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ABSTRACT 
Performance degradation and durability of PEM fuel cells 

depend strongly upon transport and deformation characteristics 

of their components especially the polymer membrane. Physical 

properties of the membrane, such as its ionic conductivity and 

Young’s modulus depend on its water content, which varies sig-

nificantly with operating conditions and during transients. Re-

cent studies indicate that cyclic transients may induce hygro-

thermal fatigue that leads to the ultimate failure of the mem-

brane shortening its lifetime, and thus, hindering the reliable use 

PEM fuel cells for automotive applications.  In this work, we 

present two-dimensional simulations and analysis of coupled 

deformation and transport in PEM fuel cells. A two-dimensional 

cross-section of anode and cathode gas diffusion layers, and the 

membrane sandwiched between them is modeled using Max-

well-Stefan equations in the gas diffusion layers, Biot’s poroe-

lasticity and Darcy’s law for deformation and water transport in 

the membrane and Ohm’s law for ionic currents in the mem-

brane and electric currents in the gas diffusion electrodes. 

Steady-state deformation and transport of water in the mem-

brane, transient responses to step changes in load and relative 

humidity of the anode and cathode are obtained from simulation 

experiments, which are conducted by means of a commercial fi-

nite-element package, COMSOL Multiphysics. 

INTRODUCTION 
Design of PEM fuel cells is a challenging task for automo-

tive applications due to durability and reliability constraints, 

which are particularly astringent as the incumbent internal-

combustion-engine technology, has been perfected for over a 

century. Failure of PEM fuel cells are mostly due to degradation 

of materials during transients which include startup, shutdown, 

electric load demands and control inputs [1]. Fatigue mecha-

nism is among the most suspected ones that lead to catastrophic 

failure of the components following mild-to-severe performance 

degradation [1-3].    
Major portion of PEM fuel cell modeling efforts concen-

trate on transport of reactants and water, and its importance on 

the electrochemical performance of fuel cells, e.g. [4-7]. Trans-

port studies are hard to extrapolate to understand structural as-

pects that lead to degradation and failure. Moreover, there are 

several structural modeling and analysis of PEM fuel cells that 

are not coupled to the transport and electrochemical aspects of 

PEM fuel cell operation, e.g. [2,8,9].   

Modeling of coupled deformation of components and trans-

port of species in PEM fuel cells is recently attracting attention. 

Choi et al [10] use a thermodynamic model to address swelling 

of PEM fuel cell membranes, typically Nafion, by means of 

chemical potential of the water in the membrane where the 

stretching of polymers affects the osmotic presssure. In their 

model, Flory-Huggins theory, which relates the volume fraction 

to the swelling pressure (water pressure in the membrane), and 

Young’s modulus of the membrane are used to address the role 

of mechanical stresses in the polymer matrix on the sorption of 

water [10].  Nazarov and Promislow [11] developed a model, 

which uses the capillary pressure effect only at the boundaries 

where the membrane is in contact with water vapor, but uses 

mechanical force balance in the polymer matrix and water pres-

sure in the pores.  

In this work, we use Biot’s linear poroelasticity to model 

the elastic deformation of the membrane matrix with the con-

sideration of liquid pressure in pores of the solid matrix. Poroe-

lastic theory uses the force balance between the liquid and the 

solid phase using linear elasticity [12]. Capillary effects only 

count at the interface where the liquid phase is exposed to gas 

similar to the model presented in [11]. The liquid is allowed to 

move in and out and within the matrix using Darcy’s Law [13]. 

Thus, the driving forces of the transport are directly coupled 

with the mechanical forces of the medium. Furthermore, the 

model allows the consideration of damping effect due to flow of 

the liquid in the porous solid during transients.  

In the model, which is presented here transport of gas spe-

cies in gas diffusion layers is modeled by Maxwell-Stefan equa-
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tions, advection of the gas mixture in the anode gas diffusion 

layer is modeled by Darcy’s Law subject to conservation of 

mass, charge transport is modeled by Ohm’s Law subject to 

conservation of charge, and deformation is modeled by plane-

strain formulation of the linear elasticity, which included poroe-

lastic effects only within the membrane, and the water transport 

in the membrane is modeled by using the Schlogl velocity. 

Coupled equations are solved using a commercial finite-element 

code, COMSOL [14].  

DESCRIPTION OF THE MODEL 
Two-dimensional model of the PEM fuel cell cross section, 

which includes gas diffusion layers (GDL) and the membrane is 

shown in Figure 1. The catalyst layers are assumed relatively 

thin compared to the membrane, and averaged out in in-plane 

direction; their effects are considered at the membrane-GDL in-

terfaces. Geometric parameters and values of the two-

dimensional section of the membrane are listed in Table 1.  

TABLE 1: GEOMETRIC PROPERTIES OF THE TWO-
DIMENSIONAL PEM FUEL CELL SECTION 

Geometric property Value 

Anode and cathode gas flow channel widths, 
ch
ℓ  1 mm 

Anode and cathode shoulder widths, 
sh
ℓ  1 mm 

Anode and cathode gas diffusion layer thick-

nesses, 
GDL
δ  

0.2 mm 

 

Membrane thickness, 
m
δ  0.05 mm 

Anode and cathode catalyst layer thicknesses, 
CL
δ  0.01 mm 

Governing equations 

Transport of gas species in GDLs 
Maxwell-Stefan equations are used for modeling the trans-

port of H2 and H2O vapor in the anode GDL and O2, H2O vapor 

and N2 in the cathode GDL as presented in [6,15]:  
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In (1) w is mass and x is molar fraction of the ith species; i is 

{H2,H2O} on the anode side, and {O2,H2O,N2} on the cathode 

side; ρ is the density of the mixture; Dij is the binary diffusion 

coefficient of species i and j, which is replaced by the effective 

diffusion coefficient, 1.5eff

ij ij gD D ε=  for porous GDLs having 

porosity of εg ; p is pressure, which is assumed to be constant 

(inlet pressure) in the diffusive term as the small pressure gradi-

ents in GDLs are negligible compared to the concentration gra-
 

dients; and lastly u is the convective (superficial) velocity field, 

which is calculated by Darcy’s Law in the anode, and assumed 

to be equal to the negative of the diffusive velocity of the inert 

specie, N2, in the cathode. Note that the superficial velocity due 

to the pressure gradient is considered due to its convective ef-

fect in the anode, but diffusive effect due to the pressure gradi-

ent is neglected. Binary diffusion coefficients in mixtures are 

determined from [16]: 
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where, vi is the molar volume of species i, T is temperature, and 

Mi is the molecular weight of species, i.   

 
FIGURE 1:  TWO-DIMENSIONAL PEM FUEL CELL SECTION 

MODELED IN THIS WORK; DASHED LINES INDICATE 
SYMMETRY SURFACES. 

 

In the anode gas diffusion layer, gas flow is modeled as 

flow in the porous media to calculate the superficial velocity of 

the mixture as follows: 

GDL

a

a

p
κ

µ
=− ∇u     (3) 

where,
GDL
κ , is the permeability of the GDL, 

a
µ  is the viscosity 

of the mixture [16]. The velocity field in the anode gas diffusion 

layer is subject to continuity equation: 
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Transport of water in the membrane 
Membrane water transport is due to (1) electro-osmotic 

drag (gradient of ionic potential), (2) diffusion (gradient of wa-

ter concentration), and (3) gradient of membrane water pres-

sure, leading to an average volumetric flux (superficial velocity) 

of the water in the membrane, based on the Schlogl velocity 

[13]: 
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where, κm is the permeability of the membrane; µw  is the vis-

cosity of the liquid water; 
2

H O
V  is the molar volume of liquid 

water; 
w

p is the water pressure in the pores; 
3

(0)

SO
c is the molar 

density of sulfonic groups in the dry membrane; D
λ

is the diffu-

sion coefficient of water in the polymer membrane; 
d

n number 

of dragged water molecules per proton; 
m
σ is the ionic conduc-

tivity of the membrane, which is a function of λ; F is the Fara-

day’s constant; and Φm is the ionic potential; and λ is the rela-

tive concentration of water with respect to the concentration of 

sulfonic groups in the dry membrane: 

3

(0)

SOw
c cλ ≡      (6) 

A salient feature of our model, which is based on Biot’s 

poroelasticity [12], is that the structural deformation of the 

polymer matrix dictates the water concentration of the mem-

brane based on the assumption that water molecules are clus-

tered as pores in the polymer matrix and the pore concentration 

is, in essence, given by the volumetric bulk strain itself.  Thus, 

the molar concentration of water in the membrane is the ratio of 

the volumetric strain, 
kk
ε , to the molar volume of liquid water: 

2H O

kk

w
c

V

ε
=      (7) 

Note that, in (6), the volumetric strain, 
kk
ε , is determined from 

the poroelastic stress-strain relationship [12]. 

In (5), the diffusion coefficient of water inside the polymer 

matrix of the membrane is given by [17]: 
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 (8) 

The last term on the right-hand-side in (5) corresponds to 

the superficial velocity of water due to ionic currents in the 

membrane. This term is calculated from the charge balance in 

the membrane.  

As two terms of the Schlogl velocity in (5) can be deter-

mined from already calculated quantities, last unknown, which 

is water pressure,
w

p , can be calculated from the conservation 

of water mass in the membrane: 
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where
w
ρ is water’s density and constant.  
 

For better accuracy of the numerical solution, the following 

manipulation akin to the use of a generalized potential is intro-

duced: 
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Thus the velocity in (5) can be given in terms of the generalized 

potential as follows: 

g= −∇ +v vɶ      (11) 

where the vɶ  term on the right-hand-side emerges from the 

λ dependence of each A  term in (10). Furthermore, since λ  is 

calculated from the volumetric strain, as in (7), one can deter-

mine vɶ  from the volumetric strain: 
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Substituting (11) and (12) in (9), one obtains: 

( )2w kk

w w kk
g A

t
ε

ρ ε
ρ ρ ε

∂
− ∇ = − ∇⋅ ∇

∂
   (13) 

where the term on the right-hand-side corresponds to a pseudo-

source term which is determined from the bulk strain. Once the 

generalized potential,g , is determined, water pressure in the 

membrane can be obtained from (10).  

Deformation (force balance) 
In the two-dimensional section of the PEM fuel cell, de-

formation of solid components, namely GDLs and the mem-

brane is modeled using plane-strain formulation of the linear 

elasticity. Only in the membrane, the pore pressure due to its 

liquid content (water) is considered and added to the normal 

stress components akin to Biot’s poroelasticity. The general 

stress-strain relationship used in modeling of the deformation is 

as follows [12]: 

( ) 1 21
ij ij kk ij w ij

E
p

ν
σ ε ε δ γα δ

νν

  = + −   − +
  (14) 

where 
ij
σ are stress components for { }, , ,i j x y z= , E  and ν  

are the Young’s modulus and the Poisson’s ratio of the material, 

ij
ε are the strain components, which are zero when either i  or 

j  is z , 
kk xx yy
ε ε ε= + is the volumetric bulk strain, γ is an in-

dicator variable which is unity in the membrane and zero in the 

GDLs, α is the Biot-Willis coefficient  (unity for incompressi-

ble fluids such as water), and 
ij
δ is the Kronecker’s delta.  
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Conservation of charge 
Electrons are charge carriers in the GDLs. The conserva-

tion of charge based on the Ohm’s Law is expressed as follows: 

0,
e e e e

σ∇⋅ = = − ∇ΦJ J    (15) 

where, 
e
σ is the effective conductivity of the medium, and 

e
Φ is 

the electric potential.  Since the catalyst layers are projected 

onto membrane-GDL interfaces, there are no charge sources or 

sinks in the model geometry.  

In the membrane, the charge carrier is the proton, for which 

the conservation of charge is given similar to that of electron to 

keep the current of the charged species in the same direction: 

0,
m m
σ

+ +
∇⋅ = = − ∇ΦJ J    (16) 

where 
m
Φ is the ionic potential and

m
σ is the effective conduc-

tivity of the membrane, which is water content dependent [18]: 
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 (17) 

Boundary conditions 
For mass fractions in the Maxwell-Stefan equation: At inter-

faces between the GDLs and gas flow channels, convection 

mass transfer in a laminar boundary layer is assumed due to 

laminar flow in gas flow channels, and implemented as follows: 
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where ρ is the density of the mixture in the GDL,n is the surf-

ace normal, 
,i ch

w is the mass fraction of the i
th 

specie in the flow 

channel, and 
,i ch

h is the mass transfer coefficient determined 

from the Sherwood number, Sh , for gas flow in a square-cross-

section, which is constant for laminar flow [16]: 
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In (19), 
ch
ℓ is the width of the channel, and 

,i mix
D is the diffu-

sion coefficient of the i
th

 specie in the gas mixture, namely 

2 2
H -H O

D , 
2

O -air
D  and 

2
H O-air

D for H2, O2 and H2O vapor respec-

tively. 

At the membrane-GDL interfaces, we have flux boundary 

conditions to mimic the sinks and sources in catalyst layers, 

which are equal to rates of consumption of the species: 
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In (20), u is given by (3) for anode and the negative of the dif-

fusive velocity of N2 in the cathode, 
i

M is the molar mass of the 

i
th

 specie; 
i

n is the stoichiometric coefficient of each species 

and negative for H2 and O2 and positive for H2O; and 
a
i and 

c
i  

are anode and cathode exchange currents respectively, and 

given by Butler-Volmer’s expression [19]: 
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In (21), 
0 { , }

( )ref

a a c
S i is the product of the surface area of the cata-

lyst and the reference current density for anode and cathode re-

spectively; catalyst layers’ thickness,
CL
δ , is the same for both 

anode and the cathode; 
2

H

refc  and 
2

O

refc  are reference concentra-

tions of H2 and O2 at the anode and cathode; b is 0.5 for H2 and 

unity for O2; R is the universal gas constant, 
{ , }a c
β  are coeffi-

cients, and 
{ , }a c
η are  overpotentials at the anode and cathode re-

spectively, and given by: 

{ , } 0,{ , }a c e m a c
η = Φ −Φ −Φ     (22) 

In (22), 
e
Φ and 

m
Φ are electric and ionic potentials given by 

(15) and (16), 
0,a
Φ is the open circuit potential at the anode, 

which is taken as 0, and 
0,c
Φ is the open circuit potential at the 

cathode and given by [20]: 

3

0,
= 1.23 0.83 10 ( - 298)

c
T−Φ − ×    (23) 

Fluxes of all species are set to zero at the symmetry sur-

faces of the 2D geometry in the normal directions.  

For anode GDL pressure in (4): The superficial velocity at the 

anode GDL is calculated from (3) by solving (4). The boundary 

conditions for the anode gas pressure are specified at the GDL-

gas-flow-channel interface as the anode flow channel pressure, 

,a ch
p , which is very close to the inlet pressure: 

,a ch
p p=      (24) 

At the interface between the membrane and the anode 

GDL, the superficial velocity of the mixture can be determined 

from the reaction of H2 and the electro-osmotic drag of water 

into the membrane: 

2
H

2

a w m

a a

i M v

F

ρ

ρ ρ
⋅ = − +u n     (25) 
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where 
m

v is the y-component of the velocity of the flow in the 

membrane.  

At the symmetry surfaces and GDL-shoulder boundary, the 

velocity is set to zero. 

For the conservation of membrane water: Equation (13) 

gives the conservation of mass for the membrane water by 

means of  a variable transformation that introduces a function 

which combines all the driving forces that dictate the water 

transport in the membrane for which the volumetric flux (super-

ficial velocity) is given by (5). In typical diffusive models of the 

membrane water transport, non-equilibrium boundary condi-

tions are deemed appropriate, and successfully implemented by 

several authors. In addition to the diffusion, the effect of the 

electro-osmotic drag is also included [13]. Moreover, recently, 

Nazarov and Promislow used non-equilibrium boundary condi-

tions for the chemical potential of the membrane water, which 

included its activity and pressure [11]. Based on the experimen-

tal results of Ge et al [21], diffusive forces contributing to the 

transport of the membrane water are implemented here. More-

over, the electro-osmotic drag is included due to the effect of 

the ionic potential of the membrane on the transport of water. 

Lastly, the pressure imbalance between the membrane and the 

GDL is included assuming Poiseuille flow through the pores of 

the membrane near the interface where the pressure imbalance 

between the GDL and the membrane network is effective. Com-

bining these three effects that contribute to the volumetric flux 

given by (5), we have the following boundary condition for the 

membrane-anode-GDL interface: 

( ) ( )
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k V c

F
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λ
λ λ

+
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+ −

u n J n
  (26) 

In (26), n is the surface normal; 
d

n  is electro-osmotic coeffi-

cent, which is a function of λ ; 
+
J is the ionic flux, which is de-

fined in (16); k
λ

is mass transfer coefficient; *

a
λ is equilibrium 

concentration for the anode water activity; 
p

k is the pressure 

coefficient; and 
w

p , 
cap

p and 
a

p  are membrane water, capillary 

pressure and anode pressures respectively.  

The mass transfer coefficient is experimentally calculated 

by Ge et al [21]: 
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where ( )
2 2

H O H O
/

V m
f V V Vλ λ= +  is the volume fraction of the 

water in the membrane, 
m

V is the volume fraction of the dry 
 

membrane and *λ  is the equilibrium concentration at the 

boundary, which is given by [21]:  

2 3

*

2 3

0.043 17.81 39.85 36 ,  303K
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a a a T

a a a T
λ
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The pressure coefficient is calculated from the Poiseuille 

flow assumption in the pores near the interface, i.e. 

( ) ( )
2

{ , }8

pore

pore pore out p w cap a c

pore

r
v p p k p p p

µ
= − = + −

ℓ
  (29) 

where, 
pore
r and 

pore
ℓ are  the pore radius and length respec-

tively and are both about  1 nm [22], thus, yielding 
710

p
k −≈ m-s-N

-1
. Note that, arguably equilibrium pressure 

boundary condition is more appropriate for water pressure, 

however, akin to models that use chemical potential and for 

consistency with other gradient terms in (26), we incorporate 

the non-equilibrium model. Moreover, a relatively large 
p

k can 

ensure equilibrium pressure, however it causes numerical insta-

bilities in our model.  

The capillary pressure,
cap

p , is given by the Young-Laplace 

equation, e.g. [23]: 

2 cos
s c

cap

pore

p
r

σ θ
=     (30) 

where 
s
σ is the surface tension, 

c
θ is the contact angle (which is 

about 93 degrees for Nafion and water [11]), and the pore ra-

dius, 
pore
r depends on the bulk strain and the specific surface 

area of the pores, 
pore

S  [10]: 

2
max ,kk

pore LB

pore

r r
S

ε  =    
    (31) 

In the model, a lower bound 
LB
r =0.1 nm is used for 

pore
r to 

avoid unphysical results.  

At the membrane-cathode-GDL interface, similarly to the 

conditions at the anode side, we have: 

( )

( ) ( )

2 2

2 3

H O H O

(0) *

H O SO

 +  
2

       + 

d

c p w cap c

V n V

F F

k V c k p p p
λ

λ λ

+ +

   + ⋅ = ⋅    
− + −

u J n J n
  (32) 

In (32), compared to (29), we also have the source term, 

which corresponds to the generation of water in the cathode 

catalyst layer. Other specific variables in (32) are, *

c
λ is equilib-

rium concentration for the anode water activity; and 
c

p is the 

cathode pressure. In our model, we have the same anode and 
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cathode pressures, which constitute a reference to the mem-

brane water pressure and, thus, taken to be zero.  

For other boundary conditions at the symmetry surfaces, 

the velocity is set to zero.  

For deformation: Equation (14) is solved in the displacement 

form with the actual displacement vector, ,ξ ζ
′    , for which the 

strain-tensor components are: 

1
, ,

2x y xy
x y y x

ξ ζ ξ ζ
ε ε ε

 ∂ ∂ ∂ ∂  = = = +  ∂ ∂ ∂ ∂ 
 (33) 

The 2D PEM fuel section shown in Figure 1 is assumed to 

be fixed in the y-direction at the bottom but free to move in the 

x-direction, i.e.: 

( )/ 2,0 0
sh

xζ < =ℓ     (34) 

Left side is fixed in the x-direction but can freely deform in the 

y-direction: 

( )0, 0yξ =      (35) 

The right side can freely move in the y-direction, but can move 

in the x-direction only as much as the bottom surface (edge) 

does: 

( ), 0 0,
tot

ζ =ℓ      (36) 

and 

( ) ( ), ,
tot tot

y yξ ξ=ℓ ℓ     (37) 

where ( )/ 2
tot sh ch
= +ℓ ℓ ℓ is the total width of the PEM fuel 

section.  

Lastly, top of the section is free to move in the y-direction 

but subject to constant compressive load due to clamping. Simi-

lar boundary conditions are also used in structural analysis of 

PEM fuel cell cross-sections [2,3,9]. 

For conservation of charge: The electric potential is set to 

ground at the anode shoulder boundary of the anode GDL: 

( ), 0 0
e

xΦ =      (38) 

At the cathode shoulder, the load current density, 
cell

J ,  is im-

posed: 

( ),2
e GDL m cell

x Jδ δ+ ⋅ =J n    (39) 

At interfaces between the membrane and GDLs, electric 

and ionic currents are given by the exchange currents,
{ , }a c
i , 

which are defined in (21). Thus, we have: 

( ),
e GDL c a

x iδ ⋅ = −J n     (40) 

( ),
e GDL m c c

x iδ δ+ ⋅ = −J n    (41) 
 

( ),
m GDL m a

x iδ ⋅ =J n     (42) 

and 

( ),
m GDL m m c

x iδ δ+ ⋅ =J n    (43) 

In (39) – (43), 
m
n , 

c
n and 

a
n  are surface normals with re-

spect to the membrane, cathode GDL and anode GDL respec-

tively. 

Initial Conditions 
In simulations, steady-state conditions are used as initial 

conditions during transients; parameters that correspond to each 

simulation are explicitly given in the results section. 

NUMERICAL APPROACH 
Governing equations, which are given by (1), (4), (10), and 

(13) – (16) subject to boundary conditions, which are given in 

detail above are solved using a commercial multiphysics finite-

element code, COMSOL [14], for steady-state and transients. In 

total of 1854 triangular elements with quadratic Lagrange shape 

functions are used; total number of degrees of freedom is 

18652. Numerical solution does not particularly depend on the 

mesh selection more than assigned tolerances. A direct solver, 

UMFPACK, with undamped Newton and relative tolerance of 

10
-9

 is used in steady-state and time-dependent simulations. For 

the latter, the 5
th

 order variable time-step backward differencing 

is also invoked. Similarly to the strategy outlined in [15], 

steady-state solutions are obtained from ‘bootstrapping’ of each 

multiphysics component.  

A typical steady state simulation takes a few minutes on a 

2.2 GHz CoreDuo, Windows XP-SP2, 3GB RAM laptop. A 

transient simulation, which follows a rapid ramp takes between 

10 minutes and 1 hour depending on the conditions of the tran-

sient.  

RESULTS 
In Table 2, typical PEM fuel cell model parameters are 

listed with references where applicable.  

Following averages are used among the performance met-

rics that are used in comparisons of simulation results: 

Cell voltage: At the cathode GDL interface with the shoulder, 

where the electric load boundary conditions are applied the 

electric potential is averaged over the surface and given by: 
/2

0

2
sh

cell e

sh

V dx= Φ∫
ℓ

ℓ
    (44) 

Average membrane water content: Number of water molecules 

per sulfonic group in the membrane is averaged over the entire 

membrane: 
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1

mem

av

mem V

dV
V

λ λ= ∫     (45) 

Von Mises stress: To quantify the stress levels in the fuel cell 

components one can use the von Mises stress, which is defined 

for plane-strain formulation as follows: 

( )
1

2 2 2 2 2
vM

3
x y z x y x y y z xy

σ σ σ σ σ σ σ σ σ σ σ= + + − − − +   (46) 

where 
i
σ  are normal stress components and 

xy
σ is the shear 

stress on the x-y plane.  

In simulations, cell load current density, relative humidity 

of the anode and cathode inlets, RH{a,c}, and the clamping force 

applied to the shoulder part of the cathode GDL are used as 

simulation variables. Unless otherwise noted, the base case val-

ues of these variables are given in Table 3.  

Steady-state results 
In order to verify that the model captures the essential fea-

tures of a typical PEM fuel cell operation; a typical polarization 

curve for the base case conditions is obtained from the model 

and shown in Figure 2. Activation losses followed by Ohmic 

and concentration losses are identifiable in the polarization 

curve. The cell voltage is obtained from (44). Note that, catalyst 

loading variables are estimated to have a realistic polarization 

curve that reflects a typical PEM fuel cell operation within the 

range of values available in the literature. 

Average membrane water content for the base case condi-

tions is plotted against the load density in Figure 3. As ex-

pected, the membrane water content increases with increasing 

water production at the cathode.  

Even though the ionic currents in the membrane are almost 

uniform and only in the y-direction, electric currents originating 

from the shoulders go tangentially under the gas flow channels 

where insulation boundary conditions are imposed (Figs. 4a-d). 

Electric and ionic currents peak in the portion that aligns with 

shoulders in the x-direction for low currents (Figs. 4a-c), and 

shift towards the channel at high currents (Fig. 4d) 

 
FIGURE 2: POLARIZATION CURVE FOR THE BASE CASE. 
 

TABLE 2: MATERIAL PROPERTIES AND THE BASE 
OPERATING CONDITIONS.  

Property, symbol Value 

Cell operating temperature, 
0

T  353 K 

Faraday’s constant, F  96487 C-mol
-1

 

Universal gas constant, R 8.31 J-kg
-1

mol
-1

 

Molar volume of oxygen, vO2  16.6×10
-6

 m
3
mol

-1 

Molar volume of nitrogen, vN2  17.9×10
-6 

m
3
mol

-1
 

Molar volume of water vapor, vH2O  12.7×10
-6

 m
3
mol

-1
 

Porosity of  GDLs, εg 
0.6 

Permeability of GDLs, κGDL  10
-13

 m
2 

Anode and cathode inlet pressures, 

{ , },a c in
p  

{200,200} kPa 

Anode and cathode gas viscosities, 

{ , }a c
µ [calc.] 

{2.08,3}×10
-5

 Pa-s 

Permeability of the membrane, 

m
κ [11] 

( )2 200.4 0.074 10λ −+ ×

m
2 

Active area of anode and cathode 

catalyst layers, ( )0 { , }

ref

a a c
S i  [4, est.] 

{10
11

,30} A-m
-3 

Anode and cathode coefficients, 

{ , }a c
β [4] 

{2,1} 

H2 and O2 reference concentrations, 

2 2
{H ,O }

refc  [25] 

{56.4,3.39} mol-m
-3 

Electro-osmotic drag coefficient, nd 

[21] 

1.2 

Electric conductivity of GDLs, 
e
σ   100  S-m 

Young’s modulus of GDLs, 
GDL

E  10 GPa 

Poisson’s ratio of GDLs, 
GDL
ν  0.25 

Young’s modulus of mem-

brane,
m

E [11] 

63 MPa 

Poisson’ ratio of the membrane, 
m
ν  0.25 

Specific surface of membrane pores, 

pore
S [10] 

2.1×10
8
 m

2
-m

-3 

Surface tension of water, σs [11] 0.072 N-m
-1 

 

TABLE 3. BASE CASE CONDITIONS USED IN SIMULATIONS 

Property Value 

Anode and cathode inlet rela-

tive humidity, RH{a,c} 

{0.5, 0.5} 

Clamping force 1 MPa 
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FIGURE 3: AVERAGE MEMBRANE WATER CONCENTRA-
TION PER SULFONIC GROUP AS A FUNCTION OF LOAD 

CURRENT FOR THE BASE CASE.  

 

A  

B  

C  

D  
FIGURE 4: VON MISES STRESS DISTRIBUTION AND CUR-

RENT VECTORS IN THE PEM FUEL CELL SECTION FOR 

Jcell = 2000, 5000, 10000, AND 15000 A-M
-2

 (A-D). 
 

Effect of the clamping pressure on the average membrane 

water concentration (per sulfonic group) is shown in Figure 5 

for RHa = RHc = 0.5 and Jcell = 5000 A-m
-2

. As the compression 

increases membrane’s water content decreases as if the com-

pression “squeezes” the membrane similarly to a sponge to re-

duce its water content. Similar behavior is observed by the 

model developed by [11]. Cell voltage does not vary signifi-

cantly with the clamping pressure since our model does not in-

clude contact resistances, which are very important in the over-

all performance of the PEM fuel cell as addressed elsewhere, 

e.g. [24].  

Moreover, distribution of the membrane water content be-

comes more uniform as the compression increases as depicted 

in Figure 6, where λ distribution at the anode-side of the mem-

brane is plotted with respect to x-coordinate and varying magni-

tudes of the clamping pressure. The squeezing effect of the 

compression is more pronounced in flattening of λ distribution 

(Fig. 6) than the overall slight decrease of the water content 

(Fig. 5). 

 

FIGURE 5: AVERAGE WATER CONCENTRATION PER SUL-
FONIC GROUP IN THE MEMBRANE AS A FUNCTION OF 

CLAMPING PRESSURE FOR Jcell =5000 A-M
-2

. 

 
FIGURE 6: WATER CONCENTRATION (PER SULFONIC 

GROUP) PROFILE AT THE ANODE-MEMBRANE INTERFACE 
FOR CLAMPING PRESSURES OF 1, 10, 20, 30 AND 50 MPA.  
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Transient results 

Load transient 
In Figure 7, transient cell voltage is plotted against time in 

response to ramping up of the load current density from 2000 to 

7000 A-m
-2

 at t = 10 s for 0.1 seconds. The sudden drop of the 

cell voltage, which is due to load increase is followed by a re-

covery yielding an undershoot behavior, which is observed in 

experimental studies, e.g. [1], and in transient models, e.g. [25].  

Figure 8 shows the variation of λav during the load tran-

sient. It is clear that conductivity of the membrane increases due 

to increasing 
av
λ , and leads to the recovery of the cell voltage 

observed in Figure 7. The response of 
av
λ resembles to that of a 

typical first order system. 

In Figure 9, membrane water pressure at the cathode-side 

and x-positions of 0 and 1mm are plotted against time for the 

load transient. At x = 0, which aligns with the center of the 

shoulder, water pressure increases from about 6.5 MPa to 13 

MPa during the transient and stabilizes. However at x = 1mm, 

where aligns with the center of the flow channel, final pressure 

is smaller than that of at x = 0 mm.  Water pressure increase is 

expected due to increasing production of water.   

Lastly, the Mises stresses at the anode and cathode sides of 

the membrane and at the midplane of the shoulder (x = 0) are 

shown in Figure 10 for the load transient. Increase of stress on 

the cathode-side of the membrane is more pronounced than the 

one on the anode-side due to the production of water on the 

cathode.  

Anode humidity transient 

For 
cell

J = 2000 A-m
-2

, RHc = 0.5 and 
clamp

F  = 1 MPa, an-

ode relative humidity is increased to 1 from 0.1 at t = 10 s with 

a ramp in 0.1 seconds. Membrane water content increases as 

expected following the increase of the relative humidity of the 

anode inlet as shown in Figure 11. 

Response of the cell voltage is shown in Figure 12. As the 

membranes conductivity increases, so does the cell voltage al-

beit small.  

Mises stresses at the anode and cathode side of the mem-

brane at x = 0 (shoulder mid-plane) are shown in Figure 13. 

Cathode side stress is larger throughout the transient. However 

despite that the stress increases at the anode side at the begin-

ning of the transient, stress at the cathode side has the opposite 

tendency, which recovers only after the transient progresses.  

Cathode humidity transient 
Cathode relative humidity is increased from 0.1 to 1.0 at t = 

10 seconds with a ramp that lasts 0.1 seconds for RHa = 0.5, 
 

cell
J = 2000 A-m

-2
, and 

clamp
F = 1 MPa. The response of 

the
av
λ resembles to that of a first order response (nearly expo-

nential) as shown in Figure 14. Cell voltage does not change 

significantly (not shown here). 
vM
σ at the anode and cathode 

sides of the membrane and the symmetry surface of the shoul-

ders increase with the transient (Fig. 15). Although
vM
σ at the 

cathode side is larger than the one at the anode side before the 

transient, anode side stress becomes larger after the transient. 

However the difference between the two is small.  

CONCLUSIONS 
A two-dimensional time-dependent model of a PEM fuel 

cell cross-section that contains membrane and gas diffusion lay-

ers is developed here. Transport of gas species in gas diffusion 

layers, conservation of charge, linear elastic deformation of 

GDLs, poroelastic deformation of the membrane, and water 

transport in the membrane are considered in the model, which 

is, then, used to analyze the coupled effect of compressive 

clamping pressure and transport of water in the membrane.  

The model captures the typical characteristics of a PEM 

fuel cell and membrane water transport, and elucidates the ef-

fect of clamping pressure on the performance of the fuel cell 

and the effect of operating conditions on the stresses that de-

velop in the membrane and GDL.   

In particular, increasing load current density results in 

higher stresses in the membrane more than 10 times of the pres-

sure due to clamping forces for load density of 15000 A-m
-2

. 

Similarly, increasing clamping pressure ‘squeezes’ the mem-

brane resulting in considerable water loss and flatter water dis-

tribution within the membrane. 

During load transients, cell voltage demonstrates the typi-

cal undershoot (for increasing load) behavior; and membrane 

stresses increase in the portion that aligns with the shoulders’ 

symmetry plane (middle).  

RH transients of the anode and cathode do not cause sig-

nificant variation in the cell voltage, but affect the amount of 

water in the membrane, and result in increasing membrane 

stresses.  
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FIGURE 7: CELL VOLTAGE AS A FUNCTION OF TIME IN 

RESPONSE TO A FAST RAMP IN LOAD CURRENT DENSITY 
FROM 2000 TO 7000 A-M

-2
 AT T=10 S WITH A DURATION OF 
0.1 S.  

 
FIGURE 8: AVERAGE WATER CONCENTRATION PER SUL-

FONIC GROUP IN THE MEMBRANE AS A FUNCTION OF 
TIME IN RESPONSE TO RAMP LOAD CURRENT DENSITY 
FROM 2000 TO 7000 A-M

-2
 AT T=10 WITH THE DURATION 

OF 0.1 S. 

 
FIGURE 9: WATER PRESSURE IN THE MEMBRANE AT THE 

MEMBRANE-CATHODE INTERFACE AND X=0 (UNDER THE 
SHOULDER), AND X=1 MM (UNDER THE CHANNEL) DUR-

ING THE LOAD TRANSIENT. 
 

 
FIGURE 10: MISES STRESS AT THE ANODE (BLUE LINE 

SQUARE MARKERS) AND CATHODE (GREEN LINE TRIAN-
GLE MARKERS) SIDES OF THE MEMBRANE DURING THE 

LOAD TRANSIENT.  

 
FIGURE 11: AVERAGE WATER CONCENTRATION PER 

SULFONIC GROUP IN THE MEMBRANE AS A FUNCTION OF 
TIME IN THE ANODE-RH TRANSIENT. 

 
FIGURE 12: CELL VOLTAGE AS A FUNCTION OF TIME IN 

RESPONSE TO THE RAMP CHANGE OF ANODE RH FROM 
0.1 TO 1.0 AT T=10 S WITH THE DURATION OF 0.1 S. 
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FIGURE 13: MISES STRESS AT THE ANODE (BLUE LINE 

SQUARE MARKERS) AND CATHODE (GREEN LINE 
TRIANGLE MARKERS) SIDES OF THE MEMBRANE DURING 

THE ANODE-RH TRANSIENT. 

 
FIGURE 14: AVERAGE WATER CONCENTRATION PER 

SULFONIC GROUP IN THE MEMBRANE AS A FUNCTION OF 
TIME IN THE CATHODE-RH TRANSIENT. 

 
FIGURE 15: MISES STRESS AT THE ANODE (BLUE LINE 

SQUARE MARKERS) AND CATHODE (GREEN LINE 
TRIANGLE MARKERS) SIDES OF THE MEMBRANE DURING 

THE CATHODE-RH TRANSIENT. 
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