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ABSTRACT

Vehicle Routing Problem with Time Windows (VRPTW) is an extension of the
Capacitated Vehicle Routing Problem. The objective is to design optimal routes that

satisfy all of the constraints.

In this study, a linear IP model and hybrid heuristics for the VRPTW are
proposed. The objective function considered in the model is the total distance traveled
by all vehicles. Vehicles are identical, capacities of the vehicles are finite and the time

window constraints are assumed to be strict.

The proposed hybrid heuristics are combined by two parts. The first part, which
has both parallel and sequential versions, finds an initial solution. Both parallel and
sequential initial solution algorithms are based on the idea of clustering the customers
while doing the insertion. Second part is an improvement heuristic, which is a
combination of three procedures: /nfer-route exchanges, inter-route moves and intra-
route exchanges. In the proposed heuristics, these operators are used nested with each
other. There are two improvement heuristics proposed that use these operators in
different ways. The improvement algorithms are supported with a restart mechanism
called diversification in order to escape the local optima and widen the search space. In

this study, two diversification methods are proposed.

The hybrid algorithms in this study are the combinations of the initial solution,

improvement and diversification methods proposed.

The algorithms have been tested on the 56 benchmark problem instances of
Solomon (1987), which were used widely in the literature. The hybrid algorithms are
proven to give better results when compared to not only some known metaheuristics,

but also to the best known results in the literature.



OZET

Zaman Kisithh Ara¢ Rotalama Problemi, Ara¢ Rotalama Problemi'nin bir

uzantisidir. Problemde amag, tiim kisitlar1 saglayan optimal rotalar olusturmaktir.

Bu calismada Zaman Kisitli Ara¢ Rotalama Problemi i¢in bir dogrusal tamsayili
programlama modeli ve problemin ¢Oziimi icin hibrid sezgisel yaklasimlar
onerilmistir. Modeldeki ama¢ fonksiyonu, araclar tarafindan kat edilen toplam
mesafenin en kii¢liklenmesidir. Tiim araclar ayni 6zelliklere sahiptir ve araclarin

kapasiteleri g6z oniinde bulundurulmaktadir.

Onerilen sezgisel algoritmalar iki bdliimden olusmaktadir. Birinci bdliim daha
sonra gelistirilebilmek iizere bir baslangi¢c ¢oziimii olusturmaya yoneliktir. Baglangic
¢cOzlimii algoritmasmin paralel ve sirali versiyonlari onerilmistir. Her iki yaklasim da

miisterileri rotalara atarken onlar1 gruplandirma esasina dayanmaktadir.

Ikinci kisim ise ii¢ farkli prosediirii igeren bir ¢6ziim gelistirme algoritmasidir. Bu
iic prosediir rotalar aras: degisim, rotalar arasi tasima ve rota i¢i degisim'dir. Onerilen
sezgisel algoritmalarda bu prosediirler i¢ ige, birbirine baglanmis sekilde kullanilmstir.
Bu ¢ prosediirii farkli sekillerde birbirine baglayarak kullanan iki farkli yerel arama

algoritmasi gelistirilmistir.

Ayrica, ¢Oziim gelistirme algoritmalart dagitma adli yeniden baglatma
algoritmasiyla desteklenmistir. Calismada iki farkli dagitma metodu Onerilmistir.
Bunlardan biri ¢dziimii maliyet degisimini géz 6niinde bulundurmadan bozmakta, digeri

ise daha kotii ¢oziimlere sabit ve belirli bir olasilikla gitmektedir.

Caligmada onerilen hibrid sezgisel algoritmalar, tiim baslangi¢c ¢oziimii, ¢6ziim

gelistirme ve dagitma algoritmalarinin farkli kombinasyonlaridir.



Algoritmalar, Solomon'un 1987 yilinda olusturdugu ve ara¢ rotalama ig¢in
gelistirilen algoritmalarin karsilastirilmasinda ¢ok yaygin olarak kullanilan 56 problem
ile test edilmistir. Hibrid algoritmalar hem bilinen baz1 sezgisel-6tesi yaklagimlarla, hem
de problemlerin literatiirdeki bilinen en iyi ¢oziimleri ile karsilastirildiginda, genel

anlamda iyi sonuglar vermektedir.



TABLE OF CONTENTS

1, INTRODUCTION.......... 5 et eeee bt e eate e hte e heehte e hee et e e ahte et ee et e e hae et e e enbeeaneeenbeennbeeneas 1
2. LITERATURE REVIEW. ..ottt 5
2.1. Vehicle Routing Problem Formulation..............ccceccvieieniiiiiiiniiiieeeeiiee e, 5
2.2. Categories of Vehicle Routing Problems.............cccccieeiviiiiiiiniiiiiieiiiee e, 7
2.2.1. TImMe CONSIAINES: .....veeiiiieeiiieeeiteeeitee et e et e et e et e et e et e e st e e s e 7
2.2.2. MURIPIE DEPOLS: ..oeniiiiieeeiiiie ettt et e e enaee s 7
2.2.3. Pick-Up and DeliVery: ..........ceieiiiiiiiiiiiiieeeeiee et 7
2.2.4. Multiple COMPATTMENLS: .......eeeeeririieeeriiiieeeeiiieeeeeiiteeeeerreeeeeerreeeesneneeeeas 8
2.2.5. Multiple Time WiIndOWS:........ccocouiireiiiiiieeeeiiieeeeeiiee et e e 8
2.2.6. Non-Identical VEhiCles: .........cooruiiiiiiiiiiiiiiiiiieeiieceeeeee e 8
2.2.7. Soft TIMe WINAOWS:...c..uviiiiiiiiiiieiitie ettt 8
2.2.8. Other Additional CONStIraints: .........c..eeerueeeriieeeniieeniieenieeeniee e 9
2.2.9. Different Objective FUNCHIONS.........cceeviiiiiiiiiiiiiieeiiiiee et 9
2.3. Vehicle Routing Problem with Time Windows ............ccccceiiiniiiiieinniiieeeeieen. 9
2.3.1. Problem Definition ............ccoocuiiiriiiiiiiiiiiiiieiiee e 10
2.3.2. Complexity Of VRPTW ....ooiiiiiiiiiiiiiiieeeeeeee et 10
2.4. Review of Optimal Algorithms for VRPTW ........cccoiiiiiiiiiiiiiiieiceeee 11
2.4.1. Dynamic Programming ..........cccceeeeriuireeenniuiieeeeiiiieeeeniieeeesneiaeeeesnneeeaeenes 11
2.4.2. Lagrangean Relaxation-Based Methods.............cccooveiiniiiniiiniiiinicene 12
2.4.3. Column GeNETAtiON........ccueieruiieriieeiiieeeiieeeitee et ee et e e st e e e e e s 13
2.5. Review of Approximation Algorithms and Heuristics for the VRPTW............. 13
2.5.1. Construction AIZOrithms ............ccccuviiiiiiiiiiiiiiie e 14



2.5.2. Route- Improving HEUTISTICS. ......ccuviireeriiiieeeiiiie et 16
2.5.3. Metaheuristics for the VRPTW .........oooiiiiiiiiiiiiiiieieeeeee e 21

2.6. Overview of Exact, Heuristic and Metaheuristic Algorithms for VRPTW ......... 30

3. HYBRID HEURISTICS FOR THE VEHICLE ROUTING PROBLEM WITH TIME

WINDOWS L.t ettt et st e st e bt e et e s st e eteeenbeesnseens 32
3.1. Mathematical Formulation of the Problem............ccccccooiiiiiniiiniiiniiicee 32
3.2. Hybrid Heuristics for the VRPTW .......cccoooiiiiiiiiiiiieeeeeeeee e 34

3.2.1. Initial Solution HEUTIStICS. ....ccouriiiiiiiiiiii it 35
3.2.2. Improvement HEUTISTICS .......ccouiireeriiiiieeeiiiieeeeriiiee e e e e eeiieeeeeiaeee e 38

4. COMPUTATIONAL STUDY .ottt eiee e 46
4.1. Benchmark Problems............cooiiiiiiiiiiiiiiiiiiiceecee e 46
4.2. Parameters Used in the Algorithms .............ccccoiiiiiiiiiiiiiiii e, 47

4.2.1. Diversification NUMDEL (M) .......ccceeeeeeeeeeeeiiiaaeeeeeeeiiiaee e, 47
4.2.2. Diversification Probability (2)..........cceeevviiremmoiiiieeeiiieeeiieeeeeeee 47
4.3. Comparison of the Algorithms with Benchmark Heuristics .............ccccceeeenneee... 48
4.4. Comparison of the Proposed Algorithms with the Best Known.......................... 53

5. CONCLUSION ...ttt ettt ettt ettt et e et esate et eeesbeennreeneeenne 55

6. REFERENCES ..ottt ettt 57

7. APPENDICES ......ooiiiiiiitiie ettt ettt e st e 63
Appendix A: Pseudo-Code for the Parallel Initial Solution Algorithm..................... 63
Appendix B: Pseudo-Code for the Sequential Initial Solution Algorithm................. 66
Appendix C: Pseudo-Code for the Improvement Algorithm 1 ............ccoooiiiniinnnnn. 68
Appendix D: Pseudo-Code for the Improvement Algorithm 2...........ccccceeeviieeninen. 75
Appendix E: Pseudo-Code for the Diversification with Probability...............cc......... 82
Appendix F: Computational Results of the Initial Solution Heuristics*.................... 85



Appendix G Comparison of the Proposed Hybrid Heuristics' Results with the Best

Known Results in the Literature*

........................................................................... 86
Appendix H: Comparison of the Proposed Hybrid Heuristics' Results with the
Benchmark Algorithms in the Literature™ .............ccooieiniiiniiiiniiiccceee 88



LIST OF FIGURES

Figure 1.1 General representation of the Vehicle Routing Problem...........ccccccceveieennee. 1

Figure 1.2 A typical solution to a VRP instance (4 routes). The square denotes the depot

and the nodes are the CUSLOMETS..........covuiiiiiiiiiiiiie it 2
Figure 2.1 Schematic representation of the local search procedure............cccceeevneeennee. 17
Figure 2.2 Neighborhood Search, (Smith ef aZ, 1996) .........ccccovviiiiiiiiniiiiniiiiieee, 18

Figure 2.3 An example of Or-Opt exchange. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
(0] 0T ;1) | DO PSP UPUUPRUUPPPRRN 20
Figure 2.4 An example of 2-Opt exchange. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
0] 051 21 (011 TS USRS PUPRUUPPPPRIN 20
Figure 2.5 An example of relocate operator. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
10 0TS 15101 | DRSSPSR PUPP 20
Figure 2.6 An example of exchange operator. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
(0] 0T ;11 | DO PSP UOUUPRUUPPPRRN 21

Figure 2.7 Standard Tabu Search, (Smith ef a/, 1996)........c.ccccovviiiiiiiiiiiiiiiieeeeee, 24

XI



LIST OF TABLES

Table 2.1 Overview of Objective Functions Chosen for the Reviewed Publications on
thEVRPTW Lot 31
Table 4.1 Hybrid heuristics generated with the proposed algorithms
Table 4.2 Number of instances and the related percentages that are better than or equal
to the benchmark heuristics (out of 56 InStances)..........ccccvveeeeeeeeiiiiiiiieieeeeeeeen, 49
Table 4.3 Number of instances and the related percentages that are better than the
benchmark heuristics (out of 56 INStanCes)............eeveeeveiiciiiiieiieeeeeeiciireeeeeeee, 49
Table 4.4 Number of instances and the related percentages that are within 1% deviation
of the benchmark heuristics (out of 56 INStances)...........ccccvvvveeeeeeeeiiccriireeeennn. 50
Table 4.5 Number of instances and the related percentages that are within 2% deviation
of the benchmark heuristics (out of 56 INStances)...........ccccvvvvveeeeeeeiicciniieeeeenenn. 50
Table 4.6 Number of instances and the related percentages that are within 5% deviation
of the benchmark heuristics (from 56 instances)
Table 4.7 Number of instances and the related percentages that are within 10%
deviation of the benchmark heuristics  (from 56 instances) ...........cccccceeeeeeeeennnn. 51
Table 4.8 Average % divergence of the algorithms from the algorithm of Potvin and
Bengio (1996) (Negative (-) divergence mean that the proposed algorithm gives
DELEEL TESUILS. )...vvvveeeeee e et e e e e e e e e ae e e e e e e e e e aaananeeas 51
Table 4.9 Average % divergence of the algorithms from the algorithm of Tan et al.
(2001) (Negative (-) divergence mean that the proposed algorithm gives better
TESULES. ) .ttt e e e e ettt e e e e e et e e e e e e e e eeeaaabbaaeeeeeeeseeanaaraaeeaaeeeaanans 52

Xii



Table 4.10 Average % divergence of the algorithms from the algorithm of Li and Lim
(2002) ..t et 52
Table 4.11 Average % divergence of the algorithms from the algorithm of Backer et al.
(2000) (Negative (-) divergence means that the proposed algorithm gives better
TESULES. ) .ttt e e e e e e e e e a e e e e e e e e e e e ataaaa e e e e e e e e eeanrraaaeaaaeans 52
Table 4.12 Average deviations of the algorithms from the best known in the literature 53
Table 4.13 Number of instances that are better than, better than or equal to the best

known in the literature, and within a percentage deviation form the best known.. 54

Xiii



1. INTRODUCTION

The problem of transportation of people, goods or information is commonly
denoted as routing problem. Routing problems are not restricted to the logistics
companies itself but also others. Optimization of the transportation has become an

important issue, as the world economy turns more and more global.

The basic routing problem is Traveling Salesman Problem (TSP) where a
number of cities have to be visited by a salesman who must return to the same city
where he started. The Vehicle Routing Problem (VRP) is the m-7SV (TSP with m
vehicles) where a demand is associated with each city and the system has various
constraints. VRP was first formulated by Dantzig and Ramser in 1959. The problem can
be defined as "the design of a set of minimum-cost vehicle routes, originating and
terminating at a central depot, for a fleet of vehicles that services a set of customers
with known demand.” (Dantzig and Ramser, 1959). VRP is concerned with the
determination of the optimal routes by a fleet of vehicles, based at one or more depots,

to serve a set of customers (Toth and Vigo, 2002).

~ Customers
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Figure 1.1 General representation of the Vehicle Routing Problem
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The problem is to plan least costly routes for the vehicles with the given
constraints. The cost definition may vary from one case to another, but in the most basic

case, the total distance traveled by the vehicles is considered as the objective function.

In a pure routing problem, there is only a geographic component, while more
realistic problems also include a scheduling part, that is, a time component. The
problems studied are often simpler than real-life problems. But even though a number
of constraints are left out, the research models typically model the basic properties and
there by provide the core results used in the analysis and implementation of systems in

real-life problems.

Figure 1.2 A typical solution to a VRP instance (4 routes). The square denotes the depot
and the nodes are the customers.

In the literature, VRP is commonly formulated with capacity constraints, so the
Vehicle Routing Problem generally has the same meaning with Capacitated Vehicle
Routing Problem (CVRP). Capacitated Vehicle Routing Problem with Time Windows
(VRPTW) has been a research area that has attracted many researchers in the last 25

years.



As a generalization of the VRP, the VRPTW includes time windows defined for
each customer and the depot. The time window constraint may occur due to product
restrictions (such as usable dates of products) or some production constraints, or it may
be forced by the customer because of her inventory policy. In addition to the time
windows for the customers, there are travel times between all customers or a customer
and the depot. These travel times are associated with the distances. There may exist
service times for the customers. The vehicles have to serve the customers within a
predefined time window at minimum cost. A vehicle is allowed to arrive at a customer
before the beginning of the time window, but it must wait until the time the window
"opens." It is not allowed for a vehicle to arrive after the time window ends. With the

given constraints, the VRPTW is proven to be NP-Hard. (Kohl, 1995)

There have been many papers proposing exact algorithms for solving the
VRPTW. These algorithms are based on three methods: dynamic programming,
Lagrangean relaxation and column generation. The first exact algorithm was proposed
by Kolen ef al. in 1987 where they used dynamic programming. Following this, there
had been many papers published that use dynamic programming or other methods, but
since the VRPTW is known to be NP-hard, exact algorithms are not capable of solving
problems for big numbers of customers.

Non-exact algorithms (heuristics) are thought to be more efficient for complex
VRPTW problems and have become very attractive and popular for researchers. The
non-exact algorithms in the literature are of two types: construction algorithms, which
are used for building an initial solution or initial solutions for the problem, and
improvement algorithms which are used to improve the initial solution(s) found.
Classical local search techniques have been used as an improvement technique for many
years, but in the recent years, another type of non-exact algorithms has become very
popular for solving the VRPTW: metaheuristics. Metaheuristic approaches are mostly a
combination of construction and improvement algorithms and are very efficient for
escaping local optimum values while searching for better solutions. Classical
improvement algorithms are not very effective at escaping the local optima unless they
include a restart mechanism. Since metaheuristics are designed to overcome this
situation, they give competitive results. That is why the recent publications are all based
on metaheuristic approaches such as genetic algorithms, tabu search, simulated

annealing.



In this thesis, hybrid heuristics that use different initial solution and improvement
algorithms are proposed. Since it is a known fact that the algorithm must not stick into

local optima, a methodology called "diversification" is used.

Chapter 2 includes a comprehensive literature review on the VRPTW where a
detailed definition of the problem is given and major studies on this subject are

explained.

Chapter 3 describes the proposed linear integer programming model, initial
solution and improvement algorithms, and the methodology used for escaping local
optimum values. The IP models in the literature are in non-linear forms in general. In
this thesis, a new representation of the constraints is used where they are formulated

linearly.

Chapter 4 reports the computational study on the proposed algorithms where the
results of the hybrid heuristics that are generated from the proposed initial solution and
improvement algorithms are illustrated and a benchmark study between the proposed
heuristics, some other competing heuristics and the best known results in the literature

based on the test problems of Solomon (1987).

A conclusion of the study is provided in the last chapter that includes the

interpretations and the summary of the study and results achieved.



2. LITERATURE REVIEW

In this chapter, first we will give an example of a linear integer programming
formulation of the VRP. Then we will describe variations of the VRP problem. Finally,
a detailed review of the VRPTW from the literature is given.

2.1. Vehicle Routing Problem Formulation

The VRP is described by a set of homogenous vehicles (denoted by V ), a set of
customers C and a directed graph G. The graph consists of | C| +2 vertices where the
customers are denoted 7,2,...,n and the depot is represented by the vertex 0 and n+ /.
The set of vertices 0, /,...,n+1 is denoted as M. The set of arcs (denoted by A) represents
connections between the depot and the customers and among the customers. No arc
terminates at vertex 0 and no arc originates from vertex n+ /. With each arc (7,7), where
/'#J, we associate a cost (distance) Cj

Each vehicle has a capacity g and each customer 7has a demand d.. It is assumed
that g, d;,c; are non-negative integers.

For each arc (7,7), where 1#; # n+1; j#0, and each vehicle &, Xj; is defined as

X, if

{] if vehicle kis not using arc(i,))

0 otherwise

We want to design a set of minimal cost routes, one for each vehicle, such that
each customer is serviced exactly once and every route originates at vertex ¢ and ends at

vertex n + 1/



We can state the VRP mathematically as: (Larsen,1999)

minY Y e, e

keV ieN jeN

subject to:

D D X =1 VieC 22)
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The objective function (2.1) minimizes of the total distance traveled. The
constraint (2.2) states that each customer is visited exactly once and (2.3) means that no
vehicle is loaded more than its capacity allows it to. The next three equations (2.4, 2.5
and 2.6) ensure that each vehicle leaves the depot 0, after arriving at a customer the
vehicle leaves that customer again and finally arrives at the depot 1+ /. Constraints (2.7)

are the integrality constraints.



2.2. Categories of Vehicle Routing Problems

2.2.1. Time Constraints:

If we add a "time window" constraint for each customer, we obtain the Vehicle
Routing Problem with Time Windows (VRPTW). Time constraints ensure that a vehicle
visits a customer within a certain time frame. The vehicle may arrive before the time
window "opens," but the customer cannot be serviced until the time window "opens." It
is not allowed to arrive after the time window "is closed." Some models allow for early
or late servicing but with some form of additional cost or penalty. These models are
denoted as "soft" time window models. Most research has been done on "hard" time

window models.

2.2.2. Multiple Depots:

There might be more than one depot in the VRPs. Each depot can have its own
fleet of vehicles or the vehicles may be based on different depots. For the first case, it is
usually assumed that the vehicles must return to the same depot. For the second case,
there can be a constraint such as the number of vehicles that arrive at a depot must be

equal to the number of vehicles that leave the depot.

2.2.3. Pick-Up and Delivery:

In the delivery VRP case, we are concerned with the distribution of the goods,
but we can also pick-up goods from customers. These type of vehicle routing problems
are known to be pick-up and delivery VRP problems. In the simple case of this problem,
the customers are divided into two classes: a set of delivery customers and a set of pick-
up customers. Two capacity labels, one for delivery and one for pick-up, must be

handled for these types of VRPs.



2.2.4. Multiple Compartments:

When the vehicles transport several commodities, which must remain separate
during the transportation, multiple compartment vehicles are used. The multiple
compartment case has no influence on the main problem structure, but capacity
constraints should be revised. If vehicle has m compartments, the capacity constraints

must be modeled by m states instead of one.

2.2.5. Multiple Time Windows:

For the Vehicle Routing Problem with time constraints, there is one time
window defined for each customer. This time window includes the earliest and latest
arrival time information. Allowing customers to have multiple time windows in which

they can be serviced is handled in VRP with multiple time windows.

2.2.6. Non-Identical Vehicles:

VRP can be modeled with non-identical vehicles. The typical variability that
disturbs the homogeneity is the capacity of the vehicles, but there can be other factors
such as different travel times, different costs or time windows for the vehicles. In the
non-identical (or multiple vehicle-type) VRP, the vehicles can vary or there may exist
categories of vehicles where an upper limit on the number of vehicles in each category

is given in most cases.

2.2.7. Soft Time Windows:

Violating the time constraints is sometimes allowed by adding some penalty
terms to the objective function. With this allowance, time constraints are said to be soft.
VRP with soft time windows with a general objective function is not efficiently

solvable.



2.2.8. Other Additional Constraints:

In addition to the generalizations given above, there may be some different

constraints, such as:

» Upper or lower limits on the length of the routes,

» Upper or lower limit on the number of customers that can be served,
» Upper or lower limit on the total travel time of each vehicle,

* Time dependent travel speed for vehicles,

» Upper or lower limit on the variability of the service times of the vehicles, etc.

2.2.9. Different Objective Functions

The objective function may also differ in VRPs. Below are some types of these

objective functions. It should be noted that a combination of these can also be used.

e Minimum number of vehicles,

e Minimum total distance,

e Minimum total travel time,

*  Maximum number of customers served with a given number of vehiples,
* Minimum total waiting time of the vehicles,

* Minimum variability in the travel times of the vehicles,

+ Efficient loading of the vehicles,

* Minimum variability in the total distance traveled by the vehicles.

2.3. Vehicle Routing Problem with Time Windows

In this section, VRPTW is explained, a detailed definition is given and complexity of

the problem is discussed.



2.3.1. Problem Definition

The vehicle routing problem with time windows (VRPTW) is a well-known NP-
hard problem, which is an extension of normal VRP, encountered very frequently in
making decisions about the distribution of goods and services (Tan et al., 2000).
VRPTW can be stated as follows: given a central depot, a fleet of vehicles and, a set of
customers with known demands (e.g., some quantity of goods to be delivered), find a
set of closed routes, originating and ending at the depot, that service all customers at
minimum cost. Moreover, each route must satisfy capacity and time window constraints
(Potvin et al, 1995). In VRPTW, a set of decision variables is added to the model to

specify the times that services begin are the decision variables based on customers.

Allowable delivery times of the customers add complexity to the VRP because of
the time feasibility check for each customer. In the VRPs with time constraints, the
service of a customer, involving pick up or delivery of goods or services, can start
within the time window defined by the earliest and the latest times when the customer

permits the start of service.

We can define the time window given for a customer as follows: for customer
(e, I; ) means that the vehicle must not arrive at customer 7 after /; and service at
customer 7 must not start before e;. If the vehicle arrives at customer before e; then it

should wait until ¢;

In some cases, vehicles are allowed to start service just at the time they arrive to
the customer site, so in these types of problems, there are no waiting times for the

vehicles at the customer sites..

2.3.2. Complexity of VRPTW

Being one of the most important problems in Operations Research literature, the
VRP is one of the most difficult problems to solve. The problem is quite close to the
Traveling Salesman Problem. TSP is a well-known NP-Hard problem, where only one

vehicle or person visits all the customers. As an m-TSP, VRP, even for small fleet sizes

10



and moderate number of transportation requests, is more complicated than TSP. Adding
time windows to the VRP results in with a more complicated problem VRP without
time windows. Furthermore, Savelsbergh (1985) had shown that, even finding a feasible
solution to the VRPTW when the number of vehicles is fixed is itself an NP-Complete
problem. Therefore, the development of approximation algorithms or heuristics for this

problem is of primary interest to many researchers.

2.4. Review of Optimal Algorithms for VRPTW

There have been many papers proposing exact algorithms for the VRPTW. The
first of these papers was published by Kolen ef a/. (1987). Since then, many people have
used exact algorithms for finding an optimal solution for the VRPTW. These exact
algorithms can be classified in three groups:

1. Dynamic Programming
2. Lagrangean Relaxation-based Methods

3. Column Generation

2.4.1. Dynamic Programming

The first paper on dynamic programming for the VRPTW is the publication of
Kolen ef al (1987) It is inspired from Christofides ef al. (1981) which used Dynamic
Programming for the VRP for the first time.The algorithm of Kolen ez a/uses branch-
and-bound approach in order to retrieve optimal solutions. There are three nodes in the

branch-and-bound algortihm, which corresponds to three sets:

F (a): The set of fixed feasible routes starting and finishing at the depot.
P(a) : Partially built route starting at the depot.

C(a) . Customers that are not allowed to be next on P(a)

Branching is done by selecting a customer that is not forbidden and that does not

appear in any route. At each branch-and-bound node, Dynamic Programming is used to
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calculate a lower bound on all feasible solutions defined by F (a), P (a) and C (a).

Kolen ef al solved problems up to 15 customers by this method in this paper.

2.4.2. Lagrangean Relaxation-Based Methods

There exist many papers that use Lagrangean Relaxation-based Methods using
different approaches. Variable splitting followed by Lagrangean Relaxation was used by
Jornsten et al. (1986), Madsen (1988), Halse (1992), and Fisher ef al. (1997). Fisher et
al (1997) used K-tree approach followed by Lagrangean Relaxation. Finally Kohl and
Madsen.(1997) applied shortest path with side constraints approach followed by

Lagrangean Relaxation.

Variable splitting (or cost splitting) was first presented in the technical report of
Jornsten et al. (1986), but no computational results were given in the paper. Madsen et
al(1988) used four different splitting approaches but they are not tested either. Halse
(1992) offered three approaches and he had implemented and tested one of these

approaches.

Fisher et al (1997) presents an optimal algorithm where the problem is
formulated as a K-free problem with degree 2K on the depot. The VRPTW can be
formulated as finding a K-free with degree 2K on the depot, degree 2 on the customers
and subject to capacity and time constraints. This representation becomes equal to K
routes. This algorithm was able to solve many of the clustered Solomon test problems

but it could not solve any of the random given test problems.

Kohl and Madsen (1997) relax the constraints that ensure every customer must

be visited exactly once, that is;

D 2=l viec 2.8)

kel jeN

is relaxed and a penalty term is added to the objective function as below:
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(2.9)

min Z z Z (C{.!. a ;L,;' )x ijk T Z ;{’,f

kel ieN jeN jeC

Here A;is the Lagrangean Multiplier associated with the constraint that ensures
that customer ; is served. The model is decomposed to one sub-problem for each vehicle
but since vehicles are assumed to be identical, all the sub-problems are identical. The
resulting problem is a shortest path problem with time window and capacity constraints.

Kohl et al. were able to solve some of the Solomon (1987) instances.

2.4.3. Column Generation

Column generation has turned out to be an efficient method for a range of
vehicle routing and scheduling problems. This approach is implemented previously by
Desrochers ef a./(1992) and Kohl (1995). Column generation is based on the idea of
initializing the linear program with a small subset of variables (by setting all other
variables to 0) and computes a solution of this reduced linear program. Column

generation used together with branch-and-bound is denoted as branch-and-price.

Desrochers et al. (1992) add feasible columns as needed by solving a shortest path
problem with time windows and capacity constraints using dynamic programming. The
LP solution obtained provides a lower bound that is used in a branch-and-bound

algorithm to solve the integer set-partitioning formulation.

By column generation, problems up to 25 customers can be solved optimally, but

only few of the problems with 50 and 100 customers can be solved.

2.5. Review of Approximation Algorithms and Heuristics for the VRPTW

Since the VRPTW is proven to be NP-hard, non-exact algorithms are very popular
for finding solutions. There are many papers that propose heuristic algorithms to the

VRPTW. These algorithms can be classified into three groups:
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1. Construction algorithms
2. Improvement algorithms

3. Metaheuristic algorithms

Heuristic algorithms that build a set of routes are known as construction
algorithms and are used to build an initial feasible solution for the problem. The
algorithms that try to find an improved solution by using the initial solution are called
improvement algorithms. Metaheuristic approaches are mostly a combination of these

two and are based on different things.

2.5.1. Construction Algorithms

The construction (route-building) algorithms are used to generate good feasible
solution(s). These algorithms can be classified as sequential and parallel algorithms. In
a sequential algorithm one route is constructed initially and others are constructed when

necessary, while in a parallel algorithm, many routes are constructed simultaneously.

2.5.1.1. Sequential Construction Algorithms

The first sequential construction (route-building) algorithm was proposed by
Baker and Schaffer (1986.) This algorithm can be interpreted as an extension of the
Savings Heuristic of Clarke and Wright (1964). The algorithm starts with all possible
single customer routes and at each iteration; two routes with the maximum saving are

combined. The saving between customers 7andy 7s calculated as:

(2.10)
8ij = dip + dy —G.dj

where G is the route form factor (weight) and dj- is the distance between nodes 7

and .

Baker and Schaffer developed a sequential algorithm by defining the savings as a
combination of distance and time feasibility. Then Solomon (1987) used a similar

heuristic where the time feasibility aspect is not included in the savings function. The
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arcs that can be used are limited by the magnitude of the waiting times. It is required to
check the violation of time windows when two routes are integrated. Reasonable results

were reported for Savings Heuristic and the adopted versions.

Landeghem (1988) also presents a sequential construction heuristic based on the
Savings Heuristic. It devolops a bi-criteria algorithm for obtaining a measurement of

how good a connection between customers is in terms of timing.

Time Oriented Nearest Neighborhood Heuristic is another sequential heuristic
proposed in Solomon (1987). Every route is initialized by selecting the customer closest
to the depot. The closeness may be geographical or temporal closeness. Insertion of
unassigned customers is done by selecting the customer that is closest to the last
customer added at each iteration. When there is no feasible point for the insertion of any
customer, a new route is initialized and insertion continues until all unassigned
customers are added. This paper also proposes /nsertion Heuristics which are based on
different insertion criteria. As in the Time Oriented Nearest Neighborhood Heuristic, if

no feasible insertion is possible, a new route is initialized.

One of the sequential route-building algorithms proposed by Solomon in Solomon
(1987) is Time-Oriented Sweep Heuristic. It has two phases: a clustering phase which
assigns customers to different clusters and a scheduling phase which solves a TSPTW

problem by using the TSPTW heuristics proposed by Savelsbergh (1985,1990).

Another cluster-first route-second algorithm for VRP is proposed by Gillet and
Miller (1974). Here, generating strict clusters may cause some customers to be
unscheduled due to time window constraints. In order to schedule these customers, the

previously scheduled ones are removed from the routes and the process is repeated.

2.5.1.2 Parallel Construction Algorithms

Building routes sequentially may cause latterly constructed routes to be poor
quality since there are only few alternative points of insertion at the latter iterations of

the process. This can be overcome partially by constructing parallel routes. Potvin and
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Rousseau (1993) proposed a parallelization of the /nsertion Heuristics by creating many
routes simultaneously. For the initialization of each route, the customer that is farthest
from the depot is selected as a "center customer." Then, the customers are inserted to

the best feasible insertion place. Russell (1995) also adapted parallel insertion approach.

In the parallel algorithm in Antes and Derigs (1995) offers comes to the customers
from the routes, unrouted customers send a proposal to the route with the best offer, and

each route accepts the best proposal.

As a route-first schedule second algorithm, Solomon (1987) proposes a Giant-
Tour Heuristic. In this heuristic, customers are routed on a big route and then this route

is divided into number of routes. Building an initial tour is a TSPTW problem.

Foisy and Potvin (1993) also presented a parallel algorithm which is an /nsertion
Heuristic building routes simultaneously using the Solomon's heuristic to generate the

initial center customers.

2.5.2. Route- Improving Heuristics

2.5.2.1. Neighborhood Search

Almost every route-improving algorithm is based on the concept of neighborhood.
Neighborhood concept has been used for at least 40 years for combinatorial
optimization problems. One of the earliest references is Croes (1958) which used the
idea to improve the solutions of the Traveling Salesman Problem.

Checking some or all the solutions in a neighborhood might reveal better
solutions. This idea can be repeated starting at the better solution. At some point, no
better solution can be found and a local optimum has been reached. This algorithm is

called local search. A schematic representation of the local search is given in Figure 2.1
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Figure 2.1 Schematic representation of the local search procedure.

Metaheuristics are also based on local search methods but they use additional

methods for escaping local optimum in order to search other parts of the solution space

for better solutions.

In the neighborhood search, it is assumed that a solution is specified by a vector

x, where the set of all feasible solutions is denoted by X The cost of the solution is

denoted by c(x), which is often called the objective finction. Each solution xe Xhas an

associated set of neighbors, N (x) s X, which is the neighborhood of x. Figure 2.2

shows the neighborhood search procedure (Smith ez ah, 1996)

In this point, it should be noted that there are two strategies for selecting the

neighborhoods during the search:

The first-best (FB) strategy: It selects the first solution in Mx) that results in
improvement.
The global-best (GB) strategy: It searches all solutions in Mx), and selects

the one that brings maximum improvement on the solution.
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1. (Initialization)

now €

1.1. Select a starting solution X" = X

Jest 10w

1.2.Record the current best known solution by setting X~ = x" and define
best cost =c(x**).

2 (Choice and termination)

2.1 .Choose a solution ¥**< N (¥"™). If the choice criteria used cannot be satisfied
by any member of N (¥**") (hence no solution qualifies to be ¥*¥), or if other
termination criteria apply (such as a limit on the total number of iterations),
than the method stops.

3. (Update)

3.1.Re-set X" = ¥, and if ¢ (¥"") < best cost, perform Step 1.2. Then return to Step

2.

Figure 2.2 Neighborhood Search, (Smith et a/, 1996)

It is obvious that local search terminates at local optimum values with high

probability. Thus, metaheuristics use techniques for escaping local optima.

2.5.2.2. Neighborhoods of VRPTW

Most of the improvement algorithms for the VRPTW use an exchange
neighborhood to obtain a better solution. Two classical algorithms which were
originally proposed for Traveling Salesman Problem are 4~Opt and Or-Opt heuristics. In
the TSP, there exists a single route and exchange operations can be done on the nodes or
arcs within the same route. These heuristics are modified for VRPTW, which is the

multiple-route case of TSPTW.

The 4opt heuristic replaces a set of links in the route by another set of & links.
The complexity of the heuristic is mostly affected by the size of & For larger & values,
the heuristic tends to give better results, but the computational time increases. Lin and
Kernighan (1973) propose a heuristic that determines the size of A: dynamically. Time

window constraints of the problem may result with infeasible solutions for this heuristic
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since it changes the orientations of the customers within routes. The adaptation of this
heuristic can easily be interpreted as having the opportunity of exchanges not only

within the route, but also between the routes.

The Or-Opt exchange, which was originally proposed by Or (1976) for traveling
Salesman Problem, removes a chain of at most three consecutive customers from the
route and tries to insert this chain at all feasible locations in the routes. This heuristic is
slightly modified by allowing the chain to be inserted in the same route and other
routes. An example of Or-opt can be seen in Figure 2.6. Generally, the size of the

neighborhood of Or-Opt is O (#’).

Potvin and Rousseau (1995) present two variants of 2-Opt and Or-Opt that
maintain the direction of the route. For the 2-Opt, every pair of links is considered for
removal with only one restriction: the two links must be in different routes. An example
of this neighborhood is illustrated in Figure 2.4. For the Or-Opt, every sequence of three
customers, two customers and one customer (in this order) is considered and, for each

sequence, all insertion places are also considered.

The relocate operator moves a customer from one route to another as it can be
seen in Figure 2.5. The exchange operator exchanges customers in different routes. An

example can be seen in Figure 2.6.

The Anode interchange, was initially proposed by Christofides and Beasley
(1984), and then modified by several authors. In this heuristic, each customer 7 is
considered sequentially, and sets M, and M, are identified. M; is defined as the
customer 7 and its successor j. M, consists of the two customers that are closest to 7 and
J, but not on the same route with 7 and ;. Removing the elements of the sets A7, and M,
and inserting them in any other possible way define a neighborhood. Since this

neighborhood is very large, A most promising candidates are selected.

A -interchange local search method is another local search algorithm, which was
first introduced by Osman and Christofides (1994). The local search procedure is
conducted by interchanging customers between routes. The search order for the

customers is defined for a pair of routes either systematically or randomly. Parameter
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means that maximum A customer nodes can be interchanged between routes. For the
case L = 2, there are eight operators defined: (0,1), (1,0), (1,1), (0.2), (2,0), (2,1),
(1,2) and (2,2). For example, the operator (7,2) means that, on a route pair (R, K,) a
shift of one customer from R, to R, and a shift two customers from &, to &, will be done.

Only improved solutions are accepted during the interchanges.

r'—‘.i *J—\
v
[‘] L]
A
J Ju
Nl p—

Figure 2.3 An example of Or-Opt exchange. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
operation.

4 JH

J Js

Figure 2.4 An example of 2-Opt exchange. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
operation.

Figure 2.5 An example of relocate operator. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
operation.
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Figure 2.6 An example of exchange operator. The figure on the left presents the route
before the operation is performed, and the one on the right is the route after the
operation.

Schulze and Fahle (1999) propose a neighborhood called shift-sequence where a
customer is moved from one route to another checking all possible insertion positions.
If an insertion is feasible by removing another customer, it is removed and inserted in

another route.

There had been many modified versions of the neighborhoods used in different
heuristics proposed by many authors. For instance, Russell (1995) modified the &node

interchange operator and Potvin and Rousseau the Or-Opt operators.

2.5.3. Metaheuristics for the VRPTW

Since they only provide local optimal solutions, local search methods fail to give
promising results for the RPTW. In order to escape local optima and enlarge the search
space, metaheuristic algorithms such as simulated annealing, tabu search and genetic

algorithm have been used to solve VRPTW.

2.5.3.1. Simulated Annealing

Simulated annealing (SA) is a stochastic relaxation technique that finds its origin
in statistical mechanics (Metropolis et al., 1953). Its methodology is similar to the

annealing processing of solids. In order to avoid the meta-stable states produced by
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quenching, metals are often cooled very slowly, which allows them time to order
themselves into stable, structurally strong, low energy configurations. This process is
called annealing (Tan et al., 2000). The states of solids correspond to feasible solutions,
the energy of each state to objective function value at each feasible solution, and the
minimum energy to the optimal solution in the combinatorial optimization problems.
During the SA process, the temperature is gradually reduced. It can be generalized that

the system is often first heated and then cooled.

At each step of the simulated annealing process, a new state of the system is
reached from the current state by giving a random displacement to a randomly selected
particle. If the energy of the new state is lower than the current state, the new solution is
accepted. In other words, SA works by searching the set of all possible solutions,
reducing the chance of getting stuck in a poor local optimum by allowing moves to
inferior solutions under the control of a randomized scheme. A move to the solution x’

from the solution x which results in a change 4c is accepted if

exp(-Ac/T)< R 2.11)

where 7'is a control parameter and R is a uniform random number. In order to allow
many inferior moves to be accepted, the parameter 7'is set high at initial steps. At the
latter steps, this parameter is reduced up to point where nearly all inferior values are
rejected. Then the temperature 7 isreset to a high value after the occurrence of a special

neighborhood without accepting any moves.

Mentioned above, the ideas that form the basis of SA was first published by
Metropolis et al. (1953). Based on this idea, Kirkpatrick et al. (1983) suggests that this
simulation technique could be applied to the search of feasible solutions of optimization
problems. In this paper, the parameter 7 is used to generate a cooling schedule on the
simulation. Davis (1991) had statistically approved that SA is capable of finding the
optimal solution. However, SA has the possibility of getting caught in repetition of

moves which results in cycling and high computational time.
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Thangiah et al. (1994) uses a non-monotone probability function in their
simulated annealing heuristic. They used the A--inferchange operator while
decreasing the temperature after each iteration. In case the entire neighborhood has been
explored without finding and accepting moves the temperature is increased. This is called

a reset. After Rresets, the algorithm terminates.

Chiang and Russell (1996) proposed three different SA methods. First one is
modified version of the &node interchange mechanism and second one is a modified
version of A-interchange method. The third one is based on the concept of tabu list,
which is described on the next section of this chapter. Using SA with the A-interchange

method, the tabu list contained moves that are allowed for the time being.

Tan et al. (2001) proposed a SA heuristic defining a non-monotanic cooling

schedule defined as

Fo = L (1= p\/ﬁ)
2.13)

where the starting temperature is set to 50 and the time constant pis set to 0.3.
When the temperature is high, the probability of accepting the worse is high, when
the temperature is decreased according to function given above, the probability of
accepting worse is low, which lets the search go into thermal-equilibrium point.

Finally, Li and Lim (2003) used a metaheuristic that proposes simulated
annealing-like restarts. Proposed algorithm finds an initial solution using Solomon's
insertion heuristic and then starts local search from initial solution using specified

restart strategy.

2.5.3.2. Tabu Search

Tabu search (TS), like SA, is based on the neighborhood search with local optima

avoidance, but in a deterministic way, which tries to model human memory processes.
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TS has its antecedents in methods designed to cross boundaries of feasibility or
local optimality standardly treated as barriers, and to systematically impose and release
constraints to permit exploration of otherwise forbidden regions (Glover and Laguna,
1993) So the idea that lies under TS is systematically violating the feasibility
conditions. At each iteration, the neighborhood of the current solution is explored and
the best solution is selected as the new current solution. However, as opposed to a
classical local search technique, the procedure does not stop at the first local optimum
when no more improvement is possible. The best solution in the neighborhood is

selected as the current solution even if it is worse than the current solution.

To prevent cycling, recently selected solutions are forbidden and are inserted into
a tabu list. Often, the tabu list does not contain "illegal" solutions, but forbidden moves.
It makes sense to allow the tabu list to be overruled if it leads to an improvement of the
current overall best solution. Criteria such as this for overruling the tabu list are called
aspiration criteria. The most used criterion for stopping tabu search is a constant number

of iteration in all.

1. (Initialization)

1.1. Begin with the same initialization used by Neighborhood Search, and
with the history record H empty.

2. (Choice and Termination)

2.1. Determine Canditate N (X*°")as a subset of N (H, ¥***). Select X"
from Canditate N (x¥"°")to minimize c(H, x) over this set. (¥'*"is

called a highest evaluation element of Canditate N (X*°").)
2.2. Terminate by a chosen iteration cut-off rule
3. (Update)

3.1. Perform the update for the Neighborhood Search Method and
additionally update the history record H.

Figure 2.7 Standard Tabu Search, (Smith ez a/, 1996)
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H can be defined in terms of prohibition on re-visiting certain states in N (x"°"). As
it was mentioned before, such states are called tabu. In modified versions of TS, A may

also include elements, which are not members of NX™").

Most early references to TS in its present form are Glover (1986) and Glover and
McMillan (1986). Following this, there have been a number of contributions to the
algorithm. First and the most important of them are Glover (1989 and 1990).

The study of Garcia et al (1994) should be included in the tabu concept. In order
to restrict the amount of work, not all possible neighborhoods are carried out. The
exploration of the neighborhood is restricted to the exchange of arcs that are close in

distance.

Thangiah et al. (1994) proposes a TS, which used A-interchange method. They
also use the simulated annealing parameters combined with tabu list, so their algorithm

can be interpreted as a hybrid heuristic.

Badeau et al. (1997) use the strategy of decomposing the problem into sub-
problems. After the generation of a solution at one processor, the solution is
decomposed into groups of routes. The other processors try to improve the solution by
improving the solution of each sub-problem. They first build a number of routes and
group the routes according to some solution quality criteria. For each group, a TS is
performed using the exchange operator. Their tabu list contains penalized exchanges

that are frequently performed.

The TS of Potvin et al (1995) uses the local search methods of Potvin and
Rousseau (1995) and has similarities with Garcia et al. (1994).

There are several papers published on the parallelization of the TS, which try to

partition the neighborhood or decompose the problem into sub-problems, each solved

by parallel TS.
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Garcia et al. (1994) use the strategy of partitioning the neighborhood to parallelize
the TS. One processor is used for controlling the TS, while the other is used for

exploring the neighborhood.

Garcia et al. (1996) apply TS strategy to the Or-Opt and 2-Opt neighborhood
operators. In order to save computation time and focus on the most promising
exchanges, the two neighborhoods are reduced by selecting a subset.of customers at
each iteration and by considering only the exchanges that link the selected customers

with customers that are close in distance.

Chiang and Russell (1997) use a reactive TS metaheuristic where the route
improvement procedure is invoked each time another 10 percent of the customers are

added to the emerging routes. They use the A-interchange operator of Osman and

Christofides.(1994)

Schulze and Fahle (1999) describe a parallel TS heuristic where the neighborhood
structure is based on simple customer shifts. All routes generated are collected in a pool
and to obtain a new initial solution for the TS heuristic, a set covering heuristic is
applied to the routes in the pool. Furthermore, route elimination is used for the routes

with few customers.

2.5.3.3. Genetic Algorithm

A genetic algorithm (GA) is a randomized search technique operating on a
population of individuals, which form the solutions (Potvin and Bengio, 1996). A
fitness value is calculated for each individual and the search is guided by this value.

Basically, a genetic search consists of the following components:
1. Representation: Encode the characteristics of each individual in the population as a

chromosome (typically, a chromosome is a bit string). Set the population to this

initial population.
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2. Reproduction: Select two parent chromosomes from the current population. This
process is stochastic and a chromosome with high fitness value is more likely to be
selected.

3. Recombination: Generate two offsprings from two parents by exchanging pieces
(crossover).

4. Mutation: Apply a random mutation to each offspring with a small probability.

Steps 2,3,and 4 are repeated until the number of chromosomes in the new
population is the same as in the old population. Then the current population is set to the

new population of chromosomes.

Simple genetic operator such as crossover and mutation are used to construct new
solutions from pieces of old ones, in such a way that the population steadily improves

for many problems.

Crossover operator is based on a simple idea. Suppose there are 2 strings (parents)

each consisting of 6 variables as below:

PARENT 1: (al, a2, a3, a4, a5, a6 ) and PARENT 2 :(bl,b2, b3, b4si4b6)

These two strings represent two solutions to a problem. A crossover point is
chosen at random form the numbers 1 to 5, and a new solution is produced by
combining the pieces of the original parents. If the crossover point is chosen as 2, the

offsprings (children) will be as follows:

CHILD 1: (al,a2,b3,b4,b5,b6) and CHILD 2: (bl,b2, a3,a4, a5,a6 )

Other most commonly used operator, mutation, provides the opportunity to reach
parts of the search space, which perhaps cannot be reached by crossover alone. Each
gene of a string is examined in turn and, with a small probability, its current position is

changed. For example, a string of

(al, a2, a3,a4, a5,a6) may become (al,a2, a3,A6, a5,a4)
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This procedure is repeated for a fixed number of generations or until convergence
to a population of similar individuals is obtained. Then, the best chromosome generated

during the search is decoded into the corresponding individual.

There have been many applications of GA for the VRPTW, These algorithms can
be interpreted as the modifications of the standard GA.

In Thangiah (1993), GA is designed to find good clusters of customer, within a
"cluster-first route-second" strategy. Once the clusters are identified by the genetic
search, classical insertion and post-optimization procedures are applied to produce the

final routes.

The GA in Blanton and Wainwright (1993), which was designed for multiple
vehicle type VRPTW problems, describes a well-known approach to combinatorial
optimization problems with side constraints. It is based on the hybridization of a GA

with a greedy heuristic.

Potvin and Bengio (1996) describes a genetic algorithm that operates on
chromosomes of feasible solutions. The selection of parent solutions is stochastic and is
directed to the best solutions. Two types of crossover operators are used. The reduction
of routes is obtained by two mutation operators. The routes are optimized by an Or-Opt

based local search at every kiterations.

Berger et al. (1998) propose a method based on the hybridization of a GA with
well-known construction heuristics. The initial population is created with nearest
neighborhood heuristic of Solomon and the fitness values of the individuals are based
on the number of routes and the total distance of the corresponding solution. Braysy
(1999) extends the work of Berger et al. (1998) by proposing several new crossover and

mutation operators, testing different forms of GAs.
Homberger and Gehring (1999) proposes two evolutionary metaheuristics based

on the class of Evolutionary Strategy algorithms. The difference of their algorithm

comes with the role of the mutation operator. The representation of the individuals also
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includes a vector of evolutionary strategy in addition to the solution vector and both

components are evolved by crossover and mutation operators.

2.5.3.4. Other Metaheuristics and Hybrid Algorithms

Rochat and Taillard (1995) uses a probabilistic local search method based on

intensifying the solution, which is in some ways similar to the SA approach.

Kilby et al. (1999) uses a Guided Local Search (GLS) algorithm. GLS can be
defined as a memory-based metaheuristic like TS. In GLS, the cost function is modified
by adding penalty term encouraging diversification, that is, escaping form local optima
is done by penalizing solution features. As local search neighborhoods, Kilby ez a/ uses

2-Opt exchanges.

In Potvin and Robillard (1999), a combination of a competitive neural network
and a GA is described. They use a special type of neural network called competitive
neural network to select the customers. Competitive neural network is frequently used
to cluster the data. For every vehicle, a weight vector is defined. Initially, all weight
vectors are placed randomly close to the depot. Then, customers are selected. For each
cluster, the distance to all weight vectors are calculated and closest weight vector is
updated by moving it closer to the customer.

Braysy et al. (2000) describes a two-step evolutionary algorithm based on the
hybridization of a GA consisting of several local searches and route construction
heuristics inspired form the studies of Solomon (1987). At the first step, a GA based on
the studies of Braysy (1999) and Berger ef a/ (1998) is used. The second step consists
of an evolutionary metaheuristic that picks every pair of routes in random order and
applies randomly one out of the four local search operators or route construction

heuristics.
Tan et al. (2001) proposes an artificial intelligence heuristic which can be

interpreted as the hybrid combination of SA and TS. During the process, if a move is

not a tabu and satisfies the SA criterion, it will be accepted and then the search is
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restarted from the beginning of a new current solution after updating the tabu list and

SA parameters.

Tan ef al (2001) also describes a hybrid GA. The major focus of this algorithm is
about the grouping of the customer nodes. With different groupings, one chromosome
may represent different solutions. A local search method is then used to search better

grouping (better fitness value) for each chromosome.

2.6. Overview of Exact, Heuristic and Metaheuristic Algorithms for VRPTW

Since 1987, after the publication of Solomon (1987) on VRPTW, many
researchers have been using the Solomon Instances to benchmark their algorithms, but
the difference in the objective function and calculation of time and cost makes it hard to
make direct comparisons. A detailed explanation of the Solomon's benchmark problems
is given in Chapter 4. Table 2.1 gives a summary of the publications classified based on
the objective functions formulated. As mentioned before, we have only focused on the
papers the objective is minimizing the total distance/cost/time, minimizing the number

of vehicles and a combination of them.

Exact methods are able to give optimal solutions for small and specific types of

problems, but they cannot solve large problems in polynomial time.

A number of heuristics seemed to perform well, but in general, we can claim that
whatever quality the initial solution is, there should be some methods defined for
escaping the local optima. This is the reason why many researchers have focused on

metaheuristics in the recent years.
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Table 2.1 Overview of Objective Functions Chosen for the Reviewed Publications on

the VRPTW

REFERENCE

OBJECTIVE

Solomon, 1987

m  Min Number of Vehicles m
Min Schedule Timem Min
Travel Distancem Min
Waiting Time

Desrochers et al., 1992

m  Min Travel Distance

Halse, 1992

m  Min Travel Distance

Fisher et al, 1994

m  Min Travel Distance

Potvin and Rousseau, 1993

m  Min Number of Vehicles m
Min Route Time

Foisy and Potvin, 1993

m  Min Number of Vehicles m
Min Travel Distance

Garcia et al, 1994

m  Min Number of Vehicles m
Min Routing Cost

Thangiah et al, 1994

m  Min Number of Vehicles m
Min Travel Distance '

Russell, 1995

m  Min Number of Vehicles m
Min Schedule Time

Kohl, 1995

m  Min Travel Distance

Antes and Derigs, 1995

m  Min Number of Vehicles m
Min Routing Cost

Badeau et al, 1995

m  Min Travel Distance

Rochar and Taillard, 1995

m  Min Number of Vehicles m
Min Travel Distance

Schulze and Fahle, 1996

m  Min Number of Vehicles m
Min Travel Distance

Potvin et al, 1995

m  Min Number of Vehicles "
Min Route Time

Potvin and Bengio, 1996

m  Min Number of Vehicles m
Min Route Time

Robillard et al, 1996

m  Min Number of Vehicles m
Min Route Time

Chiang and Russell, 1996

m  Min Number of Vehicles m
Min Schedule Timem Min
Travel Distance

Kohl and Madsen, 1997

m  Min Travel Distance

Kilby et al, 1999

m  Min Travel Distance .

Homberger and Gehring, 1999

m  Min Travel Distance m
Min Number of Vehicles

Potvin and Robillard, 1999

m  Min Number of Vehicles m
Min Route Time

Braysy et al, 2000

m  Min travel distance

Tan et al, 2001

m  Min travel distance

Li and Lim, 2003

m  Min Number of Vehicles m
Min Travel Distance
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3. HYBRID HEURISTICS FOR THE VEHICLE ROUTING PROBLEM WITH
TIME WINDOWS

In this thesis, hybrid heuristic algorithms for the cost (distance) minimization for
the VRPTW are proposed. Vehicles are identical, capacities of the vehicles are finite

and time window constraints are assumed to be strict.

3.1. Mathematical Formulation of the Problem

The VRPTW model is given by homogenous vehicles a set of customers and a
directed graph G. The graph consists of 7 +1 vertices where the customers are denoted
as /1,2,...,n and the depot is represented by the vertex 0. The set of vertices excluding
the depot is denoted as NV’ The set of arcs (denoted as A) represents connections
between the depot and the customers and among the customers. All arcs originate from
vertex 0 and terminate in vertex 0. With each arc (7, j), where 1#/, we associate a

cost ¢;;(#;) .Each vehicle has a capacity Oand each customer 7has a demand d;

Notation.
G=(NA)
N: Nodes
A Arcs
/5 Depot
A={(ij) :ij eN.,i#j}
N={01,...n}
N={l,...n}
Cjj Cost (or time) of going from node 7to node ;j (equal to #;) d

Demand at node 7



St Service time at node i

i Latest arrival time at node
e Earliest arrival time at node i
0: Vehicle capacity

Decision Variables:

if arc (i, j) is used

1
X =
v {0 otherwise

vy € {0,1}(used for the linearization of some constraints and takes value

related with x;)

Wi waiting time at node i
i arrival time at node i
z vehicle’s load coming to node i

Objective Function:

min Z Zcifxfj

ieN jeN

Subject to:

Zx;:f =1

feN

Zxﬂ.rl

JeN

an; _me =0

jen' ieN'
L+w = e
L+w £
zi-di-z; < Myy
~zi +d; tz; < My
Xy < M(1-yy)
zs Q

Vie N’

Vie N’

VieN,VjieN
Vie N
Vie N
VieN Vje N
Vie N, Vje N
Vie N, Vje N
Vie N
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G.11)
(3.12)

f,'J-‘S;‘f‘W,"i‘I{'f—-GSMyg Vie N, VjE N
-ti-Si-Wi-ty +t; < Myjy Vie N, Vje N

The objective is the minimization of the total distance traveled by all vehicles.
Constraints (3.2) and (3.3) ensure that each customer is visited exactly once and (3.4)
ensures that the number of vehicles leaving the depot should be equal to the number of
vehicles arriving at the depot. Constraints (3.5) and (3.6) are the time window
constraints. No vehicle can arrive to a customer 7 after /; It can arrive before g but it
should wait until e,. Constraints (3.7), (3.8) and (3.9) are the linear formulations of the

following constraint:

Ifx;=1, then Z-d;-Z =0, (3.13)

which ensures the demand equalities of the vehicles. A vehicle's load leaving customer 7
is equal to the vehicle's load coming to customer 7 - demand at customer 7.
Constraints (3.10) are the capacity constraints for each vehicle. Constraints (3.11), (3.12)

with equation (3.9) are the linear formulations of the following constraint:

Ifx;=1, then &+ S8+ w+t;-1=0, (3.14)

which ensures the time equalities of the vehicles visiting customers,

3.2. Hybrid Heuristics for the VRPTW

The heuristic algorithms that are proposed in this thesis are composed of a number

of strategies for both initial solution and improvement.

The heuristics proposed in the literature generally find a feasible and moderate
initial solution mostly based on same strategies and focus on the improvement part of
the algorithm. Finding a good initial solution would intuitively increase the probability
of reaching less costly solutions easily (by spending less time). Considering this
situation, emphasis is given to the initial solution and the algorithm is tried to be

designed by considering more complex strategies in order to achieve good solutions.
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All of the algorithms consist of two parts:

1. Initial Solution Heuristic
m Parallel Version
m Sequential Version
2. Improvement Heuristic (includes a restart mechanism)

As most heuristic strategies, the proposed heuristics involve finding an initial
feasible solution and than improving that solution using local optimization techniques.
On the other hand, the proposed algorithms have some different features like center
selection mechanism in the initial solution and diversification mechanism in the

improvement part.

3.2.1. Initial Solution Heuristics

The first part of all proposed heuristics is a construction heuristic that aims to find
an as good as possible solution that is used in the improvement part. The initial solution
algorithm has both parallel and sequential versions that are based on the same strategy.
In the sequential algorithm, one route is constructed initially and others are constructed
when necessary, while in parallel algorithm, many routes are constructed

simultaneously.

3.2.1.1. Parallel Initial Solution Heuristic

The parallel version of the construction part is based on the strategy of clustering
the customers while doing insertion so that minimum distance is traveled. First, a lower
bound is calculated for the number of routes (vehicles) and lower bound number of
centers are selected within the customers to construct routes as Depot-Center-Depot

initially.

The algorithm has four steps:
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1. Calculation of a lower bound for the number of routes (vehicles): The first
step determines a lower bound in order to initialize a number of routes for the insertion

of unassigned customers. The lower bound is calculated as below:

Total Demand of All Customers

(3.16)
Capacity of One Vehicle

m=

The number of vehicles (routes) cannot be less than m, because all demand must
be satisfied by the vehicles. If all vehicles are used in full capacity, there should be at

least mvehicles.

2. Center selection: In the second step, the algorithm selects centers that are
distant from each other (geographically). Centers are intuitively thought as a main point
for a group of customers and are used for clustering the customers that are close to the
selected centers. This strategy can be useful in clustering the customers because the
customers that are geographically dispersed will have little possibility of appearing in
the same routes (the centers selected will initialize different routes) and the customers
close to the center will appear on the same route. At the beginning of the algorithm,
since there are no previously selected centers, the first center is the customer that is
farthest to the depot. The second center is the unassigned customer that is farthest to the
depot and the previously selected center (total distance is used here). This step goes on
until there are lower bound number of centers are selected. So, there are centers c¢;, (>,

...,cm selected at the end of this step.

3. Initialization of the routes: There are lower bound number of centers selected
at the previous step. These centers are used to initialize different routes. The routes

constructed are as follows:

0-¢c-0
0- CZ-O
O'Cm'o
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where 0 is the depot. All routes start and end at the depot as it is defined it the model.

4. Insertion of customers to the routes: At the last step of the initial solution
algorithm, all feasible locations in all routes are searched for inserting each unassigned
customer. Each unassigned customer has a best feasible insertion point at this step of the
algorithm. The whole unassigned customer set is searched then and the customer and
related best feasible location that gives the minimum cost increase is chosen and the
customer is inserted to that location. The minimum cost increase formulation is given in
the pseudo-code in Appendix A and is based on Solomon (1987). This is an iterative
procedure that goes on until all customers are assigned to the routes but it can be the
case that the initial routes are not enough for inserting all customers in a feasible way. If
there are no feasible points for any customer, a new route is constructed as a center by

selecting the customer that is farthest from the depot.

3.21.2. Sequential Initial Solution Heuristic

Sequential initial solution is based on the same strategy with the parallel version:

clustering the customers while doing insertion so that minimum distance is traveled.

Main differences from the parallel initial solution can be stated as follows:

* Initial routes are not generated simultaneously. One route is generated and others are

added when necessary.
* Since there is no simultaneous route generation no lower bound is determined.

» Insertion is done on the current routes; not all the routes are searched for feasible
insertion since the current route is used when there is no feasible insertion point on

the previous route.

Sequential construction of the routes allows determining clusters within the
algorithm, but parallel algorithm determines the clusters at the beginning. Selecting
centers at the beginning can be disadvantageous sometimes because the selected centers

are always in different clusters and it might be better for them to appear in the same
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routes. This is not possible with the parallel algorithm. This situation is tried to be

overcome with the sequential algorithm.

There are two steps of the algorithm:
1. Route Initialization: The first route is initialized by selecting the customer
farthest from the depot. Other routes are initialized (when necessary) by selecting the
customer who has the maximum total Euclidean distance to the previously selected

customers and the depot.

2. Insertion: It is the same procedure with the parallel algorithm, but insertion is
done over the current routes. There is no search done over many routes as it is in the
parallel algorithm since a new route is constructed when a route cannot be used for

insertion anymore.
The insertion procedure is as follows:

From the set of unassigned customers, each customer is tried to be inserted at all
feasible locations in the current route and a cost increase is calculated for the insertion
of that customer to the referred location at that route. So, each customer has a best
feasible insertion point (some may not have). From these customers and their best
feasible insertion cost, the minimum is selected and that customer is inserted to the
related location that gives the calculated cost. The procedure goes on until all customers
are assigned. In the case that there are no feasible points for any customer for insertion,
a new route is constructed as (0 - cenfer - 0) by selecting the customer that gives the

maximum total Euclidean distance to the previously assigned customers and the depot.

For the details of the algorithm, the reader is referred to the pseudo-code of the
algorithm in Appendix B.

3.2.2. Improvement Heuristics

In the second part, based on the initial solution found in the first part, the solution
is tried to be improved with a search heuristic. The improvement part contains

alternative local search algorithms that use three operators and a restart mechanism
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applied in different ways. From the viewpoint of local search, the most important issue
is designing an algorithm that does not stick into local optimum values. So, the
diversification methodology lets nearly the whole solution space to be explored in order

to get better solutions.

In this thesis, two improvement algorithms are proposed by making sure that the

running times are reasonable.

3.2.2.2. Algorithm 1

The first improvement algorithm uses the neighborhoods below and is a

combination of them.

* Inter-Route Exchange Neighborhood: Exchange oftwo customers between

routes.
* Inter-Route Move Neighborhood: Moving one customer from one route to another

* Intra-Route Exchange Neighborhood: Exchange of two customers in the same

route.

The proposed algorithm is a combination of three improvement procedures and a

diversification procedure. The algorithm has three main steps:

1. Inter-route Exchange and Inter-Route Move Operators Applied Together:
This step is a nested procedure that uses two operators together. As it can be seen in
detail in the pseudo-code, the move operator is applied over routes for one tour of all
routes on all customers sequentially and then exchange operator is applied for one tour

on all routes. It can be explained step by step as follows:

» The search starts with the last route. The first customer of the last route is chosen.

The depot is not included in the search since all routes begin and end with the depot.
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The selected customer is tried to be inserted to a feasible location in all routes
sequentially (from last route to first) except its own route. Feasibility conditions
have to be considered at this point. If a route's capacity is not enough to accept the
selected customer, this route is skipped and search goes on with the next route. If
capacity constraint is satisfied, then time feasibility conditions of the locations in
that route is checked. If a location is not time feasible for the selected customer to be

inserted, the next location in the same route is considered.

If a feasible insertion point is found for the selected customer, it has to be checked
whether there is a cost improvement by making this move. If a feasible location is
not cost improving, next location on the same route is checked. If there are no
feasible and cost improving locations in a route, next route is searched in the same

way. The customer is inserted to the first feasible and cost improving location.

Necessary updates are made and the algorithm continues with the customer next to
the previously moved customer. If a customer cannot be inserted to any feasible and

cost improving point, the next customer in the route is considered.

This procedure is applied until all locations of all routes are considered for moves.

One tour ends when all locations are searched.

This is one iteration of the first step. After the completion of one tour, inter-route

moves part is terminated.

After the inter-route move tour, inter-route exchange tour is applied in the same
way. All of the search methodology is same with the inter-route moves, but here, the
customer at the location that is chosen for the insertion has to be considered since it
is also moved form its place. Capacity and time feasibility checks are also applied to
that customer. If a time feasible and cost improving location is found, the selected
customer is moved to that location and the customer at that location is inserted to the
place of the selected customer. Necessary updates are made, all procedure is the

same with the move operator.
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One tour of exchanges ends when all routes and locations are considered for

exchanges.

This procedure is iterated until a local optimum value is caught. This means that the
algorithm comes to the beginning of the inter-route moves unless there are no
feasible assignments. If there are no feasible and cost improving assignments, a

local optimum is reached and part 1 is terminated.

2. Intra-Route Exchange Operator Applied: Since the first step is a procedure

that is designed for the search with exchange and moves between different routes, it is
necessary to apply a procedure that searches for less costly solutions within the routes.

When the first step reaches a local optimum, the second step starts and exchanges of

customers in the same route are applied sequentially. The search can be explained as

follows:

The first customer of the first route is chosen and searched for feasible insertion
points in the same route. The capacity constraint is not considered since the
exchanges are applied in the same route. (Only the sequence of the customers in the
routes is changed). If a time feasible location is found, the selected customer is
moved to that location and the customer at that location is moved to the place of the

selected customer.

If a feasible and cost improving exchange is applied, the search continues with the

customer next to the previously selected customer.

One tour of intra-route exchanges ends when all routes and all locations are
considered. This step iterates itself (several tours of search is applied) until a local
optimum is reached. This means that the algorithm comes to the beginning of intra-
route exchanges unless there are no feasible and cost improving exchanges. The

details of the sequential search structure can be explored in the pseudo-code.

Using three operators and using two of them nested allow making different moves

and this lets the algorithm search for various solutions. It is assumed that applying
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different moves at the same time increases the search quality. When the first step
reaches an optimum value, it is necessary to search for better solutions within the
routes. Changing the sequence of customers in the same route may result with less

costly solutions.

3. Diversification: Applying the first and second steps only is not sufficient for
designing an algorithm that gives high quality solutions for the VRPTW. As it was
mentioned before, a restart mechanism lets the algorithm search for more solutions and

this increases the possibility of finding better ones.

When the local search method cannot produce any better solutions, it is believed
that a local optimum has been reached. In order to escape the local optimum and
explore a larger solution space, a diversification mechanism is proposed in the
algorithm. The current local optimal solution is destroyed (diversified) by making some
exchanges between the routes. The current solution jumps up to a neighbor and this is a
new initial point. The new solution is used as an initial solution and the local search is
restarted. The most important constraint of the diversification method is that during the
process, only feasible exchanges are accepted, but it is not important whether they

improve the solution (decrease the cost) or not.

The diversification method that is proposed in this thesis is one tour of inter-route
exchanges that was explained in part 1. The only difference is that cost change is not
considered. If capacity and time feasibility constraints are satisfied, exchange is applied.
When one tour of exchanges ends, the diversification part is terminated. The
diversification can be applied in two different ways by changing the sequence of the

search.

The diversification mechanism is applied several times each time the local search
reaches a local optimum. Solution is updated if the cost is decreased at the end of a local
search. The number that the process is repeated is a parameter of the algorithm. The
bigger the parameter is, the longer the computational time. Given enough time, this

method can search sufficiently large solution space and find near optimal solutions.

Details of the algorithm 1 are given in the pseudo-code in Appendix C.
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3.2.2.2.Algorithm 2

The second improvement algorithm proposed uses the same neighborhoods with

the first algorithm, but there are differences in the use of these operators.

The main differences of two algorithms are as follows:

* Algorithm 1 uses the inter-route exchange and move operators together and apply
intra-route exchanges after a local optimum is reached in the first step, but

Algorithm 2 uses all these three operator together.

* Algorithm 1 has two stages and there are two local optima found; whereas

Algorithm 2 reaches one local optimum.

In the design of the first algorithm, inter-route exchanges are considered after
optimal customers are assigned to the routes. This may give good solutions but may
have a side effect on the performance of the search. Therefore, another algorithm
(Algorithm 2) is designed that uses three operators together that does not limit the
search between routes and consider the sequence of the customer in the routes when

applying inter-route exchanges and moves.

Algorithm 2 has two main steps:

1. Inter-Route Exchanges, Inter-Route Move and Intra-Route Exchange
Applied Together: The algorithm starts with an initial solution and applies one
sequential tour of inter-route moves. Then, search procedure in one tour is the same
with algorithm 1. Here, as in the first algorithm, sequential means that the algorithm
searches for feasible moves starting from the last route and ending at the first route.
There are no random moves. After one sequential tour on inter-route moves, inter-route
exchanges are applied in the same methodology. When the exchanges are finished (one
tour over all routes and customers are applied), one tour of intra-route exchanges is
performed. So, a complete tour of the algorithm is finished at this point. If there are no

feasible and cost improving assignments at this point, the algorithm terminates.
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Otherwise the search starts form the beginning and several tours are applied until a local

optimum is reached.

2. Diversification: Diversification module of the second algorithm is the same as

the first algorithm.

The algorithm is explained in Appendix D in detail.

3.2.2.3. Diversification with Probability

The diversification method that is proposed in both Algorithm 1 and Algorithm 2
is based on the idea of escaping local optima in order to continue the search. The
solution is diversified by making feasible exchanges without considering the cost
changes. By making a number of exchanges, the solution comes to a new initial point
that is generally worse than the local optimum value found. If the solution is diversified
so much, this may decrease the possibility of finding better solutions since the search
jumps up to a point that is greatly different. Although it may be advantageous to jump
up a very different point in order to search a wide area, another diversification method

that limits the destruction of the local optimum is proposed.

Difference of the new diversification method is the use of probability for escaping
local optima. The first method jumps to a feasible point without considering the cost
increases, but the new method accepts more costly points with a probability. This
probability must not be high in order to be meaningful. It is better to choose the

probability parameter near 0, but high enough to escape the local optimum.

The method can be generalized s follows:

» Ifa capacity and time feasible exchange ends with cost decrease or does not affect

the total cost, this exchange is accepted.

» Ifa capacity and time feasible exchange ends with a cost increase, it is accepted

with probability p, which is close to 0.
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Other parts of the probabilistic diversification are the same as the diversification
with probability, which was explained earlier. The basic concept of this method has
some similarities with simulated annealing, but there is a constant probability here.
Simulated annealing goes on the search with probabilities that is controlled with a

reducing temperature.

The pseudo-code for the probabilistic diversification part is provided in

Appendix E.
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4. COMPUTATIONAL STUDY

4.1. Benchmark Problems

In order to compare the proposed algorithms with other heuristics proposed in the
literature, the six data sets of Solomon (1987) are used. These are commonly accepted

as the main benchmark for the VRPTW algorithms.

There are 56 problems made up of 100 customers in the data set. Vehicle capacity,
customer time windows, service time and coordinates vary so as to cover all
configurations as thoroughly as possible. Thus, customers may be uniformly distributed
(problem sets Rl and R2), clustered (problem sets Cl and C2), or a mix of the two
patterns (problem sets RC1 and RC2). Problem sets Rl, Cl and RC1 have a narrow
scheduling horizon, tight time windows and low vehicle capacity. Conversely, problem
sets R2, C2 and RC2 have a large scheduling horizon, wide time windows and a high

vehicle capacity. In these data sets, travel times correspond to Euclidean distances.

The test problems provide an opportunity to compare the solution quality of the
algorithms with various heuristic approaches. Since it is an NP-Hard problem, only a
few of the instances are solved optimally in the literature (See Appendix F for the

optimal values).
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4.2. Parameters Used in the Algorithms

In this section, parameters used in the algorithms are explained.

4.2.1, Diversification Number (M)

Number of the diversification is determined by considering two factors:
* Solution Quality: The bigger the diversification number is, the highet is the
probability of reaching better (less costly) solutions in general.
* Computational Time: The bigger the diversification number is, the longer is the

computational time.

So the diversification parameter has to be chosen in a way that solution quality is
high but the computational time is not long. By applying several runs to various
instances, it is seen that there is almost no improvement after the 200" diversification
and the computational times are efficient at this number. So, the diversification number

1s set as 200.

4.2.2. Diversification Probability (p)

As it is stated in the diversification with probability module, a small probability
(close to 0) is used when diversifying solution. By applying experimental runs to
different problems, it turns out that very small probabilities (like 0.0001 and 0.001) do
not guarantee diversifying the solution to a new point. So the search may not escape
from the local optima using small probabilities. On the other hand, the probabilities that
are not close to 0 act as if there is no probability in the diversification. Based on the
initial runs and the behavior of the algorithm, the diversification probability is set to

0.01.
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4.3. Comparison of the Algorithms with Benchmark Heuristics

The computational study includes the combinations of the proposed algorithms
illustrated in Table 4.1. All of the algorithms are coded in Visual C++ 6 and executed
on a PC with Celeron 800 MHz. 128 RAM.

Table 4.1 Hybrid heuristics generated with the proposed algorithms

Hybrid Initial Solution | Improvement Diversification Method
Algorithm Algorithm Algorithm
1 Parallel Algorithm 1 Diversification without
Probability
2 Parallel Algorithm 1 Diversification with
Probability
3 Parallel Algorithm 2 Diversification without
Probability
4 Parallel Algorithm 2 Diversification with
Probability
5 Sequential Algorithm 2 Diversification without
Probability
6 Sequential Algorithm 2 Diversification with
Probability
7 Sequential Algorithm 1 Diversification without
Probability
8 Sequential Algorithm 1 Diversification with
Probability

Since the hybrid algorithms that use parallel insertion heuristic do not give
competitive results, these algorithms (1, 2, 3 and 4) are not presented here, but the
results of the parallel initial solution can be seen in Appendix F. Although parallel
initial solution heuristic finds better solutions for some of the benchmark problems, the

results after improvement applied are not that good.
The results of the hybrid algorithms that use the sequential initial solution
heuristic are presented in Appendix G in detail. Since algorithm 8 does not give good

results compared to the other ones, these results are not presented either.

In order to test the performance of the algorithms, comparison with some

competing heuristics is given in Appendix H. in detail. Also, Table 4.2 gives the
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number of results that are better than and equal to these algorithms' results, and Table

4.3 shows the number of results that are better than these algorithms'.

Comparison is also done based on the results of the algorithms that are within a
percentage deviation from the benchmark algorithms. Tables 4.4, 4.5, 4.6 and 4.7 show
the number of instances that are within the indicated percentage deviation of the

compared algorithm.

Benchmark heuristics are as follows (The details of these papers are given in
Chapter 2):

* Potvin and Bengio (1996): Genetic algorithm
» Tan efal (2001): Tabu search

* Liand Lim (2002): Simulated annealing-like restarts (best results of different

algorithms are published.)
» Backer et al (2000): Guided tabu search

Table 4.2 Number of instances and the related percentages that are better than or equal

to the benchmark heuristics (out of 56 instances)

Algorithm Tan et al. Potvin & Backeret a/ | Li & Lim (2002)
(2001) Bengio (1996) (2000)

Hybrid 35 (62.5%) 29 (52%) 5 (8.9%) 7(12.5%)
Algorithm 5

Hybrid 45 (80.4%) | 33(58.9%) 10(17.9%) 10(17.9%)
Algorithm 6

Hybrid 40 (71.4%) | 34 (60.7%) 10(17.9%) 9(16.1%)
Algorithm 7

Best of 46(82.1%) | 37(66.1%) 14(25%) 14 (25%)

Three

Table 4.3 Number of instances and the related percentages that are better than the
benchmark heuristics

(out of 56 instances)

Algorithm Tan et al. Potvin & Backeref a/ | Li & Lim (2002)
(2001) Bengio (1996) (2000)

Hybrid 34 (60.7%) | 28(50.0%) 5 (8.9%) 6(10.7%)
Algorithm 5

Hybrid 44 (78.6%) | 32(57.1%) 9(16.1%) 9(16.1%)
Algorithm 6

Hybrid 37(66.1%) | 30(53.6%) 4 (8.9%) 5 (8.9%)
Algorithm 7

E_>I_ehst of | 42(75.0%) | 32(57.1%) 10(17.9%) 10(17.9%)

ree
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Table 4.4 Number of instances and the related percentages that are within 1% deviation
of the benchmark heuristics

(out of 56 instances)

Algorithm Tan et al. Potvin & Backeref a/ |Li & Lim (2002)
(2001) Bengio (1996) (2000)

Hybrid 37(66.1%) | 31(55.4%) 8 (14.3%) 8 (14.3%)
Algorithm 5

Hybrid 44 (78.6%) | 35(62.5%) 11 (19.6%) 13(23.2%)
Algorithm 6

Hybrid 40 (71.4%) | 37(66.1%) 11 (19.6%) 13(23.2%)
Algorithm 7

I?I_ehst of | 47(83.9%) | 40(71.4%) 16(28.6%) 18(32.1%)

ree

Table 4.5 Number of instances and the related percentages that are within 2% deviation
of the benchmark heuristics

(out of 56 instances)

Algorithm Tan et al. Potvin & Backeref a/ | Li & Lim (2002)
(2001) Bengio (1996) (2000)

Hybrid 39 (69.6%) | 34 (60.7%) 10(17.9%) 13(23.2%)
Algorithm 5

Hybrid 44 (78.6%) | 35(62.5%) 15(26.8%) 16(28.6%)
Algorithm 6

Hybrid 43 (76.8%) | 39(69.6%) 15(26.8%) 17(30.4%)
Algorithm 7

E_>I_ehst of | 47(83.9%) | 41(73.2%) 18(32.1%) 22 (39.3%)

ree

Table 4.6 Number of instances and the related percentages that are within 5% deviation
of the benchmark heuristics

(from 56 instances)

Algorithm Tan et al. Potvin & Backer et al. | Li & Lim (2002)
(2001) Bengio (1996) (2000)

Hybrid 43 (76.8%) | 40(71.4%) 22 (39.3%) 24 (42.9%)
Algorithm 5

Hybrid 46(82.1%) | 41 (73.2%) 31 (55.4%) 34 (60.7%)
Algorithm 6

Hybrid 47 (83.9%) | 42(75.0%) 29(51.8%) 29 (51.8%)
Algorithm 7

Best of 49 (87.5%) | 44 (78.6%) 37(66.1%) 39 (69.6%)

Three
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Table 4.7 Number of instances and the related percentages that are within 10%
deviation of the benchmark heuristics (from 56 instances)

Algorithm Tan et al. Potvin & Backeref a/ | Li & Lim (2002)
(2001) Bengio (1996) (2000)

Hybrid 48 (85.7%) | 46(82.1%) 46(82.1%) 45 (80.4%)
Algorithm 5
Hybrid 50 (89.3%) | 48 (85.7%) 47 (83.9%) 47 (83.9%)
Algorithm 6
Hybrid 48 (85.7%) | 45 (80.4%) 42 (75.0%) 43 (76.8%)
Algorithm 7

I?I_%st of 52 (92.9%) | 49 (87.5%) 49 (87.5%) 46(82.1%)
ree

The results of all three algorithms proposed are obviously better than the genetic
algorithm proposed by Potvin and Bengio and TS proposed by Tan ef a/ (2001) When
the results are compared with the simulated annealing-like restarts of Li and Lim (2002)
and guided tabu search Backer ef a/(2000), they are relatively worse. Results for few
cases are competing with the results of Li and Lim's and Backer ef a/ but there are a
number of instances that are better than these algorithms. When the tables from 4.3 to
4.7 are examined, it can be seen that the results are very close to the results of the
algorithms proposed by Backer ef a/ and Li and Lim. Most of the instances are within
%10 deviation. It should also be noted that Li and Lim proposes many algorithms but
gives only the best results. So, this should be taken into consideration when making a

comparison.

Table 4.8 Average % divergence of the algorithms from the algorithm of Potvin and
Bengio (1996) (Negative (-) divergence mean that the proposed algorithm gives better

results.)
Problem Hybrid Hybrid Hybrid Best of Three
Group Algorithm 5 Algorithm 6 Algorithm 7 Algorithms
R1 -2.07 -3.59 -3.36 -4.28
R2 -10.36 -11.29 -9.41 -11.55
C1 16.84 11.34 17.72 10.86
C2 8.85 9.81 7.07 4.63
RC1 0.82 -0.97 0.38 -1.05
RC2 -13.87 -16.13 -12.87 -16.35
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Table 4.9 Average % divergence of the algorithms from the algorithm of Tan et al.
(2001) (Negative (-) divergence mean that the proposed algorithm gives better results.)

Problem Hybrid Hybrid Hybrid Best of Three
Group Algorithm 5 Algorithm 6 Algorithm 7 Algorithms
R1 -0.52 -2.08 -1.81 -2.77
R2 -8.49 941 -7.48 -9.68
C1 12.79 7.38 13.53 6.93
C2 2.07 3.14 0.22 -1.92
RC1 -0.45 -2.19 -0.87 -2.27
RC2 -9.60 -11.99 -8.53 -12.25

Table 4.10 Average % divergence of the algorithms from the algorithm of Li and Lim

(2002)
Problem Hybrid Hybrid Hybrid Best of Three
Group Algorithm 5 Algorithm 6 Algorithm 7 Algorithms
R1 3.95 2.32 2.58 1.59
R2 3.47 245 4.65 213
C1 18.21 12.64 19.10 12.15
C2 9.02 9.97 7.23 4.79
RC1 521 3.36 4.76 3.28
RC2 2.77 0.004 391 -0.23

Table 4.11 Average % divergence of the algorithms from the algorithm of Backer ef a/
(2000) (Negative (-) divergence means that the proposed algorithm gives better results.)

Problem Hybrid Hybrid Hybrid Best of Three
Group Algorithm 5 Algorithm 6 Algorithm 7 Algorithms
R1 4.93 3.30 3.56 257
R2 4.56 3.53 5.78 3.22
C1 18.06 12.49 18.94 12.01
C2 8.80 9.75 7.01 4.57
RC1 4.71 2.89 4.29 281
RC2 1.52 -1.11 2.74 -1.41
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4.4. Comparison of the Proposed Algorithms with the Best Known

In order to test the performance and solution quality of the algorithms proposed,
the results have been compared with the best known results of the Solomon instances in

the literature.

The error percentages of the 5™, 6th, and 7™ hybrid algorithms from the best
known are also presented in Appendix G. The error percentages are the deviations from
the best known. Table 4.12 shows the average deviations form the best known values of
each instance. Table 4.13 gives the number of instances that are better than or equal to

the best known values in the literature.

Table 4.12 Average deviations of the algorithms from the best known in the literature

Problem Hybrid Hybrid Hybrid Best of Three
Group Algorithm 5 Algorithm 6 Algorithm 7 Algorithms
R1 7.45 5.78 6.04 5.03
R2 8.58 7.50 9.81 7.18
C1 18.32 12.74 19.20 12.25
C2 9.02 9.97 7.23 4.79
RC1 8.57 6.64 8.07 6.57
RC2 11.50 8.74 12.73 8.39

When the three algorithms are compared with each other, it may be seen that
hybrid algorithm 6, which uses probabilistic diversification, sequential initial solution
and improvement algorithm 2, gives better results. Probabilistic diversification does not
diversify the solutions to absolutely different points, but lets the algorithm escape from

the local optima. This makes the search go to better solutions easily.

In general, the algorithms do not perform very well for the problem set Cl, but are
very efficient for the problem set Rl. When we look at the overall best results of the
three algorithms, we can see that the algorithms generated give good results when
compared with the best known in the literature. Although there are few results that are
better than the best known, they are very close to the best known values (The
differences are not that large). Comparison with the best known can be explored in

Appendix G.
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Table 4.13 Number of instances that are better than, better than or equal to the best
known in the literature, and within a percentage deviation form the best known.

Algorithm  |better than|better than| within 1% [within 2% | within 5% | within 10%
or equal to| deviation|deviation |deviation deviation
Hybrid 1(1.8%) | 1(1.8%) 1(1.8%)|2 (3.6%) |11 (19.6%) | 39 (69.6%)
Algorithm
Hybrid 2(3.6%) | 3(5.4%) | 4(7.1%)|5(8.9%) [18(32.1%) |40(71.4%)
Algorithm
Hybrid 0(0%) |6(10.7%) | 6(10.7%)|6(10.7% |17(30.4%) |35 (62.5%)
Algorithm 7 )
I§I_ehst of | 4(7.1%) |8 (14.3%) | 8 (14.3%)|8(14.3% |27 (48.2%) | 42 (75%)
ree )

It should be noted that, computational time is not the main focus of this study. In
general, we can say that the proposed hybrid algorithms are not inefficient in terms of
running time. Although the computational time changes from problem to problem and
problem set to problem set, the range is 15-45 minutes and the average is 35 minutes

approximately.

During the study, several algorithms are designed and various computational
experiments are performed in order to test the efficiency of these algorithms. Some of
them are not included in this thesis such as the ones that were mentioned in Section 4.3.
Another group of algorithm that is not discussed here is SA. Standard SA procedure is
applied by adding a temperature function and probabilities, but the results are not

promising and skipped here.
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5. CONCLUSION

The purpose of this study was to develop heuristic algorithms for solving the
VRPTW. Since exact algorithms are not sufficient for solving large VRPTW problems,
heuristics are generally used in the literature. Most of the heuristics first find an initial

solution and then improve the solution by using local search techniques.

At the initial solution part, the aim is to find an as good as possible solution to be
improved later. The initial solution heuristics proposed in the literature are generally
based on the same strategies, that is, the initial solution part is not the main focus. In
this study, two initial solution heuristics that use different and more complex strategies
are proposed. Initial solution part gives good results, but the benchmark of the results is

not possible since no results exist in the literature.

After finding an initial solution, local search techniques are used for improving
the solution. The main concern at this point is to be able to escape the local optima.
Classical local search algorithms generally stick into local optimum values unless they
include a restart mechanism. There have been several methods for escaping the local
optima. In the recent years, metaheuristics are popularly used instead of classical local

search algorithms since they are capable of exploring wide areas in the search space.

The improvement algorithms proposed in this thesis use classical local search
operators such as exchanges and moves, but these operators are nested in each other and
used together. Another point is that the improvement part is supported with a restart
mechanism called diversification in order to escape the local optima and widen the

search space. There are two diversification methods proposed in the study.

The proposed hybrid algorithms include the combinations of the initial solution,

improvement and diversification methods.
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Solomon (1987) instances are used as a benchmark and the results of the hybrid
heuristics are compared with some known heuristics and the best known results of the
problems in the literature. The results of the proposed heuristics are generally good
when compared with the benchmark heuristics, but they are not that competitive with

the best published results on the individual problem basis.

As a consequence, using hybrid heuristics that includes various methods are
successful at solving VRPTW. The heuristics give better results than some known

metaheuristics in the literature.

In this study, Solomon's benchmark problems are used, but it will be interesting
as a subject of further research to use real data in order to test the proposed heuristics
although benchmark is not possible. As a matter of fact, Solomon's 56 problem
instances have been used in almost all papers as a benchmark since 1987. Hence,
extending this set of problems to cover a wide variety of problem instance properties

probably with more customers is also a potential research area.

From a practical point of view, there are various applications of the VRP. Adding
the time window constraints make the framework more general to handle this type of
situations. On the other hand, when one tries to solve a specific application, it is very
likely that new side constraints will be added making the problem even harder. The

basic ideas proposed in this thesis may be a good starting point for such problems.

Another further research area is designing effective restarting methods for

escaping local optima, which is the main concern of the VRPTW.
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7. APPENDICES

Appendix A: Pseudo-Code for the Parallel Initial Solution Algorithm

1. [Calculate Lowerbound]

Lowerbound = m = Total Demand / Capacity of a Vehicle
2. [Center selection]

Select depot as center 0

For (n=1to m)

{

For each unassigned customer 7
{
Calculate distance d
d = Sum of the Euclidean distances to the previously

selected centers and to the depot
J

Select customer with maximum d as center

Necessary updates

}
3. [Initialization of the Routes]

For (n=1to m)
{

Generate Routes (0-5,-0)

4. [Insertion]

Start: For each unassigned customer 7

63



For each route j

{
If the route is full (if any customer cannot be inserted),
Next route
Check capacity feasibility for insertion of customer i to route j
If not feasible (Current Capacity of Route j + d; >Q),
Next route
For each location k at route j
{
Check time feasibility conditions at location k& at route j
for customer i
If not feasible ( focationfii g Y Wiocationfijfiy > locationfjify )
{
Next location at the same route
}
If time and capacity constraints are satisfied,
( ttocationfjl k) T Wiocationfjl k] < Liocationfjjixy ) & (Current
Capacity of Route j + d; <Q)
{
calculate cost change Acy sk
Ack-1k= Ck-1:HChi-Ch-1k
}
}
Select the location with minimum cost increase Aci;r at each
route for customer i
}

Select the overall minimum cost increase Acy.;  location for customer i

Select the customer with minimum cost increase Aci. ik

Insert selected customer to the selected location for the customer
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Necessary updates
Go to Start

Ifthere is no feasible location for any customer,

{
Construct a new route [0 - Spey - 0] by selecting the customer farthest to
the depot go
to Start

§

Ifall customers are assigned, ferminate.
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Appendix B: Pseudo-Code for the Sequential Initial Solution Algorithm

1. [Route Initialization]

For each unassigned customer 7

{

Calculate distance d
d = Sum of the Euclidean distances to the previously assigned

customers and to the depot

}

Select customer 7 with maximum d

Update the Current Route(0-17-0)

2. [Insertion]

Start: For each unassigned customer 7

{

Forthe Current Route

{

Check capacity feasibility for insertion of customer 7to the
Current Route
If not feasible (Current Capacity of Route j+ di >Q),
next customer For each

location kat the Current Route
{

Check time feasibility at location kat the Current Route
for customer 7 /f'not feasible

(t location{cuurent] (k] +wy ocationfcurrent] [k] >l location[j] [k], ) s

next location at the Current Route

66



If" time and capacity constraints are satisfied

(ttomu'a.-:,f'cuw-emﬁkf+Wfocarian{cm-reus][fr,? = hocmfm;ﬁ”k}) & Current

Capacity of Route j + d; < Q)

Calculate cost changeAcy. 1«
ACk.1k = Cp-1it Cii - Ci-1%
Select the location with minimum cost increase Acy.;x  for customer

1

}

Select the customer with minimum cost increase  Acy. s
Insert selected customer to the selected location

Necessary updates Go to Start

If there are no feasible points for any customer on the Current Route,

{

go to Step 1 for route initialization

}

If all customers are assigned, ferminate.
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Appendix C: Pseudo-Code for the Improvement Algorithm 1

Part 1: Inter-Route Exchange and Inter-Route Move Applied Together e4
II'The algorithm starts with one tour of sequential inter-route moves. Since the initial

solution generates more routes at the end, the latterly created routes are searched first.

For (j = number of routesto 0)

{
For (k=1 to size of the route- 1)

II'The depot is not included in the search since all the routes should start and end with

the depot

For (w = number of routesto 0)

{

For (e=1to size of the route -1 )

{

Capacity check for the move of the customer at the point /;/ /k] to

the point /wj/e/;
Ifit's not possible, go to e/l;

IT'If the capacity of route wis not enough for the insertion of the customer at the

location /7] [k] the next route is searched.
Time feasibility and cost improvement (Ac e.;)) ) check;

Ace-1)(e) = Cle-1)k) TC)k)~Cle-1)(e) TCHE-1)k+ 1)~ Ci-1)(k)~ CR)(Ie+1)

Ifit'snot possible, go to e2/;
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//'If a the location /w//e/, which means the ¢ location of route w; is not appropriate in
terms of time feasibility and cost improvement for the insertion of the customer at

location /j//k]/, this customer is then tried to be inserted to location /wj//e+1].

If possible,

{
insert customer at the point /j//k/to the point /wj/e/;
necessary updates;
go toe3l;

/I If it is feasible and cost improving to insert customer at the location /j//k/ to the
location /w//e/’ do the insertion and necessary updates of assigned and unassigned
customer sets. After a feasible insertion, the search continues with the customer at the
location /j//k+1]. When route j is finished, route ;-1 is searched until all routes are

searched.

e2l: }
ell: }
e3l: }

}

11 At this point inter-route moves of one tour ends (all routes are searched for one time

and the algorithm continues with the next step.)

/I After one tour of moving customers between routes, inter-route exchange operator is

used for one tour

For (j=number of routesto 0)
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// Since the initial solution generates more routes at the end, the latterly created routes are

searched first.

For (k=1 to size of the route- 1)

II'The depot is not included in the search since all the routes should start and end with

the depot

For (w=number of routesto 0)

{

For (e=1to size of the route-1)

{
Capacity check for the exchange of the customer at the
point /;]//k] with the customer at the point /w/ [e/; If it's
not possible, go to e22;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of capacity
feasibility) with the customer at the location /wj//e/, then the customer at the location

[w][e+ 1] is tried.

Time feasibility and cost improvement check;
A = Clpmnt Cemen- Cotl- Cu+nit Ce-nogt
Cli)(e+1)" Cle)e-1)~ Cle)(e+1)

If it's not possible, go to e22;

II'1f the customer at the location /;//k/ cannot be exchanged (in terms of time feasibility
and cost improvement) with the customer at the location /w//e/, then the customer at

the location /w//e+ 1] is tried.

1fpossible,

{
replace customers at the point /;/ /k] and /w][e];
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necessary updates; go

to e32;

I After a feasible insertion, the search continues with the customer at the location
[j][k+1]. When route /is finished, route ;-1 is searched until all routes are searched.
e22: }

el2: '}

e32: }

}

/I At this point exchange of one tour ends (all routes are searched for one time).

Ifthere can be more feasible cost improving assignments, go to e4;

else, end part 1;

// If there can be more feasible and cost improving assignments, the search restarts itself
from the beginning of part 1. If there are no feasible and cost improving assignments, a

local optimum is reached and part 1 terminates.

Part 2: Intra-Route Exchange Applied:

// In the second part, intra-route exchange (exchanges of customers in the same route) is
applied. The procedure repeats itself until a local optimum is reached.

o

For (=0 to number of routes)

{
For (k=1to size of the route-1)

II'The depot is not included in the search since all the routes should start and end with
the depot. Capacity check is not necessary since there is no move or exchange between

routes.

71



For (e=1Ito size of the route-1)

{
Time (Ace.se ) check;

Acte-1)) = Ceie)t Cpkr i) Clgre-1) T Cyger 1)~ Caie)- Ciiet1)

= Ce)(e-1) ~Cre)(+1)

//' If it is not feasible and cost improving to exchange the customers at the location /j//k/

and /j//e], continue searching with the customer at the location /j//e+1].

Ifit'snot possible, go to e/3;

impossible,

{
replace customers at the point /;7//k/ and
[j]/e]; necessary updates;

/I If it is feasible and cost improving to exchange the customers at the location /;//k]/
and /j//e/, apply the exchange and make necessary updates. The search continues with

the customer /j//k+1]

Go to e33;
el3: }
e33: }
J

1T At this point exchange of one tour ends (all routes are searched for one time).

If there can be more feasible assignments, go to e6;

else, end part 2;
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// If there can be more feasible and cost improving assignments, the search restarts itself
from the beginning of part 2. If there are no feasible and cost improving assignments, a

local optimum is reached and part 2 terminates.

Part 3 : Diversification

// Since Part 1 and 2 ended, the local search makes no feasible cost improving moves.
Diversification is used in order to destroy the current solution and jump up to a

neighbor.

For (=0 to number of routes)

{
For (k=1to size of the route-1)

{

For (w=0to number of routes)

{

For (e=lto size of the route-1)

Capacity check for the exchange of the customer at the

point /j//k] with the customer at the point /w//e/;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of capacity
feasibility) with the customer at the location /wj//e/, then the customer at the location

[w][e+ 1] is tried.
If 1it's not possible, go to e24;

Time feasibility check
Ifit's not possible, go to e24;
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/I If the customer at the location /j//k]/ cannot be exchanged (in terms of time
feasibility) with the customer at the location /w//e/, then the customer at the location

[w][e+1] is tried.

impossible,

{
replace customers at the point /j//k/ and [/wj/e];
Necessary updates;
Go to e34;

/I Tf it is feasible to exchange the customers at the location /;//k/ and /w]/e/, apply the
exchange and make necessary updates. Diversification continues with the customer
[j][k+1]. Tt should be noted that there is no cost improvement check here, since the

diversification uses feasible moves regardless of cost improvement.

e24: }
el4: }
e3d: }

}

// Diversification is done over one tour. There is no return to the beginning of Part 3.

If (diversification<M)
diversification++;

go to e4;

If (diversification=M)

ferminate.

Il The current solution is diversified and if this procedure is not applied for A times, the
search restarts itself from the beginning of Part 1. If diversification is applied for M

times, the algorithm terminates.
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Appendix D: Pseudo-Code for the Improvement Algorithm 2

Inter-Route Move, inter-route Exchange and Intra-Route exchange Applied
Together

e4:

Inter-Route Move:

II'The algorithm starts with one tour of sequential inter-route moves. Since the initial

solution generates more routes at the end, the latterly created routes are searched first.

For (j=number of routesto 0)

{

For (k=1 to size of the route-1)

II'The depot is not included in the search since all the routes should start and end with

the depot

For (w = number of routesto 0)

{

For (e=1to size of the route-1)

{

Capacity check for the move of the customer at the point
[j] [k] to the point /w] [e]; If it's not possible, go to
ell;

IT'If the capacity of route w is not enough for the insertion of the customer at the

location /j//k], the next route is searched.

Time feasibility and cost improvement (Ac .1y ) check;

AC(e-1)(e) = Cle-1)R) TCe)I)=Cle-1)(e) TClh-1)(k+ 1)~ Clk-1)(k)~ CR)(K+1)
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If1t'snot possible, go to e2/;

IT'If a the location /wj/e/, which means the ¢” location of route w; is not appropriate in
terms of time feasibility and cost improvement for the insertion of the customer at

location /j//k], this customer is then tried to be inserted to location /w//e+1].

impossible,
{
insert customer at the point /;//k/ to the point /wj/e/;
necessary updates;

go to
e3l; }

IT'1f it is feasible and cost improving to insert customer at the location /j//k/ to the
location /w//e/, do the insertion and necessary updates of assigned and unassigned
customer sets. After a feasible insertion, the search continues with the customer at the
location /j//k+1]. When route j is finished, route ;-7 is searched until all routes are

searched.

e2l tell:}
e’l: |

}

17 At this point move of one tour ends (all routes are searched for one time and the

algorithm continues with the next step).

/I After one tour of moving customers between routes, inter-route exchange operator is

used for one tour

Inter-Route Exchange:
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For (j=number of routesto 0)

// Since the initial solution generates more routes at the end, the latterly created routes

are searched first.

For (k=1to size of the route-1)

II'The depot is not included in the search since all the routes should start and end with

the depot

{ For (w=number of routesto 0)

{

For (e=Ito size of the route-1)
{
Capacity check for the exchange of the customer at the point
[J][k] with the customer at the point /w//e/; Ifit's not possible,
go to e22;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of capacity
feasibility) with the customer at the location /wj//e/, then the customer at the location

[w][e+1] is tried.

Time feasibility and cost improvement check;
A Cle-De) = qejkiy Gelktl)- Cuplkl)- Carim+ Ce-1)

&+ C)etl) -Cle)e-1)- C(e)et])

Ifit's not possible, go to e22;
IT1f the customer at the location /j//k/ cannot be exchanged (in terms of time feasibility

and cost improvement) with the customer at the location /w//e/, then the customer at

the location /w//e+ 1] is tried.
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If possible,

{
replace customers at the point /;//k/ and
[/w][e],; necessary updates; go to e32;

// After a feasible insertion, the search continues with the customer at the location

[J][k+1]. When route j is finished, route j-1 is searched until all routes are searched.
e22: }

el2: }
e32: }

}

// At this point exchange of one tour ends (all routes are searched for one time and the

algorithm continues with the next step.)

/I After one tour of exchanging customers between routes, intra-route exchange operator

1s used for one tour

Intra-Route Exchange:
For (/=0 to number of routes)

For (k=1 to size of the route-1)
II'The depot is not included in the search since all the routes should start and end with

the depot. Capacity check is not necessary since there is no move or exchange between

routes.

For (e=1to size of the route-1)

{
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Time (ACe-1) check;
Acenyey = Co-net ComnT Cue-nt Chery) - Chk-1m Cohyder 1)

Cre)tel)™ Cle)(+1)

IT'1f it is not feasible and cost improving to exchange the customers at the location /j//k/

and /j//e/, continue searching with the customer at the location /j//e+1].

Ifit's not possible, go to el3;
Ifpossible,
{
replace customers at the point /;j//k/ and/j//e];

necessary updates;

/I If it is feasible and cost improving to exchange the customers at the location /;//k/

and /j//e/, apply the exchange and make necessary updates. The search continues with

the customer /j//k+1]
Go to e33;
/
el3: }
e33: }
/

1T At this point one overall tour ends (all routes are searched for one tour with three

operators).

Ifthere can be more feasible assignments, go to e4;

else, end part 1;

// If there can be more feasible and cost improving assignments, the search restarts itself

from the beginning. If there are no feasible and cost improving assignments, a local

optimum is reached and part 2 terminates.
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Part 2 : Diversification

// Since Part 1 and 2 ended, the local search makes no feasible cost improving moves.
Diversification is used in order to destroy the current solution and jump up to a

neighbor.

For (/=0 to number of routes)

{
For (k=1to size of the route-X)

{

For (w=0to number of routes)

{

For (e=to size of the route-1)
{
Capacity check for the exchange of the customer at the

point /j//k] with the customer at the point /w//e/;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of capacity
feasibility) with the customer at the location /wj//e/, then the customer at the location

[w][e+ 1] is tried.

Ifit's not possible, go to e24;
Time feasibility check
Ifit's not possible, go to e24;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of time
feasibility) with the customer at the location /w//e/, then the customer at the location
[w][e+1] is tried.

Ifpossible, {
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replace customers at the point /j//k/ and [/wj/e];

necessary updates; go to e34;

IT1f it is feasible to exchange the customers at the location /;7//k/ and /w]/e], apply the
exchange and make necessary updates. Diversification continues with the customer
[j][k+1]. Tt should be noted that there is no cost improvement check here, since the

diversification uses feasible moves regardless of cost improvement

e24: }
el4: }
e34: }}

I Diversification is done over one tour. There is no return to the beginning of Part 3.

If (diversification<M)
diversification++;

go to e4;

If (diversification=M)

ferminate.

Il The current solution is diversified and if this procedure is not applied for Atimes, the
search restarts itself from the beginning. If diversification is applied for A/ times, the

algorithm terminates.
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Appendix E: Pseudo-Code for the Diversification with Probability

For (f0 to number ofroutes)

{

For (k=1 to size of the route-1)

{

For (w=0 to number of routes)

{

For (e=1to size of the route-1)

Capacity check for the exchange of the customer at the

point /j//k] with the customer at the point /w//e/;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of capacity
feasibility) with the customer at the location /w//e/, then the customer at the location

[w][e+1] is tried.

Ifit's not possible, go to e24;
Time feasibility check /fit's not
possible, go to e24;

11 If the customer at the location /j//k/ cannot be exchanged (in terms of time
feasibility) with the customer at the location /wj//e/, then the customer at the location

[w][e+1] is tried.

Ifpossible, calculate cost. change for replacing the customers at the points /;//k/
and [w][e];

If (Cost Change <0)

{
replace customers at the points /j//k/ and /w//e/;
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necessary updates; go to

e34; }

1f(Cost Change > 0)

{
probability =p;
generate a random number r between 0 and 1;
If(r=p)

{
replace customers at the points /;7//k/ and /w//e/;

necessary updates;

goto e34; }
If(r>p)
{

go to e34;
/

IT'If it is feasible to exchange the customers at the location /;j//k/ and /w]//e], cost
change is calculated. If there is a cost improvement, apply the diversification and make
necessary updates. If the cost increases, apply the diversification with probability p.
Diversification continues with the customer /j//k+1]. It should be noted that there is no
cost improvement check here, since the diversification uses feasible moves regardless of

cost improvement.

e24: }
el4: |}
e34 }

}

//Diversification is done over one tour. There is no return to the beginning of Part 3.
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If (diversification<M)
diversification++;

go to Start;

If (diversification=M)

ferminate.

Il The current solution is diversified and if this procedure is not applied for M times, the
search restarts itself from the beginning of the algorithm. If diversification is applied for

M times, the algorithm terminates.
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Appendix F: Computational Results of the Initial Solution Heuristics™*

Initial-S Initial-P Initial-S Initial-P

Problem NV TC NV TC Problem NV TC NV TC
R101 54 3629.82 54 3507.89 |C106 24 2378.2 24 2398.62
R102 47 3370.61 43 3183.11 |C107 21 1982.02 23 2307.41
R103 32 2679.61 29 2426 [C108 18 1928.14 19 2095.32
R104 23 2046.61 18 174551 |C109 13 1647.77 16 1980.17
R105 47 3331.66 41 3141.77 |C201 21 2381.35 20 2190.39
R106 43 3159.35 34 2770 |C202 16 2135.17 16 2006.1
R107 31 2473.6 25 2120.67 |C203 15 1840.1 15 1787.82
R108 24 2087.77 18 1762.12 |C204 12 1430.88 9 1316.01
R109 34 2984.79 30 279211 (C205 14 1841.87 19 2060.69
R110 25 2425.25 26 2301.71 [C206 10 1615.92 11 1633.46
R111 29 2659 22 2139.73 |C207 12 1574.67 11 1619.78
R112 17 1740.83 17 1715.16 |C208 8 1293.14 10 1629.81
R201 17 2063.74 17 2063.74 |RC101 54 5000.92 54 4833.52
R202 15 2031.79 15 2031.79 |RC102 46 454291 46 4267.82
R203 11 1688.82 11 1688.82 |RC103 34 3631.59 32 3453.33
R204 9 1313.91 9 131391 |RC104 22 2679.33 22 2679.33
R205 9 1680.19 9 1680.19 |RC105 48 4072.92 48 4072.92
R206 7 1422.85 7 1422.85 |RC106 45 4529.5 45 4529.5
R207 7 1371.93 7 1371.93 |RC107 34 3641.69 34 3641.69
R208 5 1229.02 5 1229.02 |RC108 28 3139.59 28 3139.59
R209 8 1529.05 8 1529.05 |RC201 21 3044.09 21 3044.09
R210 9 1627.2 9 1627.2 |RC202 17 2580.36 17 2580.36
R211 6 1185.86 6 1185.86 |RC203 13 2172.34 13 2122.34
C101 28 2498.43 30 2760.22 |RC204 7 1396.04 7 1394.04
Cc102 23 2225.88 27 2483.81 |RC205 15 2617.93 15 2617.93
C103 22 2266.42 20 2095.04 |RC206 13 2238.63 13 2238.63
C104 15 1652.86 16 1600.97 |RC207 9 2197.01 9 2197.01
C105 26 2286.35 25 2687.35 |RC208 6 1617.33 6 1617.33

* Better values of total cost are bold.
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Appendix G Comparison of the Proposed Hybrid Heuristics' Results with the Best
Known Results in the Literature*

% Deviation from
Best known

best of hybrid alg.7 | hybrid alg.5| hybrid alg.6|Best known | Alg. [ Alg. |Alg.6| Optimal

our 7 5
Problem NV TC NV TC NV TC NV TC % | % % NV TC
R101 1686.23 | 21 | 1686.23 |21 | 1746.58 | 21 | 1735.74 | 18 | 1607.7 | 4.88 (864 | 7.96 | 18 | 1604.5
R102 | 1552.52 | 19 | 1588.64 |19 | 1575.43| 18 | 1552.52 | 17 | 1434 [10.78| 9.86 | 8.26 | 11 904.6
R103 | 1275.09 | 14 | 1292.13 |14 | 1286.24| 14 | 1275.09 | 13 | 1207 |7.05|6.57| 564 | 9 7654
R104 | 1032.06 | 11 | 1039.81 |11 1038 | 11 [ 1032.06 | 10 | 982.01 | 5.89|5.70| 510 | - -
R105 | 142552 | 16 | 14584 |16 |1471.98| 15 | 1425.52 | 14 | 1377.11 | 5.90 | 6.89 | 3.52 - -
R106 | 1287.64 | 13 | 1293.34 |14 | 1344.28 | 13 [ 1287.64 | 12 [ 1252.03 | 3.30| 7.37 | 2.84 | - -
R107 | 1116.83 | 11 | 1116.83 |11 | 1153.94 | 11 | 1140.31 | 10 | 1004.7 (11.16| 14.8 [ 13.50 | - -
R108 |987.825| 10 | 994.96 |10 [997.998| 10 [ 987.825| 9 | 960.88 | 3.55 3.‘5:56 280 | - -
R109 | 121312 | 13 | 1213.12 |13 | 12258 | 13 | 1233.7 | 11 [ 1163.95| 4.22| 531 | 599 | - -
R110 | 1126.77 | 12 | 1145.07 |12 | 1157.69| 12 | 1126.77 | 11 | 1080.36 | 5.99 | 7.16 | 4.30 | - -
R111 1113.05 | 11 | 1136.49 |11 | 1151.75| 12 | 1113.05( 10 | 1086.48 | 6.01 [ 6.01 | 2.45 - -
R112 | 1002.54 | 11 | 1002.54 |11 | 1021.93| 11 | 1020.92 | 10 | 953.63 | 513 | 7.16 | 7.06 - -
R201 129219 | 6 | 1302.89 |6 |1292.19( 6 | 131151 4 |1252.37(4.03(3.18| 472 | - -
R202 | 112412 | 6 | 1178.95 |6 |1124.12| 6 [ 113042 3 | 1091.9 | 460|295 3.53 - -
R203 |972.667 | 5 | 986.057 |5 |980.509| 4 [963.886| 3 | 939.54 | 7.97|4.36 | 2.59 - -
R204 |818.763 | 4 | 843.735 |4 |818.763| 4 (819466 2 | 779.56 | 8.23| 5.03 [ 5.12 - -
R205 | 102249 | 6 | 1043.88 |6 | 1091.02| 4 [ 102249 3 | 994.42 | 497|971 | 2.82 - -
R206 |987.698 | 5 | 987.698 |5 |995963| 5 [993.372| 3 833 [1857(19.5|19.25| - -
R207 |906.678 | 3 | 928179 |3 [920.492| 3 [906.678| 3 | 814.78 |13.92 15.9 1128 - -
R208 |789.132| 4 79184 |4 [795225| 4 [789.132| 2 | 726.75 | 8.96 9.-1,12 8.58 - -
R209 | 947121 | 5 | 991.728 |5 |947.121| 5 [953.106 | 3 855 |[15.99(10.7 | 1147 | - -
R210 | 1007.76 | 5 | 102521 |5 |[1024.13| 4 [1007.76 | 2 | 939.34 | 9.14 9.63 728 | - -
R211 | 835361 | 5 | 88448 |5 |854272| 5 (835361 2 | 79592 (11.33| 7.33 | 4.96 | - -
C101 828.94 | 10 | 828.94 (11 |1014.74| 10 | 848.894 | 10 | 827.3 | 0.20|22.6| 261 | 10 827.3
C102 | 1003.26 | 12 | 1003.92 |11 | 1015.82| 11 | 1003.26 [ 10 | 827.3 |[21.3 25.7 21.27| 10 827.3
C103 | 949601 [ 11 | 102251 |11 | 1013.54 | 10 | 949.601 | 10 | 828.06 2\';4 25.4 14.68 | 10 826.3
C104 | 961.707 | 10 | 1021.53 |10 | 1022.07 | 10 | 961.707 | 10 | 824.78 2\';8 2\';.9 16.60 | 10 822.9
C105 |886.247 | 11 | 993.85 |11 | 915.72 | 10 | 886.247 | 10 | 828.94 19‘.:89 18.4 691 | 10 827.3
C106 | 893.799 | 11 | 985.656 |11 |893.799( 11 | 909.804 [ 10 | 827.3 [19.14 8.64 9.97 | 10 827.3
c107 1026.8 | 11 | 1064.41 (11 1037.3 | 10 | 1026.8 | 10 | 827.3 |28.6|25.3|2411| 10 827.3
C108 | 876.713 | 11 | 958.148 |11 930.1 | 11 | 876.713| 10 | 828.94 1g.5 15.2 576 | 10 827.3
C109 | 934271 | 11 | 1000.16 |11 |969.829( 10 | 934.271 | 10 | 828.94 28.6 1?.0 1271 | 10 827.3
C201 | 591557 | 3 | 591.557 |4 |649.216( 4 |654.925( 3 | 591.56 O.BO 9.?5 1071 | - -
C202 |627.798 | 4 | 660.576 |4 |642.543| 4 |627.798 | 3 | 591.56 [11.67|8.62| 6.13 - -
C203 | 653.762 | 4 | 692.946 |4 |691.642| 4 |653.762( 3 | 591.17 [17.22( 17.0| 1059 | - -
C204 |683.009| 4 | 697958 |4 |683.009| 4 |687.986( 3 | 5906 [18.18 1g.6 1649 | - -
C205 |588.876 | 3 | 588.876 |4 |617.225( 4 |623.559( 3 | 588.88 | 0.00 4.?31 589 | - -
C206 |588.876| 4 | 617.364 |4 |624.829| 3 |588.876( 3 | 588.49 | 4.91(6.17| 0.07 | - -
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% Deviation from

Best known
best of | hybrid alg.7 hybrid alg.5|hybrid alg.6 |Best known | Alg. | Alg. |Alg. 6 Optimal
our 7 5
Proble NV TC NV TC NV TC NV TC % % % NV TC

C207 | 62271 | 4 622.71 4 (636899 4 [722406| 3 | 588.29 | 585|826 |22.80| - -

C208 | 58849 | 3 58849 | 4 1599484 4 |630.142( 3 | 588.32 [ 0.03| 1.90 [ 7.11 - -

RC101 | 1721.88 | 17 | 1769.65 | 17 [ 1787.95| 16 | 1721.88 | 14 | 1635.8 | 8.18 | 9.30 [ 5.26 - -

RC102 | 1546.77 | 14 | 1554.8 | 14 | 1546.77 | 14 | 1556.49 | 12 | 1554.75| 0.00 | -0.51| 0.11 - -

RC103| 136291 | 13 | 1367.44 | 13 [ 1394.49 [ 12 | 1362.91 | 11 1110 |23.1(256)2278| - -
la}

2
RC104 | 1222.05 | 11 | 1228.97 | 11 | 1229.28 | 11 | 1222.05 | 19 | 1135.83 | 8.20 | 8.23 [ 7.59 - -

RC105| 1594.28 | 16 | 1625.06 | 16 | 1623.56 | 16 | 1594.28 | 13 | 1564.4 | 3.88 | 3.78 | 191 - -

RC106 | 1456.92 | 13 | 1496.04 | 13 | 1474.8 | 13 | 1456.92 | 11 | 1407.1 | 501 | 3.52 | 2.26 - -

RC107| 132221 | 13 | 1344.29 | 13 [ 1336.84 | 12 | 1322.21 1230.54 | 9.24 | 864 | 745 - -

N
N

RC108| 1191.06 | 11 | 1202.93 | 11 [ 1238.63 | 11 [ 1191.06 | 10 | 1139.82 | 5.54 | 8.67 | 4.50 - -
RC201 | 1423 6 1423 6 | 143503 | 6 | 1436.06 | 4 | 1046.94|359 |37.0|37.17| - -
RC202| 122849 | 5 12965 | 5 [ 122849 5 | 1246.05| 4 | 11629 |1 1q.4 5.-€,54 7.15 - -
RC203| 1034.89 | 4 | 1156.43 | 4 [ 109886 | 5 [1034.89 | 3 | 1049.6 10(.\18 469|-140| - -
RC204 | 894.478 | 4 | 935.766 | 4 | 920.66 | 4 [894.478| 3 | 79841 |17.20{1531[ 1203 | - -
RC205| 1270.24 | 4 | 1343.13 | 4 [1376.76 | 7 [1270.24| 4 | 12972 | 354 | 6.13 | -208 | - -
RC206| 1186.25 | 5 | 1236.86 | 5 [ 121652 | 5 [1186.25| 3 | 1146.3 [ 7.90 | 6.13 [ 3.49 - -
RC207| 112492 | 4 | 1128.09 | 4 | 11505 | 5 [112492| 3 | 10611 | 6.31 | 843 | 6.01 - -
RC208|890.406 | 4 | 905.114 | 4 [899.211| 4 [890.406| 3 | 828.14 [9.29| 858 | 7.52 - -

* Bold cells are the best results of the three hybrid algorithms, gray cells shows the results that are better
than or equal to the best known results in the literature.
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Appendix H: Comparison of the Proposed Hybrid Heuristics' Results with the

Benchmark Algorithms in the Literature*

algorithm/ algorithms algorithm6 | Li& Lim Tan et Potvin & Backer et a/.
(2002) a/.(2000) Bengio(1996) [(2000)

Problem NV TC NV TC NV | TC NV| TC [NV] TC NV TC NV [TC

R101 21 | 1686.23 | 21 | 1746.58 | 20 | 1736 19 | 1650.8 | 20 [1707.95| 19 1784 19 1652.7
R102 19 [ 1588.64 | 19 | 1575.43 | 18 | 1553 17 11486.41| 16 [1488.59( 17 1777 18 1475.4
R103 14 ] 1292.13 | 14 | 1286.24 | 14 | 1275 13 |1291.68| 15 [1293.85| 14 1433 14 1235
R104 11 | 1039.81 | 11 1038 11 | 1032 9 11007.31| 11 |1057.02] 10 1065 10 992.46
R105 16 | 1458.4 | 16 | 1471.98 | 16 | 1426 14 [1381.37| 16 |1431.56| 14 1421 14 1431.3
R106 13 | 1293.34 | 14 | 1344.28 | 13 | 1288 12 |1269.72| 14 | 1331.5 | 12 1353 12 1258.3
R107 11 [ 1116.83 [ 11 [ 1153.94 | 11 | 1140 10 [1104.66] 12 [1174.89| 11 1191 11 1094.4
R108 10 [ 994.96 | 10 [ 997.998 | 10 | 988 9 1986.25| 11 |1039.34| 10 993 9 971.98
R109 13 [ 1213.12 | 13 | 1225.8 | 13 | 1234 11 [1208.96| 14 |1256.36| 12 1205 12 1164
R110 12 | 1145.07 [ 12 [ 1157.69 | 12 [ 1127 10 |1159.35] 13 | 1179 11 1136 11 1100.4
RI11 11 | 1136.49 | 11 [ 1151.75 [ 12 [ 1113 11 [1066.32| 13 | 1148 11 1184 11 1086.5
R112 11 [ 1002.54 | 11 | 1021.93 | 11 | 1021 10 | 967.88 | 11 [1088.32| 10 1020 10 985.91
R201 6 1302.89 | 6 |1292.19| 6 | 1312 4 |1252.37| 5 |[1437.49( 4 1554 4 1262.8
R202 6 | 117895 | 6 [1124.12] 6 [ 1130 4 |1084.77| 5 | 12726 | 3 1530 4 1091.9
R203 5 | 986.057 [ 5 |980.509 | 5 | 973 3 194939 | 4 [1081.04| 3 1201 3 950.55
R204 4 | 843735 | 4 | 818.763 | 4 | 819 2 | 849.05| 3 | 89586 | 3 904 3 779.56
R205 6 | 1043.88 | 6 [ 1091.02 | 4 [1022 3 |1032.55| 4 |1150.34| 3 1159 3 1038.3
R206 5 1987.698 | 5 [995963 | 5 | 993 3 [931.62 | 4 |1103.22] 3 1066 3 942.68
R207 3 [928.179 | 3 [920.492 | 3 [ 907 2 1905.13 | 3 | 1007.3 | 3 954 3 847.54
R208 4 | 791.84 | 4 | 795225 | 4 | 789 2 | 7328 | 3 |806.70 | 2 759 2 794.28
R209 5 1991728 | 5 | 947.121 | 5 | 953 3193059 4 | 11103 | 3 1108 3 938.36
R210 5 | 102521 | 5 [ 1024.13 | 5 | 1008 3 |1018.95| 4 | 1071.3 | 3 1146 3 939.37
R211 5 884.48 | 5 | 854.272 | 5 | 835 3 | 801.81 | 3 |94635| 3 913 3 795.92
C101 10 | 828.94 [ 11 | 1014.74 | 10 | 849 10 | 828.94 | 10 | 828.93 | 10 829 10 828.94
C102 12 1 1003.92 | 11 | 1015.82 | 11 | 1003 10 | 828.94 | 10 | 901.52 | 10 829 10 829.86
C103 11 1022.51 | 11 | 1013.54 | 10 | 950 10 | 828.06 | 10 | 954.71 10 875 10 831.6
C104 10 | 1021.53 | 10 | 1022.07 | 10 | 962 10 | 824.78 | 10 | 895.77 10 865 10 825.54
C105 11 [ 993.85 [ 11 | 915.72 | 10 | 886 10 | 828.94 | 10 | 828.93 | 10 829 10 829.7
C106 11 ] 985.656 | 11 [ 893.799 | 11 | 910 10 | 828.94 | 10 | 941.15 | 10 829 10 829.7
C107 11 | 106441 | 11 | 1037.3 | 11 [ 1027 10 | 828.94 | 10 | 828.93 [ 10 829 . 10 830.92
C108 11 [ 958.148 | 11 930.1 11 | 877 10 | 828.94 | 10 | 828.93 | 10 829 10 829.7
C109 11 [ 1000.16 | 11 | 969.829 | 10 | 934 10 | 828.94 | 10 | 828.93 | 10 829 10 828.94
C201 3 |1591.557 | 4 | 649.216 | 4 | 655 3 [591.56 3 |591.55] 3 592 3 591.56
C202 4 1660.576 | 4 | 642.543 [ 4 | 628 3 |591.56 | 4 | 74599 | 3 592 3 591.56
C203 4 1692946 | 4 | 691.642 | 4 | 654 3 |1591.17 | 4 |727.221| 3 592 3 591.56
C204 4 1697958 | 4 |683.009 | 4 | 688 3| 590.6 | 3 159059 | 3 592 3 599.29
C205 3 [588.876 | 4 [617.225| 4 | 624 3 | 588.88| 3 |588.87| 3 591 3 588.88
C206 4 1617.364 | 4 | 624.829 [ 4 | 589 3 |588.49 | 3 [588.49 | 3 589 3 588.49
C207 4 622.71 4 1636.899 | 4 | 722 3 |588.29 | 3 |600.841| 3 589 3 588.29
C208 4 588.49 [ 4 |599.484 | 4 | 630 3 [588.32 3 | 64520 3 589 3 588.32
RC101 17 [ 1769.65 | 17 | 1787.95 | 17 [ 1722 15 |1658.62| 16 [1734.17| 15 1676 15 1635.8
RC102 14 | 1554.8 [ 14 [ 1546.77 | 14 | 1556 13 | 1513.6 | 14 [1562.62| 13 1671 14 1597.4
RC103 13 [ 1367.44 | 13 [ 1394.49 | 12 | 1363 11 |1319.99] 13 [1377.93| 11 1401 11 1297.5
RC104 11 | 122897 | 11 | 1229.28 | 11 | 1222 10 | 11419 | 11 |1259.28| 10 1204 10 1153.1
RC105 16 | 1625.06 | 16 | 1623.56 | 16 [ 1594 13 |1637.62| 16 [1597.67| 14 1670 15 1564.4
RC106 13 ] 1496.04 | 13 | 1474.8 | 13 | 1457 11 [1424.73| 14 | 1476.15| 12 1486 13 1407.1
RC107 13 | 1344.29 | 13 | 1336.84 | 12 | 1322 11 |1240.66| 13 [1392.97( 11 1275 11 1276.1
RC108 11 [ 1202.93 | 11 | 1238.63 | 11 | 1191 10 [1147.42] 12 | 1264.5 | 11 1187 10 1268.9
RC201 6 1423 6 | 1435.03 | 6 | 1436 4 1142521 5 | 1617.5| 4 1799 4 1435.5
RC202 5 1296.5 | 5 | 122849 | 5 | 1246 3 (137427 5 |1429.04| 4 1603 4 1162.9
RC203 4 | 1156.43 | 4 | 1098.86 [ 4 | 1035 3 |1088.53| 4 |1179.67| 3 1253 3 1093.7
RC204 4 1935766 | 4 | 920.66 | 4 | 894 3 | 818.66 | 4 |939.67| 3 1002 3 870.48
RC205 4 ] 1343.13 | 4 | 1376.76 | 7 | 1270 4 |1304.64| 5 |1487.49| 4 1693 4 1306.4
RC206 5 | 1236.86 | 5 | 121652 | 6 | 1186 3 |1159.03| 4 |1357.32| 3 1324 3 1267.3
RC207 4 | 1128.09 | 4 1150.5 | 4 | 1125 3 [1107.16 4 | 12959 | 3 1222 3 1155.2
RC208 4 1905.114 | 4 | 899.211 [ 4 | 890 3 1862.34 | 3 |1040.47| 3 1049 3 905.25

* Bold cells are the best results of the three hvbrid algorithms.




