title   
  

Simulation-based analysis of a biologically-inspired micropump with a rotating spiral inside a microchannel

Koz, Mustafa and Yeşilyurt, Serhat (2008) Simulation-based analysis of a biologically-inspired micropump with a rotating spiral inside a microchannel. In: 6th International Conference on Nanochannels, Microchannels and Minichannels, Darmstadt, Germany

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
859Kb

Abstract

Microorganisms such as bacteria use their rotating helical flagella for propulsion speeds up to tens of tail lengths per second. The mechanism can be utilized for controlled pumping of liquids in microchannels. In this study, we aim to analyze the effects of control parameters such as axial span between helical rounds (wavelength), angular velocity of rotations (frequency), and the radius of the helix (amplitude) on the maximum timeaveraged flow rate, maximum head, rate of energy transfer, and efficiency of the micropump. The analysis is based on simulations obtained from the three-dimensional timedependent numerical model of the flow induced by the rotating spiral inside a rectangular-prism channel. The flow is governed by Navier-Stokes equations subject to continuity in timevarying domain due to moving boundaries of the spiral. Numerical solutions are obtained using a commercial finiteelement package which uses arbitrary Lagrangian-Eulerian method for mesh deformations. Results are compared with asymptotic results obtained from the resistive-force-theory available in the literature.

Item Type:Papers in Conference Proceedings
Subjects:UNSPECIFIED
ID Code:9426
Deposited By:Serhat Yeşilyurt
Deposited On:22 Oct 2008 08:46
Last Modified:25 May 2011 14:20

Repository Staff Only: item control page