation,” IEEE Trans.
Consumer Electronics, vol. 50, pp. 674-681, 2004.

Figure 6. Datapath of Proposed Systolic Array Architecture

TABLE V. DATA FLOW THROUGH SYSTOLIC ARRAY

Processing Elements

Clock

Cycles

(0,0)

to

(0,15)

(1,0)

to

(1,15)

(2,0)

to

(2,15)

(3,0)

to

(3,15)

(4,0)

to

(4,15)

(5,0)

to

(5,15)

(6,0)

to

(6,15)

(7,0)

to

(7,15)

(8,0)

to

(8,15)

(9,0)

to

(9,15)

(10,0)

to

(10,15)

(11,0)

to

(11,15)

(12,0)

to

(12,15)

(13,0)

to

(13,15)

(14,0)

to

(14,15)

(15,0)

to

(15,15)

1 L1 L2

2 K1 K2 L1 L2

3 J1 J2 K1 K2 L1 L2

4 H1 H2 J1 J2 K1 K2 L1 L2

5 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

6 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

7 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

8 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2

9 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2

10 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2

11 A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2

