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Abstract.  Electromagnetism-like Mechanism (EM) heuristic is  a population-based stochastic global  optimization  method 
inspired by the attraction-repulsion mechanism of the electromagnetism theory.  EM was originally proposed for solving 
continuous global optimization problems with bound constraints and it has been shown that the algorithm performs quite well 
compared to some other global optimization methods.  In this work, we propose two extensions to improve the performance 
of the original algorithm:  First, we introduce a  fixing strategy that provides a mechanism for not being trapped in local 
minima, and thus, improves the effectiveness of the search.  Second, we use the proposed fixing strategy to parallelize the 
algorithm and utilize a  cooperative parallel search on the solution space.  We then evaluate the performance of our study 
under three criteria: the quality of the solutions, the number of function evaluations and the number of local minima obtained. 
Test problems are generated by an algorithm suggested in the literature that builds test problems with varying degrees of 
difficulty. Finally, we benchmark our results with that of the Knitro solver with the multistart option set.
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1. Introduction

Electromagnetism-like Mechanism (EM) heuristic was originally proposed for solving continuous 
global optimization problems with bound constraints (Birbil and Fang, 2003).  EM is a population-based 
stochastic  global  optimization  method  inspired  by  the  attraction-repulsion  mechanism  of  the 
electromagnetism theory.   It  is shown that after a modification, the algorithm converges to the global 
optimum with probability one, when the number of iterations is large enough (Birbil, 2004).  

In this paper, we present our work on improving the performance of the original EM.  In this context, 
we extend the heuristic in two ways: (i) adding a mechanism for controlling local optimality and applying 
a fixing strategy not to be trapped in the attractive local minima, (ii) parallelizing the search.  We try three 
cooperation scenarios in the parallelization process and use the fixing strategy by means of cooperation 
between the parallel search threads.  We test the performance of the extensions we propose in terms of 
solution quality, number of function evaluations, and number of local minima obtained.  Test problems are 
generated by the GKLS software (Gaviano et al., 2003).  To provide a more comprehensive performance 
evaluation, we also benchmark our results with that of the Knitro[1] solver. 

2.Electromagnetism-like Mechanism

EM starts with an initial solution set (particles) and then, an attraction-repulsion mechanism is used 
iteratively to move those particles towards optimality.  The general scheme of the algorithm is given in 
Figure 1 (except the shaded lines).  Here, m is the number of particles, MAXITER is the maximum number 
of  iterations,  LSITER  is  the  maximum  number  of  local  search  iterations,  and  δ is  the  local  search 
parameter.  
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In  the  Initialize procedure,  m particles  are  randomly  generated  from the  feasible  region.   The 
procedure  Local is then applied, where the particle with the best objective function value (best particle) 
takes random (but feasible) steps in each coordinate direction in order to find locations with better function 
values, i.e., a coordinate search is applied to the best particle.  Then, the total force vectors exerted on the 
particles are calculated.  The force exerted on a particle via other particles is inversely proportional to the 
distance between the particles and directly proportional to the product of their charges.  The best particle 
then attains the maximum charge.  The signs of the force vectors are assigned by comparing the objective 
function values of the related particles. That is, a particle with a better objective function value attracts the 
other particles with a positive sign force vector.  Finally, each particle (except the best one) moves in the 
direction of the total force vector by a random step length along each coordinate.  The algorithm terminates 
when MAXITER iterations are completed.  The complete algorithm and the details of procedures are given 
in (Birbil and Fang, 2003).

ALGORITHM EM with the fixing strategy (m, MAXITER, LSITER,FXITER, δ, ε )
1: Initialize()§

2: iteration ← 1
3: while iteration < MAXITER do
4:    Local(LSITER, δ) §

5:    F ← CalcF()§     //modify CalcF(): fixed particles always repel
6:    Move(F) §            //modify Move(F): fixed particles do not move
7:    for i=1 to m do
8: if TotalMove(Particle[i], FXITER) < ε then   // check the total move in the last FXITER iterations
9:       label Particle[i] as “fixed”
10: iteration ← iteration + 1

(§ see Birbil and Fang, 2003)

Fig.1. The outline of EM with the fixing strategy

3.The Fixing Strategy

The attraction-repulsion mechanism of EM and the randomness in its procedures may cause visits 
to the same local minimum several times. Consequently, an early completion due to exhaustion of the 
maximum number of iterations may result with missing the global minimum.  The fixing strategy suggests 
placing some fixed particles to the locations that  are local minimum candidates.  Unlike the standard 
particles of the original method, the fixed particles do not search; they just repel mobile particles providing 
them to search for new local  optima existing in the yet  undiscovered part  of the solution space.  The 
required changes in the original algorithm are shown by shaded lines in Figure 1. In this work, we do not 
use any derivative information to decide if a location is a local minimum. We accept that a particle is a 
local minimum if it does not leave the ε - neighbourhood for a certain number of iterations (FXITER).  

Figure 2 illustrates the strategy on an example GKLS problem.  The two dimensional problem has 
5 local minima.  In Figure 2-a, the algorithm finds out one of the local minima that is quite close to the 
global minimum.  Since a better solution cannot be found for several iterations, the particle at this location 
does not move during a specified number of iterations.  Thus, we suspect that it is on a local minimum and 
label it as fixed (marked with a cross sign in Figure 2-b).  So, it starts to repel other particles.  In Figure 2-
b,  the  nonfixed  particles  discover  another  local  minimum  and  another  particle  becomes  fixed  at  this 
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location.  The nonfixed particles are repelled by the first two minima, and hence, they are encouraged to 
find the global minimum (Figure 2-c).   

    
               (a)                                               (b)                                                 (c)

Fig. 2. An illustration of the fixing strategy

4.The Parallel Implementation

There is a considerable amount of work on parallelizing some well-known meta-heuristics like 
simulated  annealing,  tabu  search,  and  genetic  algorithms  that  apply  various  parallelization  strategies 
(Migdalas,  2003).  Crainic et  al.  (2004) state that multiple search parallel algorithms outperform their 
sequential  counterparts  and  cooperative  multiple  search  strategies  generally  perform  better  than  the 
independent multiple search methods.  

In this study, we design several parallel versions of EM not only for increasing the computational 
power but also for improving the performance of the algorithm. Our experience shows that the algorithm 
performs better as the number of particles is increased to a certain extent, but beyond that the increase in 
the number of particles  adversely affects the algorithm.  This is  due to the noise caused by too many 
interactions between the particles.  Therefore, the parallel implementation with smaller groups seems like a 
viable and, as our results show, a promising approach. 

In our parallel design, each parallel processor runs the complete EM algorithm in interaction with 
other processors.  The cooperation is provided by sharing the coordinates of the fixed particles so that the 
copies of these particles can be produced in the receiver processes to support the application of the fixing 
strategy.   Information  exchange  among parallel  processors  is  via  messaging,  i.e.,  no common central 
memory is used.  The communication is quite restricted, so messaging does not cost significant increase in 
the computation time. We illustrate the idea of the cooperation in Figure 3 by solving the same example 
problem as in Section 3 with two processors; one half of the 16 particles in Section 3 is now used by 
Process 1 and the other half by Process 2:  At early iterations, both processes are looking around the same 
region.  This is the relatively large attraction region of the most attractive local minimum (the paraboloid 
vertex).  (a) – (d) Process 2 then obtains the local minimum, fixes a particle at that location and then, sends 
it to Process 1. Consequently, the particles in both processes are now directed to other regions of the 
solution space.  Furthermore, Process 1 no more has to spend its resources. (b) - (e) At later iterations, 
Process 1 is the first one that finds another local minimum with a better objective function value.  It then 
fixes a particle there and shares it with Process 2 so that particles of Process 2 soon leave the related region 
which has already been explored by Process 1. (c) - (f) Finally, both processes find the global minimum; 
Process  1  finds  it  first.   Since  both  processors  share  information,  we  call  this  scenario  as  the  full  
cooperation. The complete set of proposed scenarios is explained next.
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                (a)        (b)           (c)   

          
 (d)      (e)           (f)
Fig.3. An illustration of the cooperation among the parallel processors

We try three parallelization scenarios: no cooperation (Scenario 0), limited cooperation (Scenario 
1) and full cooperation (Scenario 2).  In no cooperation scenario, parallel processors do not communicate 
during their search and results  are gathered when they terminate.   In other words,  we divide the  EM 
particles team into smaller search teams so that the communications among the teams are not allowed. 
The limited cooperation scenario is similar to a master-slave model.  One of the processors is the root and 
the main process runs on it.  The role of other processors is to support the root by informing it when they 
fix a particle.  However, all results are also gathered when parallel search is completed since a non-root 
process may still find a better solution than the root does.  In the full cooperation scenario, there is no root 
process and all processors communicate:  When one of the processors has a fixed particle, it sends its 
information to all other processors.  Again, the results are gathered after termination.

5.Computational Results

As  we  have  mentioned  above,  our  motivation  in  parallelizing  EM  is  not  simply  making  the 
algorithm run faster but improving its overall performance.  So, our tests are based on three criteria:  the 
quality of solutions, the number of function evaluations and the number of local minima recovered.  To 
provide a fair benchmark, we use the same algorithm parameters (including the number of particles) for all 
test configurations.  The algorithms are coded in C++ and MPI is used for parallel programming.

The properties of our test problems are summarized in Table 1 (cf. Gaviano et al., 2003).  For each 
combination of parameters, 10 problems are generated, so we have a total of 360 different test problems. 
Since we implement a stochastic search method, we generated 10 replicates with different seeds for each 
problem. In total 3600 problems are solved. All problems are continuous global optimization problems 
with bound constraints. Here, global radius is the radius of the attraction region of the global minimum and 
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global  distance  is  the  distance  between  the  global  minimum  and  the  parabolid  vertex.   The  global 
minimum value for all of our test problems is -1.  We generated differentiable functions to be able to use 
them also to test Knitro2.  

Table 1. The parameters for GKLS test problems
Dimension 2, 5, 10
Number of local minima 5, 10, 50
Global radius 1%, 5% of the distance between lower and upper bounds
Global distance 12.5%, 25% of the distance between lower and upper bounds

We apply EM with  m = 8×n/p,  MAXITER = 100×n,  where  m,  n and  p denote the number of 
particles, the problem dimension and the number of processors respectively.  The local search is applied 
only to the best particle, and the maximum number of local search iterations  LSITER is 3.  We fix a 
particle if it moves less than 10-9 during 0.2×MAXITER iterations.  Local search parameter δ is 10-3.  We 
stop the algorithm when it completes maximum number of iterations or when it becomes close enough to 
the  global  optimum.   Following (Birbil  and Fang,  2003),  we are satisfied  by arriving       10-4|fglob| 
neighbourhood of the global minimum fglob.  To have a fair comparison, we use the same set of seeds 
whenever the number of processors is equal. We select the following option settings for Knitro version 5.1: 
hessopt = bfgs,  ms_enable = yes (multistart option is set).  All other options are set to their default 
values (number of solutions to compute in case of multistart is min(200, 10×n) by default). 

First,  we  test  performance  of  the  fixing  strategy  versus  classical  EM,  and  also  compare  the 
performance of both versions of EM with Knitro.  As Table 2 indicates, in terms of the solution quality, 
EM with fixing strategy is the best on average.  

Table 2. The performance benchmark for the fixing strategy
 Method

EM 
EM with 

fixing strategy
Knitro with 
multistart

Average final 
objective function 
value

n=2 -0.7164 -0.7416 -0.3742
n=5 -0.0922 -0.1105 -0.0836
n=10 0.0063 0.0087 -0.0087
overall -0.2674 -0.2811 -0.1555

Percentage of 
results with the 
global minimum 

n=2 53.75% 57.67% 16.67%
n=5 8.08% 9.17% 3.34%
n=10 0.08% 0.08% 0.83%
overall 20.74% 22.31% 6.94%

Average number 
of function 
evaluations*

n=2 675.86 766.60 819.66
n=5 1660.45 1916.36 1559.74
n=10 2384.34 2507.85 3508.52
overall 1573.55 1730.27 1962.64

    (*number of gradient evaluations for Knitro is added) 

Second,  we  try  to  see  how number  of  parallel  search  threads  affects  the  performance  of  the 
algorithm.  From Table 3 we realize that a certain degree of parallelization may improve the performance 
but there is not a monotone relationship between the number of processors and the performance criteria. 

2 Knitro does not allow starting with different seeds, thus the experiments with Knitro involve only single replication.
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Also,  applying  the fixing strategy in 4  parallel  processors  is  the least  successful  probably due to the 
decrease in the number of particles caused by fixing, and also because of using only 2×n particles, which 
could be far too few to carry out the search. 

Table 3. The performance benchmark for the parallelization (no communication scenario)
Classical EM EM with fixing strategy

1 proc. 2 proc. 4 proc. 1 proc. 2 proc. 4 proc.
Percentage 

of results 
with the 

global 
minimum

n=2 53.75% 54.25% 52.00% 57.67% 59.75% 45.33%
n=5 8.08% 9.67% 11.92% 9.17% 7.08% 6.08%
n=10 0.08% 0.17% 0.00% 0.08% 0.17% 0.25%

overall 20.74% 21.36% 21.31% 22.31% 22.33% 17.22%

Average 
number of 

local 
minima 

obtained

n=2 1.15 1.38 2.14 1.42 1.71 2.43
n=5 1 1.10 1.56 1.07 1.14 1.54
n=10 1 1.02 1.90 0.99 1.02 2.09

overall 1.05 1.17 1.87 1.16 1.29 2.02

Average 
number of 

function 
evaluations

n=2 675.86 848.91 959.02 766.60 1047.22 751.15
n=5 1660.45 2226.43 2978.80 1916.36 2343.18 2933.65
n=10 2384.34 3839.18 5568.38 2507.85 3827.73 6887.28
overall 1573.55 2311.51 3168.73 1730.27 2406.04 3524.03

Average 
CPU time

n=2 0.106 0.043 0.029 0.103 0.042 0.029
n=5 2.849 0.876 0.479 2.805 0.864 0.499
n=10 36.589 10.438 5.537 36.467 10.056 5.527
overall 13.182 3.786 2.014 13.125 3.654 2.018

Finally, we test the performance of different parallelization scenarios on two processors.  We again 
solve 3600 problems.  Table 4 summarizes the results.  Our first impression from the figures in this table is 
that the cooperation scenarios are not relatively successful on the average.

Table 4. The performance benchmark for the parallelization scenarios
  2 processors 

No comm. 
without fixing

No comm.
with fixing

Limited 
comm.

Full 
comm.

Percentage of 
results with 

the global 
minimum

n=2 54.25% 59.75% 57.33% 56.00%
n=5 9.67% 7.08% 6.33% 5.83%

n=10 0.17% 0.17% 0.17% 0.17%
overall 21.36% 22.33% 21.28% 20.67%

Average 
number of 

local minima 
obtained

n=2 1.38 1.71 1.58 1.50
n=5 1.10 1.14 1.13 1.10

n=10 1.02 1.02 1.02 1.01
overall 1.17 1.29 1.24 1.20

Average 
number of 

function 
evaluations

n=2 848.91 1047.22 1132.10 1049.99
n=5 2226.43 2343.18 2916.15 2313.12

n=10 3839.18 3827.73 4867.50 4222.53
overall 2311.51 2406.04 2971.92 2528.55
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Average 
CPU time

n=2 0.043 0.042 0.042 0.042
n=5 0.876 0.864 0.922 0.940

n=10 10.438 10.056 10.731 10.711
overall 3.786 3.654 4.024 4.022

We observe that the figures in Table 4 do not necessarily show that the proposed cooperation is 
always inferior. As a further analysis,  we compare the results of scenarios 0 and 2 for 3600 problems. 
Since  we  apply  both  scenarios  with  the  same  seeds,  we  can  give  a  one-to-one  comparison:  In  134 
problems, the cooperation has encouraged the algorithm to find a better solution than it would find without 
cooperation; in 61 problems, the cooperation actually led to the global minimum.  

6.Conclusion

In this  paper,  we proposed a fixing strategy for EM and also studied the paralel  version of the 
algorithm.  The experiments on a large set of problems reflected that the fixing strategy may lead to better 
results. The proposed fixing strategy can still be improved; for instance, using the derivative information 
would probably accelerate the algorithm since a local minimum can be identified immediately. We also 
observed  that  parallelization  had  a  certain  potential.   However,  it  is  not  easy  to  arrive  at  general 
conclusions  about  the  performance  of  parallelization  and  the  cooperation  scenarios.  Clearly,  the 
performance  depends  on  many  factors  about  the  problem  at  hand.  Thus,  our  future  work  involves 
performance tests on different sets of problems.  In the long run, we also plan to switch from parallel 
processes to a cooperative multiagent optimization environment. 
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