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ABSTRACT 

Compliant mechanisms are widely used in high precision systems, because they 

provide high resolution, frictionless, smooth and continuous motion. These kinds of 

mechanisms are also cheaper than the other types of high precision mechanisms. The 

main idea of this kind of mechanism is that no additional joints are used for creating the 

motion, the deflection of the flexible elements are used to create the desired motion. 

In this thesis, a planar parallel compliant mechanism is designed. The mechanism 

is actuated from three ends by using piezo mike micromotors to create motion in XY 

plane. The mathematical model of the mechanism is derived by using Euler Bernoulli 

dynamic equation for the three beams on the mechanism. The separation of variables 

technique is used to solve the dynamic equations. Necessary transformations are 

calculated for defining the center position of the stage in terms of the deflections of the 

beam. The mathematical model is represented in state space form and it is simulated in 

MATLAB Simulink. The position results are compared with another simulation called 

COMET. The mathematical model is reduced to two input and two output system in 

order to make the XY position control of the mechanism by using PID control. Finally, 

the mechanism is manufactured by using laser cutting and water jet cutting techniques, 

open loop experiments of the mechanism are verified by actuating the piezo motors 

manually and by giving voltage signal.  
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ÖZET 

Esnek bağlantılı mekanizmalar yüksek hassaslık gerektiren sistemlerde çok 

yaygın olarak kullanılmaktadır. Çünkü bu tip mekanizmalar yüksek çözünürlülük, 

sürtünmesiz, düzgün ve sürekli hareket sağlar. Bu tip mekanizmalar aynı zamanda diğer 

yüksek hassasiyet kazandıran mekanizmalardan maliyeti daha düşük olan sistemlerdir. 

Bu tip mekanizmaların temel fikri hareketi sağlamak için ilave bağlantı elemanları 

kullanmamaları, istenilen hareketi esnek elemanların eğilmesiyle sağlamalarıdır.  

Bu tezde, paralel ve düzlemsel olan esnek bağlantılı bir mekanizmanın tasarımı 

yapılmıştır. Mekanizma XY düzleminde hareket edecek şekilde üç noktasından 

piezomike mikro motorlar kullanılarak tahriki sağlanmıştır. Mekanizmanın 

matematiksel modeli, mekanizmada bulunan üç kirişin Euler Bernoulli dinamik 

denklemleri kullanılarak oluşturulmuştur. Değişkenleri ayırma metodu kullanılarak da 

bu denklemler çözülmüştür. Mekanizmanın merkezinin pozisyonu kirişlerin eğilmeleri 

cinsinden yazılabilmesi için gerekli transformasyonlar hesaplanmıştır. Matematiksel 

model durum denklemlerine çevrilmiş ve MATLAB Simulink kullanılarak benzetimi 

yapılmıştır. Benzetimden çıkan konum sonuçları COMET adı verilen başka bir 

benzetimle karşılaştırılmıştır. Daha sonra sistemin matematiksel modeli, XY 

düzleminde pozisyon kontrolü PID kullanılarak yapılabilmesi için iki girişli iki çıkışlı 

sisteme indirgenmiştir. Son olarak da, mekanizma lazer kesme ve su jeti kesme 
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yöntemleriyle üretilmiş, piezo motorlar elle ve voltaj sinyali vererek harekete 

geçirilerek sistemin açık döngülü deneyleri gerçekleştirilmiştir.   
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1 INTRODUCTION 

1.1 Flexures and Compliant Mechanisms 

1.1.1 Definitions  

Mechanisms are mechanical devices that are used to transfer motion, force or 

energy in a mechanical system. Most of the mechanisms consist of rigid links that 

connected to each other by using proper joints to give the desired motion or to transfer 

the desired force or energy. Especially rotational joints are used to transfer motion. In 

the high precision mechanisms, these joints begin to make troubles to the system like 

backlash, friction etc. So, another type of joint is developed for these high precision 

mechanisms. These joints are called flexure hinges. Flexures are the thin members that 

give the relative rotation between two rigid links through bending of the elastic 

materials as shown in Figure 1-1. They can also be considered as bearings with limited 

rotation capability [1]. Although a standard revolute joint is based upon the sliding and 

rolling, the flexure joints are based upon the bending deflection of cantilever beams [3]. 

So material’s young’s modulus or modulus of elasticity is the basic tool to create 

desired motion. 

 

 

 

(a) (b) 

Figure 1.1 Joints used in mechanisms. (a) bearing joint; (b) flexure hinge 
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Compliant mechanisms are mechanisms that use flexures. They are also called 

flexible mechanisms or flexure based mechanisms [1]. Deflection in mechanisms has 

been used and relied on to create motion throughout history. The first compliant 

mechanisms that are used are bows and catapults. Flexible materials are used to 

construct bows so that the strain energy of the flexible material transform to kinetic 

energy. Catapults, shown in Figure 1-2, are also an ancient mechanism that used by the 

Greeks at the 4th century B.C. [2]. They are used in ancient wars to propel the missiles 

across long distances. Early catapults are made of flexible wooden members to store 

energy and when it is released, the missiles are propelled.  

 

Figure 1.2 Catapult [wikipedia] 

When we look around there are many simple devices that we use are compliant 

mechanisms. Common compliant devices that are around us can be seen in Figure 1-3. 

Tweezers are used to grasp small objects by using two flexible beams, paper clips are 

used to attach papers together by using the flexibility of the materials, nail scissors is 

also a compliant mechanism because the given force deflects the upper beam and closes 

the gap and cuts the nail and safety belt tools are also used to lock the belt by the help of 

the deflection of the beams. 
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Figure 1.3 Simple Compliant Mechanisms 

In Figure 1-4 there is an example of compliant mechanism which is a crimping 

mechanism. By using hand grips the input force is taken and transferred to the output 

port through the flexible members of the mechanism which stores strain energy. There 

are types of flexures used in the mechanism which are compound flexures and simple 

flexures to provide the minimum closing at the output port with a human force. The 

detail discussion about flexure types will be in the following subsection [2]. 

 

Figure 1.4 Crimping Mechanism [2] 
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1.1.2 Types of Flexures and Flexure Mechanisms 

Basically, flexures have three main types as shown in Figure 1-5. The single-

axis flexures provide only linear or only angular motion whereas, the multiple-axis 

flexures and the two axis flexures provide both linear and angular motion. [1] 

 

Figure 1.5 Types of Flexures 

Single-axis flexures: They are the flexures which are supposed to be compliant 

in one axis which is called compliant or sensitive axis as shown in Figure 1-6. They are 

used in two dimensional (planar) mechanisms.  

 

Figure 1.6 Single-axis flexure [1] 

Single-axis flexures are also divided into two groups. Linear flexures that only 

provide linear motions and angular flexures that only provide angular motion. 

Linear flexures: The simplest linear flexure mechanism that uses single axis 

flexure is cantilever beam shown in Figure 1-7. The main problem of this type of 

mechanisms is that the end of the beam is free of rotation. The force should be applied 

to the beam midway between the cantilever and its end and this prevents the rotation of 

the end of the beam. But it is not very stable because the beam can have buckling and 

twisting. Misalignment of the actuation force or any other unexpected sources can cause 

large unwanted parasitic deflections. To prevent these parasitic errors, new types of 

flexure mechanisms are designed [5].  
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Figure 1.7 Simple Cantilever Beam [5] 

The mechanisms which have leaf-spring flexures have more resistance to torsional 

deflection because it is improved by attaching two or more flexures together as in 

Figure 1-8a. The main advantages of leaf type of linear mechanisms are that they are 

stiffer in torsion and they provide larger area on which to mount specimens. The main 

disadvantage of these mechanisms is that in directions except the drive axis they have 

low stiffness which causes the mechanism to have parasitic errors (deflections in 

unwanted directions). Especially the rotation about z axis is the weakest part of the 

mechanism [5]. Compound leaf spring mechanisms are designed to cancel the parasitic 

errors. The main idea is to attach a simple linear spring mechanism to the underside of 

another simple linear spring mechanism as shown in Figure 1-8b. The parasitic errors in 

platform B is cancelled out by the parasitic errors in platform A so more precise linear 

motion is produced. The deflection of this mechanism under the same amount of force 

is twice the deflection of simple linear spring mechanism [5]. 

F 
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-

 

(a) (b) 

Figure 1.8 (a) Simple Linear Leaf Type Mechanism , (b) Compound Linear Spring Mechanism [5]  

There is an S shaped deflection in leaf spring mechanisms which cause parasitic 

deflections. To overcome this, the centers of the beams can be done straight or 

reinforcements can be added to the center of the beams but this solution increases both 

buckling resistance and drive stiffness which cause the mechanism to fail in high 

precision applications. So another type of flexure was designed called “notch hinges” 

[5]. Notch hinges are the flexures with two holes are drilled close together as in Figure 

1-9. They act like elastic rotary bearings. 

 

Figure 1.9 Notch Type Flexure 

In Figure 1-10a the simple spring mechanism is composed of notch hinge 

flexures. The bending is restricted by the tensile stress in the notch hinge sections which 

cause the bending to be highly localized so it can be easily estimated by work-energy 

methods. Although the load capacity of leaf type of flexures are limited by the Euler 

buckling, notch type flexures undergo this by changing its stiffness due to the loading 

[5]. Notch type compound spring mechanism in Figure 1-10b is developed to increase 
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the torsional stiffness of notch type mechanisms. As the linear type compound 

mechanisms, the notch type compound mechanism has also half the stiffness of the 

simple stage, so the same stress applied to the compound mechanism gives twice 

deflection of simple mechanism [5]. 

 
 

(a) (b) 

Figure 1.10 (a)Simple Notch Type Spring Mechanism, (b) Notch Type Compound Spring Mechanism [5] 

Double compound spring mechanisms are designed to have the superior 

rectilinear performance. In Figure 1-11a there is a leaf type double compound 

mechanism and in Figure 1-11b there is a notch type double compound mechanism. 

These types of mechanisms also provide low errors from thermal expansion due to their 

symmetry [5]. 

 
 

(a) (b) 

Figure 1.11 Double Compound Spring Mechanisms [5] 

Angular flexures: They are used in applications where a small range of angular 

rotation motion is needed. The simplest flexure is the short cantilever beam in Figure 
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1.12 used by Eastman 1937. Greater range of angular motions can be achieved due to 

the longer and wider cantilever flexures. The basic drawback of simple cantilevers is 

that the center of rotation moves with the angle of rotation.  

 

Figure 1.12 Cantilever Beam 

The other types of angular flexures are in Figure 1-13. The crossed strip flexures 

are developed by Haringx in 1949. He also developed a formula for the shift of the axis 

with the angular displacement. Monolithic flexures are more resistant to parasitic errors 

which are developed by Young in 1989. Also Jones, 1955, designed the twisting beams 

about their longitudinal axis called the cruciform angle flexures.  

  
 

(a) (b) (c) 

Figure 1.13 (a) crossed strip flexure, (b) monolithic flexure, (c) cruciform angle flexure 

Multi axis flexures: These flexures have multiple compliant axes. They have a 

revolute geometry as shown in Figure 1-14. The compliant axis is still on the cross-

section of the minimum thickness but it doesn’t have any specific orientation. So they 
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can be used in three dimensional applications where the direction of the rotation is not 

important. 

 

Figure 1.14 Multi-axis flexure 

Two-axis flexures: They are designed to give the mechanism two dimensional 

action and used in three-dimensional (spatial) applications. They have two compliant 

axes as shown in Figure 1-15. The compliance of secondary axis is slightly smaller than 

the primary compliant axis. 

 

Figure 1.15 Two axis flexure 

Paros and Weisbord have designed two axis flexures by putting single axis 

flexures in a serial configuration. But these types of flexures require extra length of 

space to locate the flexures in serials. In Figure 1-16a two notch hinge flexures are 

combined to be perpendicular to each other to provide two axis motion. In Figure 1-16b 

a universal circular flexure is developed for the same purpose. 
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(a) (b) 

Figure 1.16 Two degree of freedom flexures 

1.2 Advantages and Disadvantages 

Advantages: 

 

Compliant mechanisms have many advantages to be used in a variety of 

applications especially applications where high precision is needed. 

− They can be manufactured from a single piece of material which means that 

compliant mechanisms are monolithic mechanisms. In other words they have fewer 

movable joints so this reduces the high clamping stiffness, creep of joints and wear. 

This also reduces the weight which is an important factor of compliant mechanisms 

to be used in aerospace and other applications that need light weight systems [5]. 

− Using compliant mechanisms reduces the number of parts required to achieve a 

specific task. This reduction causes the reduction of manufacturing, assembly and 

cost. For example as shown in Figure 1-17a fewer parts are required for the 

assembly of compliant running clutch mechanism than the rigid body mechanism 

shown in Figure 1-17b [2]. 
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(a) (b) 

Figure 1.17  (a) Compliant running clutch  (b) Disassembled rigid body mechanism [2] 

 

− There is no backlash between joints and no need of lubrication because no 

additional joint is used for creating motion. 

− Displacements are smooth and continuous at all levels and flexures can provide 

small rotations which are the main reasons of using compliant mechanisms in high 

precision motions [2]. 

− By using the symmetry it is possible to be insensitive to temperature changes.  

− If they are designed correctly, they can be controlled easily. The motion of the 

mechanism can be accurately predicted for known forces. Because the bending of 

flexures can be modeled as springs which have constant proportion between force 

and displacement characteristics. So, motion control of these mechanisms can be 

achieved easily by using these relations [5]. 

− The compliant mechanisms can be miniaturized easily. The reduction of number 

of parts and joints of a system gives the advantage in fabrication of micro 

mechanisms. These mechanisms can be fabricated easily by using micro electro 

mechanical system (MEMS) fabrication techniques [1]. 

 

Disadvantages:  

Despite of these advantages that are listed above, compliant mechanisms have 

also some disadvantages that cause challenges when they are used in some applications. 

− The main disadvantage of compliant mechanism is that it is difficult to analyze 

and design compliant mechanism. Knowledge of mechanism analysis, synthesis 

methods and deflections of flexible elements are required. When flexible elements 
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are subjected to large deflections, linear beam equations are no longer valid so non 

linear equations are taken into account because of the geometric nonlinearities 

caused by the large deflections. Because of this, in the past many compliant 

mechanisms are designed by trial and error methods. But these methods can be used 

just for simple systems that will perform simple task and small displacements. 

However, pseudo-rigid-body model is produced to model the compliant mechanisms 

which model the compliant parts as two or more rigid bodies connected by a pin 

joint. 

− Another disadvantage is that complaint mechanisms depend on modulus of 

elasticity of a material which is hard to control and usually calibration is needed 

after the system is produced. The mechanism also can have hysteresis due to 

dislocation movements in the material if the stresses are in the plastic deformation 

range, i.e. if we exceed the yield strength of the material as seen in Figure 1-18 

plastic deformation will occur on the mechanism so when the force is cut the 

mechanism can’t go its initial position because the material is distorted. The 

material must not have any plastic deformation. The stresses must be in the elastic 

deformation region of the material that is used. 

 

Figure 1.18 Stress-Strain Relationship 

− Compliant mechanisms also have weak toleration for large loads because large 

loads can cause buckling. Accidental overloads can lead to fatigue, catastrophic 

failures and plastic deformations. Lastly, the drive axis should be collinear with the 

desired motion because of the reason that the out of plane stiffness is low and drive 

direction stiffness is high [2, 5]. 
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1.3 Applications 

Compliant mechanisms are used in many applications because they can be designed 

for the purpose of the application. The flexible members can have large deflections or 

they can create small motions by having small deflections. The material selection, the 

geometric design and the manufacturing method give the compliant mechanisms 

opportunity to be used in both macro scale and micro scale applications. This section 

will give some examples of micro and macro compliant mechanisms. 

1.3.1 Micro Compliant Mechanisms 

They are a type of micro electro mechanical systems (MEMS) which integrate 

electrical and mechanical parts together with sizes in range of micrometers. These 

mechanisms are fabricated by using special fabrication techniques like etching, 

lithography, surface micromachining etc. They are barely visible with human eye on 

and the motions of these mechanisms are also can not be seen. Here are some examples 

of parallel compliant Stages that are used in small scale world: 

Bi-stable Mechanisms: They are the mechanisms with two stable positions within 

its range of motion. When they are actuated, they move from first equilibrium position 

to the second one [6]. In compliant bi-stable mechanisms this motion is provided by the 

deflection of flexible elements. These micro bi-stable mechanisms are used as micro 

valves, micro switches in micro applications. In Figure 1-19 a compliant bi-stable 

mechanism is presented. Figure 1-19a shows the first stable position, by the thermal 

actuation and bending of the flexible links, the mechanism moves to its second stable 

position in Figure 1-19b. 

  

(a) (b) 

Figure 1.19 The Young Mechanism [7] 
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Pin joints: Floating pin joints in Figure 1-20 have been designed by using two 

layers of polysilicon and manufactured by using Multi layer MEMS processes. They 

have a rotation as well as a translation capability. They have also used in bi-stable 

mechanisms as joints. [8] 

 

Figure 1.20 Compliant micro pin joint 

Micro compliant pantographs: Micro pantographs were built in Brigham Young 

University laboratories. Some views of these micro pantographs are in Figure 1-21 [9]. 

  

Figure 1.21 Micro compliant pantographs 

  Microgrippers: Microgrippers are tools in micro systems that pick and 

place very small particles that are in micro or nano range. They are also compliant 

mechanisms because no additional joints are used in grippers, the motion is created bye 

the bending of the beams. In Figure 1-22 there is a silicon based micro gripper [10]. It is 

fabricated by using etching and lithography processes. The thin arms which are the tips 

of the micro gripper have 1µm width and 3 µm length. 
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Figure 1.22 A Silicon microgripper [10] 

 There are also microgrippers that are fabricated by using micro wire electrical 

discharge machine (EDM) shown in Figure 1-23a. The materials of this micro gripper 

are aluminum and spring steel because they can be manufactured by using EDM 

technique. This microgripper is actuated by using piezo motors which can be seen in 

Figure 1-23b [11]. 

 

 

 

(a) (b) 

Figure 1.23 An aluminum microgripper [11] 

 In Figure 1-24 there is another type of microgripper, which is made by shape 

memory alloy (SMA) and is holding a piece of optical fiber of 140 µm diameter. The 

size of that gripper is 2mm x 5.8mm and it is made of TiNi alloy [12]. They are 

materials that remember their geometry so they are adequate materials for compliant 

mechanisms. They are metals that, after being strained, at a certain temperature revert 

back to their original shape. They can recover large strains so they can be used for large 

movement actuation. 

Piezoelectric actuator Low Voltage 
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Figure 1.24 SMA microgripper [12] 

Micro platforms: Spatial or planar micro platforms are also type of micro 

compliant mechanisms [13]. In Figure 1-25 there is a spatial and a planar micro 

platform which is made by micro machining techniques. 

 

Figure 1.25 Spatial and planar micro platforms [13] 

Nano Positioners: Nano positioners are developed for applications in nano 

technology and optical sensors. The nano positioner shown in Figure 1-26 is composed 

of a parallel bi lever flexure mechanism and a bent-beam thermal actuator. The flexure 

mechanism is providing high precision and nano motion. Thermal actuator is used to 

give the necessary force and displacement [14]. 
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Figure 1.26 2 DOF Nano positioner [14] 

 Force Gauges: There are also some surface micro machined force gauges 

that measures the force in micro devices. Suzuki (1996) developed a microgripper that 

can measure gripping force using the voltage applied and the elasticity of the 

microgripper. Xiong developed a method in 1998 to calculate the force which is based 

on the deflection of the beams [15]. So micro force gauges shown in Figure 1-27 were 

developed to measure the force by using the flexibility of the beams. 

 

Figure 1.27 Micro force gauge 

1.3.2 Macro Compliant Mechanisms 

Macro compliant mechanisms are also used where high precision motion is 

needed. They are visible and usable on a larger scale than the micro compliant 

mechanisms. Some examples of macro compliant mechanisms will be given in this 

section. 
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Compliant Bicycle Brakes: Larry L. Howell and his students did a project 

about bicycle brakes shown in Figure 1-28. They have replaced the joints of the bicycle 

brakes with flexible beams. Compliant brakes provide absolute parallel motion; reduce 

the noise and the wear. It also solves lubrication problem.  

 

Figure 1.28 Bicycle Brake [BYU] 

 Bi-stable switches: As mention in micro bi-stable mechanisms, there are bi-

stable macro compliant mechanisms. They are used as switches, breakers, clamps, snap 

hinges, closures, positioning devices etc.  In Figure 1-29 there is an example of 

compliant switch. Though they require external force to move from their fist 

equilibrium position to their second equilibrium position, no holding energy is required 

to remain in either position .They have also advantages like they are cheap and their 

fabrication is easy [16]. 

 

Figure 1.29 A compliant switch [BYU] 

Ortho-Planar Flat Springs: They are flat thin circular or polygon shaped 

platforms which mode up or down orthogonal to the plane. They do not rotate. They can 

be actuated manually or electromagnets. Ortho-planar flat springs applications are 
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positioners, damping devices, touch probes, speakers, pneumatic valves, electrical 

contacts etc. Some examples can be shown in Figure 1-30 [17]. 

 

Figure 1.30 Ortho-Planar Flat Springs [BYU] 

Centrifugal Clutches: They are used to get rid of rotational motion rather than 

lateral. When they are made as compliant mechanisms like shown in Figure 1-31, 

numerous segments, springs, pins etc. are eliminated. Flexible segments are assembled 

into the moving part. They are simple, have maximum surface friction and torque, 

eliminate self locking. When compared, their performance is better than the traditional 

centrifugal clutches [17]. 

  

(a) (b) 

Figure 1.31(a) Compliant centrifugal clutch, (b) Assembled [17] 

Positioning Stages: Compliant mechanisms are also used as high precision 

positioning stages in micro assembly systems. Because positioning the particles or 

devices is one of the most important problems in micro assembly. In this thesis, we will 

be focusing on micro positioning stages so in the following section some positioning 

stages in the literature will be presented. 
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1.4 Literature Review of Compliant Positioning Stages 

Parallel mechanisms are rigid architectures which are necessary to obtain high 

accuracy and on the contrary to serial mechanisms they can limit the accumulation of 

error. That’s why in the literature there are many approaches that have been taken to 

design of high precision micro positioning stages. In the literature some of these micro 

positioning stages are compliant mechanisms having different kind of flexure types. 

They have all aimed to design the most precise and controllable mechanism for their 

purposed applications.  

 Yao Q.,Dong J.,Ferreira P.M. [18] have built a novel piezo-driven parallel 

kinematic, micro positioning XY stage shown in Figure 1-32. Their design is composed 

of four bar linkages and they are connected with flexure hinges. Piezo actuators were 

used to give motion to the system. Their design has two independent kinematic chains 

that connect the end effector to a fixed base. They are saying that a viable positioning 

stage must have independent working actuators, the platform can move along any 

direction in XY plane and the system should be always kinematically determined. 

Firstly, they have built an open loop system to see the force-displacement relationship 

of the stage. Then two fiber optic sensors are used to make a closed loop controlled 

system.  

  

Figure 1.32  Piezo-driven parallel micro positioning XY stage 

 Lu, Handley, Yong, and Eales [19] developed a three degree of freedom 

compliant micro motion stage shown in Figure 1-33 which is actuated by three piezo 

actuators. The three linkages are connected to the end effector platform as illustrated by 

a triangle. The stage translates along x-y direction and rotates about z axis. It is a 

compact, light weight, cost effective design. The kinematic model is calculated by 
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assuming the stage as a 3RRR mechanism. They have also controlled this stage by using 

simple PI control. But they had problems in modeling. Their modeling accuracy is not 

good. The kinematic models that are derived by the researchers are inaccurate even after 

calibration. 

  

Figure 1.33 3 DOF micro motion stage 

Shorya [20] has studied compliant mechanism design in his Phd. Thesis. He has 

designed 6 different xy positioning stages. The aim of his project is to get rid of the 

parasitic errors in x and y motions. Finally he has developed the stage shown in Figure 

1-34. Two actuators produce motion independent of each other by arranging the planer 

constraints properly. So a x force produces only x displacement of the motion stage and 

y force produces only y displacement. He also used piezo actuators for actuation.  

 

Figure 1.34 XY positioning stage 
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 Another type of XYθ micro motion stage shown in Figure 1-35 which is a 

monolithic flexure hinge mechanism has been built by Ryu , Gwean and Moant [21]. 

Firstly, they have made an optimization to find the best parameters for the design then 

they have built the experimental setup. They have also used piezoelectric actuator for 

actuation. Their stage have 41,5 µm x 47 µm XY range and the yaw motion range is 

1,565 mrad. 

  

 

 

Figure 1.35 XYθ micro motion stage 

  

 Kang, Wen, Dagalakis and Gorman have used “Pareto Frontier” 

optimization criteria to select the best parameters for designing their compliant 

mechanism shown in Figure 1-36. If a feasible decrease is seen in one of the design 

metrics which causes at least one other metric design increase, this solution is called 

“Pareto”. They have also showed that 2 DOF circular notch joint performs better than 

other types of joints [22]. 
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Figure 1.36 2 DOF compliant mechanism 

 Finally, Culpepper and Anderson have designed a monolithic compliant 

mechanism called “Hexflex”. Their main aim was to design a low cost nano 

manipulator. Hexflex have 100 nm x 100 nm x 100 nm work space. Two axis magnet 

coil actuators were used for actuation of the system. They have also built a MATLAB 

script tool called COMET™ which is a helping tool for selecting the right parameters 

for the design of compliant mechanisms [24]. In this thesis, the compliant mechanism 

design is inspired by their design so in the following chapter their design will be 

explained. 
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2 DESIGN OF XY COMPLIANT STAGE  

Compact stages are desirable for many micro and nano applications where high 

precision motion is required. Some of these applications are semiconductor mask, 

scanning interferometery, atomic force microscopy, micromanipulation, microassembly, 

MEMS applications, biological experiments and wafer alignment. Since precision and 

small range of motion is required, flexures are the only choice of bearing joints for the 

stages.  Magnetic and air bearings can be used for large range high precision motion 

applications [24].  

While designing a compact XY stage, there are two main kinds of design 

configurations which are serial and parallel designs. Serial mechanisms are mechanisms 

that have only one open kinematic chain. They have poor acceleration and stiffness and 

the workspace of serial mechanisms is very large. So, serial mechanisms are used where 

large workspace is important for the application. In fact almost all macro-scale 

machines that don’t need either high dynamic performance nor nanometer resolutions, 

serial mechanisms are used. Parallel mechanisms are mechanisms that several 

independent linkages connected to each other and make a closed loop system. The 

workspace of parallel mechanism is smaller than the serial mechanisms. These 

mechanisms are also lighter, stronger and faster than the serial mechanisms. They are 

used in applications that have small workspace and need high precision motion. So 

because of the advantages of parallel mechanisms to serial mechanism in micro world 

all stages are designed as parallel mechanisms.  

Our XY stage must be designed as it can be used in microassembly work station. 

The stage must have small work space, high precision motion and must be small enough 

to be used in the microassembly workstation. So if we look at the literature of micro 

world and making compressions between the types of stages we can see that a flexure 

based compliant and parallel XY stage will be compatible for our application. 
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2.1 Design Requirements of the Parallel Compliant XY Stage 

The main design requirements for XY compliant stage are: 

- The size of the stage must be compatible with the space of the microassembly 

workstation. It mustn’t be very large. 

- The maximum X and Y stroke of the stage must be 1 mm. So the stage material 

must not be under plastic deformation when the center of the triangle moves in 

1x1 mm area. 

- The position repeatability must be achieved. 

- The stage must have small resolution so that the stage can be precise enough to 

be used in microassembly workstation. 

- The stage must be easily produced. The geometry of the stage must not be 

complicated. 

2.2 Six-axis compliant mechanism, HexFlex  

Martin L. Culpepper and his research team in MIT have developed a new planar, 

six-axis compliant mechanism called HexFlex [23]. The mechanism has x-y-z-θx-θy-θz 

motion. The main idea of this mechanism is that in Figure 2-1 there is a triangular stage 

in the middle and the stage is actuated by the deflection of the flexures that is connected 

to the edges of the triangle.  

 

Figure 2.1 Triangular Stage  
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 The main components of HexFlex are shown in Figure 2-2. The Stage is 

fixed by using the supporting beams. The force should be applied at the edges of the 

triangular stage so the tabs are designed to create the desired motion of the triangular 

stage. The flexural hinges are also used as compliant joints to connect the tab and the 

triangular stage.  

 

Figure 2.2 The elements of Hexflex [25] 

The mechanism is actuated from the tabs by using electro magnetic coil 

actuators. The forces that are generated by the electro magnetic coil actuators create in-

plane and out-of-plane displacements. The examples of combination of actuations and 

displacements are shown in Figure 2-3.  

The x,y, θz are the in plane displacements that are generated by Fp forces. In 

Figure 2-3 A and C situations are the examples of in plane displacements. The z, θx and 

θy are the out of plane displacements that are actuated by the Fz forces. In Figure 2-3 B 

and D situations are the examples of out of plane displacements. 
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Figure 2.3 Example displacements for combined actuator inputs  [25] 

Their final compliant Hexflex mechanism design and the stage that is assembled 

to its actuators and sensors can be seen in Figure2-4. 

  

Figure 2.4 The HexFlex mechanism and the assembly of the mechanism [23] 
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2.3 The Proposed Design 

2.3.1 Actuating XY Stage 

We have used the Hexflex mechanism which is a spatial compliant mechanism, 

but we have only used as a planar parallel mechanism which has only two degree of 

freedom. In their case [23] the tabs of the mechanism shown in Figure 2-2 is not 

actuated by linear forces which are in the direction of the tabs but in our proposed 

design three tabs are actuated by these forces which are in the beams direction and 

create motion for planar triangular stage in x and y directions shown in Figure 2-5. The 

deflections of the flexural beams due to the forces that are acting on them generate x-y 

displacements for the triangular stage. The triangle is an equilateral triangle and the 

angles between the flexural beams are 120˚. This means that the forces acting through 

these flexural beams are intersecting at the center of the equilateral triangle. This 

situation causes no rotation in z direction. So the stage moves only in x-y direction. 

 

Figure 2.5 The equilateral triangular stage actuation 

Figure 2-5 also shows that F1 creates a motion only in –y direction, F2 creates a 

motion in +y and +x directions and F3 creates a motion in +y and –x direction. 

If the stage is actuated only from beam 1, the other two beams will bend and the 

stage will move in –y direction like shown in Figure 2-6a. To make the stage move in 
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+y direction shown in Figure 2-6b, only F2 and F3 forces should be given to the system 

and the x component of F2 and F3 forces should be equal to each other so that the forces 

in x direction cancel each other and only the forces in y direction affects the bending of 

the 2nd and 3rd beams as shown in Figure 2-6b. Beam 1 will not bend in x direction 

because the sum of the forces. 

 

(a) 

 

(b) 

Figure 2.6 y displacements of the stage fort he given linear forces 

 In Figure2-7 the stage is moving only in +x and –x direction. To move the 

stage only in +x direction, F1 and F2 forces are used. F1 cancels the y projection of F2 so 
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the stage moves only in +x direction like shown in Figure 2-7a. On the contrary to move 

the stage only in –x direction F1 and F3 forces are used in Figure 2-7b. Same way F1 is 

used to cancel the y projection of F3.  

 

(a) 

 

(b) 

Figure 2.7 x displacements of the stage fort he given linear forces 

 PI’s piezoelectric micrometer drives called “Piezomike” are selected for the 

actuation of the mechanism. The reason is that they are available in out laboratory, they 
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can be operated manually, and the sensivity of the micrometer is 1µm. The micrometer 

tip can automatically move up to 25 µm by controlling the piezo voltage. So they can 

also be used remotely for fine positioning. The resolution of the piezoelectric motion is 

in sub-nanometer range. The travel range of the micrometers that is used is 18mm 

which is P-854 shown in Figure 2-8. The maximum axial push force is 20N which will 

determine the maximum deflection of the beams.  

 

Figure 2.8 PiezoMike P-854 

2.3.2 The dimensions and final design of the compliant mechanism 

The basic dimensions of the compliant mechanism that affect the performance 

are shown in Figure 2-9. The parameters are tuned by looking at the deflection of the 

stage. The material of the stage is assumed to be Aluminum (AL6061). By using these 

parameters shown in Table 2.1 when 20N force is given to the mechanism the material 

doesn’t have any plastic deformation. The results will be shown in Finite Element 

Analysis (FEA) section. 



32 

 

Figure 2.9 The parameters that affect the performance 

Table 2-1 The parameters that are used 

L1  26.4 mm 

L2  45 mm 

w1  8 mm 

w2  0.8 mm 

w3  1 mm 

t (thickness)  2 mm 
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2.3.3 Mounting the mechanism 

A base shown in Figure 2-10 is designed for mounting the compliant mechanism 

and the micrometer derives. It is designed so that the micrometer drive tip axes collide 

with the corresponding axes of the flexural beams. It is designed as small as possible 

because the application of this mechanism is micro system. The base has a space of 

179mm x 156 mm. The main dimensions of the base can be seen in Figure 2-11. 

 

Figure 2.10 Isometric view of the base 
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Figure 2.11 Dimensions of the base 

An intermediate part is also designed for keeping the tip axes of the micrometers 

collide with the axes of the beams that they are actuating. This part is shown in Figure 

2-12. The left circular cut will be connected to the tip of the micrometer and the right 

rectangular cut will be connected to the tabs of the compliant mechanism like shown in 

Figure 2-13 and Figure 2-14. The actuation axis will be on the axis of the center of the 

stage. The forces will not create any moment to the system so the triangular stage will 

not rotate. Also this part also helps to prevent the compliant mechanism to bend in z 

direction. 

  

Figure 2.12 Intermediate part 

 

Micrometer Tip 

Compliant 

Mechanism Tab 
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Figure 2.13 The Assembly of the micrometer drive and the compliant mechanism 

 

Figure 2.14 The axis of the micrometer collide with the axis of the tab of the compliant mechanism 

The final isometric view of the assembly can be seen in Figure 2-15. It can be 

seen that the system is compact. It is also easy to assemble and carry. 
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Figure 2.15 The isometric view of the Assembly 

2.4 FEA Analysis 

Material selection has a very important role for designing the compliant 

mechanism because, the material properties determine the maximum deflection of the 

beams that do not result plastic deformations. The application and the geometry of the 

mechanism have an important role to make that selection. The materials which have low 

elastic modulus, means have more flexibility, can be used where the application needs 

higher motions and the geometry of the mechanism permits the material to bend where 

the material is not overstressed. If the material is overstressed then the material has 

plastic deformation which causes damage to the mechanism. If the mechanism is 

subjected to heavy loads, then the material should have higher strength but then the 

flexibility of the material will decrease so the motion capability of the mechanism will 

also decrease.  

Finite element analysis of the compliant mechanism by using three different 

types of material is done in ABAQUS. The materials that are used in the analysis are 
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aluminum, stainless steel and titanium. The properties of the materials that are used are 

given in Table 2-2. 

Table 2-2 The properties of materials 

Materials/Properties 

Elastic Modulus 

(Young’s Modulus) 

(N/m2) 

Poisson 

Ratio 

Shear 

Modulus 

(N/m2) 

Density 

(kg/m3) 

Yield 

Strength 

(N/m2) 

Aluminum (AL6061) 6.9e10 0.33 2.6e10 2700 1.24e8 

Stainless Steel 

(AISI304) 
1.9e11 0.29 7.5e10 8000 2.068e8 

Titanium 1.1e11 0.3 4.3e10 4600 1.4e8 

 

 Conventional shell elements are chosen to make the FEA analysis of the 

mechanism, because the thickness of the mechanism is 2mm. and the length of the 

mechanism 135mm. So the ratio between the thickness and the minimum length of the 

beam is 1/67,5. It is proper to use S8R shell element type which is a quadratic (second 

order) element type in ABAQUS. To use a quadratic element gives the advantage of 

producing better results than the first order elements like S4R in ABAQUS and 

quadratic elements needs smaller mesh densities than the linear elements and quadratic 

elements are  more reliable than the triangular elements. 

Firstly, the minimum number of elements is determined. The boundary 

conditions and applied load is defined in Figure 2-16. The mechanism is fixed from the 

fixture holes and the deformation in 2 direction and the rotations in 1, 2 and 3 directions 

is set to zero for all tabs to make the tabs only move in their directions. One of the tabs 

is pushed by using 1N concentrated force. The material is selected to be aluminum. The 

mesh density is increased until the displacement of the triangle in 3 direction converges 

to some number.  

Table 2-4 shows that the displacement of the triangle in 3 direction converges to 

0.1265mm. So the optimum number of elements that can be used is 5808 elements. For 

the FEM simulations S8R element type, 5808 number of elements and 19624 number of 

nodes are used. In Figure 2-17 the meshed part can be seen. 
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Figure 2.16 The boundary conditions and load for the mechanism 

Table 2-3 The displacement results for varying number of elements 

Number of elements Displacement of the triangle in 3 direction (mm) 

1744 0,1261 

2066 0,1262 

2331 0,1263 

2932 0,1264 

3612 0,1264 

4035 0,1264 

4704 0,1264 

5087 0,1264 

5808 0,1265 

6678 0,1265 

7452 0,1265 

8005 0,1265 

The concentrated 
force for the tab to 
push in 3 direction 

The mechanism is 
fixed through the holes  

The tabs can only 
move 1 and 3 
directions 

The displacement of the 
triangle 
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Number of elements Displacement of the triangle in 3 direction (mm) 

8883 0,1265 

9339 0,1265 

10762 0,1265 

 

 

Figure 2.17 Meshed mechanism 

Three types of material is used to find the maximum displacement of the triangle 

is founded by giving maximum concentrated forces to one of the compliant mechanisms 

tab that the material’s yield strength can let.  

 When using aluminum and one of the tabs of the mechanism is pushed with 

5.4 N force on the axis of the tab, the stresses can be seen in Figure 2-18. The maximum 

stress of the mechanism is 122 N/mm2. The maximum stresses occur in the beams 

where they are fixed to the tabs as shown in Figure 2-19.The yield strength of the 

aluminum is 124 N/mm2 so approximately 5.4 N force is the maximum force that the 

material can let. The displacement of the triangle for 5.4N force is 0.6828 mm shown in 

Figure 2-20.   
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Figure 2.18 Von Mises stress analysis of Aluminum made compliant mechanism. 

 

Figure 2.19 Maximum stress 
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Figure 2.20 Displacement analysis of Aluminum. 

If stainless steel is used, the mechanism lets higher force than the aluminum because 

the yield strength of the stainless steel is much greater than the aluminum. The force 

applied is 9N as shown in Figure 2-21, the corresponding maximum stress of the 

mechanism is 203.3 N/mm2 which occur as shown in Figure 2-19. The yield strength of 

the aluminum is 206.8 N/mm2 so this stainless steel mechanism can let almost 9N force 

when it is given to one of the tabs. On the other hand the corresponding displacement of 

the triangle is 0.4133 mm as shown in Figure 2-22.  Stainless steel has higher strength 

than the aluminum but the elastic modulus is higher than the aluminum so it is not 

flexible as aluminum. The mechanism which is made of stainless steel has more 

strength but less motion capability than the aluminum. 
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Figure 2.21 Von Mises stress analysis of Stainless Steel made compliant mechanism. 

 

Figure 2.22 Displacement analysis of Stainless Steel. 
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Finally, if titanium is used, the mechanism lets higher force than the aluminum not 

much than the stainless steel but greater than the aluminum. In Figure 2-19 6.2N force is 

applied and the corresponding maximum stress is 140N/mm2. The maximum stress 

occurs as it said before in Figure 2-19. The yield strength of the aluminum is 140 

N/mm2 so this titanium made mechanism can let 6.2N force. The corresponding 

maximum deflection of the mechanism is 0.4918 mm as shown in Figure 2-20.  The 

maximum deflection of the titanium is greater than the stainless steel because titanium 

has lower elastic modulus than the stainless steel so titanium made mechanism is more 

flexible than the stainless steel but not flexible as aluminum one.  

 

Figure 2.23 Von Mises stress analysis of Titanium made compliant mechanism. 
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Figure 2.24 Displacement analysis of Titanium. 

In conclusion, if we look at the analysis the most flexible material is aluminum but 

the strength of this material is not good and the machinability of this material is not so 

good because the minimum thickness of the compliant mechanism is 0.8mm which is 

very small value to be machined. Titanium is the most optimum material, because it has 

strength and flexible enough but the cost of this material is high. Stainless steel costs 

less and it has a good strength which allows to be machined more easily than the 

aluminum. So firstly the mechanism material is selected to be stainless steel and it is 

machined by using laser and water jet cutting techniques. The machining techniques 

will be discussed later. 
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3 MODELING OF COMPLIANT MECHANISM  

In this section, the proposed compliant mechanism that is described in Chapter 2 

will be mathematically modeled. It is assumed that we have three beams that are 

connected to an equilateral triangular stage’s edges. The beam dynamics determine the 

dynamics of the stage. 

3.1 Literature Review for Modeling Compliant Mechanisms 

The modeling of flexure based mechanisms is a very difficult problem. Because 

of the nonlinearities in the dynamics of the flexures, by making assumptions and using 

different techniques to simplify the modeling problem of compliant mechanisms a 

reasonably simple model could be obtained. [26] 

Flexures can be considered as beams and in order to model the bending Euler–

Bernoulli equation which ignores shearing and rotary inertia effects is often used. These 

two effects may be incorporated by using a Timoshenko beam which is generally used 

if the beam is short relative to its diameter. The original dynamics of a flexible link 

which is described by partial differential equations and possesses an infinite dimension 

is not easily available to be used directly in system analysis. As a result of that dynamic 

equations are reduced to some finite dimensional models by using assumed modes, 

finite elements or lumped parameter methods. 

In assumed mode model, reduced finite modal series in terms of spatial mode 

Eigen functions and time-varying mode amplitudes are used to represent the link 

flexibility. The main drawback of this method is the difficulty in finding modes for links 

with non-regular cross sections and multi-link manipulators. [27] 

In finite element method, elastic deformations are analyzed by assuming a 

known rigid body motion and later superposing the elastic deformation with this 

motion. A huge number of boundary conditions which are uncertain in most of the 
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situations for flexible manipulators should be considered to solve a large set of 

differential equations derived by the finite element method. 

 In the lumped parameter model, the manipulator is modeled as spring and mass 

system, which may not give sufficiently accurate results. This method is the simplest 

one for analysis purposes. [26] 

Another common method for modeling the dynamic behavior of flexure 

mechanisms is Pseudo-Rigid-Body model. In this modeling technique each flexure is 

treated as a revolute joint with a torsion spring. Using such a kind of modeling makes 

the analysis of mechanisms with flexures easier and faster. This model also eases to see 

the effects the parameters on mechanism design and significantly simplify the design 

process. Using this model results can be expressed in analytical forms and the effects of 

parameters such as link lengths, initial position etc. on the motion of the stage. [2] 

Pseudo rigid body models (PRBs) are generally used to accurately and efficiently model 

such elastic deflections. [28] formulated the PRB model of a 2-DOF mechanism with 

flexures. Methods based on finite element method or the elliptic integral solutions are 

more realistic in the analysis of flexure mechanisms. However, PRB model gives results 

precise enough to be used in the actual design. In [29] Bernoulli-Euler beam equation is 

used for deflections with elliptic integrals, and the elliptic integral solutions are used to 

determine when an inflection point will exist.  

A substructuring dynamic modeling procedure is proposed for closed-loop 

flexible-link mechanisms and applied and applied to a planar parallel platform [30]. The 

Lagrange finite element (FE) formulation is used to model flexible linkages, in which 

both translational and rotary degrees of freedom exist. 

3.2 Dynamics of Compliant Mechanism 

A compliant mechanism is a distributed-parameter system, because the motion of 

these systems is provided by the deflection of the flexural elements and these elements 

dynamics depend on both time and the position.  

The dynamics of the mechanism that it is proposed in Chapter 2 is formed by the 

three beams’ dynamics. It is assumed that we have three fixed free beams and the tip 

motion of these beams will determine the motion of the triangular stage as shown in 

Figure 3.1. Beams are elements that are constructed possess a continuous distribution of 
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inertia and compliance properties. So these elements are represented by linear partial 

differential equations in space and time. Separation-of-Variables Solution method is 

used to solve these partial differential equations. This method is based on separating the 

partial differential equation into a position and a time function multiplication. The 

dynamics of these systems are composed of propagating waves that comes from the 

boundaries and add together to produce what is actually observed at any point and time. 

Mode shapes of Euler Bernoulli beams are used to define these wave shapes that create 

the motion of the flexible systems.  

 

Figure 3.1 Assumed compliant mechanism 

The dynamics of the mechanism is found by separating the transverse and 

longitudinal motions of the beams. Firstly, the forces that cause transverse and 

longitudinal deflection of the three beams are calculated. Second, the dynamics of the 

beams are calculated by using Euler-Bernoulli beam equations and finally the 

corresponding center deflection is calculated by using the deflection vectors of the 

beams. 

3.2.1 Transverse Dynamics 

The transverse forces that are acting on each beam can be calculated as 

following figures. Each force acting on the beams, FA, FB and FC are shared equally by 

the other two beams because the directions of the actuating forces are all on the centre 

axes of the equilateral triangle which cause no moment on the triangular stage. The 

perpendicular components of these shared forces are the transverse forces for the beams. 
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Figure 3.2 The transverse forces produced by FA 

 

Figure 3.3 The transverse forces produced by FB 

 

Figure 3.4 The transverse forces produced by FC 
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So, we can assume that we have three separate fixed free beams shown in Figure 

3-5 which are under transverse forces. The forces which lie on the clock wise direction 

are taken as positive forces. 

 

 

 

Figure 3.5 The transverse forces acting on the beams 

The transformation matrix between the actuating forces and the transverse forces 

to the beams are; 

1

2

3

0 sin 60 sin 60
1

sin 60 0 sin 60
2

sin 60 sin 60 0

A t

B t

C t

F F

F F

F F

−     
    − ⋅ =    
    −     

 (3.1) 

0 sin 60 sin 60
1

sin 60 0 sin 60
2

sin 60 sin 60 0
forcetransverseT =

− 
 − 
 − 

 (3.2) 

The determinant of Tforcetransverse is 0 so the matrix is not invertible but it is not a 

problem for us because we don’t need a transformation from transverse forces to the 

actuating forces. 
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Euler-Bernoulli Transverse Beam Dynamics: 

The general Euler Bernoulli beam equation acting one external force: 

4 2

14 2
( )

w d w
EI A F x x

x dt
ρ δ

∂
+ = −

∂
 (3.3) 

The boundary conditions for the fixed-free beam are as follows: 

There is no deflection at the fixed end so the boundary condition for the fixed end is:  

(0, ) 0   ;   (0, ) 0
w

w t t
x

∂
= =

∂
 (3.4) 

There is no load at the free end of the beam. There is zero moment and zero shear so the 

boundary condition for the free and is: 

2 3

2 3
( , ) 0   ;   ( , ) 0

w w
L t L t

x x

∂ ∂
= =

∂ ∂
 (3.5) 

The transverse displacement depends on the position (x) and time (t).We can define as 

two functions: 

( , ) ( ) ( )w x t Y x f t=  (3.6) 

If we substitute 3.6 into 3.3: 

4 2

4 2
0

d Y d f
EI f AY

dx dt
ρ+ =  (3.7) 

Dividing each term by AYfρ : 

24

4 2

1 1
0

d fEI d Y
f

A Y fdx dtρ
+ =  (3.8) 

In 3.8 the term which depends on x and the term which depend on t equal to the same 

constant. If we say the second term equal to 2ω− : 

2
2

2
0

d f
f

dt
ω+ =  (3.9) 

4
2

4
0

d Y A
Y

EIdx

ρ
ω− =  (3.10) 

We can rewrite equation 3.10 as: 

4
4

4
0

d Y
k Y

dx
− =  (3.11) 

4 2A
k w

EI

ρ
=  (3.12) 
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Equation 3.11 is a differential equation and if we use boundary conditions shown in 

equations 3.4 and 3.5, the mode shapes and associated mode frequencies will be found.  

If we use equation 3.6, the boundary conditions will be: 

2 3

2 3
(0) (0) ( ) ( ) 0

dY d Y d Y
Y L L

dx dx dx
= = = =  (3.13) 

The differential equation 3.11 has the general solution: 

( ) cos sinh cos sinY x A hx B x C x D xβ β β β= + + +  (3.14) 

If we solve this differential equation we will find a frequency equation: 

(2 1)
  

2n

n

L

π
β

−
=  (3.15) 

And the mode shape functions: 

( )sinh sin
( ) cosh cos sinh sin  

cosh cos
n n

n n n n n
n n

L L
Y x x x x x

L L

β β
β β β β

β β
−

= − − −
+

 (3.16) 

4 modes are used for defining the dynamics. The shape functions can be seen in Figure 

3-6.  

 

Figure 3.6 Transverse Mode Shape Functions 

The shape functions are also called eigen functions, mode shapes or normal 

modes. The motion at any time history that the beam executes, from its initial condition, 

is a linear combination of the mode shapes oscillating at their respective natural 

frequencies. Another important fact about these mode shapes is that they are orthogonal. 
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0

( ) ( ) 0,    
L

n mY x Y x dx n m= ≠∫  (3.17) 

If we multiply by Aρ : 

0

( ) ( ) 0,    
L

n mAY x Y x dx n mρ = ≠∫  (3.18) 

The solution has the form: 

0

( , ) ( ) ( )n n

n

w x t Y x tη
∞

=

=∑  (3.19) 

If equation 3.19 is substituted in equation 3.3 and by using the orthogonality property of 

the shape functions multiply the equation by Yn: 

( )
4

2

4
0 0

( )
L L

n n n n n

d Y
AY dx Y EI dx F t Y L

dx
ρ η η

   
+ =   

   
∫ ∫ɺɺ  (3.20) 

If we substitute equation 3.10 into 3.20: 

( )2 2 2

0 0

( )
L L

n n n n n nAY dx AY dx F t Y Lρ η ρ ω η
   

+ =   
   
∫ ∫ɺɺ  (3.21) 

We can rewrite equation 3.21 more simply as: 

( )( )n n n n nm k F t Y Lη η+ =ɺɺ  (3.22) 

nm  is the modal mass which is: 

2

0

L

n nm AY dxρ= ∫  (3.23) 

nk  is the modal stiffness which is: 

2    n n nk m ω=  (3.24) 

We can add some damping to the system because typically structures are lightly damped 

[32]. So 3.22 equation can be written as: 

( )( )n n n n n n nm R k F t Y Lη η η+ + =ɺɺ ɺ  (3.25) 

nR  is the modal damp which is: 

2  n n nR m ζω=  (3.26) 

ζ  is the damping mode ratio and for lightly damped systems it is in the range of 0.01-

0.1. 
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( )2 2 2 2

0 0 0

2 ( )
L L L

n n n n n n n n nAY dx AY dx AY dx F t Y Lρ η ρ ζω η ρ ω η
     

+ + =     
     
∫ ∫ ∫ɺɺ ɺ  (3.27) 

Kinematics for Transverse Motion of the Beams: 

 

Figure 3.7 Kinematics of transverse motion 

The transverse motion of the beams are showed in Figure 3-7.By looking at the figure 

and if the clock wise direction is set to be positive direction, the relationship between 

the transverse deflection of the beams and the xα and xβ which are the coordinates of the 

center of the equilateral triangle can be calculated as follows: 

sin 60 sin 60B Cx w wα = −  (3.28) 

cos60 cos60A B Cx w w wβ = − −  (3.29) 

We can write a transformation matrix between the transverse deflections and the 

center coordinates by using equations 3.28 and 3.29. 

0 sin 60 sin 60

1 cos60 cos60

A

B

C

w
x

w
x

w

α

β

 
−     ⋅ =     − −     

 (3.30) 

0 sin 60 sin 60

1 cos60 cos60TT
− 

=  − − 
 (3.31) 
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3.2.2 Longitudinal Dynamics 

The forces that act on the mechanism also cause longitudinal deflections. We 

can assume that we have three bars that have flexibility in longitudinal direction and 

they are connected to the edges of a triangular stage. The components of these forces 

that cause longitudinal motion for the bars can be seen in Figures 3-8, 3-9 and 3-10. 

 

 

Figure 3.8 The Longitudinal forces produced by FA 

 

Figure 3.9 The Longitudinal forces produced by FB 



55 

 

Figure 3.10 The Longitudinal forces produced by FC 

We can also assume as the transverse dynamics that we have three separate fixed 

free bars shown in Figure 3-11 which are under longitudinal forces.  

 

 

 

Figure 3.11 The longitudinal forces acting on the beams 

The transformation matrix between the actuating forces and the longitudinal 

forces to the beams are; 

1

2

3

0 cos60 cos60
1

cos60 0 cos60
2

cos60 cos60 0

A l

B l

C l

F F

F F

F F

    
     ⋅ =    
         

 (3.32) 
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0 cos60 cos60
1

cos60 0 cos60
2

cos60 cos60 0
forcelongitudinalT =

 
 
 
  

 (3.33) 

 

The dynamic equation for longitudinal forced bar is in equation 3.34 

( )
2 2

2 2

( )F t
E x L

t x A

ξ ξ
ρ δ
∂ ∂

− = −
∂ ∂

 (3.34) 

( , )x tξ  is the longitudinal motion of the bar which is depend on both the displacement 

and time. It can be separated into a product of a function of x only Y(x) and a function 

of time only f(t) that we have done in transverse dynamics. 

( , ) ( ) ( )x t Y x f tξ = ⋅  (3.35) 

If we substitute equation 3.35 into 3.34 we will get: 

2 2

2 2
0

d f d Y
Y Ef

dt dx
ρ − =  (3.36) 

If we divide equation 3.38 by Yfρ : 

2 2

2 2

1 1d f E d Y

f dt Y dxρ
=  (3.37) 

In equation 3.37 the terms on the left depends on only time and the terms on the right 

depends on only displacement x. These two terms must be equal to the same constant. 

So if we say: 

2
2

2

1 d f

f dt
ω= −  (3.38) 

2
2

2
0

d f
f

dt
ω+ =  (3.49) 

2
2

2
0

d Y
Y

dx E

ρ
ω+ =  (3.40) 

We can rewrite equation 3.40 as: 

2
2

2
0

d Y
k Y

dx
+ =  (3.41) 

2 2k
E

ρ
ω=  (3.42) 

If we solve the differential equation 3.41 the general solution is:  

( ) cos sinY x A kx B kx= +  (3.43) 

The boundary conditions for the fixed-free bar are: 
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The displacement at x=0 is zero because it is fixed so; 

(0, ) (0) ( ) 0

(0) 0

t Y f t

Y

ξ = =

=
 (3.44) 

The force is applied at a small distance upstream of the free end so there must be no 

stress on the free end; 

( , ) ( , ) 0L t E L t
x

ξ
σ

∂
= =

∂
 (3.45) 

( , ) ( ) ( ) 0

( ) 0

dY
L t L f t

x dx

dY
L

dx

ξ∂
= ⋅ =

∂

=
 (3.46) 

If we use the boundary conditions for the solution of the general solution 3.43 we will 

find; 

0A =  (3.47) 

cos 0Bk kL =  (3.48) 

If B or k is zero then Y(x)=0 and ξ(x,t)=0 which is not possible so; 

cos 0kL =  (3.49) 

3.49 is possible when; 

(2 1) ,     1, 2,3,...
2nk L n n
π

= − =  (3.50) 

From Eq. 3.42; 

( )22 2

2

n

n n

k LE E
k

L
ω

ρ ρ
= =  (3.51) 

( )2 1
,     1, 2,3,...

2n

nE
n

L

π
ω

ρ
−

= =  (3.52) 

Each nω  creates a special shape function by using Eq.3.51 

( )( ) sin sin 2 1 ,     1, 2,3,...
2n n n n

x x
Y x B k L B n n

L L

π   = = − =   
   

 (3.53) 

Bn is an arbitrary constant and it is convenient to take them as 1. In Figure 3-12 the 

longitudinal shape functions is shown for 4 modes. 
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Figure 3.12 Longitudinal Mode Shape Functions 

If we use the being orthogonal of the shape functions with each other as we have 

used before in transverse dynamics, we will get the combination of mode shapes as: 

0

( ) ( ) 0,    
L

n mY x Y x dx n m= ≠∫  (3.54) 

The response of the bar can be expressed as linear combinations of mode shapes. 

So, if we use eq.3.34 and add each mode shapes to another we can express the 

longitudinal motion.   

1

( , ) ( ) ( )n n

n

x t Y x tξ µ
∞

=

=∑  (3.55) 

We can use eq. 3.54 in eq.3.34 

2

2
1 1

( ) ( )n
n n n

n n

d Y
AY AE F t x L

dx
ρ µ µ δ

∞ ∞

= =

− = −∑ ∑ɺɺ  (3.56) 

By multiplying each term by the mth mode shape and integrate term by term over the 

bar length, we get; 

2

2
1 10 0 0

( ) ( )
L L L

n
n m n m n m

n n

d Y
AY Y AE Y F t x L Y dx

dx
ρ µ µ δ

∞ ∞

= =

   
− = −   

   
∑ ∑∫ ∫ ∫ɺɺ  (3.57) 

If we rearrange equation 3.40; 
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2
2

2
n

n n

d Y
Y

dx E

ρ
ω= −  (3.58) 

If we substitute 3.58 into 3.67 

2

1 10 0 0

( ) ( )
L L L

n m n n m n n m

n n

AY Y AY Y F t x L Y dxρ µ ρ ω µ δ
∞ ∞

= =

   
− = −   

   
∑ ∑∫ ∫ ∫ɺɺ  (3.59) 

The mode shapes are orthogonal to each other so the multiplication of the mode shapes 

is zero except n=m, shown as in equation 3.56 we will find the general longitudinal bar 

dynamic equation as: 

2 2 2

0 0 0

( ) ( )
L L L

m m m m m mAY dx AY dx F t x L Y dxρ µ ρ ω µ δ
   

+ = −   
   
∫ ∫ ∫ɺɺ  (3.60) 

At x=L the right side of the equation 3.60 will be simplified as: 

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
L L

m m mF t x L Y x dx F t Y L x L dx F t Y Lδ δ− = − =∫ ∫  (3.61) 

We can write the dynamic equation with a simpler way: 

( )( )m m m m mm k F t Y Lµ µ+ =ɺɺ  (3.62) 

mm  is the modal mass: 

2

0

L

m mm AY dxρ= ∫  (3.63) 

mk is the modal stiffness: 

2
m m mk m ω=  (3.64) 

We can add damping affect as we did in transverse dynamics: 

( )( )m m m m m m mm R k F t Y Lµ µ µ+ + =ɺɺ ɺ  (3.65) 

mR  is the modal damp which equals: 

2  m m mR m ζω=  (3.66) 

ζ  is the damping mode ratio in the range of 0.01-0.1 for lightly damped systems. [31] 
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Kinematics for Longitudinal Motion of the Beams: 

The longitudinal motion of the bars are showed in Figure 3-13 

 

Figure 3.13 Knematics of Longitudinal motion 

The center coordinates of the equilateral triangle xα and xβ can be written in terms 

of the longitudinal deflections as follows: 

sin 30 sin 30A B Cx x x xα = − −  (3.67) 

cos30 cos30B Cx x xβ = − +  (3.68) 

We can write a transformation matrix between the longitudinal deflections and the 

center coordinates by using equations 3.67 and 3.68  

1 sin 30 sin 30

0 cos30 cos30

A

B

C

x
x

x
x

x

α

β

 
− −     ⋅ =     −     

 (3.69) 

1 sin 30 sin 30

0 cos30 cos30LT
− − 

=  − 
 (3.70) 
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3.3 Open Loop Simulation 

The open loop simulation purpose is to calculate the central positions xα and xβ for 

the given FA, FB and FC forces. Firstly, by using transformation matrices FA, FB and FC 

forces are converted to transverse and longitudinal forces for the beams and bars that 

are assumed to be as we have explained before. Secondly, the transverse and 

longitudinal deflections are calculated by using the beams and bars dynamics. Finally, 

these deflections are converted to xα and xβ by using the necessary transformation 

matrices that are calculated before. In Figure 3.14 the schematic representation of the 

open loop simulation is presented. 

 

Figure 3.14 Open Loop Block Diagram 
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3.3.1 State Space Representation  

 

The state space representation of the transverse and longitudinal dynamics is 

calculated as follows: 

The transverse dynamics is derived as; 

( )( )n n n n n n nm R k F t Y Lη η η+ + =ɺɺ ɺ  (3.72) 

n is the mode number, if 4 modes is selected, then we will have 4 second order 

differential equations and the transverse deflection will be the sum of the multiplication 

of nη  and the nth shape function as shown: 

0

( , ) ( ) ( )n n

n

w x t Y x tη
∞

=

=∑  (3.73) 

The states are selected as nη and nηɺ . If we say: 

1 2n nη η=ɺ  (3.74) 

( )
2 2 1( )n n n
n n n

n n n

Y L R k
F t

m m m
η η η= − −ɺ  (3.75) 

The output will be the deflection at the tip of the beam so; 

1( )n nw Y L η=  (3.76) 

In the state space form: 

( )1 1

2 2

00 1

( )n n

n n n

n n

n n n

F tk R Y L

m m m

η η
η η

  
      = ⋅ + ⋅      − −         

ɺ

ɺ
 (3.77) 

[ ] 1

2

( ) 0 0 ( )n

n

n

w Y L F t
η
η
 

= ⋅ + ⋅ 
 

 (3.78) 

So we have the state space equation of the transverse beam dynamics in the form: 

x Ax Bu= +ɺ    (3.79) 

y Cx Du= +  (3.80) 

We have said that we will use 4 modes for the simulation so the matrices will be: 
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1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0 1 0 0 0 0 0 0

/ / 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 / / 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 / / 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 / /

k m b m

k m b m
A

k m b m

k m b m

 
 − − 
 
 

− − =
 
 

− − 
 
 

− −  

 (3.81) 

( )

( )

( )

( )

1 1

2 2

3 3

4 4

0

/

0

/

0

/

0

/

Y L m

Y L m
B

Y L m

Y L m

 
 
 
 
 
 =  
 
 
 
 
  

 (3.82) 

( ) ( ) ( ) ( )1 2 3 40 0 0 0C Y L Y L Y L Y L=     (3.83) 

0D =  (3.84) 

 

The same procedure is done for the longitudinal dynamics. 4 modes are selected 

for the simulation. So, by using the longitudinal dynamics that we have calculated 

before, we have again 4 second order differential equation and the longitudinal 

deflection is the sum of the multiplication of µm and the mth shape function.  

3.3.2 The Parameters of the Mechanism 

The geometric parameters: 

The cross-sectional area dimensions of our beams are: 

  

   b = 0.8 mm 

        h = 2 mm 

 

The length of the beams are 25 mm. 

The cross sectional areas are A=bh=1.6mm2 

b 

h 
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The inertias are: I=bh3/12=0.5333 mm4 

The material properties: 

The compliant mechanism’s material is selected as Aluminum which has 

properties as: 

Elasticity modulus  E = 69000 N/mm2 

Density    ρ = 0.0027 g/mm3 

3.3.3 The Results 

In Figure 3-15 there is the assumed mechanism which is simulated. 

 

Figure 3.15 The Mechanism 

Firstly only transverse and only longitudinal mathematical models are simulated. 

The results are shown in Table 3-1.It is seen that longitudinal dynamics have less affect 

on the mathematical model for the system.  

Table 3-1 The displacement results of only transverse and only longitudinal modeling 

Transverse Longitudinal 
Actuation 

α β α β 

FA=1N -0.2388 0 -0.0002741 0 

FA=1N and FB=1N -0.1194 0.2068 -0.000137 0.0002373 

FB=1N and FC=2N 0.3582 -0.2068 0.0004111 -0.0002373 
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The results for the mathematical model that have both transverse and 

longitudinal dynamics are shown as follows: 

If FA is given as 1N the center coordinates is expected to be changed only in –α 

direction. The result of the mathematical model is: 

 

 

Figure 3.16 Results for FA is 1N 
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As it is expected, the center coordinates have only changed in –α direction which 

is 0.2389mm.If FB is given as 1N the center coordinates is expected to be changed in +α 

and +β direction. The result of the mathematical model is: 

 

 

Figure 3.17 Results for FB is 1N 

As it is expected, the center coordinates have changed in +α direction which is 

0.1194mm and in +β direction which is 0.2069mm. 
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If FC is given as 1N the center coordinates is expected to be changed in +α and -

β direction. The result of the mathematical model is: 

 

 

Figure 3.18 Results for FC is 1N 

As it is expected, the result is the sign change in β direction of the result of FB is 

1N. The center coordinates have changed in +α direction which is 0.1194mm and in -β 

direction which is 0.2069mm. 
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By using the geometric property of the forces the stage can also move only in –β 

or in + β direction. If FB is given as 2N and FA is given as 1N, it is expected that the 

triangular stage will move only in +β direction. Because α component of FB is 1N and it 

will cancel FA which is also 1N but in the opposite direction, only β component of FB 

will remain. So the center coordinates is expected to be changed only in +β direction. 

The result of the mathematical model is: 

 

 

Figure 3.19 Results for FA is 1N and FB is 2N 
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The center coordinates have changed in +β direction which is 0.4137mm and 

there is a little error in α but it is in 10-19mm range so it can be assumed that the stage 

does not move in α direction as it is expected. 

If FC is given as 2N and FA is given as 1N, it is expected that the triangular stage 

will move only in -β direction. Because α component of FC is 1N and it will cancel FA 

which is also 1N but in the opposite direction, only β component of FB will remain. So 

the center coordinates is expected to be changed only in -β direction. The result of the 

mathematical model is: 
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Figure 3.20 Results for FA is 1N and FC is 2N 

The center coordinates have changed in -β direction which is -0.4137mm and 

there is a little error in α but it is in 10-19mm range so it can be assumed that the stage 

does not move in α direction as it is expected. 

3.3.4 Comparing the Results 

The results of the dynamic simulation that are simulated in MATLAB is 

compared with COMET software which is developed by MIT laboratory for mapping 

the actuator-displacement behavior [32-33]. In Figure 3-21 the sketched mechanism in 

COMET is shown. The corresponding A, B and C beams of the mathematical model are 

also shown in the figure.  
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Figure 3.21Compliant mechanism drawn in COMET 

Firstly the corresponding force in the mathematical model simulation that is 

done is found by giving 1N in –α direction to the 1st tab where beam A is connected. 

The transverse forces on the beams B and C are found as 0.315N in –direction so FA 

should be 0.630N for the simulation that we have done. So we can say that if we apply 

force to any of the tabs of the mechanism, the corresponding FA, FB and FC forces in the 

simulation that we have done will be 0.630 times of the force applied. 

B

1st Tab 

2nd Tab 3rd Tab 

α 

β
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Figure 3.22 The Forces 

The compared results of some forces that is applied to the mechanism is shown in 

Table 3-2. x α and  x β  are the displacements of the center of the mechanism. 

Table 3-2 Comparing Matlab simulation and COMET 

Matlab Simulation COMET Error % 
Actuation 

x α (mm) x β  (mm) x α (mm) x β  (mm) %ex α  %ex β   

1st Tab - 1N -0.1505 0 -0.134 -1.156e-006 %12.31 - 

2nd Tab - 1N 0.07525 0.1303 0.06678 0.14 %12.68 %6.928 

1st Tab - 2N 

3rd Tab - 2N 
-0.1505 -0.2607 -0.133 -0.28 %13.157 %6.89 

1st Tab - 3N 

2nd Tab - 1N 
-0.301 0.2607 -0.267 0.28 %12.73 %6.89 

2nd Tab - 1N 

3rd Tab - 2N 
0.2257 -0.1303 0.2 -0.14 %12.85 %6.928 

1st Tab - 1N 

2nd Tab - 1N 

3rd Tab - 2N 

-0.07425 -0.1303 0.06682 -0.14 %11.119 %6.928 

FA/2 FA/2 

FA 
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By looking at Table 3-2 we can say that our mathematical model has % 12.8 error 

in α position and %6.9 error in β position. The mathematical model can be used for 

simulating the dynamics of the mechanism.  

4 CONTROL OF COMPLIANT MECHANISM  

In this section, the position control of Hexflex mechanism is simulated by using the 

mathematical model of the mechanism which is done in the previous section. The main 

purpose of the control is shown in Figure 4-1. Simple PID control is used to give the 

desired forces which correspond to the desired center coordinates of the stage.  

 

Figure 4.1 The desired displacements of the triangular stage 
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4.1 The Control Model 

Basically, the position control model of the mechanism can be represented as the 

Figure 4-2. 

 

Figure 4.2 The main control block diagram 

 

Figure 4.3 The Forces acting on the mechanism 

The control inputs are the errors of the positions and the outputs of the controls 

are the forces. The plant is composed of the dynamics of the beams that we have 

calculated in Chapter 3. But the model has FA, FB and FC as inputs and xα and xβ as 

outputs. For simplicity of the simulation the plant is reduced to two input and two 

output plant. The inputs of the plant are written in α and β coordinates of the 

mechanism. By looking at Figure 4-2 Fα , Fβ  can be written in terms of FA, FB and FC 

as: 
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sin 30 sin 30A B CF F F Fα = − + +  (4.1) 

cos30 cos30B CF F Fβ = −  (4.2) 

The transformation matrix between Fα , Fβ  and FA, FB , FC will be a 2x3 matrix so 

the matrix is not invertible. F0 force is added to Fα , Fβ  forces and the matrix is turned 

into 3x3 matrix and the transfer matrix transpose should be equal to the inverse of the 

transfer matrix. F0 is taken as 0. The transfer matrix is found in the following equations: 

0

1 sin 30 sin 30

0 cos30 cos30
A

B

C

F F

K F F

b b b F F

α

β

−     
     − ⋅ =     
          

 (4.3) 

0

1 sin 30 sin 30

Transformation matrix  0 cos30 cos30ABCA K

b b b

αβ

− 
 = − 
  

 (4.4) 

0 0

TABC ABCA Aαβ αβ⋅ = Ι  (4.5) 

If we use equations 4.3 and 4.5 we can find the constants K and b as: 

K 3 2,   b 2 2= =  

By using the inverse of the transformation matrix, 0
ABCAαβ  , Fα and Fβ  forces can be 

converted into FA, FB and FC forces so the beam dynamics that is calculated in Chapter 3 

can be used easily.  

4.2 Simulation and Results 

The position control of the mechanism is simulated in MATLAB Simulink. The 

plant is turned into 2 input 2 output block by using the transformation matrix 0
ABCAαβ . 

Firstly, a desired position of the center of the mechanism is given by using step block. 

Secondly, a circular path is generated for the desired motion of the center of the 

mechanism. The parameters that are used in simulation is the same as the parameters of 

the open loop simulation that is presented in Chapter 3. 

The desired position of center coordinates of the mechanism is given as 10µm in 

–α coordinate and 20µm in β coordinate. PID control is used for control. The parameters 

of the PID control are taken as KP: 1200, KI: 46 and KD: 100. The results are: 
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Figure 4.4 The plot of xα and xαref 

 

Figure 4.5 The plot of xβ and xβref 
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Figure 4.6 The plot of errors of xα and xβ 

As seen from the results, the center of the mechanism is coming to the desired 

position by using PID control.  

Secondly, a circular path having 100µm diameter is generated by giving the 

desired positions as 0.1sin( )refx tα π= and 0.1sin( / 2) 0.1cos( )refx t tβ π π π= + = . PD 

control is used and the parameters of the control are set as KP: 2000 and KD: 20. As seen 

from the results the center of the mechanism tracks the circular path. The results are: 
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Figure 4.7  The center motion 

 

Figure 4.8 The plot of xα and xαref 
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Figure 4.9 The plot of xβ and xβref 

 

Figure 4.10 The plot of errors of xα and xβ 
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5 MANUFACTURING AND EXPERIMENTS 

 

In this chapter the manufacturing processes of the compliant mechanism that is 

designed in Chapter 2 are discussed. Water jet cutting (WJC) and laser cutting (LC) 

methods are explained. The hexflex mechanism is produced both by using WJC and LC. 

The comparison between these methods is also discussed in this section. 

After manufacturing the compliant mechanism and the other supporting parts that is 

used for actuation and fixing, the experiments are done under the microscope. Static 

performance tests are done by actuating the motors both manually and automatically.  

5.1 Manufacturing Methods 

5.1.1 Laser Cutting 

Laser cutting is the manufacturing process that cuts material by using laser.  The 

cutting process is done by concentrating high power laser beam into small, well defined 

spot on the material which is to be cut. Typically the laser beam has 0.003in -0.005in. 

diameter [34]. The heat energy on the material is created by the laser and it melts or 

vaporizes the materials in the small defined area and these vaporized or melted 

materials are blown by a gas such as oxygen, CO2, nitrogen or helium etc. as seen in 

Figure 5-1. The energy of the laser beam is directly applied where it is needed and 

minimizes the heat affected zone surrounding the area being cut.  
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Figure 5.1Laser Cutting [35] 

The main advantages of laser cutting are: 

• They have no limit to the cutting path. The laser beam can move in any 

direction. 

• Small diameter holes can quickly be made by using laser cutting.  

• Fragile or flimsy parts can be cut a little or without support because the process 

is forceless. It allows the part to keep its original shape from start to finish. 

• Materials that lack of conductivity, abrasiveness or hardness can usually be cut 

using laser.  

• It reduces the part distortion as a result of heat affected zones. 

• The focused laser beam, as small as 0.003", can produce complicated parts. 

Because of the advantages of laser cutting the compliant mechanism is cut by 

using laser cutting technique. Firstly, the material is chosen to be 7075 Aluminum 

because the yield strength to young’s modulus ratio is high which means it allows a 

larger deflection before failure [2]. But the manufacturing was not good so the 

material is distorted everywhere because the areas where laser beam cut melted or 

burned the surrounding areas. So the mechanism can only be done by using two 

kinds steel types, one is black steel which is the steel with much carbon in it and the 

other is stainless steel.  
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5.1.2 Water Jet Cutting 

Water jet cutting is the cutting process that cuts the materials by using a jet of 

water at high velocity or pressure. The material remove process is a kind of erosion 

process that is generated by high pressure water flows usually forces of 2 Ib. Abrasive 

powders are added to water for cutting hard metals such as metals, stone, composites 

and ceramics. Abrasive power jets are much more powerful the pure water jets. [36] 

The main advantages of water jet cutting are: 

• They perform high precision cutting, beveling, piercing, etching, and slotting up 

to accuracies of ± 0.005". 

• Wide range of materials can be cut by using this technique. 

• They eliminate the distortions due to heat or burning as laser cutting does. 

• The parts edges can be produced smooth.  

• They can cut all kinds of materials up to 8" thick. 

 

Figure 5.2 Abrasive water jet cutting [37] 

 Because of these advantages water jet cutting technique is also selected for 

manufacturing the compliant mechanism. Steel and Black steel materials are used for 

manufacturing. 
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Figure 5.3 Stainless steel laser cutting manufactured compliant mechanism 

 

Figure 5.4 Black steel water jet cutting manufactured compliant mechanism 

deformed 
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 When it is compared the compliant mechanisms that are manufactured from 

laser cutting and water jet cutting, it is understood that for manufacturing compliant 

mechanisms abrasive water jet cutting is more suitable than laser jet cutting. Because 

there are burnings in laser jet cutting and the beams that are connected to the triangle 

are distorted by the heat of the laser cutting. In Figure 5-3 you can see that the upper 

beam connected to the triangular stage is not straight, it is deformed. The mechanism 

that is made by water jet cutting shown in Figure 5-4 is better than the laser jet because 

the beams are straight and not distorted. 

5.2 Experiments 

The full experimental setup is shown in Figure 5-5. In Chapter 2 the compliant 

mechanism, the base which is used to fix the mechanism and holds the actuators and 

piezo mike actuators are explained. After manufacturing the parts and assembling the 

setup, the open loop experiments are done under the microscope as seen in Figure 5-6 

whether to see how the mechanism behaves when the actuators work. The piezo mike 

actuators can be used both manually and automatically by giving voltage to the piezos. 

So the open loop experiments are done firstly by turning the shafts of the actuators 

manually, then voltage signals are given to the actuators. The measurement of the 

displacement of the triangular stage is done by using cameras. A small dot is put on the 

triangular stage as seen in Figure 5-7 and by using the images from the camera that is 

mounted on the microscope, the pixel coordinates of the point is calculated then it is 

converted to world coordinates. 
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Figure 5.5 The full assembled system 

 

 

Figure 5.6 The setup under the microscope 
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Figure 5.7 The actuator mounting and the dot on the triangular stage 



87 

5.2.1 Results of Manually Actuating 

 

Figure 5.8 The mechanism with some dimensions and numbered tabs 

The tabs are numbered as in Figure 5-8. The coordinate system is also can be 

shown in the figure. A dot is put on the triangular stage and the dot is watched at 5x 

magnification under the microscope. Firstly the mechanism is positioned under the 

mechanism so that the coordinate of the mechanism collide with the coordinate of the 

mechanism. This is done by giving motion to tab 1 and orienting until the less pixel 

coordinate change is determined in x direction. Then the piezo mike actuators that are 

connected to tabs are first set to 50 µm then 100 µm. The results are in Table 5-1. 

1 

2 3 

z 

x 

0.8 mm 

1 mm 

134 mm 

35 mm 

8 mm 
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Table 5-1 Experimental Results 

Actuation 

(Displacement) 
X Z 

Angle of the 

motion 

Expected 

Angles 

Error of 

the 

Angles 

1st Tab – 50µm -2.695µm 21.9µm 82.98° 90° %7.8 

1st Tab – 100µm -1.6793µm 59.1161µm 88.37° 90° %1.81 

2nd Tab – 50µm -31.5912µm -21.8343µm 34.65° 30° %15.5 

2nd Tab –100µm -55.9261µm -47.5011µm 40.34° 30° %34.46 

3rd Tab – 50µm 24.4687µm -24.1630µm 44.63° 30° %48.76 

3rd Tab –100µm 57.6299µm -51.7526µm 41.92° 30° %39.73 

 

As seen from Table 5-1, the tabs motions are not as expected values. The worst 

tab motion is the third tab. This situation can be because of the distortions in the 

compliant mechanism while manufacturing and the base part which holds the actuators 

should hold the actuators in the direction of the beams so that the forces intersect at the 

center of the stage. If the forces are not intersect at the center, then the stage will start to 

rotate and the rotation will give wrong results.  

ADAMS simulation of the mechanism is done for comparing the results that we 

have got from the experiments. The mechanism is meshed in ADAMS Auto Flex, fixed 

from its holes and translational joint is added to tab 1. 50 µm and 100 µm step 

displacement is given to the translational joint. The simulation model can be seen in 

Figure 5-9. The coordinate axes of the mechanism are in the center of mass of the 

mechanism. 
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Figure 5.9 Mechanism in ADAMS 

In Figure 5-10,11 and 12 the center of mass of the mechanism motions are 

presented when 50 µm step motion is given to the translational joint. 

 

Figure 5.10 The result in Z direction 
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Figure 5.11 The result in X direction 

 

Figure 5.12  The result in Y direction 

In Figure 5-13,14 and 15 the center of mass of the mechanism motions are 

presented when 100 µm step motion is given to the translational joint. 

 

Figure 5.13 The result in Z direction 
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Figure 5.14 The result in X direction 

 

Figure 5.15 The result in Y direction 

The resultant Z and X displacements comparison between the simulation and the 

experiment can be seen in Table 5.2. The Z displacements are close but the X 

displacements have a sign change. We were expecting that there will be no 

displacement in X direction but we can see that in the simulation and experiments we 

have. The reason of the simulation is the displacement joint can not be put directly in 

the middle of the 2nd tab because of the meshed elements on the mechanism. The 

reason of the error in the experiment can be because the mechanism is distorted or the 

force we are applying is not on the direction of the center of the mechanism so the 

mechanism is rotating or beams are twist bending.  
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Table 5-2 Comparison of experiment and simulation 

Experiment ADAMS 
Actuation 

Z X Z X 
50 µm 21.9 µm -2.695 µm 20.9 µm 3.7 µm 
100 µm 59.1161 µm -1.6793 µm 41.8 µm 7.3 µm 
 

The comparison in Y direction can’t be made because in experiment Y direction 

can not be measured. But if we look at the simulation results in Figure 5-12 and 5-15 

the motion in Y direction is not so much. 

5.2.2 Results of Voltage Actuating 

The piezo mike actuators are connected to their amplifiers and by using DSPACE 

1103 the desired sinusoidal or step signals are given to the amplifiers and the piezos are 

moved automatically by the given voltage signals. 

The control desk layout is in Figure 5-16 

 

Figure 5.16  Controldesk Layout 
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The experiment is made by giving sinusoidal signals to the piezo mike actuator 

that is connected to tab 2. Tab 2 can be seen in Figure 5-17.  The coordinate system is 

taken as shown in Figure 5-17 for understanding the motion of the stage easily. 

Through vision the position of the triangular stage where a dot is put, is 

measured in pixel coordinates. Then the first pixel coordinate is taken as (0,0) point and 

subtracted from the other measured pixel coordinates. Finally, the pixel coordinates is 

converted to world coordinates. So the displacement of the triangular stage is found in 

X and Z coordinates and they are plotted. 

 

 

Figure 5.17  Actuated tab of the mechanism and the coordinate system. 

First experiment is done by giving 20sin0.02t with shifted 20 volts is given to 

the piezo motor. The results are in Figure 5-18 and 5-19. The frequency of the motion in 

X and Z is 0.02sec-1. The motion of the dot is also plotted in Figure 5-20. The angle 

between X and Z motion is approximately 24°. 

 

X 

Z 

2 
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Figure 5.18  Motion in X 

 

Figure 5.19  Motion in Z 
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Figure 5.20 The motion of the dot 

Secondly, the frequency of the signal is increased to 0.04sec-1. The results are in 

Figure 5-21 and 22. The motion is showed in Figure 5-23. We can see that the 

frequency of the motion in X and Z is also increased to 0.04sec-1.  
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Figure 5.21 Motion in X for higher frequency 

 

Figure 5.22 Motion in Z for higher frequency 
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Figure 5.23 Motion of the dot 
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6 CONCLUSION 

In this thesis, design and modeling of a compliant mechanism is presented. The 

mechanism is a parallel planar compliant mechanism which is thought to be used as a 

positioning stage in microassembly. The main idea of this type of mechanism is using 

the deflections of the flexible elements to generate the motion of the stage. The 

mechanism is designed so that the actuation forces do not create any rotation; only two 

translational motions are created. Thus the stage is designed as a two degree of freedom 

mechanism. The material type for this kind of mechanism is important because the 

material properties determine the deflections. Finite element analysis (FEA) is done for 

the mechanism to see the behavior of the mechanism for different types of materials that 

can be used. 

The mathematical modeling is done for simulating the dynamic behavior of the 

system so that any kind of control method can be applied and simulated. The system is a 

distributed parameter system because the deflections of the beams depend on both 

position and time. Necessary kinematic calculations are done for defining the center of 

the stage position in terms of the deflection of the flexible elements. Then Euler 

Bernoulli beam equations are used for defining these flexible elements dynamics. 

Separation of variables method is used to represent the motion for distributed systems in 

terms of time and position separately. The mathematical model is written in state-space 

form to be easily simulated. The position results of open loop simulated model is 

compared with software called COMET and it is seen that the mathematical model can 

be used for the mechanism. The open loop model is closed by using simple PID control 

and position control for the system is simulated.   

The prototypes of the mechanism are manufactured by using both laser cutting and 

water jet cutting. The base part is manufactured in CNC. The mechanism is assembled 

on the base part and the piezo mike actuators are also mounted. After assembly the 

experimental setup is put under the microscope to see the motion of the stage. The 

actuators that are used for the mechanism can be driven both manually and 
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automatically. Firstly, the motors are driven manually and the position of the stage is 

calculated by using a vision tracking algorithm. One of the actuated tab result is 

compared with the simulation in ADAMS. The results are a little different because there 

are some distorted parts on the mechanism due to the manufacturing errors. Secondly, 

one of the tabs of the mechanism is actuated by giving sinusoidal voltage to connected 

piezo mike motor. The results show us that the motion of the mechanism is compatible 

with the given sinusoidal input. The motion of the mechanism has the same frequency 

as the given sinusoidal input so this means that the mechanism can be actuated by these 

kinds of motors. 
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7 FUTURE WORK 

Since the compliant mechanism is designed for macro scale motion, the next main 

goal for the future is to redesign the mechanism and make it as small as possible that the 

manufacturing can let to do.  

The control of the mechanism will also be verified with the experiments when 

accurate measurement of the position of the stage can be taken as input for the system. 

Another suggestion for the future work is to change the piezomike micro motors to 

piezo motors that we know a relationship between the given voltage and the force so a 

comparison can be made between the assumed mathematical model that we have 

derived and the experiments. Then by looking at the results of the comparison the 

assumed mathematical model can be changed and other beam affects on the mechanism 

can be added to the model for making the model more reliable.  
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