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Abstract: In this paper control systems design approach, based on siding mode methods, that allows 
maintain some functional relation – like bilateral or multilateral systems, establishment of virtual relation 
among mobile robots or control of haptic systems - is presented. It is shown that all basic motion control 
problems - trajectory tracking, force control, hybrid position/force control scheme and the impedance 
control for the interacting systems- can be treated in the same way while avoiding the structural change of 
the controller and guarantying stable behavior of the system In order to show applicability of the proposed 
techniques simulation and experimental results for high precision systems in microsystems assembly tasks 
are presented.. 

 

1. INTRODUCTION 

Motion control systems such as robots, vehicles and so on are 
expected to be applied in unstructured environment where 
presence of humans is natural. In many cases such systems are 
acting as “agents” between skilled human operator and 
environment (surgery, microparts handling, teleoperation, 
etc.), thus design of control should encompass wide range of 
very demanding tasks. In this paper a proposal for a new 
design framework for fully actuated mechanical system will 
be presented. The framework is based on the possibility to 
represent complex motion as a collection of the tasks - 
specific functional relation between the system’s state - that 
may be implemented concurrently or in certain time 
succession and than the design of the decentralized robust 
control - in particular sliding mode approach – to maintain 
these functional relations. Such an approach leads to more 
natural interpretation of the system tasks, simpler controller 
design and easier establishment of the systems hierarchy. The 
approach seems naturally encompasses the control of motion 
systems in interaction and it allows application to bilateral 
control, multilateral control, mobile robots cooperative work 
etc. The possibility to enforce certain functional relations 
between coordinates of one or more motion systems 
represents a basis of the proposed algorithm. It will be shown 
that all basic motion control problems can be treated in the 
same way while avoiding the structural change of the 
controller and guarantying stable behavior of the system. This 
framework can be naturally extended to the control of 
mechanical systems in interaction, like bilateral or multilateral 
control. 

The decentralized control is well established approach in 
motion control systems. There are many applications of 
decentralized control, with concepts such as subsumption 
architecture, multi-agent system, cell structure  Although 
design methods for decentralized control systems are 
interesting as concepts a simple framework in view of 

controller design is desired to cope with complexity of motion 
systems in interaction. In Tsuji at al., 2005 a framework of 
controller design based on functionality is discussed, in Onal 
and Sabanovic (2005) a bilateral control using sliding mode 
control applying functionality has been implemented. In 
Strassberg et al. (1992) basic approach in control of bilateral 
system widely used in literature is based on the design of the 
controllers for the master and the slave side separately and 
than adding interacting terms in order to reach the 
transparency requirements. Control of interconnected motion 
systems (bilateral and multilateral) in the framework of the 
acceleration control is discussed in Katsura and Ohishi 
(2007). In addition the so-called framework of functional 
control is discussed in Tsuji et al. (2006). All these works are 
based on the linearization of the individual systems by 
introducing the disturbance compensation and then applying 
acceleration control. This framework is shown to be very 
powerful and it allows generalization of the motion control 
systems design. 

The application of SMC in motion control systems range from 
control of power converters, electrical machines, robotic 
manipulators, mobile robots, PZT based actuators etc. The 
most salient feature of the SMC is a possibility to constrain 
system motion on the selected manifold in the state space thus 
this framework seems natural candidate for the task we are 
pursuing in this paper – namely maintaining selected 
functional relation between systems. We will show that SMC 
framework can be interpreted as a way of implementing the 
acceleration control. In discrete-time this control that enforces 
sliding mode is continuous in a sense of the discrete-time 
systems and the resulting inter-sampling motion for systems 
with smooth disturbances is constrained to the o(T2) vicinity 
of the sliding manifold Utkin at al. (1999). 

The organization of the paper is as follows. In Section 2 the 
problem formulation and general solution are discussed for n-
degrees of freedom (DOF) fully actuated mechanical system 
with and/or without motion modification due to interaction
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 with environment. In Section 3 the problems related to the 
modification of the systems motion due to the contact with 
environment are discussed and a possible solution is 
proposed. In Section 4 an extension of the solution presented 
in Section 3 is applied to motion control systems in 
interaction. In Section 5 the examples are shown in order to 
demonstrate applicability of the proposed framework.. 

2. FULLY ACTUATED MECHANICAL SYSTEMS  

2.1. Control Problem Formulation   

For fully actuated mechanical system S  mathematical model 
may be found in the following form 

( ) ( )

( ) ( )
ntinteractiout      witho

ntinteractio    with 
0
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where nℜ∈q  stands for vector of generalized positions, 
nℜ∈q& stands for vector of generalized velocities, 

( ) nxnℜ∈qM  is the generalized positive definite inertia matrix 

with bounded parameters hence ( ) +− ≤≤ MM qM , 

( ) 1, nxℜ∈qqN &  represents vector of coupling forces including 

gravity and friction and is bounded by ( ) +≤ NqqN &, , 
1nxℜ∈F  with 0F≤F  is vector of generalized input forces, 

1nx
ext ℜ∈F  with extext F≤F  is vector of interaction forces 

being zero when system S  is not interacting with 
environment or other system and l

e ℜ∈q  stands for the 

vector of generalized positions of environment. +− MM , , 
+N , 0F  and extF  are known scalars. In system (1) vectors 

extF  and ( )qqN &,  are assumed to satisfy matching conditions 
Drazenovic (1969). For the purpose of this work the 
environment is treated as another mechanical system and the 
interaction is represented by the mechanical force acting as a 
result of such an interaction. It is now obvious that such an 
external force can be treated as an additional input to the 
system (1) able to modify the system behavior in the same 
way as the control input does. 

The configuration of the fully actuated mechanical system can 
be represented by a single valued vector function 

( ) 1, nxℜ∈qqξ &  as a function of the state of the system defined 
by the vector of generalized positions and vector of the 
generalized velocities. The control tasks for the system (1) are 
usually formulated as selection of the generalized input such 
that: (i) system executes desired motion specified as trajectory 
tracking, (ii) system exerts a desired force while in the contact 
with environment and (iii) system reacts as a desired 
impedance on the external force input or in contact with 
environment. In literature these problem are generally treated 
separately and motion that requires transition from one to 
another task is treated in the framework of hybrid control. All 

of these tasks may be represented as selected functions of the 
system configuration ( ) 1, nxℜ∈qqξ & . For example if the 
system configuration is expressed as a linear combination of 
the position and the velocity vectors ( ) qQCqqq,ξ && +=  it can 
be interpreted as a combination of spring (stiffness coefficient 

nxnℜ∈C ) and the damper (damping coefficient nxnℜ∈Q ) 
and the mechanical impedance can be easily expressed as 

( ) ( ) ( )qq,ξΩqq,ξqqq, &&&&&& +=,ϑ  where nxnℜ∈Ω is full rank 
matrix. It is obvious that by changing the configuration of the 
system one can realize the change of the behavior of 
mechanical system in the case that is assumed isolated or 
having some interaction with environment. It is obvious that 
the definition of the system’s (1) behavior in terms of the 
configuration is still open and it will be discussed later.  

Assuming that the task of the system (1) can be described by a 
single valued vector function ( ) 1, nxℜ∈qqξ &  then the motion 
control of such a system can be formulated as the requirement 
to maintain the functional relation 

( ) ( )( ) 1,, nxref t ℜ∈= σ0ξqq,ξσ &  between the actual 

configuration and the desired configuration ( ) 1nxref t ℜ∈ξ  of 
the system (1). In the system’s state space this requirement 
can be interpreted as enforcing the state of the system to stay 
in the manifold  

( )( ){ }
[ ]T

n
nxref

ref
qS

σσσ ,....,,;,

  ,,:

21
1 =ℜ∈

==

σξξ,σ

0ξqq,ξσqq, &&
  (2) 

where 1nxℜ∈σ  is the linear of nonlinear single-valued 
vector function to be determined depending on the task of the 
overall system and the control system technical specification; 
the ( ) 1nxref t ℜ∈ξ  stands for the reference configuration of the 
system and is assumed to be smooth bounded function with a 
continuous first order time derivative. Requirement (2) is very 
simple – the configuration of the system should track 
reference configuration or in other word solution 

( ) ( )( ) 0ξqq,ξσ =tref,&  must be stable on the trajectories of the 
system (1). With such a formulation the controller design is 
related to ensuring of the stability of solution 

( ) ( )( ) 0ξqq,ξσ =tref,& . The control should be selected such that 
system state is enforced to satisfy functional relations 
specified by the manifold (2). The question of the definition 
of the operational tasks of system (1) in the terms of the 
system configuration and the admissible structure of the 
desired functional relation is still open and will require careful 
examination in order to complete overall control design. This 
problem will be addressed later in the paper. 
Assume that controller is successfully enforcing the state of 
the system to satisfy the selected functional relation 

( ) ( )( ) 0ξqq,ξσ =tref,& . By applying ideas proven in the 
framework of the sliding mode control [**] one can then 
claim that the state velocity vector must be orthogonal to the 
gradient of the manifold (2) such that the scalar product of the 
gradient vector and the velocity vector is zero for all 
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configurations in manifold (2) thus 
( ) ( )( )( ) ( ) 0qq,vξqq,ξσ =⋅ && 0, tgrad ref . This relation is not so 

easy for application and we will be using so-called equivalent 
control method [**] in order to determine the velocity vector 
(and thus the dynamics of the system (1)) in manifold (2). 
This method is taking as the control input to system (1) the 

solution of the algebraic equation ( ) ( )( ) 0ξqq,ξσ =
= eqFF

ref

dt
td ,&  on 

the trajectories of system (1). 

The time derivative of the function σ  can be expressed  as 
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full rank for ( ) qS∈∀ qq, &  and consequently the relation 

( ) 111 −−− = MQQM  is true due to the properties of the inertia 
matrix. The equivalent control for system (1) in manifold (2) 
can be obtined by inserting ( ) ( )eext qq,FFqqNqqM −=+ &&& ,)(  

into 0ξHqQqC =++ ref&&&& : 

( ) ( )( ) ( ) ( )( )qCξHQMqqNqqFF &&& +−+=
−− tref

eexteq
11,,      (3) 

Note that equivalent control is smooth as long as external 
forces and the first time derivative of the reference 
configuration are smooth functions. The expression (3) shows 
a very important fact – in order to maintain motion of the 
system (1) in the manifold (2) the control must compensate 
the internal interaction forces ( )( )qqN &,  and external 
interaction forces ( )( )eext qqF ,  or in other words controller 
must compensate all disturbances acting on the system. This 
can be achieved since we assumed that ( )qqN &,  and 

( )eext qqF ,  satisfy matching conditions. This result is 
consistent with the disturbance compensation method (**) 
widely used in the motion control systems design. 

By inserting (3) into (1) equations of motion of fully actuated 
mechanical system (1) in manifold (2) are obtained in the 
following form 

( ) ( )( )
( )( )qCξHQq

qqqMqCξHQMqM

&&&&

&&&&&&&&&&

+−=

=⇒=+−=
−

−−

t

t
refdes

desdesref

1

11

       (4) 

The resulting motion (4) is valid from for the time 0tt ≥ with 

0t being the moment the state of the system reaches manifold 
(2). This way (4) can be regarded as a motion with the initial 
condition ( ) ( )( ) 0ξqq,ξσ =tref,& . Motion from the initial state 
until reaching the manifold (2) will be discussed later in the 
paper and control will be selected such that so called reaching 
phase is short comparing with overall control time. Thus the 
motion is equivalent to the acceleration control [25] with 
desired acceleration ( )( )qCξQq &&&& +−= − trefdes 1 . Due to the fact 

that closed loop behavior does not depend on the external 
interaction force the motion of the system will not be 
modified while in contact with environment. Closed loop 
motion will not depend on the interaction forces as long as the 
equivalent control is bounded 0Feq ≤F as defined for the 

system input in the description of the system. If closed loop 
motion (4) should be modified due to the interaction with 
other systems or environment the desired acceleration desq&&  
must depend on the interaction force. That can be achieved in 
many different ways. Obvious one it to make reference 
configuration function of the interaction force or to select 
control such that the desired part of the interaction force is not 
compensated by the controller. The first approach leads to 
modification of the reference in order to achieve desired 
behavior – what sometimes may be advantageous since it is 
kept outside of the main loop so it theoretically should not 
affect the stability of the system. The other approach is 
shifting the problem towards designing the observer that can 
provide information on the part of the interaction force that 
needs to be used to modify motion and in a sense leads to 
some sort of the decoupled design – controller design and the 
observer design. 

2.2. Selection of the control input  

The simplest and the most direct method to derive a control, 
which enforces the selected functional relation 

( ) 1nx
ref 0ξξ,σ =  is to enforce Lyapunov stability conditions in 

the manifold (2) on the trajectories of system (1). To guaranty 
stability of solution 1nx0σ =  a Lyapunov function candidate 

may be selected as ( ) 00,02
1 =>= vv Tσσ  and one has to 

design control that enforces the following structure of the time 
derivative ( ) 0<−== σΨσσσ TTv && of the selected Lyapunov 

function. For example if ( ) 0<−=− δρvT σΨσ  the manifold 
(2) will be attractive and the stability conditions for solution 

( ) 1nx
ref 0ξξ,σ =  are satisfied. In order to guaranty the finite 

time convergence to the manifold (2) the coefficients 
δρ , should be selected as 0>ρ  and 12

1 <≤ δ [27] in order 
to guaranty finite reaching time and the stability. For 1=δ  
we can say only that the convergence is not slower than 
exponential. In order to determine control input one should 
use the requirement for the Lyapunov function derivative 

( )σΨσσσ TTv −== && . From here nontrivial solution can be 
obtained from ( ) 0

0
=+

≠σ
σΨσ&  finding the following form 

( ) ( ) ( )
( ) ( )( ) ( )( )qCξHMQqqNqqFF

σΨMQFσΨQMFF

&&& +−+=

−=−=
−

−−−

tref
eexteq

eqeq

1

111

,,
 (5) 

For continuous-time systems function ( )σΨ  is most often 

selected to satisfy ( ) 2/1vT ρ−=− σΨσ . The resulting control 
guaranties so called sliding mode motion in manifold (2). 
Being discontinuous such control input may cause chattering 
in mechanical systems. For real system chattering may be a 
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problem and many possibilities to avoid or minimize 
chattering problem in mechanical systems are presented in 
literature Utkin at al., (1999).  

In the real system control is bounded 0F≤F  so (5) should 
be modified to take this into account. The modification is 
simple, instead (5) the real control input should satisfy  

( )( )σΨMQFF 1−−= eqsat     (6)  

where ( )•sat  stands for saturation function with bounds 

F
FF 0Fb = . If the control takes values within available 

control resources 0F<F  the stability conditions in manifold 

(2) are enforced. If the required control resources are 0F≥F  

one can find the derivative of the function ( )refξξ,σ  as 

( )( ) ( )( )eqeq F FQMFFQMσ F
F −=−= −−

0
11& . By inserting (5) 

and taking into account that in this region 0F=F  one can 

find. ( ) ( )σΨσ FF
00

01 FF F −−−=&  hence σ  decreases and after 

finite time region 0F<F  is reached. This way it has been 
proven that the control (6) guaranties the attractiveness and 
the stability of ( ) 1nx

ref 0ξξ,σ = . Selected control enforces 

( ) 0<−== σΨσσσ TTv &&  on the trajectories of the system (1). 
The implementation of the control (6) is not so easy due to the 
fact that the disturbances should be known. If one applies 
disturbance observer than control can be modified to the form  

( ) ( ) ( )( )( )σΨqCξHMQNFF ++−+= − && tsat ref
ext

1ˆˆ              (7)  

Approximated control (7) enforces the relation ( ) pσΨσ =+&  

where ( ) ( )NFNFp ˆˆ +−+= extext . The consequence is that in 
such a system some error may appear and the additional 
measures should be taken to compensate for it. The structure 
(7) represents a generic acceleration controller enforcing the 
attractiveness and the stability of ( ) 0ξξ,σ =ref . We will be 
later showing that PD controller with disturbance feed 
forward is a particular case of (7).  

In the discrete time with sampling interval “T” 
implementation of control (6) requires evaluation of the 
equivalent control at the end of every sampling interval. The 
equivalent control is continuous function so one can resort of 
using its value at ( )Tkt 1−=  instead of the exact value at 

kTt = . By evaluating ( )eqFFQMσ −= −1&  at ( )Tkt 1−=  it is 

easy to derive ( ) ( ) ( )( )111 1 −−−=− − kkkeq σMQFF & . 

Approximation ( ) ( ) ( )( ) Tkkk /11 −−=− σσσ&  leads to 

( ) ( ) ( ) ( )( )( )111 11 −−−−=− −− kkTkkeq σσMQFF  with an 

approximation error of the ( )2To  order. Now the 
approximated control input can be expressed as  

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )( )
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1
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1
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1

444444 3444444 21

(8) 

By inserting (8) into (1) one can evaluate system dynamics at 
kTt =  as 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )kkkkkk exteq q,qNFσΨMQFqM &&& +−−−= −11   (9) 

The error introduced by this approximation of control can be 
estimated from the following relation 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( )Tokk

kkkk

eqeq

eqeq

≅−−

−−−=+
−

−

1

1
1

1

FFQM

FFQMσΨσ&
     (10) 

Due to the continuity of the equivalent control the thickness of 
the boundary layer for the manifold (2) (intersampling change 
of the distance from the manifold) to which motion of the 
system will be confined to can be determined by evaluating 

( ) ( ) ( )( ) ( )2TodttkTkT
kT

kT
+−=−+ ∫

+τ
τ σΨσσ . If ( )( )tσΨ  is 

proportional to ( )tσ  then the thickness of the boundary layer 

is ( )2To  order. If relay control is applied it will result in 
motion with chattering within a boundary layer having 
thickness of the ( )To  order.  

3. SELECTION OF THE REFERENCE CONFIGURATION 

3.1. Position and force control  

In literature behavior of a motion control system is mostly 
analyzed in three separate frameworks: (i) the trajectory 
tracking, (ii) the force control and (iii) impedance control. 
Due to the fact that in fully actuated systems interaction forces 
and system configuration cannot be set independently hybrid 
schemes had been developed to cope with position-force 
control tasks and the transitions from one to another [26]. In 
the proposed framework the solution of the above control 
problems require selection of the appropriate system 
configuration, the reference configuration and the functional 
constraint (2). As shown in Section 2. closed loop behavior of 
the system (1) in manifold (2) is described by the second 
order differential equation (4) and ( ) 0ξξ,σ =ref  (in ideal case) 

or ( ) ( )Toref =ξξ,σ  (in discrete time system with equivalent 
control approximation) with transient dynamics described by 

( ) 0
0

=+
≠σ

σΨσ& .  Without loss of generality let 

assume that matrices HQ,C,  are constant – thus that 
configuration of the system is a linear combination of the 
generalized position and velocity ( ) ( )CqqQξ += &tq  and the 
functional relation (2) is also linear combination of the 
reference and actual configuration. Assume the trajectory 
tracking problem. By selecting ( ) ( )refrefref

q t CqqQξ += &  with 

manifold (2) ( ) ( ){ }0qq,ξξξξσqq, =−== && refref
qS ,:  the 

control (7) or (8) can be directly applied. If one selects 
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( ) 0; >−= DDσσΨ qq  the equations of motion can be 
determined in the following form 

( ) ( )( ) ( ) 0qqCDqqDQCqqQ =−+−++− refrefref &&&&&& . This result 
is the same as the one obtained by application of the 
disturbance observer and PD controller as discussed in [25]. 
This can be interpreted as a system with the mechanical 
impedance having mass Q , damping ( )DQC +  and spring 
coefficient CD . If the matrix D  is selected diagonal and its 
elements such that the transient 0Dσσ =+ qq&  is fast as 

compared to the sliding mode dynamics (defined by matrices 
Q  and C ), after initial transient the resulting motion remains 
in the ε - thick boundary layer of 0σ =q . 

In the force control with the reference ( )trefF  the sliding 
mode manifold can be defined as 

( ) ( ) ( ){ }0σFqq,Fqq ==−= F
ref

F tS &&  :, . If measured force is 
modeled as ( ) qKqKqq,F && Δ+Δ= DP , eqqq −=Δ ,  DP KK ,  
are diagonal matrices of appropriate dimensions, then by 
defining the reference configuration as 

( ) ( )( )eDeP
refref

F tt qKqKFξ &++=  the manifold (2) becomes 

( ) ( ){ }0σξqKqKqq ==−+= F
ref
FDPF tS &&  :, . This manifold 

has the same form as the one derived for the trajectory 
tracking, thus the control input is as in (8), which is the same 
as for trajectory tracking with appropriate changes of the 
variables.  

3.2. Motion modification due to the systems interaction 

Assume two mechanical systems iS  and jS  as in (1) with 

reference configurations ( )tref
iqξ  and ( )tref

jqξ  respectively.  Let 
the interaction forces between systems Si and Sj be denoted as 

1),( ×ℜ∈ n
jiij qqg , which becomes 0qqg =),( jiij  if systems 

are not in interaction. Assume that this force can be modeled 
as ( ) qKqKq,qg &Δ+Δ= DiPijiij , ji qqq −=Δ  and should be 

maintained at the desired value ( )tref
ijg  while the systems are 

in interaction. Assume that only system iS  should is able to 
its configuration as result of the interaction in order to 
maintain the desired profile of the interaction force. This can 
be achieved by making reference configuration of system iS  

dependent on the interaction force ( )jiij q,qg  one can make 
motion of the system reacting on both the reference trajectory 
and the interaction force. The modification of the trajectory of 
the system iS  could be selected (i) to be proportional with the 
interaction force (so-called compliant motion), (ii) to ensure 
that the interaction force tracks its reference (force tracking), 
and (iii) the combination of the cases (i) and (ii).  

For all three cases the manifold has the following form 

( ){ }0σξqQqCq,q ==−+= iqF
ref
iqFiiiiiiiq tS && :    (11) 

Depending on the specific task, the reference configuration 
( )tref

qFξ  can take one of the following forms  

(i)  ( ) ( ) ( )jiij
ref
iq

ref
iqF tt qqΓgξξ ,−=  or  

(ii) ( ) ( ) ( ) ( )( )jiij
ref
ij

ref
iq

ref
iqF ttt qqggξξ ,,ϑ−=  or 

(iii)   ( ) ( ) ( ) ( )( ) ( )( )jiijjiij
ref
ij

ref
iq

ref
iqF ttt qqΓgqqggξξ ,,, +−= ϑ  

where the reference configuration for position tracking task is 
selected as ref

ii
ref
ii

ref
iq qQqCξ &+= , matrix Γ  is diagonal 

compliance matrix with elements different from zero in the 
directions in which compliance is to be maintained, and zero 
in the directions in which either contact force or trajectory 
tracking should be maintained. The output of the force 
tracking controller ( )ij

ref
ij gg ,ϑ  enforces sliding mode on the 

manifold ( ) ( ){ }0ξqKqKqq ==−+= Fij
ref
FiDiiPiiiijF tS σ&&  :,  

with the reference configuration defied by 
( ) ( )( )jDijPi

ref
ij

ref
F tt qKqKgξ &++=  and is determined as in (7) 

or (8) (with necessary changes of coordinates) when systems 
are in interaction and ( ) 0, =ij

ref
ij ggϑ when systems are not in 

interaction. 

3.3 Extension to the General Systems in Interactions 

Assume a set of n single DOF motion systems each described 
by ( ) iextiiiiiiii gfqqnqqmS −=+ &&& ,)(:  ni ,...,2,1=  
interconnected in such a way so the motion of the overall 
system can be described by the following model  

( ) ijS BgBFqqNqqM −=+ &&& ,)(:    (12) 

where nrankrankn ==ℜ∈ MBq , , vectors N and 

ijBg satisfy matching conditions. Assume also that the 

required role mℜ∈Φ  may be represented as a set of smooth 
linearly independent functions ( ) ( ) ( )qqq nζζζ ,...,, 21 . . 
Consider a problem of designing control for system S  such 
that the role vector ( ) ( )[ ]qqΦ n

T ζζ ...1=  tracks its smooth 

reference refΦ . By differentiating the first time derivative of 
the role vector [ ] qJqΦ q

&&&
Φ∂

Φ∂ ==  by denoting the control vector 

as BMJFBF 1−
ΦΦ == Φ  and the disturbance vector as 

( ) qJNBgMJd &&
ΦijΦ ++= −

Φ
1  one can determine  

ΦΦ −= dFΦ&&       (13) 

From (11) one can select control *
ΦΦ = FF  such that the role 

vector tracks its reference and than, if ( ) 1−
ΦB  exists 

determine the original control input as 
( ) ( ) *11*1

Φ
−−

Φ
−

Φ == FBMJFBF Φ . In the general case one has 
to ensure the existence of the inverse for matrix ΦB  by 
properly selecting matrix ΦJ . That defines the condition for 
selection of the structure of the function vector. Similar 
situation had been examined in so-called “function control” 
framework Tsuji at all (2006), There it was assumed that 
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IB =  and ΦJ  was selected as a Hadamard matrix along with  
the compensation of the disturbances ijg  and N  on the plant 
level. This way control design is greatly simplified and one 
deals with simple double integrator plants without 
disturbance.  

The same problem can be treated in the above discussed 
framework by selecting the system configuration ( )ΦΦ,ξ &

Φ  

and the reference configuration ( )tref
Φξ . Assume that the 

configuration is expressed as a linear combination of the 
function vector and its derivative ( ) ΦQΦCΦΦ,ξ &&

ΦΦ += . 
Then the similarly as in (2) manifold can be selected as  

( ) ( ){ }0 : ==−+= ΦΦΦΦΦ σξΦQΦCqq, tS ref&& : (14) 

Assuming that 1−
ΦQ  exists, the control input  enforcing 

convergence to the manifold (12) can be determined as  

( )( )
( )( )t

sat
ref

eq

eq

ΦΦ
−
ΦΦΦ

Φ
−
ΦΦΦ

−−=

−=

ξΦCQdF

σΨQFF
&&1

1*

   (15) 

Inverse transformation ( ) *11
Φ

−−= FBMJF Φ  gives control in 
the original state space. 

For verification of the proposed approach the experimental 
system consisting of: two 400 W 3-phase Maxon brushless 
motors (J=831 g/cm2, KT= 85 mNm/A, Maxon 4-Q-EC servo 
amplifier DES 70/10) in current regulation mode; 10.000 ppr 
encoders; a dSPACE® 1103 real-time controller with 100 
μsec measurement sampling rate and a 1 msec control output 
sampling rate in bilateral systems configuration is used. 
Structure of the overall system is depicted in Fig. 1. In order 
to make contact with different environment the obstacles are 
put on the right side - hard – steal rode, and on the left side – a 
sponge. This way experiments related to contact with very 
different environment are available. Results depicted in Fig. 
2., shows that system controller is capable of handling both, 
contact with soft and contact with hard environments on the 
slave side. The proposed structure guaranties the functional 
relation between master and slave system (equality of 
positions and forces) but it does not influence amplitude for 
any of these variables. 
 

 
 

Fig 1. Experimental system for bilateral operation 
 

 
 

Fig. 2 Transients in bilateral control system (a) position response of master 
and slave sides, (b) forces of master and slave side 

4. CONCLUSIONS 

In this paper it has been shown that the same approach can 
be used in controlling mechanical systems in interaction or for 
establishing desired functional relation between systems thus 
providing the same framework to bilateral and “function 
control” systems. The structure of the controller is selected to 
fulfill Lyapunov stability criteria and enforce the stability of 
the motion on the selected manifold. Experiments on bilateral 
control system are  shown confirming all theoretical 
predictions. 
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