
Enhancing an Embedded Processor Core with a Cryptographic Unit for
Performance and Security∗

Övünç Kocabaş, Erkay Savaş
Sabanci University

Orhanli, Tuzla, TR–34956 Istanbul, Turkey
E-mail: ovunc@su.sabanciuniv.edu,

erkays@sabanciuniv.edu

Johann Großschädl
University of Bristol

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom
E-mail: johann@cs.bris.ac.uk

Abstract

We present a set of low-cost architectural enhancements
to accelerate the execution of certain arithmetic operations
common in cryptographic applications on an extensible
embedded processor core. The proposed enhancements are
generic in the sense that they can be beneficially applied in
almost any RISC processor. We implemented the enhance-
ments in form of a cryptographic unit (CU) that offers the
programmer an extended instruction set. The CU features a
128-bit wide register file and datapath, which enables it to
process 128-bit words and perform 128-bit loads/stores. We
analyze the speed-up factors for some arithmetic operations
and public-key cryptographic algorithms obtained through
these enhancements. In addition, we evaluate the hardware
overhead (i.e. silicon area) of integrating the CU into an
embedded RISC processor. Our experimental results show
that the proposed architectural enhancements allow for a
significant performance gain for both RSA and ECC at the
expense of an acceptable increase in silicon area. We also
demonstrate that the proposed enhancements facilitate the
protection of cryptographic algorithms against certain types
of side-channel attacks and present an AES implementation
hardened against cache-based attacks as a case study.

1. Introduction

Optimizing the resources of general-purpose processors
to fit the needs of a specific application or application do-
main is nowadays widely employed in embedded systems
[9]. Many microprocessor vendors developed architectural
enhancements for fast multimedia processing (e.g. Intel’s
MMX, AMD’s 3DNow, or Motorola’s AltiVec). Similar to
multimedia applications, also public-key cryptosystems are

∗This work was supported by the Scientific and Technological Research
Council of Turkey (TUBITAK) under project number 105E089 (TUBITAK
Career Award) and, in part, by the EPSRC under grant EP/E001556/1.

suitable for processor specialization since most software
algorithms for multiple-precision arithmetic employed in
public-key cryptography spend the overwhelming majority
of their running time in a few performance-critical sections
(e.g. inner loops). Speeding up these critical code sections
through architectural enhancements can therefore result in
a significant performance gain.

In this paper, we explore the benefits of architectural
enhancements for fast and secure computation of crypto-
graphic operations on an embedded RISC processor. Such
enhancements are typically realized by 1) augmenting the
existing base-ISA with new instructions and 2) adding new
functional units with reasonable overheads. Extending a
general-purpose processor with a set of custom instructions
for operations that dominate cryptographic applications in
terms of execution time and resource usage has a number
of advantages over using a hardware accelerator such as a
cryptographic co-processor. First, performing cryptographic
operations within a processor core eliminates the commu-
nication overhead (and possibly associated security risks)
accrued in processor/co-processor settings. Second, the area
of a cryptographic co-processor is usually larger than the
area overhead of a functional unit that is tightly coupled to
the processor core and directly controlled by the instruction
stream. Third, architectural enhancements offer a degree
of flexibility and scalability that goes far beyond of what is
possible with fixed-function hardware (i.e. co-processors)
since the base instruction set can be used to implement the
control flow of any cryptographic algorithm for operands
of arbitrary length, while the domain-specific instructions
allow one to speed up the performance-critical operations.

In practice, a number of criteria have to be considered
when designing architectural enhancements for embedded
processors. Most notably, the enhancements should not
entail 1) an unacceptable increase in area, 2) a change in
instruction format or size, 3) a difficult integration into the
available tool-chain, and 4) a major change in the control
circuitry and pipeline structure.



Data Cache
Cryptographic

Register File IU

c_rs
c_rt

MUL

HI LO
hi part lo partc_rd

load

store

Shifter

Cryptographic

Execution Unit

128

128

128

128

Figure 1. Detailed Architecture of the Cryptographic Unit (CU)

1.1. Related Work and Our Contributions

Various architectural enhancements to speed up the exe-
cution of cryptographic operations have been proposed in
the recent past [6, 7, 8, 16, 17]. For example, the authors
of [7] propose a set of five custom instructions to accelerate
arithmetic operations in GF(p) and GF(2m) on a MIPS32
core to benefit elliptic curve cryptography, while the ISA
extensions in [17] aim to support pairing-based crypto-
systems. On the other hand, the authors of [6] explore the
effect of on-chip memory on the execution time of S-box
computations in symmetric-key cryptography. A common
characteristic of all these approaches is that they focus on
architectural enhancements for accelerating an individual
cryptographic operation.

In this paper, we take a slightly different and holistic
approach by designing, implementing, and integrating a
cryptographic unit (CU) into an extensible embedded pro-
cessor core with the goal to support many cryptographic
operations through not only acceleration but also secure
execution. The CU provides a set of new and powerful cus-
tom instructions to speed up multiplication and inversion
in prime fields, as well as other operations carried out in
elliptic curve cryptography and RSA. The CU is also shown
to be beneficial for the implementation of AES software
hardened against certain types of side-channel attacks. Our
experiments with an extensible processor platform from
Tensilica [15] demonstrate that the proposed CU can be
easily integrated into a general-purpose RISC core with an
acceptable hardware overhead.

2. General Architecture

The cryptographic unit, shown in Figure 1, consists of
two parts: i) a cryptographic register file (CRF) organized
as an array of 32 registers, each 128 bits wide, and ii) a
cryptographic execution unit (CEU). The CRF can be used
to store operands as well as temporary results of arithmetic
operations with the purpose of increasing the performance
since a register file of such size considerably reduces the
number of memory accesses. It can also be used to store
sensitive information (e.g. secret keys) and small look-up
tables for security and speed. The CEU can be considered

Instruction Fetch / Decode

Data Cache

Data ROM

Data RAM

Xtensa LX2

Processor

Interface Control

Instruction RAM

Instruction ROM

Instruction Cache

Base ISA Execution Pipeline

Data Load / Store Unit

Base

Register File

Base ALU

 MAC 32

MUL 32

C
ry

p
to

g
ra

p
h

ic

E
x
e

c
u

ti
o

n
 U

n
it

C
ry

p
to

g
ra

p
h

ic

R
e

g
is

te
r 

F
il
e

PIF

Local Memory

Interface

Figure 2. Architecture of the Enhanced Core

as cryptographic data path containing functional units that
are better capable of dealing with relatively large operands
than a classical integer unit. Figure 2 shows that the CU
is tightly integrated into the processor core and utilizes its
pipeline structure and interconnection infrastructure. Both
the instructions of the base-ISA and the new instructions
are executed in the existing pipeline.

Figure 1 shows the functional units inside the CU, where
data transfer and arithmetic/logic operations are performed
on 128-bit words. The integer unit (IU) is capable of adding
and subtracting two 128-bit integers, while the shifter can
shift a 128-bit register in both directions. The shifter is
also able to shift the least or most significant bit from one
register to another by taking two registers as argument (but
only one register is overwritten; see Table 1). The third
functional unit is a 128-bit multiplier which takes two 128-
bit integers as input and produces a 256-bit result. As can
be seen from the figure, the data path and interconnection
structure for cryptographic instruction execution is similar
to the integer data path of a typical RISC processor.

2.1. Multiplier Unit

The most important functional unit with respect to the
performance of public-key cryptographic operations is the
multiplier unit, which needs to be carefully designed and
integrated into the micro-architecture. Our design is based



64

rs [95:64]

32

 1st clk cycle

64

MUL32MUL32

HI

rt [31:0]

32

rs [127:96]

32

rt [63:32]

32

64

rs [95:64]

32

64

MUL32MUL32

LO

rt [63:32]

32

rs [127:96]

32

rt [31:0]

32

LO

IU

IU

0...00...0

03295127

HI LO

 2nd clk cycle

 3rd clk cycle

Cout
Cin

1

64

LO

128 128

128

temp

Figure 3. Multiplier Unit

on four 32-bit multipliers that are instantiated from the
existing multiplier unit in the integer data path. The result
of the multiplication is a 256-bit integer, which is produced
in 15 clock cycles to avoid an increase of the critical path
delay. A full 128-bit multiplication consists of four 64-bit
multiplications, each of which itself consists of four 32-bit
multiplications. The computation of a 64-bit multiplication
is shown in Figure 3; it completes in three clock cycles. In
the first cycle, four 32-bit multipliers generate the partial
products and write them into the 256-bit HI/LO register
pair. In the next clock cycle, an addition is performed on
the aligned partial products; finally in the last cycle all the
partial products are added up and the result is placed in
a temporary register. This process is repeated three times
for the other 64-bit multiplications. A final addition phase
is needed to generate the 256-bit result, which consumes
another three clock cycles.

2.2. Cryptographic Register File

The CRF can be shared among different processes if the
operating system supports multi-tasking. However, in order
to alleviate security concerns and reduce the cost of context
switches, we propose a transactional use of the CRF. The
content of the CRF is not saved by the operating system
on context switches; therefore, any process wishing to use
the CRF does not automatically assume that a register’s
content remains intact forever. Each process is provided
with a consistent view of the CRF for only a short duration
(e.g. for the time of one multiple-precision multiplication).
A process can lock the CRF for this duration (so that no
other process can access the CRF) if the context switches
occur too frequently. The operating system assists processes
for a fair schedule of the CRF usage in order to prevent
starvation or attacks by malicious processes. Therefore, a

Format Description

ADD CREG(c rd, c rs, c rt) c rd← c rs + c rt
SUB CREG(c rd, c rs, c rt) c rd← c rs − c rt

COMP CREG(c rd, c rs, c rt) c rd← c rs > c rt ? 1 : 0
SHL CREG(c rs, c rt) c rs← c rs126:0‖ c rt127

SHR CREG(c rs, c rt) c rs← c rt0‖ c rt127:1

MUL CREG(c rs, c rs) (HI/LO)← c rs × c rt
LOAD CREG(c rd, address) c rd← Memory[address]
STORE CREG(c rd, address) Memory[address]← c rd

Table 1. New 128-bit Instructions

smart scheduling algorithm is very important to solve the
afore-mentioned problems.

2.3. Custom Instructions

Table 1 summarizes the custom instructions added to the
base-ISA. Note that the new instructions operate on 128-bit
values and conform to the instruction types and formats
of conventional RISC architectures.

3. Software Implementation of Arithmetic Op-
erations on the Enhanced Processor

In the following, we explain the implementation of two
important arithmetic operations on our enhanced embedded
processor, namely multiple-precision modular multiplica-
tion and modular inversion. Our processor is based on the
Xtensa LX2 [15], a configurable and extensible RISC core
developed by Tensilica. We use the term base processor to
denote the Xtensa LX2 with its base instruction set, 8 kB
of separate instruction and data cache memories, and a
32-bit multiplier. We enhanced the base processor with the
tightly-coupled CU described in the previous section and
refer to it as enhanced processor. All algorithms of which
we report the execution times were executed on both the
base processor and the enhanced processor.

3.1. Modular Multiplication

Koç et al. [11] proposed five algorithms to implement
the Montgomery modular multiplication [12] (which is the
fastest method for modular multiplication) in software. The
CIOS method [11] seems to be the best choice since it has
a regular execution pattern and requires the least memory
space among the examined candidates. However, we found
the SOS method [11] more suitable for execution on our
enhanced processor. The SOS method is performed in two
steps: i) the schoolbook multiplication of two big integers
and ii) the Montgomery reduction. Even though the SOS
method doubles the memory space, it does not use the all
the variables at the same time. Since each step in isolation



Precision CIOS (base) SOS (enhanced) Speed-up

160 2,765 1,047 2.6
192 3,873 1,196 3.2
256 6,691 931 7.2
512 25,605 2,365 10.8

1024 100,304 7,654 13.1

Table 2. Timings for Modular Multiplication

Precision Inv. (base) Inv. (enhanced) Speed-up

160 78,174 36,978 2.11
192 106,082 43,864 2.42
256 172,407 57,168 3.02
512 579,878 141,836 4.09

Table 3. Timings for Modular Inversion

requires less memory than the CIOS method (which exe-
cutes the two steps interleaved), all the operands needed in
the two SOS steps fit into the CRF if the operands are no
longer than 1024 bits. Table 2 summarizes the execution
times (in clock cycles) of the CIOS method on the base
processor and the SOS method on the enhanced processor.

3.2. Modular Inversion

Inversion is an extremely slow operation needed in both
RSA (e.g. for key generation or CRT method) and elliptic
curve cryptography (ECC). While it is possible to avoid
the inversion operation in many cases, there will be other
situations where fast inversion is useful. The best way to
compute multiplicative inversion is to use what is known
as the binary extended Euclidean algorithm and a variation
of it, the Montgomery inversion algorithm [10]. We decided
to implement the Montgomery inversion on both the base
processor and the enhanced processor; the execution times
(in clock cycles) are summarized in Table 3.

4. Implementation Results

In this section, we present the estimated speed-up values
obtained for both RSA and elliptic curve cryptography. We
implemented a 1024-bit RSA using two different exponen-
tiation techniques: a window method with a 4-bit window
size and the the conventional binary method (the so-called
“square and multiply” algorithm). On the base processor, a
1024-bit RSA exponentiation with 4-bit windows takes on
average 132,334,584 clock cycles, of which some 97.5% is
spent on modular multiplication. Consequently, the speed-
up factor due to the proposed enhancements is estimated to
be about 10.10. A 1024-bit RSA using the binary method
takes 156,812,860 clock cycles, of which 97.9% is spent on
modular multiplication. Therefore, the estimated speed-up

Point mult. % of modular EstimatedPrecision
(base) multiplication speed-up

160 5,814,161 87.00% 2.15
192 9,924,418 90.17% 2.63
256 22,342,893 92.49% 4.91
512 158,199,923 96.51% 8.05

Table 4. Timings for Point Multiplication

factor is found to be 10.48. We also implemented elliptic
curve point multiplication based on Jacobian coordinates as
described in [5]; the results are given in Table 4.

It is widely believed that there is no need to accelerate
the modular inversion when projective coordinates, such as
Jacobian coordinates [5], are used. Projective coordinates
eliminate all but one inversion from the elliptic curve point
multiplication at the expense of more multiplications; this
single inversion is needed for the conversion of the result
from projective to affine coordinates. However, as we will
show in the following, the time spent on the inversion can
make a considerable contribution to the overall execution
time, especially when the modular multiplications are sped
up by our architectural enhancements.

Using projective coordinates, a point multiplication over
a 160-bit prime field takes roughly 2,701,349 clock cycles
on the enhanced processor. On the other hand, our imple-
mentation of the Montgomery inverse for 160-bit operands
needs about 78,174 clock cycles if the enhancements are
not utilized. Thus, the inversion accounts for merely 2.9%
of the total cycles spent on point multiplication including
conversion. This does not justify to speed up the inversion
operation since any improvement on inversion will only
marginally accelerate the entire operation. However, there
exist a number of advanced point multiplication techniques
with significantly better performance, especially when the
base point is fixed and known a priori. For example, using
the fixed-base comb method cuts the execution time of a
point multiplication down to an estimated 343,905 cycles
on our enhanced processor. In this case, the inversion would
constitute 22.73% of the total time if it is executed with the
base instructions, which makes a strong case for speeding
up the inversion operation. The enhanced processor is able
to compute the inversion in roughly 36,798 cycles, which
translates to 11.98% of the overall execution time.

4.1. Hardware Cost

Adding new instructions and functional units inevitably
introduces additional costs. For an embedded processor, it
is essential that the extra hardware costs do not exceed the
benefits of the enhancements. Table 5 shows the hardware
cost of each functional unit in terms of gates in a 0.13 µm
CMOS technology. Considering that these enhancements



Functional unit Gate count (0.13 µm)

Base processor 101,694
CRF 34,004

Multiply unit 38,209
Integer unit 4,524

Shifter 35
Other 18,727

CU total 95,499

Table 5. Hardware Cost of Functional Units

speed up certain cryptographic operations by a factor of up
to 10, their benefit far exceeds the associated costs.

5. An AES Implementation Hardened against
Cache Attacks

Efficient software implementations of many symmetric
ciphers are vulnerable to so-called cache attacks [14] since
they usually utilize look-up tables for non-linear function
(S-box) evaluations, whereby these tables generally fit into
the first or second-level cache of modern processors. The
most efficient software implementation of the Advanced
Encryption Standard (AES) is due to Barreto [3] and uses
four 1 kB tables for the first nine rounds of the 10-round
variant of the algorithm. Another table of the same size is
used in the final round. Many cache-based attacks on AES
software exploit the access patterns to cache lines, which
may contain the desired table entry (i.e. cache hit), or not
(i.e. cache miss) [1, 2]. Considering the fact that a cache
miss introduces a significant and observable delay to the
computation (since cache memory is usually much faster
than main memory), the differences in the execution time
of AES encryption leaks information on the secret (round)
keys. We refer the reader to [4, 13] for a formal description
of cache attacks.

Practical cache attacks on AES focus either on the first
round (as in [13]) or the last round (as in [1]) since these
rounds directly interact with the “outside world” by taking
the plaintext as input and outputting the ciphertext, both
of which are observable by an attacker. Therefore, it is very
important to protect the first and last rounds. Implementing
even a single round without using look-up tables (in order
to not leave any trace in the cache) can be very slow in
software due to bit-manipulation operations.

A fast AES implementation secure against cache attacks
could use a combination of the countermeasures proposed
in [4, 13]. Our enhanced processor can be beneficial when
applying these protection methods. For example, the Cryp-
tographic Register File (CRF) sketched in Section 2 can be
used to store a part of the look-up tables. Even though the
CRF with its 32 128-bit registers is relatively large, it is
not capable to accommodate all tables, which are 5 kB in

[3] First Last First+last Per round

796 171 (21.5%) 33 (4.5%) 199 (25%) 178 (≈ 22.4%)

Table 6. Overhead (in clock cycles) of protect-
ing the rounds of AES

size. However, the CRF can easily hold a 256-byte table
with pre-computed values for the byte substitution of one
AES round. Since table look-ups now result in accesses to
the register file (and not to the data cache), the requested
byte is always returned in constant time. Furthermore, as
the CRF is not time shared (at least while a cryptographic
process has locked it), other (possibly spy) processes can
not observe the trace left by the cryptographic process.

A small look-up table, specifically placed for AES imple-
mentation and optimized for fast access, allows for secure
computation of each round of the AES at the expense of a
slight degradation in performance compared to a standard
(i.e. unprotected) implementation like the one in [3]. This is
even the case if the register file is not especially designed
for the implementation of look-up tables. The CRF of our
processor is geared towards public-key algorithms and thus
organized as a one-dimensional array of 32 registers of 128
bits. A drawback of this approach is a certain overhead in
accessing the desired bytes in the register file. However, one
can always arrange the CRF as a byte array if the execution
time of symmetric ciphers is more important.

We modified the implementation from [3] by replacing
the look-up table-based round functions with their secure
counterparts; the resulting overhead (in number of clock
cycles) is listed round-wise in Table 6 for the encryption
of a 128-bit block. To give an idea as to how expensive it
is to protect even one round of AES, we also implemented
an AES version on the base processor without any look-up
tables and optimized it for speed. The resulting overhead
of protecting only the first round of AES turns out to be as
high as 36,125 clock cycles.

As explained in [4] for a standard implementation of the
AES, a small table can be used to protect the rounds. We
also implemented the standard method for different rounds
and found that protecting one round results in an overhead
of some 29%, which is higher than ours. Consequently, the
standard implementation with all rounds protected requires
2654 cycles, while our fully-protected implementation on
the enhanced core takes 2246 cycles, which translates into a
16% improvement over the standard implementation. Note
that the standard implementation may still be vulnerable to
synchronized attacks through a spy process that can evict
cache lines during AES computation in a very fine-grained
fashion. On the other hand, our AES implementation pro-
vides perfect protection against cache attacks and costs no
overhead in hardware since we utilize resources which are
already included in the core for public-key operations.



The case study of AES shows that the CRF is a good
example for a generic architectural enhancement which can
be used for many purposes, e.g. speeding up cryptographic
operations, storing secret data (e.g. keys), and securing the
implementation of non-linear functions (S-boxes).

6. Conclusions and Future Work

We designed and implemented a generic cryptographic
unit (CU) that i) facilitates fast and secure execution of a
wide range of cryptographic algorithms, and ii) adheres to
the 3-address instruction format and can be integrated into
almost any general-purpose processor.

To demonstrate the efficiency and applicability of the
proposed CU, we integrated it into the execution pipeline
of an extensible, embedded RISC processor. We obtained
considerable speed-up factors for basic multiple-precision
arithmetic operations such as modular multiplication and
inversion, which are the the dominant operations of many
public-key cryptosystems. The estimated speed-up factors
for ECC and RSA gained through the CU are up to 8 and
10, respectively. We showed that the CU can also be used to
effectively harden software implementations of symmetric
ciphers against certain side-channel attacks such as cache
attacks. Our experimental results indicate that the hardware
overhead of the proposed CU in terms of silicon area is
acceptable for embedded processors. A comparison of the
obtained speed-up values and incurred hardware overhead
makes clear that the benefits of the CU exceed its cost.

We leave an actual implementation of our enhanced pro-
cessor on reconfigurable hardware (i.e. FPGA) as a future
work. All enhancements introduced by the CU are designed
in such a way that they do not incur significantly adverse
effects on the critical path of the base processor. For ex-
ample, the multiply unit consists of four 32-bit multipliers
working in parallel; therefore its critical path is similar to
that of a 32-bit multiplier. Also the other functional units
in the CU were designed with special consideration of the
critical path. There will, of course, be a certain penalty in
the maximum applicable frequency due to the increase in
the total chip area. However, a moderate reduction of the
clock frequency is acceptable for embedded applications
where relatively low clock speeds are adopted. Exploring
the (possibly negative) effect of the CU on the maximum
applicable frequency and optimizing the functional units to
minimize this effect is left as a future work.

References

[1] O. Acıiçmez and Ç. K. Koç. Trace-driven cache attacks
on AES. In Information and Communications Security —
ICICS 2006, LNCS 4307, pp. 112–121. Springer Verlag,
2006.

[2] O. Acıiçmez, W. Schindler, and Ç. K. Koç. Cache-based
remote timing attacks on the AES. In Topics in Cryptology
— CT-RSA 2007, LNCS 4377, pp. 271–286. Springer Ver-
lag, 2007.

[3] P. S. Barreto. The AES Block Cipher. Source code, avail-
able for download from http://planeta.terra.com.br/
informatica/paulobarreto/EAX++.zip, 2003.

[4] J. Blömer and V. Krummel. Analysis of countermeasures
against access driven cache attacks on AES. In Selected
Areas in Cryptography — SAC 2007, LNCS 4876, pp. 96–
109. Springer Verlag, 2007.

[5] H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve ex-
ponentiation using mixed coordinates. In Advances in Cryp-
tology — ASIACRYPT ’98, LNCS 1514, pp. 51–65. Springer
Verlag, 1998.

[6] A. M. Fiskiran and R. B. Lee. On-chip lookup tables for
fast symmetric-key encryption. In Proceedings of the 16th
IEEE International Conference on Application-specific Sys-
tems, Architectures and Processors (ASAP 2005), pp. 356–
363. IEEE Computer Society Press, 2005.

[7] J. Großschädl and E. Savaş. Instruction set extensions for
fast arithmetic in finite fields GF(p) and GF(2m). In Cryp-
tographic Hardware and Embedded Systems — CHES 2004,
LNCS 3156, pp. 133–147. Springer Verlag, 2004.

[8] J. Großschädl, S. Tillich, and A. Szekely. Performance eval-
uation of instruction set extensions for long integer modular
arithmetic on a SPARC V8 processor. In Proceedings of the
10th Euromicro Conference on Digital System Design (DSD
2007), pp. 680–689. IEEE Computer Society Press, 2007.

[9] P. Ienne and R. Leupers. Customizable Embedded Proces-
sors: Design Technologies and Applications. Morgan Kauf-
mann Publishers, 2006.

[10] B. S. Kaliski. The Montgomery inverse and its applications.
IEEE Transactions on Computers, 44(8):1064–1065, Aug.
1995.

[11] Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and com-
paring Montgomery multiplication algorithms. IEEE Micro,
16(3):26–33, June 1996.

[12] P. L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, Apr.
1985.

[13] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: The case of AES. In Topics in Cryptology
— CT-RSA 2006, LNCS 3860, pp. 1–20. Springer Verlag,
2006.

[14] D. Page. Theoretical use of cache memory as a cryptanalytic
side-channel. Technical report CSTR-02-003, Department
of Computer Science, University of Bristol, June 2002.

[15] Tensilica, Inc. Xtensa LX2 Configurable Processor Core.
Product brief, available for download from http://www.
tensilica.com/products/xtensa_LX.htm, 2007.

[16] S. Tillich and J. Großschädl. Instruction set extensions for
efficient AES implementation on 32-bit processors. In Cryp-
tographic Hardware and Embedded Systems — CHES 2006,
LNCS 4249, pp. 270–284. Springer Verlag, 2006.

[17] T. Vejda, D. Page, and J. Großschädl. Instruction set ex-
tensions for pairing-based cryptography. In Pairing-Based
Cryptography — PAIRING 2007, LNCS 4575, pp. 208–224.
Springer Verlag, 2007.


