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ABSTRACT 

 

 Metallothioneins (MTs) are small, cystein rich, low molecular mass polypeptides 

found in almost all organisms. They are thought to be involved in heavy-metal 

detoxification and metabolism of essential trace elements like copper and zinc. Unlike 

their mammalian counterparts, plant MTs have not been thoroughly characterized in 

terms of cellular regulation and function. 

 A novel gene, from Triticum durum (pasta wheat), coding for plant MT type 1 

protein was isolated and characterized. The durum mt gene was cloned in E. coli for 

solution X-ray scattering studies to obtain the first experimental structural data on a 

plant MT in the literature. Triticum durum mt gene was shown to contain 2 exons and a 

non-coding intron region.  

 The coded MT protein, showing high similarity to mammalian MTs in its cystein 

residue distribution pattern, forms two metal binding domains bridged with an 

exceptionally long connecting region. This hinge region was shown to be highly 

conserved among plant MTs using sequence alignment algorithms on data available in 

the literature. 

 Homology modeling and heuristic fragment assembly approaches were used to 

predict a 3D structure for the durum MT (dMT). Guided by the predicted structures, 

functional motif and structure searches were performed yielding a possible DNA 

binding and/or protein interaction function for dMT. High probability of wMT to form 

dimers or trimers inside the solution was also speculated. 

 dMT was expressed in E. coli cells as a fusion protein with GST and preliminary 

X-ray solution scattering measurements were carried out on the purified recombinant 
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protein. These measurements indicated the high tendency of the protein to form 

aggregates in solution. Theoretical predictions and solution scattering measurements 

were also supported by the results of  polyacrylamide gel electrophoresis and size 

exclusion chromatography analysis of expressed and purified recombinant dMT and 

GSTdMT proteins. 

 Further, sequence and structure analyses showed a high structure and sequence 

similarity between dMT hinge region and the DNA binding domain of a cyanobacterial 

metallothionein suppressor protein (SmtB). Indeed, the results indicate that dMT metal 

binding domains would also bind to DNA with very high probability. These results, 

altogether, point to a new role for plant MTs other than metal scavenging such as being 

a transcription factor or a gene suppressor.    
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ÖZET 

 

 Metallotioninler (MT'ler) hemen hemen tüm organizmalarda bulunan sistin 

bakımından zengin, düşük molekül ağırlıklı polipeptitlerdir. Hücre içerisinde bulunan 

ağır metallerin detoksifikasyonu ve bakır, çinko gibi yaşam için gerekli eser 

elementlerin metabolize edilmesi görevlerini yürüttükleri düşünülmektedir. 

Memelilerdeki eşleniklerinin tersine, bitki metallotioninleri hücre içerisindeki 

fonksiyonları ve regülasyonları açısından tam olarak karakterize edilmemişlerdir. 

 Triticum durum’dan (makarnalık buğday) tip 1 bitki metallotionini kodlayan yeni 

bir gen tanımlanmıştır. Gen karaterizasyonu çalışmalarının sonuçlarına göre Triticum 

durum mt geni 2 ekzon ve 1 kodlamayan intron kısımlarını içerir. mt geninin kodladığı 

rekombinant protein literatürde bitki metallotionein proteinleri ile ilk deneysel yapı 

verilerini elde etmek amacıyla E. coli'de sentezlettirilmiş ve rekombinant MT ile 

solüsyon X-ışını saçılımı deneyleri başlatılmıştır. 

 Kodlanan MT proteininin amino asit dizisindeki sistin gruplarının dağılım düzeni 

açısından memeli MT’lerine çok büyük bir benzerlik gösterdiği ancak durum MT’sinin 

(dMT) metal bağlayan iki bölümünün alışılmadık uzunlukta bir köprü bölgesiyle 

birbirlerine bağlandıkları gösterilmiştir. Mevcut protein verileri üzerine uygulanan dizi 

eşleştirme algoritmaları yardımıyla bu köprü bölgesinin bitki MT’leri arasında 

korunduğu ispatlanmıştır. 

 dMT’nin üç-boyutlu yapısını tahmin etmek için homolog modelleme ve iz sürücü 

(heuristic) parça bütünleştirici yaklaşımları kullanılmıştır. Tahmin edilen yapılar 

kullanılarak, işlevsel motif ve yapı aramaları yapılmış ve bu aramalar sonucunda dMT 

için DNA veya proteine bağlanma fonksiyonları öngörülmüştür. Yapılan tahminler 
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çerçevesinde dMT’nin çözelti içerisinde dimer ve trimer oluşturma ihtimalleri de 

tartışılmış ve öngörülmüştür. 

 dMT ekpresyonu E. coli içerisinde GST’ye bütünleşik füzyon proteini olarak 

gerçekleştirilmiştir. Yukarıda sözü edilen teorik sonuçlar rekombinant dMT ve 

GSTdMT ile solüsyon X-ışını saçılımı ölçümleri, poliakrilamid jel elektroforezi ve jel 

filtrasyon kromatografisi yöntemleri kullanılarak elde edilen deneysel bulgularla 

desteklenmiştir. 

 Detaylı ve geniş kapsamlı dizi ve yapı analizleri, bitki MT’sinin köprü bölgesiyle 

sayanobakteriel MT baskılayıcı protein (SmtB) DNA bağlanma bölgesi arasında 

oldukça yüksek oranda bir benzerlik ortaya çıkarmışlardır. Aynı zamanda dMT’nin 

metal bağlayan bölümlerinin de yüksek oranda DNA’ya bağlanma olasılıkları 

gösterilmiştir. Tüm sonuçlar birlikte değerlendirildiklerinde, bitki MT proteinleri için 

metal bağlama yanısıra transkripsiyon faktörü ya da gen baskılayıcı olmak gibi yeni bir 

işlevi de işaret etmektedirler. 
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1 INTRODUCTION 

 Metallothioneins (MTs) are a group of low molecular weight (8000-10,000 

Daltons) polypeptides rich in cystein residues (25-33 %). Cystein residues in MTs from 

thiol bonds with metal ions to scavenge toxic heavy metals (cadmium, mercury, etc.), to 

store biologically essential metals (copper and zinc) and to regulate metal dependent 

processes fundamental to cellular pathways (Vasak and Hasler, 2000). 

 MTs, present in a wide range of organisms from fungi to mammals, have been 

conventionally classified into three groups: class I MTs are those with sequences similar 

to mammalian renal MTs, class II are all other MTs and class III consists of 

phytochelatins; enzymatically synthesized polypeptides that bind metals in plants 

(Rauser, 1999). More recent sequence analyses using computational analyses have 

shown the diversity of MT proteins and a more detailed classification scheme based on 

the number and location of cystein residues has been proposed (Coyle et al., 2002; 

Vasak and Hasler, 2000). 

 Plant MTs, comprise a very large family of proteins and are difficult to classify 

(Yu, et al., 1998; Yeh, et al., 1995). These are mainly grouped into class II MTs, and 

~65 genes have so far been identified as corresponding to MT-like proteins (Clemens, 

2001; Rauser, 1999). However, presence of Class I-like plant MTs, e.g. in wheat early 

cystein labelled (EC) protein and in rice and barley have also been reported (Rauser, 

1999). Early cystein labeled protein was one of first MTs to be isolated from wheat and 

maize (Kawashima et al., 1992; Ma et al., 2003), and the metal binding domains of the 

wheat MT gene and rat liver MT gene show 75% sequence similarity (Kawashima et 

al., 1992; Braun et al., 1992). 
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 Although the exact role of MTs in metal detoxification and scavenging in plant 

systems is not clear, both monocots and dicots have MT-like protein genes (Yu et al., 

1998), and evidence, at the level of gene expression, for MT-protein synthesis and metal 

detoxification has been reported (Briat and Lebrun, 1999). Plant MTs, probably with 

some other mechanisms, maintain internal concentrations of essential metals between 

limits of deficiency and toxicity, and of nonessential metals below their toxicity 

thresholds. There are also reports in the literature of involvement of NO in metal 

binding to MT (Katakai et al., 2001; Zangger et al., 2001) and an antioxidant role for 

MT has been proposed (Ebadi et al., 1996). 

 No structural studies are reported in the literature on plant MTs. There exists, 

however, 30 PDB entries for MTs from various organisms. Studies on MTs in general 

indicate that the protein structure is stabilized by metals and that there are no detectable 

secondary structural features, which stabilize the whole protein in the absence of metals. 

This appears to be a characteristic feature of also some DNA binding proteins (or 

regions of proteins) such as transcription factors (Capoli et al., 2001) and zinc fingers 

(Blindauer et al., 2001). 

 In this thesis isolation and characterization of a novel metallothionein gene from 

Triticum durum (mt-d), which shows over 90% DNA similarity with Triticum aestivum 

metallothionein gene (mt-a) (Kawashima et al., 1992) is reported. mt-d has been 

expresssed using pGEX-4T-2 vector system (Amersham Biosciences) as a recombinant 

GST-fusion protein in a prokaryote, Escherischia coli(BL21). The recombinant protein 

has been purified and characterized using biochemical methods. Three dimensional 

structure of wheat MTs have beeen predicted using detailed sequence similarity 

analyses with structurally known MT proteins and heuristic fragment assembly 

approach. Preliminary X-ray scattering mesurements have been carried out to verify the 

predicted structural model.  

 These detailed and multi-approach studies on plant MTs showed that heavy-metal 

detoxification and/or essential-metals regulation need not be the only metabolic 

activities of plant metallothionein proteins. Possible DNA binding and protein-protein 
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interaction functions according to computational analysis may help to classify these 

proteins as regulatory proteins like transcription factors, transcription suppressors, etc. 
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2 OVERVIEW 

2.1 Metallothionein (MT) Proteins 

2.1.1 General information 

 Metallothionein (MT) superfamily includes low molecular weight, intracellular 

metal-binding proteins that are found in almost all organisms. The first MT was isolated 

from horse kidney in 1957 by Margoshes and Vallee (Margoshes & Vallee, 1957). 

Since then MTs have been isolated from various organisms including plants, 

vertebrates, invertebrates, fungi, unicellular eukaryotes and some prokaryotes (Coyle et 

al., 2002). 

 These proteins have a large number of cyteins residues which form thiolate bonds 

with transition metals (d10 metal ions) stabilize the protein 3D structure and result in 

high metal content. MTs have been isolated from different organisms in bound forms to 

Cd, Cu and Zn; on the other hand, they can also bind Hg, Pt, Bi, Ag, and Au in vitro 

experiments (Vasak & Kagi, 1994). Their capacity to bind both the essential and non-

essential metals point to another function of these proteins in heavy-metal detoxification 

in addition to regulation of the biological activities of essential trace elements. 
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2.1.1.1 Nomenclature of MT 

 The plenum of the First International Meeting on Metallothionein and Other Low 

Molecular Weight Metal-Binding Proteins in 1978 generated the first nomenclature of 

MTs. The adapted version was presented in 1985 by the Committee on the 

Nomenclature of Metallothionein during the Second International Meeting on 

Metallothionein and Other Low Molecular Weight Metal-Binding Proteins (Kojima et 

al., 1997).   

 Characteristics of the first protein that was isolated from horse kidney were as 

follows: low molecular weight, high metal content, high cystein content, no aromatic 

residues, no histidine residues, unique cystein residue distribution, spectroscopic 

features of mercaptides, and metal thiolate cluster. According to these features 

committee made a definition for MT proteins in 1985: 

 “Polypeptides resembling equine renal metallothionein in several of their features can be 

designated as “metallothionein” ” (Kojima et al., 1997). 

2.1.1.2 Classes and types of MT 

 The committee established in 1985 decided to divide the metallothionein 

superfamily of proteins into 3 classes. Class-I MTs include all proteins that share a 

similar cystein distribution with the horse kidney or mammalian MTs. Class II MTs, are 

those that have characteristics of MT without a similar cystein residue distribution 

throughout the protein. Finally, Class-III MTs include all other similar polypeptides that 

are enzymatically synthesized. Today the search term “metallothionein” will return with 

4721 nucleotide and 1113 protein sequences in the NCBI Database during a normal key 

word search. Since 1957, when the first horse kidney metallothionein was isolated, or 

even since 1985 protein and nucleotide sequences in databases have increased 

logarithmically, and so did MT sequences. 
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 The use of heuristic algorithms and powerful computers enable us to deal with the 

thousands of protein/nucleotide sequences. Using multiple sequence analysis software 

all MT sequences could be aligned and placed into a phylogenetic tree. At this point 

should the important consideration be the taxonomic relations (how source organisms 

are related to each other evolutionarily) or just the properties of their MT proteins 

(cystein residue distribution, amino acid composition, length of the protein, etc.)? 

 

Table 2.1: Defined MT families and subfamilies (Binz and Kagi, 1997). 
Family 1: vertebrate MTs Family 7: ciliata MTs 

m1: mammalian MT-1 c1: ciliate MT 

m2: mammalian MT-2 Family 8: fungi-I MTs 

m3: mammalian MT-3 f1: fungi-I MT 

m4: mammalian MT-4 Family 9: fungi-II MTs 

m: n.d. mammalian MT f2: fungi-II MT 

a1: avian MT-1 Family 10: fungi-III MTs 

a2: avian MT-2 f3: fungi-III MT 

a: n.d. avian MT Family 11: fungi-IV MTs 

b: batracian MT f4: fungi-IV MT 

t: teleost MT Family 12: fungi-V MTs 

Family 2: mollusk MTs f5: fungi-V MTs 

mo1: mussel MT-1 Family 13: fungi-VI MTs 

mo2: mussel MT-2 f6: fungi-VI MTs 

mog: gastropod MT Family 14: prokaryota MTs 

mo: n.d. mollusk MT pr: prokaryota MT 

Family 3: crustacean MTs Family 15: planta MTs 

c1: crustacean MT-1 p1: plant MT type 1 

c2: crustacean MT-2 p2: plant MT type 2 

c: n.d. crustacean MT p2v: plant MT type 2 variant, described as 

a clan of p2 

Family 4: echinodermata MTs p3: plant MT type 3 

e1: echinodermata MT type 1 p21: plant MT type 2x1 

e2: echinodermata MT type 2 pec: plant EC MT-like protein 

Family 5: diptera MTs Family 99: phytochelatins and other non-

proteinaceous MTs 

d1: diptera MT type 1   

d2: diptera MT type 2   

Family 6: nematode MTs   

n1: nematode MT type 1   

n2: nematode MT type 2   
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2.1.1.2.1 Cystein residue distribution or source organism 

 Two main features of MT proteins are their high cystein residue content and the 

unique distribution of these residues in the protein structure. Two major types of cystein 

distributions can be seen in the MT super-family. In one type cystein residues form two 

distinct and easily observable domains like in the case of horse kidney MT, which are 

named as metal binding domains. The number of residues in the region that connects the 

two metal binding domains greatly varies among organisms. The second type of MT 

proteins have the cystein residues distributed relatively equally throughout the 

sequence, without forming distinct domains when compared to the first type. 

Differences between MT proteins coming from different source organisms lie in their 

cystein distribution pattern; x-x-Cys-x-Cys-x-x, or x-Cys-Cys-x-x-Cys-x, etc., in both of 

the two types. 

 Although cystein distribution is the key feature, the evolutionary connections 

between organisms should also be considered as Theodosius Dobzhansky (1900-1975) 

says “Nothing in biology makes sense except in the light of evolution”. A detailed and 

general classification of the metallothionein superfamily was carried out by Binz and 

Kagi (Binz & Kagi, 1997). This classification is available at; 

http://www.unizh.ch/~mtpage/classif.html. 

 As stated in 1985, metallothionein superfamily contains any polypeptide that 

resembles horse kidney MT in several of their features as stated above. The family, 

subfamily, subgroup and isoform form other steps in the hierarchical system of this 

classification (Table 2.1, Figure 2.1). In the family proteins are thought to be 

evolutionarily related and share a particular set of sequence specific properties. The 

subfamily defines more sequence specific properties like the conservation of repetition 

sequences in the gene, the resemblance of non-coding regions in the genome. Some 

clearly distinguishable branches are then formed in the re-constructed phylogenetic tree 

and named as subgroup (Binz and Kagi, 1997). Isoforms or allelic forms, on the other 

hand, are used to define all MTs occurring naturally in a single species (Kojima et al., 

1997). They are located on different chromosomes and their differences are due to 
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variations in their metal compositions and/or posttranslational acetylation (Coyle et al., 

2002). 

 

Figure 2.1: Proposed classification of the Family 1: vertebrate metallothionein proteins 
(Binz and Kagi, 1997). 

 

2.1.1.2.2 Human MTs 

 Mammalian MTs show highly conserved features both in the length of the protein 

and in the unique cystein residue distribution. They are generally 61-62 amino acids in 

length and contain 20 conserved cystein residues with a sequence identity more than 

85%. Four types of MTs, MT-1 through MT-4, have been isolated and characterized 

both in mammalian systems and most of other vertebrates. 
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 MT-1 and MT-2 are widely expressed in all organs and tissues of the human 

body. They are shown to be inducible by stress factors like glucocorticoids, cytokines, 

reactive oxygen species, metal ions, and increased or decreased temperature levels 

(Beattie et al., 1996; Sato et al., 1996). MT-3 is expressed mainly in the brain and is 

thought to be a neuronal factor (Coyle et al., 2002). Although, little is known about its 

function, MT-4 is only abundant in certain stratified tissues (Quaife et al., 1994). 

2.1.1.2.3 Non-mammalian MTs 

 MTs are also found in non-mammalian systems including invertebrates, fungi, 

plants, unicellular eukaryotes, and some prokaryotes (Valintine and Gralla, 1997; 

Tanguy et al., 2001;). In recent years, MTs in other systems have been isolated and 

tracked. Two isoforms of MT were found in the snail Helix pomatia, which are thought 

to be specific for the cadmium detoxification and copper regulation. Indeed, these 

organisms attracted attention due to their high capacity to tolerate very high amount of 

cadmium in the soil (Dallinger et al., 1997). It was known that prokaryotes have MT 

like protein and mt gene regulation similar to that of eukaryotes (Silver and Phung, 

1996; Turner et al., 1996). A very recent study showed the relation between the MT 

protein and CPx-ATPase to prevent filamentous cyanobacterium Oscillatoria brevis 

from heavy metal detoxification (Liu et al., 2003).  

2.1.1.3 Cellular localization and function of MTs 

2.1.1.3.1 Mammalian systems 

 In humans the MT concentration has been found to be high in the liver, kidney, 

intestine and pancreas with a concentration range of 400 to 700 µg/g of tissue. Although 

the main localization of MTs in human cell is the cytoplasm, rapidly proliferating cells 

have a high concentration of MTs in their nucleus (Coyle et al., 2002). 
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 Obvious functions for any MT seem to be essential trace element regulation and 

heavy-metal detoxification. In vitro metal binding assays are not sufficient to show 

involvement of MTs specifically in protection against high concentration of metal ions; 

high cystein residue content makes them accessible to any bonding that can be 

established. However, studies that have showed positive correlations between the 

increased MT expression in response to increased metal concentration, proved MTs as 

metal scavengers (Tanguy et al., 2001; Ma et al., 2003; Liu et al., 2003). 

 MTs role in the regulation of cytoplasmic trace elements have been clearly 

demonstrated by two studies on nitric oxide mediated release of bound metals from the 

proteins. At inflammatory sites stimuli such as interleukin-1, tumor necrosis factor 

alpha, and lipopolysaccharide affect inducible nitric oxide synthase (iNOS) where these 

factors also increase the level of MT expression (Beattie et al., 1996; Sato et al., 1996). 

NO then affects the MT β domain causing the release of bound metals like zinc and 

copper where these essential metals are used by other antioxidant defense enzymes and 

act as coenzymes for many other vital enzymes (Katakai et al., 2001; Zangger et al., 

2001). 

 Besides heavy metal detoxification, mammalian MTs have been shown to be 

involved in resistance against oxidative stress by scavenging free radicals (Sato and 

Bremer, 1993). Indeed, an enhanced sensitivity to oxidative stress has been shown in 

transgenic mice deficient in MT-I and MT-II genes (Lazo et al., 1995).  Agents such as 

iron, hydrogen peroxide and alcohols generate free radicals and cause oxidative stress. 

MT transcription level was positively affected when cells were administered such 

agents, although the induction mechanism is unknown (Ebadi et al., 1996). A possible 

mechanism can be through cytokines that are produced as a result of the inflammatory 

response due to extensive protein damage. Cytokines such as interleukin-1, interleukin-

6, tumor necrosis factor alpha, and gamma interferon may act as inducers for MT 

transcription and/or expression (Andrews, 2000). On the other hand, comparisons of 

wild type (MT(+/+)) and MT-null (MT(-/-)) mice, have clearly shown that the normal 

tissue levels of metallothionein do not protect mice in vivo against oxidative stress. 

Lack of metallothionein in MT-null mice did not cause any alteration in the antioxidant 



 11

defense system (superoxide dismutase, catalase, ot glutathione peroxidase and 

glutathione levels) (Conrad et al., 1997 and 2000). 

 MT-III has been characterized as a brain specific growth inhibitory factor and was 

discovered in 1988 during research aimed at understanding the pathogenesis of 

Alzheimer’s disease. The α-domain of MT-III is the functional domain for the growth 

inhibitory effect where the β-domain binds zinc or copper ions. MT-III is not inducible 

with agents that are known to increase MT-I and MT-II cellular levels. Indeed, MT-III 

competes for available zinc and copper in case of their depletion; whereas, MT-I and –II 

release these metals under the same circumstances indicating another function for MT-

III. Although, this function is not very clear, significant downregulations of MT-III in 

Alzheimer’s disease have been detected (Oz and Armitage, 2001; Yu et al., 2001). 

2.1.1.3.2 Function of MTs in systems other than mammalian 

 The snail Helix pomatia has two isometallothionein one is mainly expressed in the 

midgut-gland and the other in the mantle. The mantle MT selectively binds Cu(I) 

needed for the biosynthesis of the oxygen-carrying protein haemocyanin. Cd, on the 

other hand, is accumulated in the snail soft tissues by midgut gland specific MTs. These 

two MT isoforms showed to be 60% similar in their amino acid compositions (Dallinger 

et al., 1997). 
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2.2 Plant responses to metal toxicity and metal chelators produced by plants 

 Organisms can not synthesize all materials that they need, and they have to fulfill 

this requirement from their environment. Aquatic life forms continuously filter water 

and terrestrial ones acquire those either by means of feeding on others or direct intake 

from soil. Such necessary elements for organisms are called micronutrients and they 

include copper (Cu), nickel (Ni), zinc (Zn), etc., and in trace amounts, these are 

necessary for plant survival. These elements may be present in soil in varying 

concentrations and other metal ions, which do not have any essential role for plants, 

such as cadmium (Cd), lead (Pb), and mercury (Hg) may also be present. Plants, being 

sessile organisms, are faced with such fluctuating conditions and they have several 

mechanisms that maintain internal levels of non-essential metals below toxicity and of 

essential metals between deficiency and toxicity. 

2.2.1 Metal uptake by roots 

 Essential and non-essential metals enter into plants via root systems and root 

tissue maintains metal ions up to a certain concentration depending on the plant species. 

Apoplast, especially in root tissue, is important in the transport and distribution of metal 

ions between tissues and cells. Metal uptake from the soil is selectively controlled by 

specific carriers located on the plasma membrane of root cells (Briat and Lebrun, 1999). 

2.2.2 Metal storage in plants 

 Once inside the plant cell, metal ions are scavenged, chelated, or stored by means 

of various mechanisms. Metal binding to cell wall, reduced transport across cell 

membranes, active efflux, intracellular compartmentalization and intracellular chelation 

are among the possible defence mechanisms that are dependent on plant species. MTs 

and ferritins are intracellular proteins that scavenge heavy-metal ions and prevent 
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toxicity. MTs are also thought to be involved in essential metal regulation, which will 

be discussed in later sections. Phytochelatins or MT-IIIs, are also intracellular 

polypeptides that carry out similar scavenging functions, however they are not gene 

products but are synthesized by enzymes. Organic acids like citrate, malate, and 

oxaloacetate; aminoacids like free histidine, nicotinamine (NA); and phosphate 

derivatives like phytate (myo-inositol hexakiphosphate) are other chelators used by 

plants in the defence mechanisms against metal toxicity. 

2.2.2.1 Metal storage proteins 

 Ferritins and MTs store cellular metal ions and detoxify cytoplasm by decreasing 

their availability to other proteins. 

2.2.2.2 MT-IIIs (phytochelatins) 

 Phytochelatins are generally named as “MT-III” mistakenly; they actually belong 

to a subgroup of class III MTs. MT-IIIs are polypeptides with repeating units of γ-Glu-

Cys and there is no gene encoding for them. They are produced by non-ribosomal 

enzymes in the cytoplasm and then carried into the vacuole. 

 Class III MTs have 5 families of γ-Glu-Cys peptides. The C terminal amino acid 

determines the type of the peptide and can be; glycine, β-alanine, cysteine, serine, or 

glutamine. The main peptide chain is formed by 2-7 times repeating units of γ-Glu-Cys 

(Rauser, 1999). 
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2.2.2.3 Metal chelation by small molecules 

 MTs, ferritins, and class III MTs scavenge free metal-ions and detoxify the 

cytoplasm. On the other hand, small molecules like organic acids, amino acids, and 

phosphate derivatives are also commonly used by plants to chelate cations (Briat and 

Lebrun, 1999). Citric acid, malic acid, and oxalic acid are present both in the cytoplasm 

and the vacuole. There are several proposed mechanisms for the organic acid 

scavenging system in the cytoplasm. According to mostly accepted mechanism, malate 

chelates zinc in the cytosol and moves it into the vacuole, where oxalate (more 

abundant) chelates zinc to free malate for returning to the cytosol (Rauser, 1999). 

2.3 Plant MTs 

2.3.1 Types of plant MTs 

 MTs in plant kingdoms are widely expressed in all tissues and the first MT-like 

gene in plant was described in 1990 for a copper-tolerant ecotype of M. gutttatus. 

Although some have the same architecture as mammalian MTs in terms of cystein 

residue distribution, other types also exist. Several different classification schemes for 

plant MTs have been proposed (Rauser, 1999; Cobbett and Goldsbrough, 2002; 

Robinson, 1993).  

 MTs in plant kingdom are categorized into 4 types according to the cystein 

residue distribution pattern (Figure 2.2). Type 1 and type 2 MTs are similar to 

mammalian MTs in terms of the organization of cystein residues except the hinge 

region that connects the two metal binding domains. Different MTs that are expressed 

during fruit ripening belong to the type 3 plant MTs. Finally, the type 4 MTs are wheat 

early-cystein labeled (Ec) proteins which were the first plant MT to be characterized 

(Cobbett and Goldsbrough, 2002). 
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Figure 2.2: Plant metallothionein proteins’ multiple alignment, showing the 4 types of 
MTs. Conserved cystein residues are marked with a star. Protein sequences are derived 
from known gene sequences of Arabidopsis (At), Brassica napus (Bn), rice (Os), pea 
(Ps), alfalfa (Ms), Brassica oleracea (Bo), petunia (Ph), Silene vulgaris (Sv), banana 
(Ma), kiwifruit (Ad), cotton (Gh), Picea glauca (Pg), maize (Zm), and wheat (Ta) 
(Cobbett and Goldsbrough, 2002). 

 

 Type 1 MTs contain two metal binding domains and a ~40 amino acid long of 

hinge region that connects them. Cys-X-Cys motif is repeated three times in each of 

these domains summing up a total number of 6 cystein residues per domain and 12 per 

protein. The type 2 MTs are similar to type 1 in terms of domain structure and they also 

have a hinge region of the same length. The α-domain amino acid motif is highly 

conserved among type 2 MTs. The main difference comes from the cystein residue 

distribution pattern. Here the first cystein residues are paired “Cys-Cys” at positions 3 

and 4. Another distinctive point is the Cys-Gly-Gly-Cys motif that is found at the end of 

the α-domain (Rauser, 1999; Cobbett and Goldsbrough, 2002). 

 Type 3 MTs have a total of 10 cystein residues and the difference comes from the 

α-domain that contains only 4 cysteins. The β-domain contains Cys-X-Cys motifs and 

there are two conserved motifs as seen in figure 2.2. The hinge region of ~40 amino 

acid residues is again present in the type 3 MTs. 
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 Although the hinge region that exists in all three types of plant MTs show 

variations among species, there are also common features. All include several aromatic 

amino acids, and show no stable secondary structural features. Any computer modeling 

attempt for the hinge region using either homology modeling and/or other heuristic 

methods ends with helix-turn-helix type of DNA binding structure, which is found in 

suppressor or repressor proteins and some transcription factors (Cook et al., 1998; 

Giedroc et al., 2001; Morita et al., 2002; Blindauer et al; 2001). 

 The wheat Ec protein is a very classical example of type 4 MTs and it is the first 

EC protein that was characterized in plant kingdom. Three genes for the EC protein 

from wheat and one from maize are well characterized (Kawashima et al., 1992; White 

and Rivin, 1995) although several more are known from cDNA libraries (see figure 

2.2). 

2.3.2 Localization of plant MTs 

 In plant systems excess cations are generally scavenged and then stored in the 

vacuole. Transportation of metal complexes are done by means of several specific 

transporter proteins that are located on the plasma and vacuole membrane (Rauser, 

1999; Coyle et al., 2002). MT-III’s-Cd complexes are known to be found in vacuole of 

Cd+2 treated seedlings (Robinson et al., 1993). On the other hand, in the literature, there 

is no work stating cellular localization of plant MTs type 1, 2, and 3. 

 Although cellular localization of plant MTs is not clearly known, information on 

tissue specific expression of them is abundant. Type 4 MTs are expressed only in 

developing seeds and their expression is regulated by absisic acid. Type 1 and 2 MTs 

are transcribed in roots, stems, leaves, flowers, fruits, and seeds (Table 2.2). mRNAs for 

type 1 MTs are found to be higher in roots but for type 2 MTs higher in shoots. Plants 

like banana, kiwi, and apple highly express type 3 MTs during fruit ripening (Cobbett 

and Goldsbrough, 2002). 
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Table 2.2: Types, cystein motifs, and localizations of plant metallothioneins (Rauser, 1999). 
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Table 2.2 (continues): Types, cytein motifs, and localizations of plant metallothioneins (Rauser, 1999). 
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2.3.3 Functions of plant MTs 

 Plant MTs, due to their cystein residues, are thought to be primarily involved in 

detoxification and homeostasis of metal ions in the cytoplasm like the mammalian 

counterparts. This theory has also been proven by showing the expression of 

Arabidopsis MT gene in the phloem tissue, although they have been characterized in 

phloem tissue of other plant species (Cobbett and Goldsbrough, 2002). 

 Expression of a plant MT in another system like E. coli, a prokaryotic organism 

does not give a clear answer (Kille et al., 1991). Although such an approach is suitable 

for protein isolation, in situ role of MT remains unknown. 

 On the other hand, in plant systems there are other proteins and molecules to 

scavenge and chelate metal ions. Cadmium is easily chelated by phytochelatins and 

excess iron is scavenged by ferritins. Zinc ions are transported to the vacuole by 

forming complexes with organic acids and phosphate derivatives (Briat and Lebrun, 

1999; Rauser, 1999). MTs are not the only way for a plant to protect itself from metal 

toxicity, in fact it may be costly for a plant to produce MT type 1 and 2 proteins instead 

of organic acids, phosphate derivatives, or phytochelatins. 
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2.4 Isolation and purification of plant MTs 

 Mammalian and fungi MTs are widely characterized both biochemically and 

structurally and most of the information on plant MTs is obtained from the work on 

mammalian system (Tanguy and Moraga, 2001; Blindauer et al., 2001; Sayers et al., 

1999; Huang et al., 2002). 

 Isolation of MTs directly from plant tissue is almost impossible as the proteins are 

readily oxidized and have very small molecular weight, 6-10 kDa. The most convenient 

way is to clone a plant MT gene into a host and then to purify the over-expressed 

protein (Kille et al., 1991). Using a fusion protein provides a convenient way for 

protection from protease attacks, for stabilization of the structure in vitro and for 

simplifying purification procedures (Evans et al., 1992). Indeed, during these 

procedures, detection and handling of MT protein will be much easier (Huang et al., 

2002; Yu et al., 2002). 

2.5 Structural characteristics of MT protein 

 Cystein residues in MTs form thiol bonds with metal ions stabilizing the structure 

of the whole protein. It appears that there is no average solution structure for MTs in 

their metal free states; apo-MT (Zangger et al., 2001).  There are two main structures 

(Figure 2.3) that have been proposed for metallothioneins based on their cystein residue 

distribution. In the rat MT cystein residues are distributed forming 2 domains and there 

are 2 lysine residues in the hinge region. Such kind of a cystein arrangement generates a 

2 domain structure with an elongated 3D shape for the protein. On the other hand, yeast 

MT has cystein residues scattered into the whole protein generating a relatively more 

globular single domain structure (Sayers et al., 1999; Furey et al., 1986). 
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Figure 2.3: Crsytal structures of rat liver Cu-metallothionein, 4MT2 (above) and NMR 
structures of Cu-metallothionein of Saccharomyces cerevisiae, 1AQR (below). 

 

2.5.1 Thiol bonds stabilize the protein structure 

 Cystein residues in MTs form thiol bonds with metal ions and their metal binding 

properties are dependent on the ionic characteristics of the metal. Cd+2 shows 

tetrahedral coordination geometry, whereas Zn+2 exhibits trigonal geometry in binding 

to MTs (Munoz et al., 2000; Oz et al., 2001). Cu+1 and Ag+1 have also different 

coordination properties. While Cu+1 favors trigonal coordination, Ag+1 prefers 

bicoordination (Bertini et al., 2000). 
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 Bond geometry and lengths for Cd+2 in the tetrahedral coordination have been 

well characterized. In the chemically syhthesized native 113Cd3S9 beta domain of 

Lobster MT, Cd+2 was shown to be tetracoordinated to four cysteins with some cyteins 

bridging between two Cd+2 ions (Munoz et al., 2000; Riek et al., 1999). While three 

cysteins of the tetrahedral tend to be close (~2-3 Å) the fourth one stabilizes the 

geometry from a distance of ~4 Å. This type of information on bonding properties of 

cysteins and metal ions, is used during homology modeling of unknown MT structures. 

 

Figure 2.4: Tetrahedral coordination geometry and S-Cys distances for Cd1 in sea 
urchin metallothionein beta domain, 1QJL_A. 

 

 

 

 

 

 

 

 



 23

2.5.2 Known MT structures 

 Swiss-Prot Database contains 27 entries for MT proteins structures (Table 2.3), 

which have been obtained using small angle X-ray solution scattering, X-ray diffraction 

and nuclear magnetic resonance (NMR) techniques. Crystallization of MTs is a 

challenging task due to the high number of cystein residues in a relatively small 

molecular weight and oxidation sensitivity of the protein (An et al., 1999; Melis et al., 

1983; Robbins et al., 1991). Beside, due to high salt and varying pH conditions using 

crystallization, proteins in crystals may not reflect their native in vivo structure. Solution 

X-ray scattering or NMR provide good alternatives, as these two techniques do not 

force protein structures. Small angle X-ray solution scattering, with good resolution, can 

reveal secondary structure arrangements, but atomic interactions and localizations will 

still be questionable. NMR, on the other hand, is only applicable in the presence of 

NMR-active metals such as Cd+2 and Ag+2, and for small molecular weight proteins. 

Silver substitution is generally performed for proteins with metal ions other than these 

two (Peterson et al., 1996). 

 

Table 2.3: 27 known MT protein entries from EMB, Swiss-Prot Database (12.03.2003). 

1J5M  
Solution Structure Of The Synthetic 113cd_3 Beta_n Domain Of Lobster 
Metallothionein-1 
[19479] 
 
1J5L  
Nmr Structure Of The Isolated Beta_c Domain Of Lobster Metallothionein-1 
[19478] 
 
1JI9  
Solution Structure Of The Alpha-Domain Of Mouse Metallothionein-3 
[17228] 
 
1JJD  
Nmr Structure Of The Cyanobacterial Metallothionein Smta 
[17143] 
 
1FMY  
High Resolution Solution Structure Of The Protein Part Of Cu7 Metallothionein 
[14427] 
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1DFT  
Solution Structure Of The Beta-Domain Of Mouse Metallothionein-1 
[12320] 
 
1DFS  
Solution Structure Of The Alpha-Domain Of Mouse Metallothionein-1 
[12319] 
 
1QJL  
Metallothionein Mta From Sea Urchin (Beta Domain) 
[11258] 
 
1QJK  
Metallothionein Mta From Sea Urchin (Alpha Domain) 
[11257] 
 
1AOO  
Ag-Substituted Metallothionein From Saccharomyces Cerevisiae, Nmr, Minimized 
Average Structure 
[6836] 
1AQS  
Cu-Metallothionein From Saccharomyces Cerevisiae, Nmr, 10 Structures 
[6788] 
 
1AQR  
Cu-Metallothionein From Saccharomyces Cerevisiae, Nmr, Minimized Average 
Structure 
[6787] 
 
1AQQ  
Ag-Substituted Metallothionein From Saccharomyces Cerevisiae, Nmr, 10 Structures 
[6786] 
 
1SMT  
Smtb Repressor From Synechococcus Pcc7942 
[6866] 
 
1DMF  
Cd-6 Metallothionein-1 (Cd-6 Mt) (Beta Domain) (Nmr, 18 Structures) 
[769] 
 
1DME  
Cd-6 Metallothionein-1 (Cd-6 Mt) (Beta Domain) (Nmr, Minimized Average 
Structure) 
[768] 
 
1DMD  
Cd-6 Metallothionein-1 (Cd-6 Mt) (Alpha Domain) (Nmr, 18 Structures) 
[767] 
 
1DMC  
Cd-6 Metallothionein-1 (Cd-6 Mt) (Alpha Domain) (Nmr, Minimized Average 
Structure) 
[766] 
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4MT2  
Metallothionein Isoform Ii 
[3191] 
 
2MRT  
Cd-7 Metallothionein-2 (Beta Domain) (NMR) 
[2817] 
 
2MRB  
Cd-7 Metallothionein-2a (Beta Domain) (NMR) 
[2816] 
 
2MHU  
Cd-7 Metallothionein-2 (Beta Domain) (NMR) 
[2810] 
 
1MRT  
Cd-7 Metallothionein-2 (Alpha Domain) (NMR) 
[1720] 
1MRB  
Cd-7 Metallothionein-2a (Alpha Domain) (NMR) 
[1709] 
 
1MHU  
Cd-7 Metallothionein-2 (Alpha Domain) (NMR) 
[1673] 
 
1HZQ 
Isolated Beta_C Domain of Lobster Metallothionein-1 (NMR) 
  
1HZR 
Solution Structure of the Synthetic 113Cd_3 Beta_N Domain of Lobster Metallothionein 
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3 MATERIALS and METHODS 

3.1.1 Chemicals 

 All chemicals were supplied by Fluka (Switzerland), Merck (Germany), Riedel de 

Häen (Germany), and SIGMA (USA). 

3.1.2 Primers 

 Primers were designed according to the Triticum aestivum cDNA for mt gene 

(NCBI; L11879) (Snowden and Gardner, 1993) and synthesized by Integrated DNA 

Technologies, USA. Primers with restriction sites (stated within results part) were 

purchased from SeqLab (Germany). 

3.1.3 Enzymes 

3.1.3.1 Restriction enzymes 

EcoRI, XhoI, SpeI, BamHI, SalI (Promega and Fermenmtas). 

3.1.3.2 Ligase 

T4 DNA Ligase (Promega and Fermentas) 
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3.1.3.3  Taq Polymerase 

Taq DNA Polymerase in Storage Buffer A (Promega) 

3.1.3.4 Reverse Transcriptase 

OneStep RT-PCR Enzyme Mix (QIAGEN) 

3.1.3.5 Commercial Kits 

PCR Core System II (Promega) 

pGEM-Teasy Vector Systems (Promega) 

Qiaquick® PCR Purification Kit (250) (QIAGEN)  

Qiaquick® Gel extraction Kit (250) (QIAGEN) 

Qiaprep® Spin Miniprep Kit (250) (QIAGEN) 

QIAGEN® Plasmid Midi Kit (100) (QIAGEN) 

TOPO®  TA Cloning Kit (Invitrogen) 

3.1.4 Vectors 

Maps of all vectors can be found in Appendix A. 
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pGEM® -T Easy (Promega) 

pGEX-4T2 (Amersham Pharmacia) 

pCR®-II- TOPO®  (Invitrogen) 

3.1.5 Cells 

Different E. coli strains containing TOP10, XL1 Blue, BL21 (DE3), BL21(DE3)pLysE, 

Rosetta(DE3), Rosetta(DE3)pLysS were kindly provided by EMBL, Hamburg. 

3.1.6 Buffers and solutions 

All buffers and solutions, except those providing with commercial kits, were prepared 

according to Sambrook and Russell, 2001. 

3.1.6.1 Culture medium 

3.1.6.1.1 Liquid medium 

LB (Luria-Bertani) Broth from SIGMA was used to prepare liquid culture media for 

bacterial growth. 
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3.1.6.1.2 Solid medium 

 LB (Luria-Bertani) Broth Agar from SIGMA was used for the preparation of solid 

culture media for bacterial growth.  

3.1.6.2 Buffers for gel electrophoresis 

3.1.6.2.1 Denaturing PAGE 

1 X Tris-Glycine SDS 

3.1.6.2.2 Non-Denaturing PAGE 

1 X Tris-Glycine 

3.1.6.2.3 Agarose gel electrophoresis 

1 X Tris-Acetate EDTA (TAE) 

1 X Formaldehyde (FA) 

3.1.7 Sequencing 

Sequencing service was commercially provided by SEQLAB (Germany) or MWG-The 

Genomic Company (Germany). 
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3.1.8 Equipment 

Please see Appendix C for a complete list of all equipments that were used during this 

study. 
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3.2 Methods 

3.2.1 Plant growth 

 Triticim aestivum (Bezostaja) and Triticum durum (Balcali, C-1252) seeds were 

surface sterilized with 10% H2O2 for 20 minutes and then rinsed thoroughly with 

distilled water. Germination was done in perlite moistened with saturated CaSO4 and 

after 4 days seedlings were transferred into pots containing nutrient solution. Day/night 

cycles were adjusted as 16/8 hours under continuous aeration of pots at ~25ºC and each 

3 days the solution was changed. 

 The nutrient solution was containing;  0.88 mM K2SO4, 2.0 mM Ca(NO3)2, 0.25 

mM KH2PO4, 1.0 mM MgSO4, 0.1 mM KCl, 100 µM FeEDTA, 1 µM H3BO3, 0.5 µM 

MnSO4, 0.2 µM CuSO4. 

3.2.2 DNA and mRNA isolation from plant 

3.2.2.1 Genomic DNA isolation 

 100 mg fresh shoot tissue of 12 days old seedlings was disrupted using a mortar 

containing liquid nitrogen. QIAGEN DNeasy Plant Mini Kit was then used for the 

genomic DNA isolation and manufacturer’s protocol was followed without further 

modifications. 
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3.2.2.2 mRNA isolation 

 A week old seedlings were given 5 and 10 µM cadmium (CdSO4) and harvested 3 

days after. 100 mg fresh shoot tissue was distrupted using a RNase free mortar 

containing liquid nitrogen. QIAGEN RNeasy Plant Mini Kit was used for the total RNA 

isolation from plant tissue, which after QIAGEN Oligotex® suspension was used to 

isolate mRNAs. 

 All equipments and buffer solutions using during RNA isolation procedure were 

RNase free. Plastic wares were rinsed with chloroform thoroughly and then autoclaved 

for 15 minutes at 125ºC. Glass wares were first cleaned with detergent and then put into 

an oven for more than 5 hours at 240ºC. 0.1% diethyl pyrocarbonate (DEPC) was used 

to prepare RNase free water. The appropriate amount of DEPC was pour into water and 

waited for at least 12 hours. The solution was then autoclaved for 15 minutes at 125ºC. 

Benches and other equipments were first cleaned with chloroform and then with RNase 

free water. RNase free tips and tubes were used during the whole RNA isolation and 

RT-PCR procedure. 

3.2.3 Bacterial cell growth 

 Cells were grown overnight (12-16h) in LB Broth (Luria Bertani) medium prior to 

any application. LB Agar (Miller’s LB agar) solid medium was used as selective and 

unselective solid medium for the growth of bacteria. 

 Protocols for liquid and solid culture growth and the other applications including 

competent cell preparation, glycerol stocks were done according to Maniatis et al.,1989 

and Sambrook J and Russell DW, 2001. 
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3.2.4 PCR and RT-PCR 

3.2.4.1 PCR 

 Recommended reaction volumes and final concentrations of the PCR Core System 

II components were used for PCR reaction mixture. Annealing temperatures for primers 

were determined experimentally (see result part). 

95ºC, 1 minute  

95ºC, 1 minute 

53.5ºC, 1 minute 

72ºC, 1 minute 

a total of 40 cycles 

72ºC, 1 minute  

22ºC, hold for ~  
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3.2.4.2 RT-PCR 

 QIAGEN OneStep RT-PCR enzymes and reagents were used, and concentrations 

for primers and template mRNA were determined according to the available manual. 

50ºC, 30 minutes  

95ºC, 15 minutes  

94ºC, 1 minute 

53.5ºC, 1 minute 

72ºC, 1 minute 

a total of 40 cycles 

72ºC, 10 minutes  

22ºC, on hold  

3.2.4.3 Purification of PCR products 

 PCR product was purified either from the 1.5% Agarose gel with Qiaquick® Gel 

extraction Kit (250) (QIAGEN) or directly with Quiaquick® PCR Purification Kit (250) 

(QIAGEN). 

3.2.5 Cloning 

Basic procedures were carried out according to Manniatis et al., 1989. 
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3.2.5.1 Subcloning 

 mt-d gene was amplified and subcloned into pGEM-Teasy (Promega) and pCR®-

II-TOPO (Invitrogen) vectors according to the given protocols. 

3.2.5.2 Ligation 

 PCR products were ligated into pGEM ®T-Easy vector (Promega) in such a way 

that 3:1 and 10:1 insert:vector ratios were used. The reaction mixture was incubated for 

8 hours at room tempereature. 

 PCR products were ligated into pCR® II- TOPO® (Invitrogen) vectors. Reaction 

mixture was incubated at least 30 min. at room temperature (~250 C) and 1µl 6X 

TOPO® Cloning Stop Solution was added to stop the ligation reaction. 

3.2.5.3 Transformation 

 Ligation mixtures were transformed into different endonuclease deficient strains 

of E. coli- XL1 Blue, TOP10. Transformed cells and controls were plated on 

appropriate antibiotic selective LB plates prepared according to the ligation vectors. 

3.2.5.4 Colony Selection 

 Positive colonies were selected and grown on liquid LB culture containing 

appropriate antibiotic for both preparing glycerol stocks and plasmid isolation. 
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3.2.5.5 Plasmid isolation 

 Plasmid isolation was done either with Qiaprep® Spin Miniprep Kit (250) 

(QIAGEN) or following to the alkaline lysis protocol from Maniatis et al., 1989. 

3.2.5.6 Restriction enzyme digestion 

 Purified plasmids containing mt-d, mt-a, and mt-a, and mt-d cDNAs were digested 

with appropriate restriction enzymes according suppliers instructions to verify the 

presence of corresponding genes (Enzyme/reaction mix) v/v ratio was kept at 1/10 or 

smaller in all digestions. cDNAs were further isolated from 1.5% agarose gel to be 

cloned into appropriate expression vector. 

3.2.5.7 DNA and cDNA analysis 

 Purified plasmids and digested plasmids were analyzed by agarose gel 

electrophoresis. Appropriate DNA markers were used for size and concentration 

determination. In addition, concentration and OD260/280 ratio were monitored by 

absorption measurements.  

3.2.5.8 Frozen stocks of cells 

 Frozen stocks of E. coli containing different plasmids with cDNAs and genomic 

DNA sequences were prepared in 15% glycerol in LB with antibiotics and kept at -80o C 

according to the protocol from Maniatis et al, 1989. 
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3.2.5.9 Sequence verification 

 QIAGEN® Plasmid Mini Kit (250) and QIAGEN® Plasmid Midi Kit (100) 

(QIAGEN) purified corresponding plasmids containing DNA sequences were sent for 

sequence analysis. Plasmids were checked by restriction and electrophoretic analysis 

before sequencing. 

3.2.5.10 Cloning into expression vector 

 Purified subcloning vectors were digested with corresponding restriction 

enzymes. Resulted fragments containing necessary sites for directional cloning were 

then ligated into pGEX-4T-2 expression vector. 

 The expression vector containing mt-d and mt-a cDNAs was cloned into E. coli 

XL1-Blue cells for vector amplification and storage purposes. Then E. coli BL21(DE3) 

expression cells were transformed with the purified vector. The insert was verified by 

restriction enzyme digestion after each transformation step, and the insert containing 

multi-cloning site of the expression vector was then sequenced for nucleotide deletions 

and additions. 

3.2.6 Expression and induction 

 Expression of the recombinant GSTdMT proteins was performed according to the 

protocol from Maniatis et al.,(1989) and Sambrook and Russell (2001). E. coli 

BL21(DE3) cells containing pGEXdMT were assayed under differentiating IPTG, 0.5 

to 1.9 mM, and Cd, 0.05 to 4.0 mM, concentration for the induction and expression 

optimization. Aliquots corresponding a total OD600 of 1.4 were taken from induced 

cells.  
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  Cells were pelleted and stored at –200 C. Pellets were prepared for SDS-

PAGE gel according to the protocol from Maniatis et al., 1989 and Sambrook and 

Russell, 2001. 10 µl of the samples were loaded on 5%-12% SDS-PAGE gels. The gels 

were run at 30mA constant current for 1 h and stained with Coomasie blue for protein 

bands were observed after destaining solution overnight. 

 Protein molecular weight markers (Fermentas) were used to identify the molecular 

weights of expressed proteins observed on the gel. 

3.2.7 Purification of the recombinant protein 

 1 and 2 liters of bacterial cells containing recombinant plasmid were induced with 

0.7 mM of IPTG and harvested 4-5 hours after the induction. The starting point for the 

induction was determined as OD600 = 1.2 to 1.4. 

3.2.7.1 Batch purification 

 Batch purification using Glutathione Sepharose 4 Fast Flow® (Amersham) 

medium was performed according to the supplied protocol without furthert 

modifications with an exception at the last elution step. 6 successive elutions were 

performed instead of 3.  

3.2.7.2   Column purification 

 Bacterial cell lysate was loaded onto the 5 ml GSTrap® FF prepacked affinity 

column (Amersham) using a benchtop peristaltic pump having a constant flow rate of 1 

ml per minute. Two volumes of bacterial lysate were run through the column to ensure 

complete binding of the recombinant GSTdMT proteins. 
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 The GSTrap column was then connected to an AKTA®-FPLC system during the 

washing and elution steps which were performed according to the supplied manual. The 

only difference was at the elution step, in which, 20 mM reduced glutathione was used 

instead of 10 mM.  

 Elutions of both batch and column purifications were then analyzed using 

denaturing and denaturing PAGE, and spectrum analysis at 280 nm for the purification 

efficiency. 

3.2.8 Cleavage of GSTdMT by thrombin protease 

 Purified recombinant GSTdMT proteins were cleaved both on the column and in 

the solution following the supplied protocol by manufacturer. 

3.2.9 Size exclusion  

3.2.9.1 Column calibration 

 Amersham Biosciences HiLoad® 26/60, 75 prep grade column was calibrated 

using a set of protein (Table 4.7). 

3.2.9.2 Analysis dMT and GSTdMT preparations 

 dMT and GSTdMT recombinant proteins was run on Amersham Biosciences 

HiLoad® 26/60, 75 prep grade column with 2 different buffer; 1X PBS Sigma®, pH 

7.5, 150 mM NaCl and 50 mM Tris-HCl, 150 mM NaCl. The system was connected to 

a fraction collector and 1, 1.5, 2 ml of fractions were collected. 
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3.2.10 Solution X-ray scattering on dMT and GSTdMT 

 Small angle x-ray solution scattering patterns of dMT and GSTdMT were 

recorded on the double-focusing monochromator-mirror camera X33 (Koch and Bordas, 

1983) of the EMBL in HASYLAB on the storage ring DORIS of the Deutsches 

Elektronen Synchrotron (DESY) using delay line readout detectors (Gabriel and 

Dauvergne, 1982) and standard data acquisition and evaluation systems (Boulin et al., 

1986). Data were collected at 4ºC in 20 frames of 1 min. to monitor radiation damage. 

The observation range was 0.03<S<0.2 nm-1, where S is the modulus of the momentum 

transfer vector (S = 4πsinθ/λ, 2θ is the scattering angle and λ the wavelength). Data 

reduction, background subtraction and correction for detector response followed 

standard procedures (Koch, 1991) using the program SAPOKO (Svergun, D. and Koch, 

M.H.J., unpublished). Radii of gyration and distance distributions were calculated using 

the indirect transform program GNOM (Svergun, 1991).  

 Measurements were performed at 1 to 5 mg/ml protein concentration in either 50 

mM HEPES, pH 8.0, 150 mM NaCl bufer or in PBS. No radiation damage could be 

detected either in the X-ray data or in the SDS gel electrophoresis analysis of the protein 

obtained before and after irradiation. Bovine serum albumine (BSA) was also measured 

as a standard at about 7 mg/ml in 50 mM HEPES, pH 8.0, 150 mM NaCl buffer. 

3.2.11 Sequence alignments 

 Both pairwise and multiple alignments were done using algorithms available at 

the web server “Biology Workbench” (http://biowb.sdscs.edu). ALIGN (Pearson, 

©1997) was used for pairwise alignments, where CLUSTALW (Thompson et al., 1994) 

was preferred for multiple alignments. Both algorithms were run with their default 

parameters. 
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3.2.12  Modeling 

 Sequence similarity based homology modeling using aligned protein sequences 

was performed with “DeepView – The Swiss-Pdb Viewer, V.3.7” which is available 

through the web site; http://www.expasy.org/spdbv 

 wMT hinge region, on the other hand, was modeled using ROSETTA 

(http://honduras.bio.rpi.edu/~isites/hmmstr/).  

3.2.13 Motif search 

 Motif search for wMT hinge region was done in PROSITE database 

(http://us.expasy.org/prosite/) both selecting the “ScanProsite” and “MotifScan” 

options. 
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4 RESULTS 

4.1 Genomic DNA isolation from Triticum aestivum and Triticum durum 

 Bezostaja and Balcali are two subcultivars of Triticum aestivum and Triticum 

durum, relatively. Genomic DNA from both subcultivars was isolated using Qiagen® 

DNeasy Plant Mini Kit following manufacturers’ instructions without any modification. 

The yield of DNA was 9 µg from 100 mg of fresh plant shoot tissue. 

 

  

Figure 4.1: Agarose gel electrophoresis analysis of isolated genomic DNA of Triticum 
aestivum, Bezostaja (left) and Triticum durum,  Balcali (right). 
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4.2 Amplification of the target metallothionein (mt) gene 

 The same primers (Table 4.1), designed according to the known sequence of T. 

aestivum, were also used for amplification of mt gene both from Bezostaja and Balcali. 

 

Table 4.1: Primers designed for mt gene identification on T. aestivum and T. durum 
genomic DNA. 

Oligo 1 5’-ATGTCTTGCAACTGTGGA-3’ forward primer 

Oligo 2 5’-TTAACAGTTGCAGGGGTT-3’ reverse primer with stop codon 

Oligo 3 5’-ACAGTTGCAGGGGTTGCA-3’ reverse primer without stop codon 

 

 Three different Mg+2 and three different temperature, as shown in table 4.2, were 

tried to find the optimum PCR conditions for mt-a and mt-d. 

Table 4.2: Temperature and magnesium concentrations that were tried during PCR to 
find optimum conditions. 

temperatures 

 51.7 ºC 53.7 ºC 56.4 ºC 

1.0 mM S1 S4 S7 

1.5 mM S2 S5 S8 

2.0 mM S3 S6 S9 

M
g+2

 

co
nc

en
tr

at
io

ns
 

 

 PCR results showed that the optimum annealing temperature is 53.7 ºC and 

magnesium concentration is 1.5 mM for our primer and equipment (Figure 4.2). 
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Figure 4.2: Results of optimization studies on PCR conditons. Magnesium ion 
concentration and annealing temperature were varied as described in table 4.2. from left 
to right. PCR control (left) and the amplified mt gene (right) indicated. 

 

 PCR was carried out at 55 ºC and products corresponding to ~450bp length were 

observed for both (Figure 4.3). 

  

Figure 4.3: ~ 450bp long PCR products of metallothionein gene from T. aestivum (mt-a) 
(left) and T. durum (mt-d) (right). 
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4.3 Cloning of mt-a and mt-d in E. coli 

 PCR products of mt-a were ligated into pGEM-Teasy vector which makes use of 

the 3'-A overhangs produced by  Taq DNA Polymerase.  mt-d, on the other hand, was 

ligated into TOPO-II-PCR vector. E. coli Top10 cells were then transformed with the 

constructs into where plasmid multiplication was achieved. The pGEM-Teasy+mt-a 

construct was digested with BamHI and SalI to check the insert, mt-a. For the control 

digestion of mt-d, EcoRI was used. The constructs were sequenced for verification of 

mt-a sequence and determination of the mt-d DNA sequence. 

 

4.4 Characterization of mt-a and mt-d genes 

 Repeated adenine and thymine nucleotides especially in the intron sites of both T. 

durum and T. aestivum is a characteristic for metallothionein genes. Pairwise alignment 

of mt-a and mt-d shows a similarity of 95% (Figure 4.4). mt-a is 400 bp long, whereas 

mt-d is 416 bp; and the difference comes from the repetitive “TTTTA” part in the intron 

part of the mt-d gene. 
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Figure 4.4: Pairwise aligment of T. aestivum and T. durum genomic MT gene 
sequences. 

 

 There is no available metallothionein genomic sequence for T. aestivum or T. 

durum so alignment with maize (Zea mays) genomic sequence (NCBI entry #: S57628) 

was performed for comparison.  Differences are observed in the intron regions between 

wheat and maize (Figure 4.5). However, the three show high level of similarity at the 

level of protein (Figure 4.6). 
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Figure 4.5: Multiple alignment of maize, durum and aestivum metallothionein gene 
DNA sequences. 
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Figure 4.6: Multiple alignments of durum, aestivum and maize metallothionein proteins. 

 

 Aestivum and durum genomic DNA sequences were also aligned with the 

metallothionein cDNA of T. durum (alignment not shown). According to these 

alignments both T. durum and T. aestivum mt genes have 2 exons and 1 intron (Figure 

4.7 and 4.8). 

ATGTCTTGCAACTGTGGATCCGGTTGCAGCTGCGGCTCAGACTGCAAGTGCGG
GTATGGATGCTTTTTTTATTTTTTATTTTTTGATTGACGTTAATGGATGCTTCTC
CTTGCAAAAATACTCTCGTGCTATTTATCTACTACTTCATCTGGTGACCCCTTT
AGCTGATCAAGCATCAGTTCCTTTTGTGGTGATGAACTATTGATCTGATTCGCC
GACCGGTTGCCTTCGCCCGTTGCAGGAAGATGTACCCTGATCTGACAGAGCAG
GGCAGCGCCGCCGCCCAGGTCGCCGCCGTGGTCGTGCTCGGCGTGGCTCCTG
AGAACAAGGCGGGGCAGTTCGAGGTGGCCGCCGGCCAGTCCGGCGAGGGCTG
CAGCTGCGGCGACAACTGCAAGTGCAACCCCTGCAACTGTTAA 

Figure 4.7: T. durum metallothionein gene has 2 exons (blue shaded) and 1 intron (red 
shaded). 

 

ATGTCTTGCAACTGTGGATCCGGTTGCAGCTGCGGCTCAGACTGCAAGTGCGG
GTATGGATGTTTTTTTTTCAATCATTAATGGATGCTTCTCCTTGCAAAATACTC
TCGTGCTATTTATGTACTACTTCATCCGGTGATCCCTTTAGCTGATCAAGCATC
AATTCCTATTGTGGTGATGAACGATTGATTTGATTCGCCGACCGGTTGCCTTC
GCCCGTTGCAGGAAGGTGTACCCTGATCTGACGGAGCAGGGCAGTGCCGCCG
CCCAGGTCGCCGCCGTGGTCGTCCTCGGCGTGGCGCCTGAGAACAAGGCGGG
GCAGTTCGAGGTGGCCGCCGGGCAGCCCGGCGAGGGCTGCAGCTGCGGCGAC
AACTGCAAGTGCAACCCCTGCAACTGTAA 

Figure 4.8: T. aestivum metallothionein gene has 2 exons (blue shaded) and 1 intron 
(red shaded). 
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 The only available information in the literature is on type I wheat MT which is 

given as “metallothionein-like protein from Triticum aestivum” with an NCBI accession 

number, AAA50846 (Snowden and Gardner, 1993). The sequenced mRNAs for durum 

and aestivum MTs were translated into protein sequence and aligned with each other as 

well as AAA50846. The three protein sequences from Balcali, Bezostaja and 

AAA50846 were shown to be identical (Figure 4.9). 

 

Figure 4.9: Multiple alignments of AAA50846 (L11879_whe), Balcali (durum_MT) 
and Bezostaja (aestivum_M) MT protein sequence. 

 

 Although all three wheat MT proteins seem to be identical, their mRNA 

sequences show differences (Figure 4.10). These differences, however, are not reflected 

in the protein sequences due to the degeneracy of the genetic code. 
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Figure 4.10: Multiple sequence alignments of Bezostaja (aestivum_M), Balcali 
(durum_MT_g) and AAA50846 (wheat_MT_L). 

 

4.5 Cloning of mt-a cDNA in E. coli 

 After characteriztion of mt genomic sequences it was necessary to obtain mt 

cDNA which could be used in recombinant protein expression studies. For this purpose 

total RNA and mRNA were isolated from plants treated with 5 and 10 µM Cd to induce 

heavy metal stress and mt gene expression.  

 RT-PCR was performed on the mRNA using QIAGEN One Step RT-PCR 

enzyme mix with primers; Oligo 1 and Oligo 2 (Table 4.1) with an annealing 

temperature of 53.5 ºC. Metallothionein cDNAs could be detected at both cadmium 

concentrations (Figure 4.11). 
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Figure 4.11: Electrophoretic analysis of RT-PCR results showing amplification of  T. 
aestivum cDNA for mt gene. 

 

 Purified cDNAs were then ligated into pGEM-Teasy vector (pGEMaMT) and E. 

coli Top10 cells were transformed with the constructs.  

 Colonies that grew on selective ampicillin plates were screened for mt-a cDNA 

insert by plasmid isolation from cultures of transformed E. coli. Screening was carried 

out by restriction enzyme digestion using EcoRI whose recognition sites are at the two 

flanking regions of the insert on the pGEM-Teasy vector. mt-a cDNA can be seen 

migrating between 200 and 300 bp bands on agarose gels (Figure 4.12). 
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Figure 4.12: Electrophoretic analysis of digestion results for pGEMaMT constructs. 
Undigested constructs (lanes 5 and 6). mt-a cDNA  bands migrate between 200 and 300 
bp bands of the low range DNA ladder. 

 

4.6 Cloning of   mt-d cDNA in E. coli 

 mt-d mRNA was isolated from T. durum cultivars Balcali and Cesit-1252 which 

were grown under 5µM and 10µM CdSO4 stress and RT-PCR was carried out as 

described in Materials and Methods. Electrophoretic analysis of RT-PCR products again 

showed DNA bands migrating at a position between 200 and 300 bp (Figure 4.13). 

These bands were expected to be mt-d cDNA. 
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Figure 4.13: Electrophoretic analysis of RT-PCR products showing amplification 
Balcali and Cesit-1252 mt cDNA. 

 

 Similar to T. aestivum case described in section 4.5 mt-d cDNAs were then 

ligated with pGEM-Teasy vectors (pGEMdMT) and cloned into E. coli Top10 bacterial 

cells. 

 Control digestions to check the insert d-mt cDNAs were carried out on plasmids 

isolated from cells grown from colonies that grew on ampicillin plates (Figure 4.14 and 

4.15). 
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Figure 4.14: Electrophoretic analysis of digestion results for pGEMdMT constructs. 
Undigested (undig) and digested (dig) constructs. mt-d cDNA  bands migrate between 
200 and 300 bp bands of the low range DNA ladder. 

 

 

Figure 4.15: Electrophoretic analysis of digestion results for pGEMdMT constructs. 
Undigested (undig) and digested (dig) constructs. mt-d cDNA  bands migrate between 
200 and 300 bp bands of the low range DNA ladder. 
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4.7 Expression of dMT in E. coli 

4.7.1 Insertion into the expression vector 

 Positions of the SpeI and EcoRI restriction sites on pGEM-Teasy vectors allowed 

the mt-d cDNA insert to be conveniently digested out of the pGEM-dMT construct for 

further manipulations (Figure 4.16). 

 

Figure 4.16: Preparative agarose gel analysis for isolation of the d-MT cDNA. 
Undigested construct (lane 3) and linearized construct with SpeI digestion (lane 4). mt-d 
cDNA  bands migrate between 200 and 300 bp bands of the marker DNA. 

 mt-d genes were amplified from cDNA inserts isolated from pGEM-dMT 

constructs using primers (Table 4.1) that do not contain restriction enzyme sites and 

then with those that contain restriction sites for EcoRI at 5’ end, and XhoI at 3’ end 

(Table 4.3) which would facilitate ligation with the pGEX-4T-2 expression vector. 

Electrophoretic analysis of the PCR products indicated the high efficiency of the 

amplification process (Figure 4.17). 
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Table 4.3: Designed primers with RE sites for pGEX-4T-2 vector. 

P#6_F 5’-CTATGGAATTCCCATGTCTTGCAAC -3’ forward primer 

P#3_Rstop 5’-CTATGCTCGAGTTAACAGTTGCAGG -3’ reverse primer  

 

 

 

Figure 4.17: Electrophoretic analysis of amplified durum cDNA using primers designed 
for pGEX-4T2 (lane 1) and designed for pGFPuv (lane 2) vectors. 

 The amplified and purified durum cDNAs were then ligated into pCR-II-TOPO 

vector (pCRdMT) and E. coli XL1-Blue bacterial host cells were transformed with the 

construct. Presence of the insert was screened by a double digestion with EcoRI and 

XhoI of plasmids isolated from E. coli cultures prepared from cells that grew on 

ampicillin plates. This subcloning step was performed in order to prepare stocks of mt-d 

cDNA constructs and to achieve high plasmid yield for sequence verification and 

further manipulations. 

 Preparative purification of pCRdMT constructs were carried out for restriction 

digestion of the mt-d cDNA with restriction enzymes EcoRI and XhoI. Similarly pGEX-

4T-2 vector was prepared by digestion with the same restriction enzymes and durum 

cDNA was ligated with pGEX-4T-2 expression vector  (pGEXdMT) as described in 

Materials and Methods. 
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 E. coli XL1-Blue host cells were transformed with pGEXdMT constructs and 

screened for the plasmid and then for the insert by a double digestion with EcoRI and 

XhoI (Figure 4.18). 

 

Figure 4.18: Electrophoretic analysis of digestion results for pGEXdMT constructs. mt-
d cDNA  bands migrate between 200 and 300 bp bands of the low range DNA ladder. 

 

 After confirmation of the insert expression constructs were purified and E. coli 

BL21 expression host cells were transformed. 
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4.7.2 Induction of dMT expression in E. coli 

 Expression of T. durum mt gene in E. coli was followed in induction experiments. 

Liquid cultures were inoculated with BL21(DE3), pGEX-4-T2 in BL21(DE3), and 

pGEXdMT in BL21(DE3) cells and expression was induced with 0.7 mM of IPTG. 

Cells with unmodified pGEX-4T-2 would express the fusion protein GST alone and 

serve as control for expression and untransformed BL21(DE3) cells would provide 

controls for expression and untransformed BL21(DE3) cells would provide controls for 

growth of unmodified cells as well as providing the protein profile of unmodified cells. 

Results showed that the presence of neither the expression vector nor the expressed 

dMT protein affected the growth of the bacterial host cell (Figure 4.19). 
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Figure 4.19: Growth curve of 0.7 mM IPTG induced (+) and non-induced (-) E. coli 
BL21 cells (BL21+ and BL21-) containing pGEX-4T-2 (+,-) and pGEXdMT (+,-) 
vectors. 

 



 59

 SDS-PAGE analysis of the cellular lysates showed that although the protein 

profiles of induced and non-induced cells with the construct were not very different, the 

molecular weight distinction of the GST protein and theGSTdMT fusion protein could 

be easily seen (Figure 4.20). 

 

Figure 4.20: SDS-PAGE analysis to check GST and GSTdMT productions in IPTG 
induced and non-induced cells. (for legend, Table 4.4). 

 

 

Table 4.4: Legend for Figure 4.21 
Lane # sample Lane # sample 

1 pGEX4T2(-) at T3 6 pGEX4T2(+) at T3 

2 pGEX4T2(-) at T4 7 pGEX4T2(+) at T4 

3 pGEXdMT(-) at T3 8 pGEXdMT(+) at T2 

4 pGEXdMT(-) at T4 9 pGEXdMT(+) at T3 

5 protein marker 1 10 pGEXdMT(+) at T4 

  

 In order to stabilize the expressed MT structure it was decided to include metal 

ions in the growth medium of bacteria and the effect of cadmium (CdSO4) on host cell 

growth was assayed at 5 different Cd concentrations (Table 4.5) on control bacterial 

cells transformed with the unmodified expression vector and those expressing the 

recombinant dMT protein. 
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Table 4.5: Cell types and given Cd concentration during the induction. 

 sample # cell type Cd concentration 

#1 BL21  

#2 BL21/pGEX4T2  

#3 BL21/pGEXdMT  

#4 BL21/ pGEXdMT 0.05 mM 

#5 BL21/ pGEXdMT 0.30 mM 

#6 BL21/ pGEXdMT 0.60 mM 

#7 BL21/ pGEXdMT 2.00 mM 

#8 BL21/ pGEXdMT 4.00 mM 

#9 BL21/ pGEX4T2 0.05 mM 

#10 BL21/ pGEX4T2 0.30 mM 

#11 BL21/ pGEX4T2 0.60 mM 

#12 BL21/ pGEX4T2 2.00 mM 

#13 BL21/ pGEX4T2 4.00 mM 

 

 

 Cells were grown as described in materials and methods and were induced at t=0. 

2 and 4 mM of CdSO4 was shown to be lethal both for dMT expressing and control 

cells. Growth curves (Figure 4.21) showed that in the range 0.05 – 0.3 mM CdSO4 in 

the presence of recombinant GSTdMT, cells tolerated Cd in the growth medium better 

than the controls and optimum harvesting time for protein extraction was found to be 6-

7 hours after induction with 0.7 mM IPTG. 
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Figure 4.21(a): Growth curves of GSTdMT (#4) and GST (#9) expressing BL21(DE3) 
cells at 0.05 mM CdSO4 concentration. 
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Figure 4.21(b): Growth curves of GSTdMT (#5) and GST (#10) expressing BL21(DE3) 
cells at 0.3 mM CdSO4 concentration. 
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Figure 4.21(c): Growth curves of GSTdMT (#6) and GST (#11) expressing BL21(DE3) 
cells at 0.6 mM CdSO4 concentration. 
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Figure 4.21(d): Summary growth curves at all tried Cd concentrations. See Table 4.5 for 
legend. 
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 As well as varying CdSO4 concentration, IPTG concentrations at 0.5, 0.7, 1.0, 1.3, 

1.6, and 1.9 mM were also tried in order to find the optimum induction level. Cellular 

proteins were extracted and checked for recombinant protein expression differences. No 

significant difference due to varied IPTG concentrations was observed (Figure 4.22). 

0.7 mM IPTG and 0.05 mM CdSO4 concentrations were chosen for all further induction 

experiments.  

 

Figure 4.22: SDS-PAGE analysis to check effects of different IPTG concentrations 
during induction of recombinant dMT protein expression (for legend, Table 4.6). 

 

 

 

Table 4.6: Legend for figure 4.23. 
Lane # sample Lane # sample 

1 protein marker 1 6 1.6 mM IPTG at T6 

2 O.5 mM IPTG at T6 7 1.9 mM IPTG at T6 

3 O.7 mM IPTG at T6 8 pellet, O.7 mM IPTG at T6 

4 1.0 mM IPTG at T6 9 pellet, 1.0 mM IPTG at T6 

5 1.3 mM IPTG at T6   
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4.8 Purification of dMT protein 

4.8.1 Batch purification 

 Recombinant protein was extracted from pellets of induced E. coliBL21(DE3) 

cells containing pGEXdMT construct as well as with unmodified pGEX-4T-2 which 

expressed GST only. GSTdMT and GST protein purification was performed using 

Glutathione Sepharose 4 Fast Flow resin and manufacturer’s “batch purification 

protocol” was followed without any modification. 

 Six successive elution steps yielded a total of 0.405 mg protein from 3.6 g cell 

pellet obtained from 1 liter of culture. Isolated proteins could be characterized by 

absorption measurements at 280 nm which measured the amount of recombinant GST 

in the fusion protein directly, by comparison of absorption spectra of GST and 

GSTdMT as well as SDS-PAGE analysis. SDS-PAGE analysis (Figure 4.23) showed 

the presence of impurities in the final protein solutions. 

 

Figure 4.23: SDS-PAGE analysis of eluted GSTdMT fusion proteins (lanes 2-7). 
Protein marker 3 (lane 1). 
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On the other hand, GST and GSTdMT preparations could be clearly distinguished from 

the molecular mass difference between the recombinant proteins visualized by SDS-

PAGE analysis (Figure 4.24). 

 

 

 

 

 

 

Figure 4.24: SDS-PAGE analysis of different elution fractions of batch purified 
recombinant GST (29 kDa) and GST-dMT (36 kDa). Molecular masses of the marker 
are indicated on the left. 

 

 Further characterization of GST and GSTdMT preparations was carried out by 

recording the absorption spectra. Spectra were recorded in the wavelength range 

between 300 to 230 nm. Comparison of the spectra shows increased absorbance for the 

GSTdMT sample in the range of 245-265 nm, which corresponds to charge transfer due 

to presence of cadmium (Figure 4.25). 
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Figure 4.25: Absorbance spectra of batch purified GST and GST-dMT. 

 

4.8.2 Purification using GST (Glutathione-S-transferase) affinity 
chromatography 

 In order to improve homogeneity of the purified GST-dMT a prepacked 

Amersham GSTrap FF affinity column was used. After loading on the affinity column 

d-MT was cleaved from GST fusion protein on the column using thrombin protease. 

Cleaved d-MT and GST proteins were then eluted from the column which was 

connected to AKTA-FPLC(R) system (Figure 4.26). 
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Figure 4.26: Elution of dMT (1st peak) and GST (2nd peak) proteins from GSTrap FF 
affinity column. 

 

 SDS-PAGE analysis was carried out for the separated dMT and GST recombinant 

proteins. As expected, although GST was seen on the gel, dMT could not be visualized. 

Comparison of different samples loaded on the gel at different total protein showed that 

the major impurities in dMT fraction were contamination from GST (Figure 4.27). 

Samples were also analyzed on native polyacrylamide gels, run under nondenaturing 

conditions, and on this overloaded gel bands corresponding to the contaminants as well 

as 2 bands which can be distinguished on the background of a smear were seen. 

Positions of these bands appear to indicate complex formation by dMT leading to 

dimers, trimers, etc. (Figure 4.28). 
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Figure 4.27: SDS-PAGE analysis of cleaved dMT and GST recombinant proteins. 
Sample numbers indicate different purification batches. 

 

 
Figure 4.28: Native PAGE analysis of cleaved dMT and GST recombinant proteins  
(lanes 2-10). Low molecular mass marker (lane 1, see appendix). Sample numbers 
indicate different purification batches. 
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4.8.3 Size exclusion 

 Size exclusion chromatography was carried out to estimate the molecular mass of 

the purified d-MT and GST-dMT fractions and to monitor non-specific aggregation or 

complex formation in the protein preparations. 

4.8.3.1 Column calibration 

 Amersham Biosciences HiLoad(R) 26/60 column was calibrated with a set of 

protein (Table 4.7 and Figure 4.29) and a calibration curve was calculated (Figure 4.30). 

 

Table 4.7: Protein samples used for the column calibration and as the low molecular 
mass marker in the native PAGE analysis. 

Protein MW (kDa) Ve (ml) loaded (mg) 

Albumin 67.0 133.57 20 

Ovalbumin 43.0 150.21 20 

Chymotrypsinogen A 25.0 177.69 20 

RNase A 13.7 200.31 20 

Aprotinin 6.5 238.77 5 

Vitamin B12 1.35 277.76 30 
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Figure 4.29: Figure 4.30: Elution of proteins (Table 4.6) used in the calibration of size 
exclusion column. Albumin (1st peak), ovalbumin (2nd peak), chymotrypsinogen (3rd 
peak), Rnase A (4th peak), aprotinin (5th peak), and vitamin B12 (6th peak). 
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Figure 4.30: Calibration curve for size exclusion column, the equation used for the 
molecular mass determination of dMT and GSTdMT is given on the chart. 
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4.8.3.2 Analysis of dMT preparations by size exclusion chromatography 

 The 4 main peaks were detected at 118.61, 178.26, 292.57, and 334.47 ml in the 

elution pattern (Figure 4.31). 
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Figure 4.31: Elution profile of the dMT size exclusion chromatography. 

 

 

Table 4.8: Elution volume and corresponding molecular mass calculated according to 
the calibration curve. The 3rd column indicates; (calculated mass / dMT mass). 

Elution volume 
Calculated Molecular 

Mass (Da) 

x dMT Molecular 

Mass 

118.61 107465 14.32867 

178.26 23077 3.076933 

292.57 1210 0.161333 

334.47 410 0.054667 
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4.8.3.3 Analysis of dMT preparations by size exclusion chromatography 
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Figure 4.32: GSTdMT purification with HiTrap column. 

 

 There were 2 main peaks in the elution diagram of the GSTdMT size exclusion at 

116.16 and 133.71 ml (Figure 4.33 and Table 4.9). 
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Figure 4.33: Elution profile of the GSTdMT size exclusion chromatography. 

 

 

 

Table 4.9: Elution volume and corresponding molecular mass calculated according to 
the calibration curve. The 3rd column indicates; (calculated mass / GSTdMT mass). 

Elution volume Calculated MW (Da) x dMT MW 

116.16 114474 3.16 

133.71 72802 1.99 
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4.9 Solution X-ray scattering on dMT and GSTdMT 

4.9.1 Solution X-ray scattering on GSTdMT 

 The scattering curves of 5.85 and 1.44 mg/ml GSTdMT solutions (Figure 4.34) 

indicate that the purified protein is highly aggregated and the Guinier region 

(0.027<s<0.14 nm-1) did not yield a meaningful value for the radius of gyration for the 

monomer. 

 

Figure 4.34 (a) and (b): Scattering patterns for GST-dMT solutions at 1.44 and 5.9 
mg/ml concentrations respectively. The buffer was 50mM HEPES, pH 8.0 and 150 mM 
NaCl. Note that the scattering curves indicate aggregated protein in the range of the 
scattering vector 0.027<s<0.14 nm-1. 

 

 To investigate if aggregation was due to preparation conditions and high protein 

concentration, GST-dMT fusion protein was isolated a second time using a HiTrap GST 

Fast Flow (5 ml) column (Amersham-Pharmacia) and the purified protein was first 

analyzed using SDS PAGE. A single band was observed on 12% polyacrylamide gels 

indicating that the sample was homogeneous (data not shown). Solutions for X-ray 

scattering measurements were prepared at lower protein concentrations. However, the 
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scattering patterns were dominated by aggregates (Figure 4.35) and an estimate for the 

radius of gyration of GST-dMT could not be obtained. 

 

Figure 4.35 (a) and (b): Scattering patterns for GST-dMT solutions at 1.0 and 3.0 mg/ml 
concentrations. The buffer was 50mM HEPES, pH 8.0 and 150 mM NaCl. Note that the 
scattering curves indicate aggregated protein in the range 0.027≤s≤0.14 nm-1. 

 

 This result was confirmed by native gel electrophoresis (Figure 4.36) a minimum 

of 4 bands were identified indicating complexes of different size and aggregation states 

of GST-dMT in solution. 
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Figure 4.36: 4-20% native tris-glycine gel analysis of different fractions of column 
purified GST-dMT. Low and high molecular mass markers are shown in 1st and 9th 
lanes. 

4.9.2 Solution X-ray scattering on dMT 

 To obtain a monodisperse solution of dMT for X-ray scattering measurements, the 

overexpressed GST-dMT recombinant protein was cleaved and the two components 

were separated. Cleavage was carried out using thrombin protease on the affinity 

column and the dMT component eluting in the flow-through was collected in different 

fractions. These fractions were combined according to native gel analysis. X-ray 

scattering measurements carried out on this sample at a concentration of 2.5 mg/ml 

again indicated aggregation (data not shown). 

 Complexes of dMT were fractionated by gel filtration chromatography with a G75 

Superdex 16/60 column (Pharmacia). Three peaks eluting at 52 ml, 68 ml, and 78 ml 

correspond to 80 kDa, 29 kDa, and 16 kDa respectively. Native gel analysis indicated a 

single major component in the 16 kDa fraction. However, the 16 kDa fraction needs to 

be further characterized to determine if the major component is a monomer or a dimer 

of dMT.  
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 The signal to noise ratio of the scattering pattern (Figure 4.37) was very low due 

to the low protein concentration in this sample. So far, concentration determination of 

recombinant protein was based on the extinction coefficient of GST. After the 

separation of dMT and GST as there are no extinction coefficient known for dMT 

estimation of concentration can only be made on the basis of relative absorbance 

measurements or relative intensity of the bands observed on native gels. 

 Radius of gyration for the major component in the 16 kDa fraction was found to 

be 2.2 nm. 

 

Figure 4.37 (a) and (b): Scattering pattern (a) and the Guinier plot (b) for the 16 kDa 
dMT fraction. 
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4.10 Prediction of wheat MT structure and function 

 In the literature there are 27 entries for MT structure (Table 2.3) of various 

organisms; however there is no entry for any plant MT. Except type 4, all other type of 

plant MTs have cystein residue distribution similar to that of mammalian class I MTs. 

 wMT has a similar cystein distribution pattern with rat liver MT (4MT2), which is 

a structurally characterized mammalian MT protein. Indeed, wMT’s α- and β-domains 

have high sequence similarity with metal binding domains of 4MT2. 

 4MT2 has 2 metal binding domains and a small hinge region containing 2 lysine 

residues (Figure 4.38).  This two domains structure should also be seen in wMT, where 

structure for metal binding domains could be easily predicted using homology between 

sequences of metal binding domains. 

 Homology modeling and heuristic approaches were used to predict the structure 

of metal binding domains and hinge region, respectively. 

 The predicted structure with sequence data were used to predict wMT functions 

other than metal scavenging. Prediction results indicate a possible DNA binding and/or 

protein-protein interaction role for wMT. 

4.10.1 wMT structure prediction 

 A high sequence similarity between wheat and rat liver MT (4MT2) has been 

observed except in the hinge region connecting the two metal binding domains (Figure 

4.38). Wheat MT (wMT) hinge region contains 42 residues, whereas 2-3 residues exist 

in mammalian MTs. wMT, therefore, was divided into 3 functional parts; metal binding 

α- and β-domains, and hinge region. Structure predictions were done for each of these 

functional parts separately. 
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Figure 4.38: Rat MT (4MT2) and wheat MT protein sequences. Two metal binding 
domains and hinge regions are indicated. 

 

4.10.1.1 Secondary structure prediction 

 Strong secondary structure features were searched within the sequence of wMT. 

Such features would be reference points during the validation of the predicted wMT 

structure. 

 Secondary structure features for wMT were predicted using several algorithms 

available at Biology Workbench 3.2 (http://biowb.sdsc.edu/) (Figure 4.39). 

Rat MT 

Wheat MT
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Figure 4.39: Predicted secondary structure features for wMT. Used algorithms are 
indicated (right) and described in Materials and Methods. (H for alpha helices; E for 
beta strands; C for coils) 

 

 Although a helix-turn-helix motif is quite obvious for the wMT hinge region, used 

algorithms could not give a proper prediction for the metal binding domains. These 

results, non-existence of strong secondary features, indicate the importance of metal 

binding for the stabilization of α- and β-domains. This is also a key properties for DNA 

binding and interacting proteins like transcription factors, suppressors, repressors. 
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4.10.1.2 Modeling of α- and β-domains 

 As stated above there is no similar sequence within the known MT structures that 

could be used as template structure for the homology modeling studies. wMT metal 

binding domains, therefore, were separately searched in protein databases. 

 In accordance with the alignment results (Figure 4.40) metal-cystein distances 

were taken from sea urchin MT β-domain (1QJL) and rat liver MT β-domain (2MRT). 

 

 

Figure 4.40: Pairwise alignments of wheat MT alpha with sea urchin MT beta domains; 
and wheat MT beta with rat liver MT beta domains. 

 

 These sequence similarities were used for the modeling of wheat α- and β-

domains. In order to model the protein in its native form, functional residues must have 

been preserved.  For this purpose, the cystein-metal distances were fixed and this was 

the only constraint that was applied in the model.  

 The residues in the template sequence were mutated to the ones in target 

sequence. The side chains of the new sequence were placed in a way to keep the global 

energy of the overall structure at minimum (Figure 4.41 and Figure 4.42). 
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Figure 4.41: Wheat MT alpha domain (top-left) with sea urchin MT beta domain (top-
right). Superimposed image of modeled wheat MT alpha domain (yellow) onto sea 
urchin MT beta domain (red). 
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Figure 4.42: Wheat MT beta domain (top-left) with rat liver MT beta domain (top-
right). Superimposed image of modeled wheat MT beta domain (yellow) onto rat liver 
MT beta domain (red). 
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4.10.1.3 Modeling the hinge region 

 The structure of the wMT hinge region could not be predicted using homology 

modeling approach because no similar sequence was detected within known MT 

structures and sequence similarity searches in Protein Structure Databank did not give 

an answer with high confidence. 

 The hinge region sequence was also searched against folding libraries to find 

small but similar sequences from known structures. However, a confident and 

applicable solution was not extracted from results (data not shown). 

 Heuristic structure prediction methods, on the other hand, do not need any 

template, but predict the structure from the available sequence information. HMMSTR 

is a hidden Markov model for local and secondary structure prediction, based on the I-

sites library of sequence-structure motifs. The given protein sequence is divided into 

small fragments and each fragment is searched against a set of fragments with known 

folding. Generated and sorted possible fragments are then processed with ROSETTA, 

which is a Monte Carlo Fragment Insertion protein folding program (Simons et al., 

1997). 

 wMT hinge region sequence was upload to the “I-sites/HMMstr/Rosetta 

Prediction Server”. Local structures were determined by HMMSTR (Table 4.10) and 

structure predictions for wMT hinge region were obtained by ROSETTA (Figure 4.43). 

 

Table 4.10: Detected sequence fragments, PDB file name, referring local structure, 
clustering group and confidence value given respectively. 

SeqNo Sequence        Paradigm    LocalStruct    Cluster   Confidence 
   17 AAVVV           3tgl _   25     HHHHH          5252      0.60 
   16 VAAVV           3tgl _   25     HHHHH          5252      0.59 
   18 AVVVL           3tgl _   25     HHHHH          5252      0.58 
   17 AAVVVLG         2cmd _   70    BHEEEdG        7136      0.57 
   15 QVAAV           3tgl _   25     HHHHH          5252      0.57 
   14 AQVAA           3tgl _   25     HHHHH          5252      0.56 
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   19 VVVLGVA         1ice A  278    EBdEEEE        7428      0.55 
   18 AVVVLGV         2dld A  228    BBLBEEE       7312      0.55 
   13 AAQVA           3tgl _   25      HHHHH         5252      0.55 
   18 AVVVLGV         1ice A  278     EBdEEEE           7428    0.53 
   12 AAAQV           3tgl _   25      HHHHH             5252    0.53 
   27 ENKAGQFE        1hgx A   18     BHHHHHHH          8055    0.52 
   19 VVVLG           3tgl _   25      HHHHH             5252    0.52 
    4 PDLTEQGS        1hgx A   18     BHHHHHHH          8055    0.52 
   31 GQFEVAAG        1hgx A   18     BHHHHHHH          8055    0.51 
   18 AVVVL           1ytb A  154     bELBE             5116    0.51 
   14 AQVAAVVV        1hgx A   18     BHHHHHHH          8055    0.51 
    3 YPDLT           3pmg A  260    lEBbE             5108    0.51 
   33 FEVAA           3tgl _   25       HHHHH            5252    0.50 
   29 KAGQFEVAAGQS    1frp A   36      HHHHHHHHHHHH     12005   0.50 
   17 AAVVVLG         1ice A  278      EBdEEEE          7428    0.50 
   19 VVVLGV          1ice A  278      EBdEEE           6288    0.49 
    7 TEQGSAAA        1hgx A   18      BHHHHHHH         8055    0.49 
   22 LGVAP           1isd A  499      HGdBB            5107    0.48 
   20 VVLGVAP         2dld A  228      BBLBEEE          7312    0.48 
   20 VVLGV           3tgl _   25       HHHHH            5252    0.48 
   19 VVVLGVA         2dld A  228     BBLBEEE           7312    0.48 
   19 VVVLGV          1ice A  280     dEEEEb            6139    0.48 
   19 VVVLGV          1hqa A   46      EEEEEE           6037    0.48 
   19 VVVLG           1isd A  499      HGdBB            5107    0.48 
   17 AAVVV           1ytb A  154      bELBE            5116    0.48 
   11 SAAAQ           3tgl _   25       HHHHH            5252    0.48 
    6 LTEQGSAAAQVAA   1ubs A   78      BEHHHHHHHHHHH    13010  0.48 
   32 QFEVA           1ytb A  154      bELBE            5116    0.47 
   21 VLGVAP          1hqa A   46      EEEEEE           6037    0.47 
   16 VAAVVVLG        1hgx A   18      BHHHHHHH         8055    0.47 
   16 VAAVVVL         1ice A  278      EBdEEEE          7428    0.47 
   15 QVAAVVVL        1hgx A   18      BHHHHHHH         8055    0.47 
   15 QVAAV           1itg _  164       HHHGH            5032    0.47 
   37 AGQSG           3tgl _   25       HHHHH             5252    0.46 
   33 FEVAA           1arv _  213      HHHHH             5040    0.46 
   28 NKAGQFEV        1hgx A   18      BHHHHHHH          8055   0.46 
   26 PENKAGQFEVAAG   1ubs A   78      BEHHHHHHHHHHH    13010   0.46 
   17 AAVVVL          1ice A  278      EBdEEE            6288   0.46 
    9 QGSAA           3tgl _   25       HHHHH             5252   0.46 
    4 PDLTE           1vhh _  154      HGLbH             5236   0.46 
   32 QFEVA           1sbp _   35      lBEEE              5097   0.45 
   20 VVLGVAP         1ice A  278      EBdEEEE           7428   0.45 
   19 VVVLG           1sbp _   35      lBEEE              5097   0.45 
   10 GSAAA           3tgl _   25       HHHHH             5252   0.45 
    8 EQGSAAAQVAAV    1frp A   36      HHHHHHHHHHHH      12005   0.45 
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Figure 4.43: Predicted coordinates were processed and visualized with DeepView. 
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 Predicted structures converged into two groups; one contained larger loop regions 

that allow the metal centers to fold easily, and the other with beta sheets that resulted in 

rigid structures (Figure 4.44). 

 

Figure 4.44: Two cluster of predicted hinge regions, one representative from each 
cluster shown and indicated. 

 

4.10.1.4 Completing the puzzle 

 Separately modeled wMT α- and β-domains were connected with the selected 

hinge region structures using Deep View – The Swiss-Pdb Viewer 3.7 (Figure 4.45). 
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Figure 4.45(a): Ribbon representation of the modeled wMT protein with the relaxed 
hinge region. 

 

 

Figure 4.45(b): Molecular representation of the modeled wMT protein with the relaxed 
hinge region. 
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4.10.2 Function prediction 

 Functional roles for wMT were investigated using the predicted model structures. 

4.10.2.1 Conservation of hinge region among plant species 

 As stated in previous parts, the main difference between plant and mammalian 

MTs is the long hinge region that connects the two metal centers in plants. A multiple 

alignment was run for known plant MT hinge regions in order to see conserved motifs 

(Figure 4.46) and a rooted tree was constructed from this alignment (Figure 4.47). 

 

Figure 4.46: Multiple alignment of plant MT hinge regions. 
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Figure 4.47: A rooted tree for plant MT hinge regions based on sequence similarities. 
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4.10.2.2 Functional motif search 

 Sequences similar to wMT hinge region (Figure 4.47) were selected and a 

multiple alignment was performed for those selected sequences (Figure 4.48) in order to 

find out most conserved residues. 

 

Figure 4.48: Multiple alignment of selected plant MT hinge regions. 

 

 This multiple alignment was refined and an amino acid pattern was constructed; 

 K-x-[FY]-P-D-x(1,2)-E-x(2,3)-A-[AGT]-x(2)-[ATV]-x-[AV]-[ILMV]-[GPV]-x-[AGL] 

with 100% identity and another pattern with 80% identity; 

 K-x-[FY]-P-D-[LV]-[ET]-[AE]-x-[AGS]-[GST]-A-[AT]-x(2)-[TV]-x-[APV]-x-[AGV]  

 Pattern search in PROSITE database gave only one hit with acceptable confidence 

level; “MYRISTYL” pattern. The N-myristoylation site has a conserved pattern of 

 G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}. 

 This pattern, however, is too unspecific and can not be considered as a real match. 
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 It was thus not possible to deduce a functional role for the hinge region based 

sequence analysis. 

4.10.2.3 Search for similar folds 

 Folds that share similar structural characteristics with the wMT hinge region were 

found by the two following methods.  

wMT hinge region sequence was submitted to “3D-PSSM Imperial College Fold 

Recognition Server”  (Kelley et al., 2000) and “3D Protein Structure Comparison and 

Alignment Server” (Shindyalov and Bourne, 1998). 

 Results were refined considering their calculated e-values for both entries (Table 

4.11). 
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Table 4.11: Proteins sharing structural similarity with the wMT hinge region. 

Identity, 

% 

Certainty, 

% 

Fold Super Family PDB Id Structure 

24 61.3 
Protein 

binding 
Tripsin inhibitor 1IW4 

 

21 60 
SH3-like 

barrel 
SH3-domain 1AOJ 
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14 55.1 Transcription 
Transcription 

factor wstf 
1F62 

 

17 48.9 Ribosome 
Ribosomal 

protein 136 
1KPJ_4 
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18 39 

Small 

inhibitors, 

toxins 

Leech 

antihemostatic 

proteins 

1DEC 

12 33 
Protein 

binding 

Proteinase C 

inhibitor 
2PAI 
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16 31 
TNF receptor 

like 

TNF receptor 

like 
1D4V 



 97

4.10.2.4 Is wMT a “Natively Unfolded” protein? 

 Hydrophobicity calculations for wMT (Figure 4.49) and its hinge region was 

performed using Kyte and Doolittle (Kyte and Doolittle, 1982) approximation. Mean 

hydrophobicity for wMT was -0.037, where 0.05 for the hinge region. 

 

Figure 4.49: Hydrophobicity diagram for wMT according to Kyte and Doolittle 
approximation with corrected amino acid scale to 0 to 1. 

 

 In the wMT there were a total of 11 charged residues where 4 of them were 

positively charged (Arg + Lys) and 7 were negatively (Asp + Glu); where these 

numbers were 2 and 5 for the hinge region, respectively. Mean net charge of wMT, on 

the other hand, was 0.04 and of hinge region was 0.07. 

 These values were used to calculate the “boundary” mean hydrophobicity value, 

<H>b, which determines the probability of unfolding according to the equation 

generated by Uversky (2000). 
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 <H>b = (<R> + 1.151)/2.785; where <R> is the mean net charge for the given 

polypeptide. 

 Calculations gave <H>b values of 0.427 for wMT and 0.438 for hinge region. 

 According to the comparison graph of natively unfolded and folded proteins 

(Uversky, 2002), wMT fall just onto the boundary region (Figure 4.50). 

 

 

Figure 4.50: Comparison of the mean net charge and the mean hydrophobicity of folded 
(open circles) and natively unfolded proteins (gray circles) (Uversky, 2002). 

 

 Further calculation using “Dunker’s Lab Predictor of Natural Disordered Regions 

Server” (http://www.pondr.com) showed that the possible protein binding flanking 

region were disordered where this result was correlated with function prediction based 

on similar structure search (Table 4.11). 
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Figure 4.51: wMT disordered regions, diagram generated by “Dunker’s Lab Predictor of 
Natural Disordered Regions Server”.  

 

Figure 4.52: wMT hinge region disordered regions, diagram generated by “Dunker’s 
Lab Predictor of Natural Disordered Regions Server”. 
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4.10.2.5 Is wMT a DNA binding protein? 

 Cyanobacterial trans-acting regulator SmtB protein (Figure 4.53) binds promoter 

region of SmtA gene region by its 2 alpha helices and alpha helices that are found in the 

wMT hinge region showed high sequence similarity with those (Figure 4.54). 

 

Figure 4.53: Synechococcus metallothionein repressor (SmtB) protein, DNA binding 
dimer form. DNA binding alpha helices are indicated in ribbon structure. 
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Figure 4.54: The two alpha helices of wMT aligned with those of SmtB. Similar regions 
are indicated with arrows. 

 

 

 The two metal binding domains of wMT have also DNA binding capacity. Upon 

metal binding several amino acids become available for such a purpose (Figure 4.55). 

These surface accessible amino acids were shown to have DNA binding capacities both 

water mediated bonds and amino acid-nucleotide base contacts (Luscombe et al., 2001). 
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Figure 4.55(a): Surface accessible possible DNA binding residues of wMT α-domain.



 103

.  

Figure 4.55(b): Surface accessible possible DNA binding residues of wMT β-domain.
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5 DISCUSSION 

 

 Structure-function relationship is commonly referred to as the “holy dream of 

structural bioinformatics” due to the complex nature of the phenomenon. Although the 

main issue seems to be the prediction of the protein function from its structure, if the 

structure itself is not meaningful, all possible predictions will be condemned to remain  

as yet another computation. Finding the right, “native” structure, on the other hand, is 

another but very sophisticated issue which requires many parameters to be specified; 

e.g., pH, temperature, ligand interactions, etc. All these factors make this endeavour 

highly challenging, as Pam and Dill stated: 

 “Protein folding is one of the most intriguing intellectual challenges in molecular 
biology.”  

  Pam R.H. (1994), Nature 

 “Protein folding problem is a problem for us, not for proteins. They just fold…” 

  Dill K. (1998), Prot. Str. Analysis 

 Protein folding predictions start from the DNA sequence and end with the 

predicted atomic coordinates of proteins and include several approaches which fall into 

two general classes; homology modeling and ab initio predictions. Homology modeling 

approaches are used when a high sequence similarity exists between the template and 

the target proteins. ab initio methods, on the other hand, directly use the sequence 

information and try to predict coordinates of atoms in the protein. 



 105

 At a glance, one can easily conclude that these are just algorithms and once they 

get the input, structure will appear with two possibilities; right or wrong. However, 

structure and/or function prediction requires also input from molecular biology, 

biochemistry, physics and evolution (Figure 5.1). Such an approach was very helpful for 

us while predicting the structure and function of the wMT. 

 

Figure 5.1: Structure-function studies require input from several disciplines. 

 

 The work described in this thesis consists mainly of  two parts; 

• Molecular biology work to produce material for experimental proof of the 

results of predictions and to obtain additional information for prediction 

studies. 

• Theoretical part to predict structure and/or function of wMT and provide 

information for experimental studies. 
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5.1 Characterization of mt gene in Triticum durum 

 Primers, used during the mt gene amplification from T. durum, were designed 

according to the T. aestivum MT mRNA sequence which is available through NCBI 

nucleotide database. MT superfamily proteins are found in nearly all plant species and 

they are highly conserved among themselves. Indeed, alpha and beta metal binding 

domains are very similar in terms of amino acid composition. Multiple alignments of 

MTs from closely related species such as rice, maize and barley, proved that this 

approach was correct. 

 Sequencing of mt cDNAs and genomic DNAs from both species, T. durum and T. 

aestivum showed that these two proteins have the same amino acid composition 

although their mRNAs had dissimilarities at several points. Third codon degeneracy, 

sequencing errors, or both of them could be possible reasons for such “point mutations”. 

Intron sequences, on the other hand, were different mostly in their repeated “TTTTA” 

regions, where d-mt had an extra repetition in addition to several nucleotide base 

dissimilarities. Both species have 2 exons that are connected with an intron in their 

genomic DNA that code for type 2 MT. This seems to be a common feature among MT 

superfamily proteins of plants and mammalians. 

 

5.2 Induction of MT expression in wheat 

 MTs are cytoplasmic metal scavengers and their mRNA levels increase under 

metal stress. For this reason several Cd doses were tried on Bezostaja and Balcali, and 

optimum concentration was determined to be 5 to 10 µM.. Higher metal concentrations 

can stimulate some other plant defense mechanisms like antioxidant defense systems 

and necrosis.  

 At this point, our aim was neither to screen plant responses to applied Cd doses 

nor to analyze other defense mechanisms. Therefore, we could not speculate on MT 
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involvement in heavy metal detoxification mechanisms. mRNA isolation was 

performed at the two selected Cd concentrations. 

5.3 Cloning and expression of mt-d in E. coli 

 Prokaryotic expression systems are generally chosen when a high protein yield is 

aimed. We wanted to obtain maximum possible protein yield with most possible purity 

and therefore a GST fusion system was preferred. A direct expression of MT was not 

preferred due to difficulties likely to be faced during the isolation and purification steps. 

Some of these difficulties are listed below. 

 Firstly, dMT is a very small protein having a molecular weight of 7350 Da. 

Therefore, its detection with conventional gel analysis is almost impossible. Secondly, 

due to the high cystein content, MTs are readily oxidized even in the presence of trace 

amount of oxidizing agents such as O2. Finally, the correct folding of the MT is another 

challenge. Proteins that bind to ligands for proper function do not have stable structures 

in their free forms (Uversky, 2002). MTs can only form a stable structure when they 

form thiol bonds between their cysteins and metal ions. 

 Expression of dMT as a fusion protein in the form of GSTdMT, first of all, 

overcame isolation and detection problems. During the expression optimization steps, 

cellular proteins were screened using SDS-PAGE analysis and due to the high 

expression level GSTdMT was easily detected on the gel when compared with non-

transformed cell lysate. 

 pGEX-4T-2 vector has a strong promoter and a total of 38mg GSTdMT protein 

could be obtained from 1.5 L of bacterial culture under optimized conditions. 

 GST can possibly protect dMT from proteolytic attacks and help for a proper 

folding (Huang et al., 2002). In addition, cadmium was present in LB media and 

solutions that were used in isolation procedures to support proper folding. The selection 

of appropriate Cd concentration was done in a way similar to that of wheat plants. As 

we expected, although it was not our primary aim, bacterial cells expressing GSTdMT 
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showed higher growth rate in the presence of the metal. This difference became obvious 

at higher Cd concentrations. This result, on the other hand, does not reflect the primary 

function of MTs in plant, but may be suggestive. 

 After optimizing expression, purification steps were performed using sepharose 4 

fast flowGST affinity resin. In addition to batch and prepacked column purification 

procedures which were supplied by the manufacture, a home made column was also 

used. Batch and home made column purification, although they were successful in 

terms of purification, did not provide us with the desired homogeneity for solution X-

ray scattering experiments. The prepacked HiTrap® column, on the other hand, gave 

the expected purity, but still some impurities. The high molecular weight impurities 

probably interact with GST and/or dMT, as will be discussed later. 

 Quantification of GST, GSTdMT, and dMT was done by spectroscopic analysis at 

a wavelength of 280 nm. At this wavelength mostly aromatic groups absorb the 

incoming light and GST has an experimentally determined extinction coefficient value 

which gives 1 absorption unit for a concentration of 0.5 mg protein per ml. Knowing the 

extinction coefficient, purified GST and GSTdMT concentrations were determined with 

direct measurements. dMT, on the other hand, could not be quantified directly with 

spectroscopic measurements. Firstly beacuse it contains very few aromatic carbon 

chains and does not absorb at 280 nm. Secondly, there is no determined extinction 

coefficient value for dMT. The only signal came from Cd-thiol bonds within the range 

of 235-250 nm which was clearly seen by a comparison between the GST and GSTdMT 

spectra.  

 Non-denaturing polyacrylamide gel (native-PAGE) analysis of GST and 

GSTdMT showed a strong interaction between monomers in solution; although, single 

bands were seen on denaturing SDS gels. These results were reproducible and 

correlated with a unit size, indicating possible protein-protein interactions but not 

unspecific aggregation and/or precipitation.These results are further supported by 

preliminary solution X-ray scattering measurements and size exclusion chromatography 

results of GSTdMT and dMT. 
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 Size exclusion chromatography of dMT gave a very strong peak at an elution 

volume corresponding to ~23 kDa which may possibly be a trimeric form of dMT, 

considering that the dMT molecular weight is 7.35 kDa. According to the GSTdMT 

chromatogram, two different molecular weight protein species existed in the solution; a 

possible tetramer with 114 kDa and a possible trimer with 72.8 kDa, where the 

molecular weight of the GSTdMT monomer is expected to be ~ 36.35 kDa. 

 Solution X-ray scattering measurement results indicated that the protein solutions 

were heterogeneous, i.e. containing more than one type of structural entity, pointing to 

high molecular weight assemblies.  

 Purification was performed using several different buffers, but using neither 

solution scattering nor with size exclusion chromatography the monomer form of 

GSTdMT and dMT could be obtained and screened. This was an unsuccessful result in 

terms of structural biology, because we could not get the structure for the “wheat  type 2 

metallothionein protein”. On the other hand, these findings had been expected according 

to modeled wMT, and these were strongly suggested by the predicted functional 

(structural) motifs on the protein. 

 

5.4 Structure and function prediction of wMT 

 Two methods, homology modeling and ROSETTA which uses simulated 

annealing, were used for the structure prediction of wMT.  Cystein residue distribution 

pattern of wMT was found to be very similar to rat liver MT (4MT2). The wMT was 

expected to have two metal binding domains similar to those of 4MT2 and finding 

structures with high sequence similarities was the input for the homology modeling 

studies. On the other hand, unlike 4MT2 or any other mammalian MT a relatively very 

long hinge region was present in wMT. 

 Sequence similarity searches within known MT structures and even other PDB 

entries did not give a result that could be used for homology modeling. For this reason, 
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the hinge region sequence was submitted to ROSETTA server. This approach includes a 

sequence similarity search within known protein structures by dividing the protein into 

small fragments. Then a simulated annealing algorithm connects obtained structures and 

generates the whole protein by keeping the global energy at minimum. This approach 

generated several structures due to its intrinsic properties. The selection of the right 

structure, on the other hand, is another matter which should include the consideration of 

protein function and most importantly experimental results. 

 The α- and β-metal-binding domains' structure prediction was relatively less 

challenging due to the presence of similar sequences within known MT structures. Two 

selected structures were used as template and other residues were mutated according to 

the target protein sequence. During homology modeling studies the critical point is the 

cystein-metal thiol bond length conservation between the template and the target 

structure. This constraint was applied due to the lack of available software which would 

take into account the presence of metals during the homology modeling. An algorithm 

that could calculate the global energy minimization by considering the presence of 

metal ions or any cation, would probably have given better structures for wMT alpha 

and beta domains.    

 Results coming from homology modeling and ROSETTA server were put 

together and the predicted structure for the wMT was reconstructed. The presence of 

more than one predicted structure gave flexibility for the functional predictions. 

 Structural characteristics are based on the primary structure of any protein and 

with a generalization; “similar sequences form similar structures in proteins” could be a 

correct expression. Under the light of this theory, presence of conserved motifs like 

DNA binding or protein-protein interactions in the hinge region, could give clues about 

wMT function. At this point, only the hinge region was considered as a possible source 

of a different function for wMT, because alpha and beta domains would bind metal in 

any case. 
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 Conserved pattern searches in Pfam and PROSITE were not successful, and the 

only hit was the presence of a N-myristoylation site, but the pattern was too unspesific 

to speculate on. 

 Interestingly, results of structure similarity searches for the hinge region indicated 

proteins that have DNA binding and protein interaction roles although their sequence 

based similarities with wMT hinge region were below standard thresholds levels. These 

proteins included transcription factors, specific SH3-like barrel fold (DNA binding 

structure), tripsin and proteinase C inhibitors related domains. These structures were 

strong evidences for the probably correct relative positioning of helices and beta sheets 

in the predicted structure. 

 The main information came from the Syanoccoccus metallothionein suppressor 

protein (SmtB) which is a cyanobacterial DNA binding protein (REFERENCE). SmtB 

normally binds to the promoter/operator region of the cyanobacterial metallothionein 

protein (SmtA) preventing its transcription. In the presence of metals, however, a 

structural change results with the dissociation of SmtB from its DNA binding site 

making further transcription possible. SmtB binds to DNA in its dimer form, and DNA 

binding domain is formed form two alpha helices which share a high sequence 

similarity with the wMT alpha helices in the hinge region. In the SmtB these two alpha 

helices are next to each other, in the wMT, on the other hand, these two helices are apart 

from each other in the primary structure. According to the predicted structure, 

interestingly, these two helices come next to each other the metal bound state. 

 In addition cyanobacterial SmtA gene and its promoter region contain several 

inverted repeats which are target sequences for the proper binding of SmtB. wMT gene 

sequence, similarly, contains such repeated regions. However, we could not speculate 

on this as we do not have the operator/promoter region of the wheat mt gene. 

  Such DNA or metal binding proteins generally fall generally into “natively 

unfolded” protein group (Uversky, 2002). According to a calculation that is based on 

mean hydrophobicity and mean net charge proportions which was generated by 

Uversky, wMT could be classify as a natively unfolded protein. These proteins do not 
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generally have a stable structure unless they bind to their ligand; DNA, protein, or metal 

ions. Further calculations specifically indicate disordered regions at the flanking part of 

the hinge region supporting the predicted structure. 

 Metal binding domains get stable structures in their metal bound states, and upon 

binding metal ions several residues became surface available at the lower region of the 

protein. These residues include Glycine (8), Serine (10), and Serine (13) in the alpha 

domain; and Asparagine (7), Lysine (9), Aspargine (11) in the beta domain of the wMT. 

These amino acids are shown to be involved in nucleic acid interactions with very high 

probability (Luscombe et al., 2001). 

 When put together, these results indicate a most possible DNA binding function 

for wMT. When the protein binding part is included to this picture, a probable activator, 

repressor or transcription factor role appear on the scene. 

 Further work is needed, however, to: 

• Characterize the recombinant dMT fractions in terms of size and metal 

content. 

• Determine structural characteristics and shape of the protein in solution.  

• Compared the predicted shape with that experimentally determined. 

• Study interactions of dMT with itself, other proteins and DNA in vitro and in 

vivo (using mutations, reporter proteins, markers etc). 

 Determine structural characteristics of the complexes. 

 

 



 113

 

6 CONCLUSION 

 Metallothionein superfamily proteins, although they are well characterized in 

mammalian and yeast systems, generate many questions about their functions in plant 

systems, indeed , there is no structural work done on plant MTs. Our motivation was to 

find the solution structure of the wMT by using X-ray scattering and compare the 

obtained structure with the theoretical one. Function prediction, on the other hand, was 

speculated and predicted under the light of the theoretical model. 

 Predicted structure and experimental data were well correlated giving clues about 

the function of wMTs as a possible DNA and/or protein interacting protein. These 

experimental and theoretical results could add several possible function to wMT such as 

transcription factor, and gene suppressor or activator protein. These theoretical 

speculations should be proved through experimental works, which will probably cover 

in vivo and in vitro DNA/protein interaction assays, generations of transgenic wheat 

cultivars having silenced or overexpressed MTs, and their physiologic and proteomic 

characterizations, and for sure diffraction or NMR studies to find the whole structure of 

the protein. 

 On the other hand, in terms of experimental results, a novel MT gene was found, 

characterized, and isolated from Triticum durum, which is an economically important 

wheat species especially used in pasta making. Sequencing results will be soon 

submitted to NCBI database being the first mt gene isolated and characterized from 

durum wheat. 
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 A total characterization of MT superfamily proteins will provide us with 

information on how plants tolerate to heavy metal toxification, regulate their essential 

trace element metabolism, and behave under oxidative stress conditions. 
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APPENDIX A 

A1. pGEM-Teasy vector circle map showing multiple cloning sites with restriction 

sites on it (top) and vector regions (bottom). 
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Total number of restriction enzyme hits on pGEM-Teasy vector sequence. 
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A2. Vector map of pGEX-4T-2 and multiple cloning site showing available 

restriction enzyme hits. 
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A3. pCR-II-TOPO vector map and sequence reference points 
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APPENDIX B 

Autoclave: Hirayama, Hiclave HV-110, JAPAN 

  Certoclav, Table Top Autoclave CV-EL-12L, AUSTRIA 

Balance: Sartorius, BP211D, GERMANY 

  Sartorius, BP221S, GERMANY 

  Sartorius, BP610, GERMANY 

  Schimadzu, Libror EB-3200 HU, JAPAN 

Centrifuge: Eppendorf, 5415C, GERMANY 

  Eppendorf, 5415D, GERMANY 

  Eppendorf, 5415R, GERMANY 

  Kendro Lab. Prod., Heraeus Multifuge 3L, GERMANY 

  Hitachi, Sorvall RC5C Plus, USA 

  Hitachi, Sorvall Discovery 100 SE, USA 

Deepfreeze: -70o C, Kendro Lab. Prod., Heraeus Hfu486 Basic, GERMANY 

  -20o C, Bosch, TÜRKİYE 
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Distilled Water: Millipore, Elix-S, FRANCE 

  Millipore, MilliQ Academic, FRANCE 

Electrophoresis: Biogen Inc., USA 

  Biorad Inc., USA 

Gel Documentation: UVITEC, UVIdoc Gel Documentation System, UK 

  Biorad, UV-Transilluminator 2000, USA 

Ice Machine: Scotsman Inc., AF20, USA 

Incubator: Memmert, Modell 300, GERMANY 

  Memmert, Modell 600, GERMANY 

Laminar Flow: Kendro Lab. Prod., Heraeus, HeraSafe HS12, GERMANY 

Magnetic Stirrer: VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY 

  VELP Scientifica, Microstirrer, ITALY 

Microliter Pipette: Gilson, Pipetman, FRANCE 

  Mettler Toledo, Volumate, USA 

Microwave Oven: Bosch, TÜRKİYE 

pH meter: WTW, pH540 GLP MultiCal®, GERMANY 



 128

Power Supply: Biorad, PowerPac 300, USA 

  Wealtec, Elite 300, USA 

Refrigerator: +4o C, Bosch, TÜRKİYE 

Shaker: Forma Scientific, Orbital Shaker 4520, USA 

  GFL, Shaker 3011, USA 

  New Brunswick Sci., Innova™ 4330, USA 

Spectrophotometer: Schimadzu, UV-1208, JAPAN 

  Schimadzu, UV-3150, JAPAN 

  Secoman, Anthelie Advanced, ITALY 

Speed Vacuum: Savant, Speed Vac® Plus Sc100A, USA 

  Savant, Refrigerated Vapor Trap RVT 400, USA 

Thermocycler: Eppendorf, Mastercycler Gradient, GERMANY 

Vacuum: Heto, MasterJet Sue 300Q, DENMARK 

Water bath: Huber, Polystat cc1, GERMANY 

 


