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Abstract—Motion Estimation is the most computationally 

intensive part of video compression and video enhancement 

systems. For the recently available high definition frame sizes 

and high frame rates, the computational complexity of full search 

motion estimation algorithm is prohibitively high, while the 

PSNR obtained by fast search algorithms is low. Therefore, in 

this paper, we propose a hexagon-based motion estimation 

algorithm and two high performance hardware architectures for 

implementing this algorithm. The proposed algorithm has lower 

computational complexity than full search algorithm, and the 

simulation results showed that the PSNR obtained by this 

algorithm is better than the PSNR obtained by other fast search 

algorithms. Both hardware architectures are implemented in 

VHDL and mapped to Xilinx FPGAs. Both hardware 

architectures can run at 144 MHz when implemented on an 

XC3S1200E-5 FPGA, and they can process 25 1920x1080 frames 

per second for the largest search range (±32, ±16). Various fast 

search algorithms can be implemented using the first hardware 

architecture. But, it uses 80 Block RAMs. Only the hexagon-

based algorithm proposed in this paper can be efficiently 

implemented using the second hardware architecture. However, 

it uses 16 Block RAMs and fits into XC3S1200E-5, a low cost 

Xilinx Spartan-3E FPGA. In addition, a novel data reuse method 

is used in the second architecture to reduce the number of 

internal memory accesses, and it has low control overhead 

because of its regular data flow. Therefore, it can be used in 

consumer electronics products. 

I. INTRODUCTION 

Motion Estimation (ME) is the most computationally intensive 

part of video compression and video enhancement systems. ME is 

used to reduce the bit-rate in video compression systems by 

exploiting the temporal redundancy between successive frames, and it 

is used to enhance the quality of displayed images in video 

enhancement systems by extracting the true motion information. ME 

is used in video compression standards such as ITU-T H.261/263/264 

and ISO MPEG-1/2/4, and it is used in video enhancement algorithms 

such as frame rate conversion, de-interlacing and de-noising. 

Block Matching (BM) is the most preferred method for ME. BM 

partitions current frame into non-overlapping NxN rectangular blocks 

and tries to find a block from a reference frame in a given search 

range that best matches the current block. Sum of Absolute 

Differences (SAD) is the most preferred block matching criterion 

because of its suitability for hardware implementations.  

Full Search (FS) ME algorithm finds the reference block that best 

matches the current block by computing the SAD values for all 

search locations in a given search range. The computational 

complexity of FS algorithm is very high, especially for the recently 

available consumer electronic devices such as High Definition (HD) 

digital video broadcasting and high resolution & high frame rate flat 

panel displays. Because there are fast movements between successive 

frames in these applications which requires an increased search range 

and the frame sizes in these applications are very large.  

Several fast search ME algorithms are developed for low bit-rate 

applications, which use small frame sizes and require small search 

ranges, in consumer electronics products. These algorithms try to 

obtain the same PSNR as FS algorithm by computing the SAD values 

for fewer search locations in a given search range. The most popular 

fast search algorithms are New Three Step Search (NTSS) [1], Four 

Step Search (FSS) [2], Diamond Search (DS) [3] and Hexagon Based 

Search (HEXBS) [4].  

Fast search ME algorithms perform very well for low bit-rate 

applications such as video phone and video conferencing. However, 

fast search ME algorithms do not produce satisfactory results for the 

recently available consumer electronic devices such as HD digital 

video broadcasting and high resolution & high frame rate flat panel 

displays, because, in these applications, there are fast movements 

between successive frames. Among the fast search algorithms, DS 

and HEXBS may find satisfactory enough motion vectors if the 

motion between successive frames are very small. However, for fast 

moving objects, they find motion vectors which give a locally 

minimum block distortion due to the sequential nature of these 

algorithms.  

Therefore, in this paper, we propose a ME algorithm which is a 

generalization of HEXBS ME algorithm proposed in [4] and two high 

performance hardware architectures for implementing this algorithm. 

The proposed algorithm has lower computational complexity than FS 

algorithm and the simulation results showed that the PSNR obtained 

from this algorithm is better than the PSNR obtained from other fast 

search algorithms.  

Both hardware architectures are implemented in VHDL and 

mapped to Xilinx FPGAs using Xilinx ISE 9.2.04. Both hardware 

architectures can run at 144 MHz when implemented on an 

XC3S1200E-5 FPGA and, for the largest search range (±32, ±16), 

they can process 127 frames per second (fps), 57fps, and 25fps for 

720x576, 1280x720, and 1920x1080 resolutions, respectively. 

Various fast search algorithms can be implemented using the first 

hardware architecture. But, it uses 80 Block RAMs (BRAMs). Only 

the hexagon-based ME algorithm proposed in this paper can be 



efficiently implemented using the second hardware architecture. 

However, it uses 16 BRAMs and fits into XC3S1200E-5, a low cost 

Xilinx Spartan 3E FPGA. In addition, a novel data reuse method is 

used in the second architecture to reduce the number of internal 

memory accesses, and it has low control overhead because of its 

regular data flow. Therefore, it can be used in consumer electronics 

products. 

Many hardware architectures for FS ME algorithm are proposed 

in the literature [5-8]. However, only a small number of hardware 

architectures for fast search ME algorithms are proposed [9, 10]. To 

the best of our knowledge, no hardware architecture is proposed for 

HEXBS ME algorithm in the literature.   

The rest of the paper is organized as follows. Section II describes 

the proposed hexagon-based ME algorithm and presents the 

simulation results. The proposed hardware architectures are presented 

in Sections III and IV. Section V concludes the paper.  

II. PROPOSED HEXAGON BASED ME ALGORITHM 

We propose a ME algorithm which is a generalization of HEXBS 

ME algorithm proposed in [4]. Our algorithm consists of main and 

fine search patterns. The main search patterns consist of all the search 

locations that can be checked by HEXBS algorithm during several 

iterations in the horizontal and vertical directions.  

We propose 10x9, 12x12, 14x15 and 32x16 main search patterns. 

The search locations of 10x9 search pattern are shown in Fig. 1. 

32x16 search pattern consists of all the search locations that can be 

checked by HEXBS algorithm during 16 iterations in the horizontal 

direction and 8 iterations in the vertical direction. The difference 

between 32x16 pattern and the other patterns is that the other patterns 

have a gap of two pixels in the vertical direction compared to the one 

pixel gap of 32x16 pattern and they have less computational load than 

32x16 pattern. 

We tried the three fine search patterns shown in Fig. 2 and the 

results of our analysis show that “DoubleCross” fine search pattern 

improves the results up to 1% over the “Plus” fine search pattern, 

which is used in [4]. Therefore we used this fine search pattern with 

our main search patterns.  

We compared the performance of our search patterns with the 

performance of FS, DS and HEXBS algorithms based on Mean 

Absolute Difference (MAD) metric. We used Flowers, Mobile 

Calendar, Table Tennis, Susie, Spider and Irobot videos for 

simulation. Each video has 100 frames. Spider and Irobot videos, 

which have large motion between frames, are taken from “Spiderman 

2” and “Irobot” films respectively. The resolution of these two videos 

is 720x576 pixels and their frame rate is 25 fps.  The other videos 

have a resolution of 704x480 pixels and a frame rate of 29 fps. The 

simulations are done using 8 bit luminance data and for a 16x16 

block size.  

The simulation results are shown in Table I and Table II. The 

results show that our search patterns outperform DS and HEXBS 

algorithms. The reason for this achievement is that our patterns are 

able to find the search location that has globally minimum block 

distortion by checking more search locations in the search range than 

DS and HEXBS algorithms.  

Our search patterns perform better than DS and HEXBS 

algorithms especially for videos that have large motion. In order to 

show this, we analyzed the performance of the algorithms for 

different Frame Distances (FD). FD is the gap between the frames on 

which motion estimation is done. Since increasing FD is identical to 

lowering the frame rate of the video, large movements between 

successive frames are introduced by increasing FD.  

 

Figure 1.  Search Locations of 10x9 Search Pattern 

 
Figure 2.  Fine Search Patterns: (a) Plus (b) Side (c) DoubleCross 

TABLE I.  MAD SIMULATION RESULTS FOR FD=2 

Algorithm 
Search 

Range 
Flowers 

Mobile 

Calendar 

Table 

Tennis 
Susie 

FS ±10,±9 8.4195 11.2900 4.6473 4.3346 

DS ±10,±9 9.8227 12.6452 4.8269 4.6230 

HEXBS ±10,±9 10.3674 13.4550 4.8955 4.8455 

10x9 ±10,±9 8.7374 12.8067 4.7380 4.5742 

10x9 
Pattern’s 

Improvement 

over HEXBS 

 

%15.72 %4.82 %3.22 %5.60 

FS ±12,±12 8.3397 11.2614 4.5486 4.0801 

DS ±12,±12 9.7948 12.6405 4.7750 4.4327 

HEXBS ±12,±12 10.3355 13.4469 4.8189 4.5951 

12x12 ±12,±12 8.6715 12.8671 4.6367 4.3139 

12x12 

Pattern’s 
Improvement 

over HEXBS 

 

%16.10 %4.31 %3.78 %6.12 

FS ±14,±15 8.3248 11.2413 4.4929 3.9142 

DS ±14,±15 9.7930 12.6386 4.7524 4.3191 

HEXBS ±14,±15 10.3330 13.4436 4.7898 4.4681 

14x15 ±14,±15 8.6679 12.9005 4.5955 4.1723 

14x15 
Pattern’s 

Improvement 

over HEXBS 

 

%16.11 %4.04 %4.06 %6.62 

FS ±32,±16 8.3118 11.1220 4.4157 3.5597 

DS ±32,±16 9.7925 12.6360 4.7334 4.1450 

HEXBS ±32,±16 10.3324 13.4396 4.7623 4.2753 

32x16 ±32,±16 8.4789 11.9386 4.4449 3.6496 

32x16 

Pattern’s 
Improvement 

over HEXBS 

 %17.94 %11.17 %6.66 %14.64 



TABLE II.  MAD SIMULATION  RESULTS FOR FD=1 

Algorithm 
Search 

Range 
Spider Irobot 

FS ±10,±9 9.2939 7.5873 

DS ±10,±9 9.7210 8.1208 

HEXBS ±10,±9 10.2413 8.4511 

10x9 ±10,±9 9.3473 7.6989 

10x9 Pattern’s 

Improvement over 
HEXBS 

 %8.73  %8.90 

FS ±12,±12 8.2719 7.1467 

DS ±12,±12 8.9874 7.7959 

HEXBS ±12,±12 9.3317 8.0455 

12x12 ±12,±12 8.3012 7.2488 

12x12 Pattern’s 
Improvement over 

HEXBS 

 %11.04 %9.90 

FS ±14,±15 7.4357 6.8214 

DS ±14,±15 8.4644 7.5768 

HEXBS ±14,±15 8.8051 7.8295 

14x15 ±14,±15 7.4848 6.9352 

14x15 Pattern’s 
Improvement over 

HEXBS 

 %14.99 %11.42 

FS ±32,±16 5.4335 5.6620 

DS ±32,±16 7.6574 6.9723 

HEXBS ±32,±16 7.9547 7.2144 

32x16 ±32,±16 5.5317 5.7265 

32x16 Pattern’s 

Improvement over 

HEXBS 

 %31.23 %20.62 

III. PROPOSED GENERIC ARCHITECTURE 

The block diagram of the proposed generic architecture for a 

16x16 block size is shown in Fig. 3. In order to calculate the SAD of 

a 16x16 block in one clock cycle, we used 256 Processing Elements 

(PEs) and the outputs of all PEs are added using an adder tree. This 

hardware has 7 pipeline stages.  

In order to calculate the SAD of a 16x16 block in one clock cycle, 

the pixels in the memories are organized to be able to bring the pixels 

belonging to a particular search location to the datapath in one clock 

cycle. The data layout in BRAMs is shown in Fig. 4. In the figure, 

each box represents a pixel and the number in a box shows the 

BRAM storing that pixel. We use 5 BRAMs to store one line of 

search range in order to avoid data collisions that occur during the 

access of a search location that is not aligned with BRAMs. Since the 

maximum word length of BRAMs can be configured as 32 bit wide, 

each memory location stores four pixels.  

In order to be able to access the reference data of an arbitrary 

search location, outputs of the BRAMs have to be aligned. This is 

done by horizontal and vertical rotators. Dark shaded area in Fig. 4 

shows the required reference data for an example search location. In 

this example, the horizontal rotator must rotate the outputs of 

BRAMs left by 10 pixels and the vertical rotator, which combines the 

output of the horizontal rotators, must rotate its inputs left by 6 lines. 

The proposed hardware architecture is implemented in VHDL and 

mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The 

implementation is verified with RTL simulations using Mentor 

Graphics Modelsim 6.3c. RTL simulation results matched the results 

of a MATLAB model of the proposed hexagon-based ME algorithm. 

The proposed hardware can work at 144 MHz on a Xilinx 

XC3S1200-5 FPGA. Therefore, for the largest search range (±32, 

±16), it can process 206743 16x16 blocks per second. Therefore, it 

can process 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and 

1920x1080 resolutions respectively. 

 
Figure 3.  Proposed Generic Architecture 

 
Figure 4.  Data Layout in BRAMs 

Instead of calculating the SAD of a 16x16 block in one clock 

cycle, if a 16x16 block is divided into subblocks and one subblock is 

processed in a clock cycle, the datapath of the generic architecture 

(the number of PEs, adders and rotators) and the number of BRAMs 

required can be reduced at the expense of increasing the number of 

clock cycles required for calculating the SAD value of a 16x16 block. 

The datapaths for different block sizes are implemented in VHDL 

and mapped to a Xilinx Spartan-3E FPGA using Xilinx ISE 9.2.04. 

The datapath area and the required number of BRAMs for each block 

size are shown in Table III. 

The bottleneck for a high performance motion estimation 

hardware design that will be mapped to an FPGA is the number of 

BRAMs available in the FPGA. Since 16x16 and 16x8 generic 

architectures use large number of BRAMs, it is not possible to 

implement them using a low cost FPGA family. Although 16x4 and 

16x2 generic architectures can be implemented using a low cost 

FPGA family, they are not suitable for real-time implementation of 

high frame size and high frame rate applications, since they require 

more clock cycles to compute an SAD value. Therefore, in the next 

section, we propose a systolic array architecture which is suitable for 

real-time implementation of high frame size and high frame rate 

applications and can be implemented using a low cost FPGA family. 

 



TABLE III.  COMPARISON OF GENERIC ARCHITECTURES FOR VARIOUS 

BLOCK SIZES 

Block 

Size 

Number 

of 

BRAMs 

Number 

of 

PEs 

SAD of  

a 16x16 

Block 

(Cycles) 

Total PE 

Area with 

Adder Tree 

(LUTs) 

Total 

Area 

(LUTs) 

16x16 80 256 1 6940 31416 

16x8 40 128 2 3463 14675 

16x6 30 96 3 2580 9447 

16x4 20 64 4 1726 6304 

16x2 10 32 8 857 2889 

 

 

Figure 5.  Proposed Systolic Array Architecture 

TABLE IV.  SEARCH PATTERNS 

Search Range 

Number of 

Search 

Locations 

Required 

Clock 

Cycles 

±10,±9 73 122 

±12,±12 113 176 

±14,±15 159 236 

±32,±16 553 672 

Fine Search 

Pattern 

Number of 

Search 

Locations 

Required 

Clock 

Cycles 

Plus 4 25 

Side 6 27 

DoubleCross 8 29 

IV. PROPOSED SYSTOLIC ARRAY ARCHITECTURE 

The block diagram of the proposed systolic array architecture for a 

16x16 block size and its datapath are shown in Fig. 5 and Fig. 6 

respectively. In order to calculate the SAD of a 16x16 block in one 

clock cycle, we used 256 PEs and the outputs of all PEs are added 

using an adder tree. This hardware has 6 pipeline stages.  

The main difference between this architecture and the 

architecture proposed in the previous section is that all PEs do not 

receive their reference data directly from BRAMs. In order to fit the 

ME hardware into a low cost Xilinx Spartan-3E FPGA, we used 16 

BRAMs. These BRAMs are configured for a port width of 16 bits 

and they are connected to 32 PEs. The remaining 224 PEs receive 

their reference data from their neighboring PEs. Reference data is 

shifted to the right in the PE array. Loading the reference data of a 

search location has a start-up cost of 8 cycles. After the PE array is 

loaded, SAD values of the search locations in the same line is 

obtained in each clock cycle.  

BRAMs are configured as dual port RAMs for overlapping 

motion estimation of current 16x16 block with loading of search 

range of next 16x16 block. One port is used only for write operations 

and the other port is used only for read operations.  

The number of search locations checked by each search pattern 

and the number of clock cycles required to complete checking these 

search locations using the proposed systolic array architecture is 

shown in Table IV.  

The data flow through the proposed systolic array architecture is 

shown in Table V. Let A - L shown in Fig. 1 denote the pixels in 

these columns. A1 denotes the pixels in the column A and A2 denotes 

the pixels in the column next to A (the right neighbor). Assuming that 

D is the first search location in the line, in the first clock cycle, the PE 

array is filled with the pixels in columns L1 and L2. In the second 

clock cycle, these pixels are shifted to the right in the PE array by two 

and the pixels in columns K1 and K2 are loaded into two left end 

columns of the PE array, and so on. Therefore, in the 8th clock cycle, 

the SAD value of search location D is obtained. In the 9th, 10th and 

11th clock cycles, SAD values of search locations C, B and A are 

obtained. 

The proposed hardware architecture is implemented in VHDL and 

mapped to Xilinx XC3S1200-5 FPGA using Xilinx ISE 9.2.04. The 

implementation is verified with RTL simulations using Mentor 

Graphics Modelsim 6.3c. RTL simulation results matched the results 

of a MATLAB model of the proposed hexagon-based ME algorithm. 

The proposed architecture uses 6648 LUTs and 16 BRAMs, and it 

fits into a state of the art low cost Xilinx Spartan-3E FPGA. Because, 

in the proposed architecture horizontal rotators are not used, the 

number of pixels in each input line of vertical rotator is 16, and due to 

the regular data flow control unit uses only 265 LUTs.  

The proposed hardware can work at 144 MHz on a Xilinx 

XC3S1200-5 FPGA. Therefore, for the largest search range (±32, 

±16), it can process 206743 16x16 blocks per second. Therefore, it 

can process 127 fps, 57 fps, and 25 fps for 720x576, 1280x720 and 

1920x1080 resolutions respectively. 

 

V. CONCLUSIONS 

In this paper, we proposed a hexagon-based ME algorithm which 

has lower computational complexity than FS ME algorithm, and the 

simulation results showed that the PSNR obtained by this algorithm 

is better than the PSNR obtained by other fast search algorithms. We 

also proposed two high performance hardware architectures for 

implementing this algorithm. Both of these hardware architectures are 

implemented in VHDL and mapped to Xilinx FPGAs. Both hardware 

architectures can run at 144 MHz when implemented on an 

XC3S1200E-5 FPGA, and they can process 25 1920x1080 fps for the 

largest search range (±32, ±16). Various fast search ME algorithms 

can be implemented using the first architecture. But, it uses 80 

BRAMs. Only the hexagon-based ME algorithm we proposed can be 

efficiently implemented using the second architecture. However, it 

uses 16 BRAMs and fits into XC3S1200E-5, a low cost Xilinx 

Spartan-3E FPGA. In addition, a novel data reuse method is used in 

the second architecture to reduce the number of internal memory 

accesses, and it has low control overhead because of its regular data 

flow. Therefore, it can be used in consumer electronics products. 
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Figure 6.  Datapath of Proposed Systolic Array Architecture 

TABLE V.  DATA FLOW THROUGH SYSTOLIC ARRAY 

Processing Elements  

Clock 

Cycles 

(0,0) 

to 

(0,15) 

(1,0) 

to 

(1,15) 

(2,0) 

to 

(2,15) 

(3,0) 

to 

(3,15) 

(4,0) 

to 

(4,15) 

(5,0) 

to 

(5,15) 

(6,0) 

to 

(6,15) 

(7,0) 

to 

(7,15) 

(8,0) 

to 

(8,15) 

(9,0) 

to 

(9,15) 

(10,0) 

to 

(10,15) 

(11,0) 

to 

(11,15) 

(12,0) 

to 

(12,15) 

(13,0) 

to 

(13,15) 

(14,0) 

to 

(14,15) 

(15,0) 

to 

(15,15) 

1 L1 L2               

2 K1 K2 L1 L2             

3 J1 J2 K1 K2 L1 L2           

4 H1 H2 J1 J2 K1 K2 L1 L2         

5 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2       

6 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2     

7 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2   

8 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 

9 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 

10 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 

11 A1 A2 B1 B2 C1 C2 D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 

 

 


