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1 Introduction

Negotiation is an important aspect of social, economic, and political life. People negotiate
at home, at work, at the marketplace; they observe their team, political party, country
negotiating with others; and sometimes, they are asked to arbitrate negotiations among
others. Thus, it is no surprise that researchers from a wide range of disciplines have studied
negotiation processes.
In this chapter, we present an overview of how negotiation and group decision processes

are modeled and analyzed in cooperative game theory. This area of research, typically
referred to as cooperative bargaining theory, originated in a seminal paper by J. F.
Nash (1950). There, Nash provided a way of modeling negotiation processes and applied
an axiomatic methodology to analyze such models. In what follows, we will discuss Nash’s
work in detail, particularly in application to the following example.

Example 1 (An Accession Negotiation) The European Union, E, and a candidate country,
C, are negotiating on the tariff rate that C will impose on its imports from E during C’s
accession process to the European Union. In case of disagreement, C will continue to impose
the status-quo tariff rate on import goods from E and the accession process will be terminated,
that is, C will not be joining the European Union.

Nash’s (1950) approach to modeling negotiation processes such as Example 1 is as follows.
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First, the researcher identifies the set of all alternative agreements.1 (Among them, the
negotiators must choose by unanimous agreement, that is, each negotiator has the right
to reject a proposed agreement.) Second, the researcher determines the implications of
disagreement. In our example, disagreement leads to the prevalence of the status-quo tariff
rate coupled with the fact that C will not be joining the European Union. Third, the
researcher determines how each negotiator values alternative agreements, as well as the
disagreement outcome. Formally, for each negotiator, a payoff function that represents its
preferences are constructed. In the above example, this amounts to an empirical analysis that
evaluates the value of each potential agreement for the European Union and the candidate
country. Finally, using the obtained payoff functions, the negotiation is reconstructed in
the payoff space. That is, each possible outcome is represented with a payoff profile that
the negotiating parties receive from it. The feasible payoff set is the set of all payoff
profiles resulting from an agreement (i.e. it is the image of the set of agreements under the
players’ payoff functions) and the disagreement point is the payoff profile obtained in case
of disagreement. Via this transformation, the researcher reduces the negotiation process into
a set of payoff profiles and a payoff vector representing disagreement. It is this object in
the payoff space that is called a (cooperative) bargaining problem in cooperative game
theory. For a typical bargaining problem, please see Figure 1.
The object of study in cooperative bargaining theory is a (bargaining) rule. It maps

each bargaining problem to a payoff profile in the feasible payoff set. For example, the Nash
bargaining rule (Nash, 1950) chooses, for each bargaining problem, the payoff profile that
maximizes the product of the bargainers’ gains with respect to their disagreement payoffs.
There are two alternative interpretations of a bargaining rule. According to the first

interpretation, which is proposed by Nash (1950), a bargaining rule describes, for each bar-
gaining problem, the outcome that will be obtained as result of the interaction between the
bargainers. According to Nash (1950), a rule is thus a positive construct and should be
evaluated on the basis of how well a description of real-life negotiations it provides. The
second interpretation of a bargaining rule is alternatively normative. According to this
interpretation, a bargaining rule produces, for each bargaining problem, a prescription to
the bargainers (very much like an arbitrator). It should thus be evaluated on the basis of
how useful it is to the negotiators in obtaining desirable agreements.
Studies on cooperative bargaining theory employ the axiomatic method to evaluate bar-

gaining rules. An axiom is simply a property of a bargaining rule. For example, one of
the best-known axioms, Pareto optimality, requires that the bargaining rule choose a Pareto
optimal agreement.2 Researchers analyze implications of axioms that they believe to be “de-
sirable”. According to the positive interpretation of bargaining rules, a “desirable” axiom
describes a common property of a relevant class of real-life negotiation processes. For exam-
ple, Nash (1950) promotes the Pareto optimality axiom on the basis that the negotiators,

1This set contains all agreements that are physically available to the negotiators, including those that are
“unreasonable” according to the negotiators’ preferences.

2As will be formally introduced later, an agreement is Pareto optimal if there is no alternative agreement
that makes an agent better-off without hurting any other agent.
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being rational agents, will try to maximize their payoffs from the negotiation outcome and
thus, will not terminate the negotiations at an agreement that is not optimal. According
to the normative interpretation of a bargaining rule, an axiom is a normatively appealing
property which we as a society would like arbitrations to a relevant class of negotiations to
satisfy. Note that the Pareto optimality axiom can also be promoted on this basis.
It is important to note that an axiom need not be desirable in every application of the

theory to real-life negotiations. Different applications might call for different axioms.
A typical study on cooperative bargaining theory considers a set of axioms, motivated

by a particular application, and identifies the class of bargaining rules that satisfy them. An
example is Nash (1950) which shows that the Nash bargaining rule uniquely satisfies a list of
axioms including Pareto optimality. In Section 3, we discuss several such studies in detail.
It is important to mention that, two negotiation processes who happen to have the

same feasible payoff set and disagreement point are considered to be the same bargaining
problem in Nash’s (1950) model and thus, they have the same solution, independent of
which bargaining rule is being used and how distinct the two negotiations are physically.
This is sometimes referred to as the welfarism axiom and it has been a point of criticism of
cooperative game theory (e.g., see Roemer, 1998). It should be noted that all the bargaining
rules that we review in this chapter satisfy this property.
The chapter is organized as follows. In Section 2, we present the bargaining model of

Nash (1950). We present in Section 3, the main bargaining rules and axioms in the literature.
In Section 4, we discuss strategic issues related to cooperative bargaining, such as the Nash
program, implementation, and games of manipulating bargaining rules. Finally, we present
the recent literature on ordinal bargaining in Section 5.
For earlier surveys of cooperative bargaining theory, please see Roth (1979), Thomson

and Lensberg (1989), Peters (1992), and Thomson (1994 and 1996). They contain more
detailed accounts of the earlier literature which we summarize in Section 3. In Sections
4 and 5, however, we present a selection of the more recent contributions to cooperative
bargaining theory, not covered by earlier surveys. Due to space limitations, we left out
some important branches of the recent literature. For nonconvex bargaining problems, see
Herrero (1989) or Zhou (1997) and the related literature. For bargaining problems with
incomplete information, see Myerson (1984) or De Clippel and Minelli (2004) and the related
literature. For rationalizability of bargaining rules, see Peters and Wakker (1991) and the
following literature. Finally, for extensions of the Nash model that focus on the implications
of disagreement, see Kıbrıs and Tapkı (2007a,b) and the literature cited therein.

2 The Bargaining Model

Consider a group of negotiators N = {1, ..., n}. (While most real-life negotiations are bilat-
eral, that is N = {1, 2} , we do not restrict ourselves to this case.) A cooperative bargaining
problem for the group N consists of a set, S, of payoff profiles (i.e. payoff vectors) resulting
from every possible agreement and a payoff profile, d, resulting from the disagreement out-
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Figure 1: On the left: a strictly d-comprehensive bargaining problem. On the right: a weakly
d-comprehensive bargaining problem, the individually rational set, the Pareto set (part of
the north-east boundary between p2 and p3) and the weak Pareto set (part of the north-east
boundary between p1 and p3).

come. It is therefore defined on the space of all payoff profiles, namely the n-dimensional
Euclidian space RN . Formally, the feasible payoff set S is a subset of RN and the dis-
agreement point d is a vector in RN . In what follows, we will refer to each x ∈ S as an
alternative (agreement).
There is an important asymmetry between an alternative x ∈ S and the disagreement

point d. For the negotiations to end at x, unanimous agreement of the bargainers is required.
On the other hand, each agent can unilaterally induce d by simply disagreeing with the
others.
The pair (S, d) is called a (cooperative bargaining) problem (Figure 1, left) and is

typically assumed to satisfy the following properties:3

(i) S is convex, closed, bounded,
(ii) d ∈ S and there is x ∈ S such that x > d,
(iii) S is d-comprehensive (i.e. d 5 y 5 x and x ∈ S imply y ∈ S).
Let B be the set of all cooperative bargaining problems.
Convexity of S means that (i) the agents are able to reach agreements that are lotteries

on other agreements and (ii) each agent’s preferences on lotteries satisfy the vonNeumann-
Morgenstern axioms and thus, can be represented by an expected utility function. For
example, consider a couple negotiating on whether to go to the park or to the movies on
Sunday. The convexity assumption means that they could choose to agree to take a coin
toss on the issue (or agree to condition their action on the Sunday weather) and that each
agent’s payoff from the coin toss is the average of his payoffs from the park and the movies.
Boundedness of S means that the agents’ payoff functions are bounded (i.e. no agreement
can give them an infinite payoff). Closedness of S means that the set of physical agreements
is closed and the agents’ payoff functions are continuous.

3We use the following vector inequalities: x = y if for each i ∈ N, xi = yi; x ≥ y if x = y and x 6= y; and
x > y if for each i ∈ N, xi > yi.
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The assumption d ∈ S means that the agents are able to agree to disagree and induce the
disagreement outcome. Existence of an x ∈ S such that x > d rules out degenerate problems
where no agreement can make all agents better-off than the disagreement outcome. Finally,
d-comprehensiveness of S means that utility is freely disposable above d.4

Two concepts play an important role in the analysis of a bargaining problem (S, d). The
first is the Pareto optimality of an agreement: it means that the bargainers can not all benefit
from switching to an alternative agreement. Formally, the Pareto set of (S, d) is defined
as P (S, d) = {x ∈ S | y ≥ x⇒ y 6∈ S} and the Weak Pareto set of (S, d) is defined as
WP (S, d) = {x ∈ S | y > x⇒ y 6∈ S} . The second concept, individual rationality, is based
on the fact that each agent can unilaterally induce disagreement. Thus, it requires that each
bargainer prefer an agreement to disagreement. Formally, the individually rational set
is I (S, d) = {x ∈ S | x = d} . Like Pareto optimality, individual rationality is desirable as
both a positive and a normative property. On Figure 1, right, we present the sets of Pareto
optimal and individually rational alternatives.
We will occasionally consider a subclass Bsc of bargaining problems B that satisfy a

stronger property than d-comprehensiveness: the problem (S, d) is strictly d-comprehensive
if d 5 y 5 x and x ∈ S imply y ∈ S and y 6∈WP (S, d) (please see Figure 1; the left problem
is strictly d-comprehensive while the right one is not).
We will next present examples of modeling the accession negotiation of Example 1.

Example 2 (Modeling the Accession Negotiation) The set of bargainers is N = {E,C} . Let
T = [0, 1] be the set of all tariff rates. As noted in the Introduction, the bargainers’ payoffs
from alternative agreements (as well as disagreement) need to be determined by an empirical
study which (not surprisingly) we will not carry out here. However, we will next present four
alternative scenarios for these payoff functions, UC and UE. In each scenario, we assume
for simplicity that each bargainer (i) receives a zero payoff in case of disagreement and (ii)
prefers accession with any tariff rate to disagreement. Due to (ii) , the individually rational
set coincides with the feasible payoff set of the resulting bargaining problem in each scenario.

In the first scenario, both bargainers’ payoffs are linear in the tax rate. (Thus, both are
risk-neutral.5)
Scenario 1. Let UE (t) = 1− t and UC (t) = t

In the second scenario, we change the candidate’s payoff to be a strictly concave function.
(Compared to Scenario 1, C is now more risk-averse than E.)
Scenario 2. Let UE (t) = 1− t and UC (t) = t

1
2

In the third scenario, E’s payoff is also changed to be a strictly concave function. (Now, both
bargainers have the same level of risk-aversion.)

4A stronger assumption called full comprehensiveness additionally requires utility to be freely disposable
below d.

5A decision-maker is risk-neutral if he is indifferent between each lottery and the lottery’s expected (sure)
return.
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Figure 2: The Accession Game: Scenario 1 (top left), Scenario 2 (top right), Scenario 3
(bottom left), and Scenario 4 (bottom right).

Scenario 3. Let UE (t) = (1− t)
1
2 and UC (t) = t

1
2

In the fourth scenario, both bargainers have linear payoff functions. That is, they are both
risk-neutral. But, differently from Scenario 1, now E’s marginal gain from a change in the
tariff rate is twice that of C.
Scenario 4. Let UE (t) = 2 (1− t) and UC (t) = t

The resulting feasible payoff set and the disagreement point for each scenario is constructed
in Figure 2.
Since both bargainers prefer accession of C to its rejection from European Union, the Pareto
set under all scenarios corresponds to those payoff profiles that result from accession with
probability 1. The feasible payoff set is constructed by taking convex combinations of the
Pareto optimal alternatives with the disagreement point. Thus, they represent payoff pro-
files of lotteries, including those between an accession agreement and disagreement.

3 Bargaining Rules and Axioms

A (bargaining) rule F : B → Rn assigns each bargaining problem (S, d) ∈ B to a feasible
payoff profile F (S, d) ∈ S. As discussed in Section 1, F can be interpreted as either (i)
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a description of the negotiation process the agents in consideration are involved in (the
positive interpretation) or (ii) a prescription to the negotiators as a “good” compromise (the
normative interpretation).
In this section, we present examples of bargaining rules and discuss the main axioms that

they satisfy. We also discuss these rules’ choices for the four scenarios of Example 2.

3.1 The Nash Rule

The first and the best-known example of a bargaining rule is by Nash (1950). The Nash
rule chooses, for each bargaining problem (S, d) ∈ B the individually rational alternative
that maximizes the product of the agents’ gains from disagreement (please see Figure 3,
left):

N (S, d) = arg max
x∈I(S,d)

nY
i=1

(xi − di) .

Let us first check the Nash solutions to the accession negotiations of Example 2.

Example 3 (Nash solution to the accession negotiations) For each of the four scenarios
discussed in Example 2, the Nash rule proposes the following payoff profiles (the first payoff
number is for E and the second is for C). For Scenario 1, N (S1, d1) =

¡
1
2
, 1
2

¢
. This payoff

profile is obtained when the bargainers agree on accession at a tariff rate t1 = 1
2
. For Scenario

2, N (S2, d2) =
³
2
3
, 1√

3

´
, obtained at accession and the tariff rate t2 = 1

3
. For Scenario 3,

N (S3, d3) =
³
1√
2
, 1√

2

´
, obtained at accession and the tariff rate t3 = 1

2
. For Scenario 4,

N (S4, d4) =
¡
1, 1

2

¢
, obtained at accession and the tariff rate t4 = 1

2
.

In Example 3, as C becomes more risk averse from Scenario 1 to Scenario 2, the Nash
solution changes in a way to benefit E (since the tariff rate decreases from 1

2
to 1

3
). This is a

general feature of the Nash bargaining rule: the Nash bargaining payoff of an agent increases
as his opponent becomes more risk-averse (Kihlstrom, Roth, and Schmeidler (1981)).
Nash (1950) proposes four axioms and shows that his rule satisfies them. These axioms

later play a central role in the literature. We will introduce them next.
The first axiom requires that the rule always choose a Pareto optimal alternative. For-

mally, a rule F is Pareto optimal if for each problem (S, d) ∈ B, F (S, d) ∈ P (S, d) . As
discussed in Section 1, it is commonly agreed in the literature that negotiations result in
a Pareto optimal alternative. (For a criticism of this claim, see Osborne and Rubinstein,
1990). Thus, most axiomatic analyses focus on Pareto optimal rules. In Example 3, Pareto
optimality is satisfied since all four negotiations result in the accession of the candidate to
the European Union.6

6This is Pareto optimal since both bargainers prefer accession to rejection. What they disagree on is the
tariff rate.
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Figure 3: The Nash (left) and the Kalai-Smorodinsky (right) solutions to a typical problem.

The second axiom, called anonymity, guarantees that the identity of the bargainers
do not affect the outcome of negotiation. It requires that permuting the agents’ payoff
information in a bargaining problem should result in the same permutation of the original
agreement. To formally introduce this axiom, let Π be the set of all permutations on N ,
π : N → N . For x ∈ RN , let π (x) =

¡
xπ(i)

¢
i∈N and for S ⊆ RN , let π (S) = {π (x) | x ∈ S}.

Then, a rule F is anonymous if for each π ∈ Π, F (π (S) , π (d)) = π (F (S, d)) . Note that
anonymity applies to cases where the bargainers have “equal bargaining power”.
It is common practice in the literature to replace anonymity with a weaker axiom which

requires that if a problem is symmetric (in the sense that all of its permutations result in
the original problem), then its solution should be symmetric as well. Formally, a rule F is
symmetric if for each π ∈ Π, π (S) = S and π (d) = d implies F1 (S, d) = ... = Fn (S, d) .
Note that the bargaining problems under Scenarios 1 and 3 are symmetric. Therefore, their
Nash solutions are also symmetric.
The third axiom is based on the fact that a vonNeumann-Morgenstern type preference

relation can be represented with infinitely many payoff functions (that are positive affine
transformations of each other) and the particular functions chosen to represent the problem
should not affect the bargaining outcome. Formally, let Λ be the set of all λ = (λ1, ..., λn)
where each λi : R→ R is a positive affine function.7 Let λ (S) = {λ (x) | x ∈ S} . Then, a rule
F is scale invariant if for each (S, d) ∈ B and λ ∈ Λ, F (λ (S) , λ (d)) = λ (F (S, d)) . Note
that in the accession negotiations, Scenario 4 is obtained from Scenario 1 by multiplying UE

by 2, which is a positive affine transformation. Thus, the Nash solutions to the two scenarios
are related the same way.
The final axiom of Nash (1950) concerns the following case. Suppose the bargainers facing

a bargaining problem (S, d) agree on an alternative x. However, they later realize that the
actual feasible set T is smaller than S. Nash requires that if the original agreement is feasible
in the smaller feasible set, x ∈ T, then the bargainers should stick with it. Formally, a rule
F is contraction independent if for each (S, d) , (T, d) ∈ B such that T ⊆ S, F (S, d) ∈ T

7A function λi : R→ R is positive affine if there is a, b ∈ R with a > 0 such that for each x ∈ R,
λi (x) = ax+ b.
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implies F (T, d) = F (S, d) . Nash (1950) and some of the following literature alternatively
calls this axiom independence of irrelevant alternatives (IIA). However, the presumed
irrelevance of alternatives in the choice of an agreement (as suggested by this name) is a topic
of controversy in the literature. In fact, it is this controversy that motivates the bargaining
rule of Kalai and Smorodinsky (1975) as will be discussed in the next subsection.
Nash (1950) shows that his bargaining rule uniquely satisfies these four axioms. We will

next prove this result for two-agent problems.

Theorem 4 (Nash, 1950) A bargaining rule satisfies Pareto optimality, symmetry, scale
invariance, and contraction independence if and only if it is the Nash rule.

Proof. It is left to the reader to check that the Nash rule satisfies the given axioms.
Conversely, let F be a rule that satisfies them. Let (S, d) ∈ B and N (S, d) = x. We would
like to show that F (S, d) = x.
By scale invariance of both rules, it is without loss of generality to assume that d =

(0, 0) and x = (1, 1) .8 Then, by definition of N, the set P (S, d) has slope −1 at x.
Also, by boundedness of S, there is z ∈ RN such that for each x ∈ S, x = z. Now let
T =

©
y ∈ RN |PN yi 5

P
N xi and y = z

ª
. Then, S ⊆ T and (T, d) ∈ B is a symmetric

problem. Thus, by symmetry and Pareto optimality of F, F (T, d) = x. This, by contraction
independence of F, implies F (S, d) = x, the desired conclusion.
It is useful to note that the following class of weighted Nash rules uniquely satisfy all

of Nash’s axioms except symmetry. These rules extend the Nash bargaining rule to cases
where agents differ in their “bargaining power”. Formally, let p = (p1, ..., pn) ∈ [0, 1]N satisfyP

N pi = 1. Each pi is interpreted as the bargaining power of agent i. Then the p-weighted
Nash bargaining rule is defined as

Np (S, d) = arg max
x∈I(S,d)

nY
i=1

(xi − di)
pi .

The symmetric Nash bargaining rule assigns equal weights to all agents, that is, p =¡
1
n
, ..., 1

n

¢
.

The literature contains several other characterizations of the Nash bargaining rule. For
example, see Chun (1988), Lensberg (1988), Peters (1986), Peters and Van Damme (1986
and 1991), and Dagan, Volij, and Winter (2002).

3.2 The Kalai-Smorodinsky Rule

The Kalai-Smorodinsky rule (Raiffa, 1953; Kalai and Smorodinsky, 1975) makes use of each
agent’s aspiration payoff, that is, the maximum payoff an agent can get at an individually
rational agreement. Formally, given a problem (S, d) ∈ B, the aspiration payoff of agent

8Any (S, d) can be “normalized” into such a problem by choosing λi (xi) = xi−di
Ni(S,d)−di for each i ∈ N.
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i is ai (S, d) = argmaxx∈I(S,d) xi. The vector a (S, d) = (ai (S, d))
n
i=1 is called the aspiration

point.
The Kalai-Smorodinsky rule, K, chooses the maximum individually rational payoff

profile at which each agent’s payoff gain from disagreement has the same proportion to his
aspiration payoff’s gain from disagreement (please see Figure 3, right). Formally,

K (S, d) = arg max
x∈I(S,d)

µ
min

i∈{1,...,n}
xi − di

ai (S, d)− di

¶
.

Geometrically, K (S, d) is the intersection of the line segment [d, a (S, d)] and the northeast
boundary of S.9

Example 5 (Kalai-Smorodinsky solution to the accession negotiations) For each of the four
scenarios discussed in Example 2, the Kalai-Smorodinsky rule proposes the following pay-
off profiles (the first payoff number is for E and the second is for C). For Scenario 1,
K (S1, d1) =

¡
1
2
, 1
2

¢
. This payoff profile is obtained when the bargainers agree on accession at

a tariff rate t1 = 1
2
. For Scenario 2, K (S2, d2) = (0.62, 0.62) , obtained at accession and the

tariff rate t2 = 0.38. For Scenario 3, K (S3, d3) =
³
1√
2
, 1√

2

´
, obtained at accession and the

tariff rate t3 = 1
2
. For Scenario 4, K (S4, d4) =

¡
1, 1

2

¢
, obtained at accession and the tariff

rate t4 = 1
2
.

In Example 5, as C becomes more risk averse from Scenario 1 to Scenario 2, the Kalai-
Smorodinsky solution changes in a way to benefit E (since the tariff rate decreases from
1
2
to 0.38). This is a general feature of the Kalai-Smorodinsky bargaining rule: the Kalai-

Smorodinsky bargaining payoff of an agent increases as his opponent becomes more risk-
averse (Kihlstrom, Roth, and Schmeidler (1981)).
As can be observed in Example 5, the Kalai-Smorodinsky rule is Pareto optimal, sym-

metric, and scale invariant. Due to Pareto optimality and symmetry, the Kalai-Smorodinsky
solutions to (S1, d1) and (S3, d3) are equal to the Nash solutions. Due to scale invariance, the
two rules also coincide on (S4, d4) . For the problem (S2, d2) , however, the two rules behave
differently: the Kalai-Smorodinsky rule chooses equal payoffs for the agents while the Nash
rule favors E.
The Kalai-Smorodinsky rule violates Nash’s contraction independence axiom. Kalai and

Smorodinsky (1975) criticize this axiom and propose to replace it with a monotonicity notion
which requires that an expansion of the feasible payoff set (and thus an increase in the coop-
erative opportunities) should benefit an agent if it does not affect his opponents’ aspiration
payoffs. Formally, a rule F satisfies individual monotonicity if for each (S, d) , (T, d) ∈ B
and i ∈ N, if S ⊆ T and aj (S, d) = aj (T, d) for each j 6= i, then Fi (S, d) 5 Fi (T, d) . The
Nash rule violates this axiom.
Kalai and Smorodinsky (1975) present the following characterization of the Kalai-Smorodinsky

rule. We will next prove this result for two-agent problems.
9Kalai and Rosenthal (1978) discuss a variant of this rule where the aspiration payoffs are defined alter-

natively as a∗i (S, d) = argmaxx∈S xi.
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Theorem 6 (Kalai and Smorodinsky, 1975) A bargaining rule satisfies Pareto optimal-
ity, symmetry, scale invariance, and individual monotonicity if and only if it is the Kalai-
Smorodinsky rule.

Proof. It is left to the reader to check that the Kalai-Smorodinsky rule satisfies the given
axioms. Conversely, let F be a rule that satisfies them. Let (S, d) ∈ B and K (S, d) = x.We
would like to show that F (S, d) = x.
By scale invariance of both rules, it is without loss of generality to assume that d = (0, 0)

and a (S, d) = (1, 1) .10 Then, by definition ofK, x1 = x2.Now let T = conv {x, d, (1, 0) , (0, 1)} .
Then, T ⊆ S and (T, d) ∈ B is a symmetric problem. Thus, by symmetry and Pareto op-
timality of F, F (T, d) = x. Since T ⊆ S, x ∈ P (S, d) , and a (S, d) = a (T, d) , individual
monotonicity implies that F (S, d) = x, the desired conclusion.
Roth (1979) notes that the above characterization continues to hold under a weaker

monotonicity axiomwhich only considers expansions of the feasible set at which the problem’s
aspiration point remains unchanged. Formally, a rule F satisfies restricted monotonicity
if for each (S, d) , (T, d) ∈ B and i ∈ N, if S ⊆ T and a (S, d) = a (T, d) , then F (S, d) 5
F (T, d) . The Nash rule violates this weaker monotonicity axiom as well.
The literature contains several other characterizations of the Kalai-Smorodinsky bargain-

ing rule. For example, see Thomson (1980 and 1983) and Chun and Thomson (1989). Also,
Dubra (2001) presents a class of asymmetric generalizations.

3.3 The Egalitarian Rule

The Egalitarian rule, E, (Kalai, 1977) chooses for each problem (S, d) ∈ B, the maximum
individually rational payoff profile that gives each agent an equal gain from his disagreement
payoff (please see Figure 4, left). Formally, for each (S, d) ∈ B,

E (S, d) = arg max
x∈S s.t. x=d

µ
min

i∈{1,...,n}
(xi − di)

¶
.

Geometrically, E (S, d) is the intersection of the boundary of S and the half line that starts
at d and passes through d+ (1, ..., 1).

Example 7 (Egalitarian solution to the accession negotiations) For each of the four scenar-
ios discussed in Example 2, the Egalitarian rule proposes the following payoff profiles (the
first payoff number is for E and the second is for C). For Scenario 1, E (S1, d1) =

¡
1
2
, 1
2

¢
.

This payoff profile is obtained when the bargainers agree on accession at a tariff rate t1 = 1
2
.

For Scenario 2, E (S2, d2) = (0.62, 0.62) , obtained at accession and the tariff rate t2 = 0.38.

For Scenario 3, E (S3, d3) =
³
1√
2
, 1√

2

´
, obtained at accession and the tariff rate t3 = 1

2
. For

Scenario 4, E (S4, d4) =
¡
2
3
, 2
3

¢
, obtained at accession and the tariff rate t4 = 2

3
.

10Any (S, d) can be “normalized” into such a problem by choosing λi (xi) = xi−di
ai(S,d)−di for each i ∈ N.

11



6

-

u2

u1

•d

S

45o

• E(S, d)

• U(S, d)

6

-

u2

u1

•d

S

Figure 4: The Egalitarian (left) and the Utilitarian (right) solutions to a typical problem.

The Egalitarian rule satisfiesPareto optimality only on the class of strictly d-comprehensive
problems Bsc. On B, it satisfies a weaker axiom: a rule F is weakly Pareto optimal if for
each problem (S, d) ∈ B, F (S, d) ∈WP (S, d) .11

As observed in Example 7, the Egalitarian rule is weakly Pareto optimal and symmetric.
Due to these two axioms, the Egalitarian solutions to (S1, d1) and (S3, d3) are equal to the
Nash and Kalai-Smorodinsky solutions. Also, since the aspiration point of problem (S2, d2)
is symmetric, a (S, d) = (1, 1) , the Egalitarian and the Kalai-Smorodinsky rules pick the
same solution.
Unlike the Nash and the Kalai-Smorodinsky rules, the Egalitarian rule violates scale

invariance. This can be observed in Example 7 by comparing the Egalitarian solutions to
(S1, d1) and (S4, d4).12 The Egalitarian rule however satisfies the following weaker axiom: a
rule F satisfies translation invariant if for each (S, d) ∈ B and z ∈ RN , F (S + {z} , d+ z) =
F (S, d) + z.13

On the other hand, the Egalitarian rule satisfies a very strong monotonicity axiom which
requires that an agent never loose in result of an expansion of the feasible payoff set. Formally,
a rule F satisfies strong monotonicity if for each (S, d) , (T, d) ∈ B, if S ⊆ T then F (S, d) 5
F (T, d) . This property is violated by the Kalai-Smorodinsky rule since this rule is sensitive
to changes in the problem’s aspiration point. The Nash rule violates this property since it
violates the weaker individual monotonicity property.
The following characterization of the Egalitarian rule follows from Kalai (1977). We

present it for two agent problems.

Theorem 8 (Kalai, 1977) A bargaining rule satisfies weak Pareto optimality, symmetry,
11On problems that are not d-comprehensive, the Egalitarian rule can also violate weak Pareto optimality.
12For a scale invariant rule,

¡
S1, d1

¢
and

¡
S4, d4

¢
are alternative representations of the same physical

problem. (Specifically, E’s payoff function has been multiplied by two and thus, still represents the same
preferences.) For the Egalitarian rule, however, these two problems (and player E’s) are distinct. Since it
seeks to equate payoff gains from disagreement, the Egalitarian rule treats agents’ payoffs to be comparable
to each other. As a result, it treats payoff functions as more than mere representations of preferences.
13This property is weaker than scale ivariance because, for an agent i, every translation xi+zi is a positive

affine transformation λi (xi) = 1xi + zi.
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translation invariance, and strong monotonicity if and only if it is the Egalitarian rule.

Proof. It is left to the reader to check that the Egalitarian rule satisfies the given axioms.
Conversely, let F be a rule that satisfies them. Let (S, d) ∈ B and E (S, d) = x. We would
like to show that F (S, d) = x.
By translation invariance of both rules, it is without loss of generality to assume that

d = (0, 0) .14 Then, by definition of E, x1 = x2. Now let T = conv {x, d, (x1, 0) , (0, x2)} .
Then, T ⊆ S and (T, d) ∈ B is a symmetric problem. Thus, by symmetry and weak Pareto
optimality of F, F (T, d) = x. Since T ⊆ S, strong monotonicity then implies F (S, d) = x.
Case 1: x ∈ P (S, d) . Then F (S, d) ≥ x implies F (S, d) 6∈ S. Thus, F (S, d) = x, the
desired conclusion.
Case 2: x ∈ WP (S, d) . Suppose Fi (S, d) > xi for some i ∈ N. Let δ > 0 be such
that xi + δ < Fi (S, d), let x0 = x + (δ, δ) , x00 =

¡
di, x

0
−i
¢
and S0 = conv {x0, x00, S} . Then

E (S0, d) = x0 ∈ P (S0, d) and by Case 1, F (S0, d) = x0. Since S ⊆ S0, by strong monotonicity,
F (S0, d) = x0 = F (S, d) . Particularly, xi+δ = Fi (S, d) , a contradiction. Thus, F (S, d) = x.

The literature contains several other characterizations of the Egalitarian bargaining rule.
For example, see Chun and Thomson (1989, 1990a,b), Myerson (1981), Peters (1986), Salo-
nen (1998), and Thomson (1984).

3.4 Other Rules

In this section, we will present some of the other well-known rules in the literature.
The first is the Utilitarian rule which chooses for each bargaining problem (S, d) ∈ B

the alternatives that maximize the sum of the agents’ payoffs (please see Figure 4, right):

U (S, d) = argmax
x∈S

nX
i=1

xi.

The Utilitarian rule is not necessarily single-valued, except when the feasible set is strictly
convex. In such cases, it is possible to define single-valued refinements (such as choosing the
midpoint of the set of maximizers). Also, the Utilitarian solution to (S, d) is independent of
d. Thus, the Utilitarian rule violates individual rationality. Restricting the choice to be from
the individually rational set remedies this problem. Finally, the Utilitarian rule violates
scale invariance. However, a variation which maximizes a weighted sum of utilities satisfies
the property (e.g. see Dhillon and Mertens, 1999).
The Utilitarian rule is Pareto optimal, anonymous contraction independent, and trans-

lation invariant even though it violates restricted monotonicity. For more on this rule, see
Myerson (1981), Thomson and Myerson (1980), and Thomson (1981). Blackorby, Bossert,
and Donaldson (1994) introduce a class of Generalized Gini rules that are mixtures of the

14Any (S, d) can be “normalized” into such a problem by choosing λi (xi) = xi − di for each i ∈ N.
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Utilitarian and the Egalitarian rules. Ok and Zhou (2000) further extend this class to a class
of Choquet rules.
The second rule represents extreme cases where one agent has all the “bargaining power”.

The Dictatorial rule for agent i chooses the alternative that maximizes agent i’s payoff
among those at which the remaining agents receive their disagreement payoffs:

Di (S, d) = arg max
x∈I(S,d)

s.t. x−i=d−i

xi.

This rule is only weakly Pareto optimal, though on strictly d-comprehensive problems it is
Pareto optimal. The following rule does not suffer from this problem: the Serial Dictatorial
rule is defined with respect to a fixed order of agents and it first maximizes the payoff of the
first ordered agent, then among the maximizers, maximizes the payoff of the second and so
on.
Both the dictatorial and serial dictatorial rule violate symmetry (and thus anonymity).

Otherwise, they are very well-behaved. Both rules are scale invariant. In fact, they satisfy
an even stronger property, ordinal invariance, that we introduce and discuss in Section 5.
These rules also satisfy contraction independence and strong monotonicity (and thus, all
weaker monotonicity properties).
The next class of rules, introduced by Yu (1973), are based on minimizing a measure of

the distance between the agreement and the problem’s aspiration point (defined in Subsection
3.2). Formally, for p ∈ (1,∞) , the Yu rule associated with p is

Y p (S, d) = argmin
x∈S

Ã
nX
i=1

|ai (S, d)− xi|p
! 1

p

.

The Yu rules are Pareto optimal, anonymous, and individually monotonic. However, they
violate contraction independence, strong monotonicity, and scale invariance.
The final two rules are defined for two-agent problems. They both are based on the

idea of equalizing some measure of the agents’ sacrifices with respect to their aspiration
payoffs. The first, Equal Area rule, chooses the Pareto optimal alternative at which
the area of the set of better alternatives for agent 1 is equal to that of agent 2. This rule
violates contraction independence but satisfies anonymity, scale invariance, and an “area
monotonicity” axiom (e.g. see Anbarcı and Bigelow (1994) and Calvo and Peters (2000)).
The second rule is by Perles and Maschler (1981). For problems (S, d) whose Pareto set
P (S, d) is polygonal, the Perles-Maschler rule chooses the limit of the following sequence.
(The Perles-Maschler solution to any other problem (S, d) is obtained as the limit of Perles-
Maschler solutions to a sequence of polygonal problems that converge to (S, d)). Let x0 =
D2 (S, d) and y0 = D1 (S, d) . For each k ∈ N, let xk, yk ∈ P (S, d) be such that (i) xk1 5
yk1 , (ii) [x

k−1, xk] ⊂ P (S, d) , (iii) [yk−1, yk] ⊂ P (S, d) , (iv)
¯̄¡
xk−11 − xk1

¢ ¡
xk−12 − xk2

¢¯̄
=¯̄¡

yk−11 − yk1
¢ ¡

yk−12 − yk2
¢¯̄
, and

¯̄¡
xk−11 − xk1

¢ ¡
xk−12 − xk2

¢¯̄
is maximized. The Perles-Maschler

rule is Pareto optimal, anonymous, and scale invariant. It, however, is not contraction
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independent or restricted monotonic. For extending this rule to more than two agents, see
Perles (1982) and Calvo and Gutiérrez (1994).

4 Strategic Considerations

As noted in Section 1, Nash (1950) interprets a bargaining rule as a description of a (nonco-
operative) negotiation process between rational agents. Nash (1953) furthers this interpre-
tation and proposes what is later known as the Nash program: to relate choices made by
cooperative bargaining rules to equilibrium outcomes of underlying noncooperative games.
Nash argues that “the two approaches to the (bargaining) problem, via the (noncooperative)
negotiation model or via the axioms, are complementary; each helps to justify and clarify
the other.”
Nash (1953) presents the first example of the Nash program. Given a bargaining problem

(S, d) , he proposes a two-agent noncooperative Demand Game in which each player i
simultaneously declares a payoff number si. If the declared payoff profile is feasible (i.e.,
s ∈ S), players receive their demands. Otherwise, the players receive their disagreement
payoffs with a probability p and their demands with the remaining probability. Nash shows
that, as p converges 1, the equilibrium of the Demand Game converges to the Nash solution
to (S, d) .
Van Damme (1986) considers a related noncooperative game where, given a bargaining

problem (S, d) , each agent simultaneously declares a bargaining rule.15 If the solutions
proposed by the two rules conflict, the feasible payoff set is contracted in a way that an
agent can’t receive more than the payoff he asks for himself. The two rules are now applied
to this contracted problem and if they conflict again, the feasible set is once more contracted.
Van Damme (1986) shows that for a large class of rules, the limit of this process is well-defined
and the unique Nash equilibrium of this noncooperative game is both agents declaring the
Nash bargaining rule.
Another well-known contribution to the Nash program is by Binmore, Rubinstein, and

Wolinsky (1986) who relate the Nash bargaining rule to equilibrium outcomes of the following
game. The Alternating Offers Game (Rubinstein, 1982) is an infinite horizon sequential
move game to allocate one unit of a perfectly divisible good between two agents. The players
alternate in each period to act as “proposer” and “responder”. Each period contains two
sequential moves: the proposer proposes an allocation and the responder either accepts
or rejects it. The game ends when a proposal is accepted. Rubinstein (1982) shows that
the Alternating Offers Game has a unique subgame perfect equilibrium in which the first
proposal, determined as a function of the players’ discount factors, is accepted. Binmore,
Rubinstein, and Wolinsky (1986) show that, as the players’ discount factors converge to 1
(i.e. as they become more patient), the equilibrium payoff profile converges to the Nash
bargaining solution to the associated cooperative bargaining game.

15Thus, as in Nash (1953), each agent demands a payoff. But now, they have to rationalize it as part of a
solution proposed by an “acceptable” bargaining rule.
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The Nash program is closely related to the implementation problem.16 Since the latter
is discussed in detail elsewhere in this book, we find it sufficient to mention Moulin (1984)
who implements the Kalai-Smorodinsky rule and Miyagawa (2002) who designs a class of
games that implement any bargaining rule that maximizes a monotonic and quasiconcave
objective function.
Another strategic issue arises from that fact that each negotiator, by misrepresenting

his private information (e.g. about his preferences, degree of risk aversion, etc.), might be
able to change the bargaining outcome in his favor. Understanding the “real” outcome of a
bargaining rule then requires taking strategic behavior into account. A standard technique
for this is to embed the original problem into a noncooperative game (in which agents
strategically “distort” their private information) and to analyze its equilibrium outcomes.
This is demonstrated in the following example.

Example 9 (A noncooperative game of manipulating the Nash rule) Suppose that agents
C and E in Example 2 have private information about their true payoff functions and that
they play a noncooperative game where they strategically declare this information. Using the
four scenarios of Example 2, fix the strategy set of C as

n
t , t

1
2

o
and the strategy set of

E as
n
1− t , (1− t)

1
2 , 2 (1− t)

o
. The resulting tariff rate is determined by the Nash

bargaining rule calculated in Example 3 except for the profile
³
t, (1− t)

1
2

´
. The following

table summarizes, for each strategy profile, the resulting tariff rate.

C\E 1− t (1− t)
1
2 2 (1− t)

t 0.5 0.66 0.5

t
1
2 0.33 0.5 0.33

Note that this is a competitive game: C is better-off and E is worse-off in response to an
increase in the tariff rate t. Also note that, for C, declaring t strictly dominates declaring
t
1
2 (that is, he gains from acting less risk-averse). Similarly, for E, declaring (1− t) strictly
dominates declaring (1− t)

1
2 and, since the Nash bargaining rule is scale invariant, declar-

ing (1− t) and 2 (1− t) are equivalent. The game has two equivalent dominant strategy
equilibria: (t, 1− t) and (t, 2 (1− t)) where both players act to be risk-neutral.

In some cases, such as Example 9, it is natural to assume that the agents’ ordinal pref-
erences are publicly known. (In the example, it is common knowledge that C prefers higher
tariff rates and E prefers lower tariff rates.) Then, manipulation can only take place through
misrepresentation of cardinal utility information (such as the degree of risk-aversion). In two-
agent bargaining with the Nash or the Kalai-Smorodinsky rules, an agent’s utility increases
if his opponent is replaced with another that has the same preferences but a more concave

16To implement a cooperative bargaining rule in an equilibrium notion (such as the Nash equilibrium),
one constructs a noncooperative game whose corresponding equilibria coincides with the rule’s choices on
every problem.
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utility function (Kihlstrom et al, 1981). On allocation problems, this result implies that an
agent can increase his payoff by declaring a less concave utility function (i.e. acting to be
less risk-averse). For the Nash bargaining rule, it is a dominant strategy for each agent to
declare the least concave representation of his preferences (Crawford and Varian, 1979). For
a single good, the equilibrium outcome is equal division.
If ordinal preferences are not publicly known, however, their misrepresentation can also

be used for manipulation. The resulting game does not have dominant strategy equilibria.
Nevertheless, for a large class of two-agent bargaining rules applied to allocation problems,
the set of allocations obtained at Nash equilibria in which agents declare linear utilities is
equal to the set of “constrained” Walrasian allocations from equal division with respect to
the agents’ true utilities (Sobel, 1981 and 2001; Gómez, 2006). Under a mild restriction
on preferences, a similar result holds for pure exchange and public good economies with an
arbitrary number of agents and for all Pareto optimal and individually rational bargaining
rules (Kıbrıs, 2002).

5 Ordinal Bargaining

Nash (1950) and most of the following literature restricts the analysis to bargaining processes
that take place on lotteries and assumes that the bargainers’ preferences on lotteries satisfy
the vonNeumann-Morgenstern assumptions (thus, they are representable by expected utility
functions). This assumption has two important consequences. First, in a bargaining problem
(S, d) , the feasible payoff set S is then convex. Second, the scale invariance axiom of Nash
(1950) is sufficient to ensure the invariance of the physical bargaining outcome with respect
to the particular utility representation chosen.
In this section, we drop these assumptions and analyze bargaining in ordinal environ-

ments, where the agents’ complete, transitive, and continuous preferences do not have to
be of von Neumann-Morgenstern type. For ordinal environments, (i) the payoff set S is
allowed to be nonconvex and (ii) scale invariance needs to be replaced with the following
stronger axiom.17 Formally, let Φ be the set of all φ = (φ1, ..., φn) where each φi : R→ R is
an increasing function. Let φ (S) = {φ (x) | x ∈ S} . Then, a rule F is ordinal invariant
if for each (S, d) ∈ B and φ ∈ Φ, F (φ (S) , φ (d)) = φ (F (S, d)) . Note that every ordinal
invariant rule is also scale invariant but not vice versa.
If there are a finite number of alternatives, many ordinal invariant rules exist (e.g. see

Kıbrıs and Sertel, 2007). With an infinite number of alternatives, however, ordinal invari-
ance is a very demanding property. Shapley (1969) shows that for two-agent problems, only
dictatorial bargaining rules and the rule that always chooses disagreement satisfy this prop-
erty. This result is due to the fact that the Pareto optimal set of every two-agent problem can
be mapped to itself via a nontrivial increasing transformation φ = (φ1, φ2) . In the following
example, we demonstrate the argument for a particular bargaining problem.

17This is due to the following fact. Two utility functions represent the same complete and transitive
preference relation if and only if one is an increasing transformation of the other.
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Figure 5: The Shapley-Shubik solution to (S, d) is the limit of the sequence
©
pk
ª
.

Example 10 Consider the problem (S1, d1) in Scenario 1 of Example 2 (represented in
Figure 2, upper left). Note that the Pareto set of (S1, d1) satisfies uC+uE = 1. Let φC (uC) =

u
1
2
C and φE (uE) = 1−(1− uE)

1
2 and note that φC (uC)+φE (uE) = 1. Thus, the Pareto set of

the transformed problem (φ (S1) , φ (d1)) is the same as (S1, d1). In fact, S1 = φ (S1) and d1 =
φ (d1) . To summarize, φ maps (S1, d1) to itself via a nontrivial transformation of the agents’
utilities. Now let F be some ordinally invariant bargaining rule. Since the two problems
are identical, F (φ (S1) , φ (d1)) = F (S1, d1) . Since F is ordinally invariant, however, we
also have F (φ (S1) , φ (d1)) = φ (F (S1, d1)) . For both requirements to be satisfied, we need
φ (F (S1, d1)) = F (S1, d1) . Only three payoff profiles in (S1, d1) satisfy this property: (0, 0) ,
(1, 0) , and (0, 1) . Note that they are the disagreement point and the two dictatorial solutions,
respectively. So, F should coincide with either one of these rules on (S1, d1) .

The construction of Example 10 is not possible for more than two agents (Sprumont,
2000). For three agents, Shubik (1982) presents an ordinally invariant and strongly individ-
ually rational bargaining rule which we will refer to as the Shapley-Shubik rule.18 The
Shapley-Shubik solution to a problem (S, d) is defined as the limit of the following sequence.
Let p0 = d and for each k ∈ {1, ...} , let pk ∈ R3 be the unique point that satisfies

(pk−11 , pk2, p
k
3) ∈ P (S, d), (pk1, p

k−1
2 , pk3) ∈ P (S, d), and (pk1, p

k
2, p

k−1
3 ) ∈ P (S, d).

The Shapley-Shubik solution is then Sh (S, d) = limk→∞ pk. The construction of the sequence©
pk
ª
is demonstrated in Figure 5.

18There is no reference on the origin of this rule in Shubik (1982). However, Thomson attributes it to
Shapley. Furthermore, Roth (1979) (pp. 72-73) mentions a three-agent ordinal bargaining rule proposed by
Shapley and Shubik (1974, Rand Corporation, R-904/4) which, considering the scarcity of ordinal rules in
the literature, is most probably the same bargaining rule.
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Kıbrıs (2004a) shows that the Shapley-Shubik rule uniquely satisfies Pareto optimality,
symmetry, ordinal invariance, and a weak monotonicity property. Kıbrıs (2008) shows that it
is possible to replace monotonicity in this characterization with a weak contraction indepen-
dence property. Safra and Samet (2004, 2005) propose generalizations of the Shapley-Shubik
rule to an arbitrary number of agents.
The literature following Shapley (1969) also analyze the implications of weakening the

ordinal invariance requirement on two-agent bargaining rules. Myerson (1977) and Roth
(1979) show that such weakenings and some basic properties characterize Egalitarian type
rules. Calvo and Peters (2005) analyze problems where there are both ordinal and cardinal
players. There is also a body of literature which demonstrates that in alternative approaches
to modeling bargaining problems, ordinality can be recovered (e.g. see Rubinstein et al
(1992), O’Neill et al (2001), Kıbrıs (2004b), Conley and Wilkie (2007)). Finally, there is a
body of literature that allows nonconvex bargaining problems but does not explicitly focus
on ordinality (e.g. see Herrero (1989), Zhou (1997) and the following literature).
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[27] Kıbrıs, Ö. and İ. G. Tapkı (2007b), “Bargaining with Nonanonymous Disagreement:
Decomposable Rules”, Sabancı University Working Paper.

[28] Kıbrıs, Ö. (2008), “Nash Bargaining in Ordinal Environments”, Review of Economic
Design, forthcoming.

[29] Kihlstrom, R. E., Roth A. E., and D. Schmeidler (1981), “Risk Aversion and Nash’s
Solution to the Bargaining Problem” in Game Theory and Mathematical Economics,
ed. by 0. Moeschlin and D. Pallaschke. Amsterdam: North-Holland.

[30] Lensberg T. (1988) “Stability and the Nash solution” Journal of Economic Theory,
45(2): 330-341.

[31] Miyagawa, E. (2002), “Subgame-Perfect Implementation of Bargaining Solutions”,
Games and Economic Behavior, 41(2): 292-308.

[32] Moulin, H. (1984). “Implementing the Kalai-Smorodinsky bargaining solution,” Journal
of Economic Theory 33: 32-45.

[33] Myerson, R.B. (1977), “Two-Person Bargaining Problems and Comparable Utility’,
Econometrica, 45: 1631-1637.

[34] Myerson, R.B. (1981) “Utilitarianism, Egalitarianism, and the Timing Effect in Social
Choice Problems”, Econometrica, 49: 883-897.

[35] Myerson R.B. (1984), “2-Person Bargaining Problems With Incomplete Information”,
Econometrica 52(2): 461-487.

[36] Nash, John. (1950), “The Bargaining Problem”, Econometrica, 18(1): 155-162.

[37] Nash, J. F. (1953), “Two person cooperative games”, Econometrica, 21: 128-140.

[38] Ok E. and Zhou L. (2000), “The Choquet Bargaining Solutions”, Games and Economic
Behavior, 33: 249-264.

[39] O’Neill B., Samet D., Wiener Z. and E. Winter (2004), “Bargaining With an Agenda”,
Games and Economic Behavior, 48: 139-153.

[40] Osborne, M. and A. Rubinstein (1990), Bargaining and Markets, Academic Press.

[41] Perles, M.A. and M. Maschler (1981), “A Super-Additive Solution for the Nash Bar-
gaining Game”, International Journal of Game Theory, 10: 163-193.

21



[42] Perles, M.A. (1982) “Nonexistence of Super-Additive Solutions for 3-person Games”,
International Journal of Game Theory, 11: 151-161.

[43] Peters, H. (1986), “Simultaneity of Issues and Additivity in Bargaining”, Econometrica,
54(1): 153-169

[44] Peters, H. and Van Damme, E. (1991) “Characterizing the Nash and Raiffa Bargain-
ing Solutions by Disagreement Point properties”, Mathematics of Operations Research,
16(3): 447-461.

[45] Peters, H. andWakker, P. (1991) “Independence of Irrelevant Alternatives and Revealed
Group Preferences”, Econometrica, 59(6): 1787-1801.

[46] Peters, H. (1992), Axiomatic Bargaining Game Theory, Kluwer Academic Press.

[47] Raiffa H. (1953), “Arbitration schemes for generalized two-person games”, In: H.W.
Kuhn and A.W. Tucker, Editors, Contributions to the theory of games II, Princeton
University Press, Princeton, NJ.

[48] Roemer, J. E. (1998), Theories of distributive justice, Cambridge, Mass: Harvard Uni-
versity Press.

[49] Roth, A. E. (1979), Axiomatic Models of Bargaining, Springer-Verlag.

[50] Rubinstein A. (1982), “Perfect equilibrium in a Bargaining Model”, Econometrica,
50(1): 97-109.

[51] Rubinstein A., Safra Z., Thomson W. (1992), “On the Interpretation of the Nash Bar-
gaining Solution and Its Extension to Nonexpected Utility Preferences”, Econometrica,
60(5): 1171-1186.

[52] Salonen H., (1998), “Egalitarian solutions for n-person bargaining games”,Mathematical
Social Sciences, 35(3): 291-306.

[53] Samet D, Safra Z (2004), “An Ordinal Solution to Bargaining Problems with Many
Players”, Games and Economic Behavior, 46: 129-142.

[54] Samet D, Safra Z (2005), “A family of ordinal solutions to bargaining problems with
many players”, Games and Economic Behavior, 50(1): 89-106.

[55] Shapley, L., (1969), “Utility comparison and the theory of games” in La Décision:
Agrégation et Dynamique des Ordres de Préférence, Editions du CNRS, Paris, pp. 251—
263.

[56] Shubik, M. (1982), Game Theory in the Social Sciences, MIT Press, Cambridge, MA.

22



[57] Sobel, J. (1981) “Distortion of Utilities and the Bargaining Problem”, Econometrica,
49: 597-619.

[58] Sobel J. (2001), “Manipulation of preferences and relative utilitarianism”, Games and
Economic Behavior, 37(1): 196—215.

[59] Sprumont, Y. (2000), “A note on ordinally equivalent Pareto surfaces”, Journal of
Mathematical Economics, 34: 27—38

[60] Thomson, W. and Myerson, R. B. (1980) “Monotonicity and Independence Axioms”,
International Journal of Game Theory, 9: 37-49.

[61] Thomson, W. (1980), “Two characterizations of the Raiffa solution”, Economics Letters,
6 (3): 225-231.

[62] Thomson, W. (1983), “The Fair Division of a Fixed Supply among a Growing Popula-
tion”, Mathematics of Operations Research, 8 (3): 319-326.

[63] Thomson, W. (1981), “Nash’s Bargaining Solution and Utilitarian Choice Rules”,
Econometrica, 49: 535-538.

[64] ThomsonW. and Lensberg, S. (1989), The Theory of Bargaining with a Variable Number
of Agents, Cambridge University Press.

[65] Thomson, W. (1994), Cooperative Models of Bargaining, Handbook of Game Theory,
Chapter 35.

[66] Thomson, W. (1996), Bargaining Theory: the Axiomatic Approach, book manuscript.

[67] Van Damme, E. (1986), “The Nash bargaining solution is optimal”, Journal of Economic
Theory, 38 (1): 78-100.

[68] Yu, P. (1973), “A Class of Solutions for Group Decision Problems”, Management Sci-
ence, Vol 19: 936-946.

[69] Zhou L. (1997), “The Nash bargaining theory with non-convex problems”, Economet-
rica, 65 (3): 681-685.

23


