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okul ödevi

iki kere iki dört
iki kere dört sekiz
iki sekiz onalt�
tekrarla!
diyor ö�gretmen.
iki kere iki dört
iki kere dört sekiz
iki sekiz onalt�...
birden c�v�l c�v�l
lirku³u geçiyor gökten
çocuk görüyor onu
duyuyor türküsünü ku³un
el ediyor:
kurtar beni
gel oyna benimle
minik ku³!
alçal�p iniyor ku³
ve ba³l�yor oynamaya çocukla.
iki kere iki dört..
tekrar et!
diyor ö�gretmen.
girer mi akl�na çocu�gun
ku³ onunla oynarken...
iki kere dört
iki sekiz onalt�
onalt� onalt� daha
ne eder?
hiçbir ³ey etmez
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hem ne diye edecekmi³ ki
çekip gitmek varken serde
otuziki etmek marifet de�gil ki...
çocuk s�ran�n gözüne koyuyor ku³u
ve tüm çocuklarda
yank�lan�rken türküsü ku³un
al�p ba³�n� gidiyor sekizle sekiz
ard�ndan dörtle dört ve ikiyle iki
derken birler de k�r�yor kiri³i
ne bir kal�yor ortada ne iki...
ku³ sürdürüyor oyunu
bir türkü tutturuyor çocuk
bas bas ba�g�r�yor ö�gretmen
yeter art�k bu maskaral�k!
umurunda de�gil çocuklar�n
türküsünü dinlemek varken ku³un.
ba³l�yor y�k�lmaya
duvarlar� s�n�f�n
camlar kum oluyor yeni ba³tan
mürekkepler su
s�ralar a�gaç
tebe³irler kaya
kalemler ku³...

�Jacques Prêvert�
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Basic theory of n-local �elds

Abstract

n-local �elds arise naturally in the arithmetic study of algebro-geometric objects.
For example, let X be a scheme which is integral and of absolute dimension n. Let
F be the �eld of rational functions on X. Then to any complete �ag of irreducible
subschemes

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X,

with dim(Xi) = i for i = 0, . . . , n, there corresponds a completion F (X0, . . . , Xn) of
the �eld F introduced by Parshin, which is an example of an n-local �eld, in case
each Xi is non-singular for i = 0, . . . , n. This n-local �eld F (X0, · · · , Xn) plays a
central role in the class �eld theory of X, introduced by Parshin and Kato.

In this thesis, we develop the basic theory of n-local �elds, including a complete
elementary proof of Parshin's classi�cation theorem; and for an n-local �eld K,
introduce the sequential topology on K+ and K×, and study the Kato-Zhukov higher
rami�cation theory, including the Hasse-Arf theorem, for K.



Özet

Yüksek boyutlu yerel cisimler, cebirsel geometrik objelerin aritmeti�gini incelerken
kar³�m�za do�gal bir biçimde ç�kmaktad�r. �öyle ki, boyutu n olan integral bir cebirsel
³ema X içinde seçilen herhangi bir

X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X,

indirgenemez alt³emalar zinciri için Parshin, X üzerinde tan�ml� olan rasyonel fonksiy-
onlar cismi F 'nin tamlan�³� F (X0, · · · , Xn) n-yerel cismini tan�mlam�³t�r. Elde
edilen bu n-yerel cismi F (X0, · · · , Xn), X ³emas�n�n aritmeti�gini (s�n�f cisim teorisini)
incelerken, klasik global s�n�f cisim kuram�nda old�gu gibi, merkezi bir rol oynamak-
tad�r.

Bu tezde yüksek boyutlu yerel cisimlerin temel kuram� in³a edilmekte, Parshin
s�n��and�rma teoreminin basit bir ispat� verilmekte, K ile bir n-yerel cismini göster-
mek kayd�yla, K cisminin toplamsal ve çarp�msal topolojileri in³a edilmekte ve
Kato-Zhukov yüksek dallanma kuram�, genelle³tirilmi³ Hasse-Arf teoreminin içere-
cek ³ekide incelenmektedir.
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Chapter 1

Krull valuations and valued rings

We start by reviewing the basic theory of valuations on a ring R.

1.1 Ordered groups

De�nition 1.1.1. An abelian group (Γ, +, 0) is said to be totally ordered , if there
exists a total ordering ≤ on Γ compatible with the group structure. That is, if x ≤ y

then x + z ≤ y + z, for all z ∈ Γ. We write x < y if x ≤ y and x 6= y.

Lemma 1.1.1. An abelian group (Γ, +, 0) has a total ordering ≤ compatible with
the group operation + if and only if there exists a subset P which is closed under +,
satisfying the disjoint decomposition

Γ = P t {0} t (−P ),

where −P = {p ∈ Γ : −p ∈ P}.

Proof. Take P to be the subset of Γ consisting of positive elements with respect to
≤. Conversely, for x, y ∈ Γ, de�ne the relation ≤ by

x ≤ y if and only if y − x ∈ P ∪ {0}.
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Let Γ1, · · · , Γn be totally ordered abelian groups. Then Γ1 × · · ·Γn is a totally
ordered abelian group with respect to the lexicographic ordering. Namely

(a1, · · · , an) < (b1, · · · , bn)

if and only if
a1 = b1, · · · ai−1 = bi−1, ai < bi

for some 1 ≤ i ≤ n.
Let (Γ, +, 0,≤) be a totally ordered abelian group. We add a formal element

+∞ to Γ and extend the order ≤ of Γ to Γ′ = Γ ∪ {+∞} by setting a ≤ +∞, and
+∞ ≤ +∞.

De�nition 1.1.2. Let (Γ1,≤1), and (Γ2,≤2) be two totally ordered abelian groups.
A mapping

f : Γ1 → Γ2

is called an order homomorphism, if f is a homomorphism which respects the total
orderings in the sense that

α ≤1 β ⇒ f(α) ≤2 f(β).

Given an ordered group (Γ,≤), a subset Σ of Γ is called convex, if for every
α, β ∈ Σ the set `(α,β) = {γ ∈ Γ : α ≤ γ ≤ β} is a subset of Σ.

Lemma-De�nition 1.1.1. Let (Γ,≤) be an ordered group. Let CΓ denote the col-
lection of all convex subgroups of Γ. The collection CΓ is totally ordered by inclusion,
and the cardinality of the maximal chain of non-trivial proper convex subgroups of
Γ is called the rank of Γ, and denoted by rk(Γ).

De�nition 1.1.3. An ordered group (Γ,≤) is said to be discrete if it satis�es the
following conditions:

1. The collection CΓ of all convex subgroups of Γ is well ordered;

2. If f : Γ → Γ′ is any nontrivial order homomorphism, where (Γ′,≤′) is any
other ordered group, then f(γ) has an immediate successor for all γ ∈ Γ.
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Theorem 1.1.1. Let (Γ,≤) be a discrete ordered group of �nite rank n. Then there
exists an ordered isomorphism

Γ
∼−→ Zn

where Zn is ordered lexicographically by ≤lex.

In view of this theorem, by a rank n discrete ordered group we shall always
understand (Zn,≤lex).

1.2 Valued rings

De�nition 1.2.1. A Γ-valued valuation v on a ring R is function

v : R → Γ′,

subject to the following properties:

1. v(a) = ∞ if and only if a = 0;

2. v(ab) = v(a) + v(b);

3. v(a + b) ≥ min(v(a), v(b)),

for each a, b ∈ R, where Γ is a totally ordered abelian group. We say that (R, v) is
a valued ring. If R is a �eld, then we say that (R, v) is a valued �eld.

Remark 1.2.1. Note that, if R is a ring with valuation v, then it is clear that
v(1R) = 0Γ, since v(1R) = v(1R) + v(1R). Therefore v(−1R) = v(1R). If α, β ∈ R

with v(α) < v(β) then

v(α + β) ≥ min(v(α), v(β)) = v(α)

= v(α− β + β)

≥ min(v(α + β), v(−β)),

which means v(α + β) = v(α).

3



Lemma-De�nition 1.2.1. Let (R, v) be a valued ring. Then

Ov := {α ∈ R : v(α) ≥ 0}

is a ring and called the maximal order of the valuation v. In case R is a �eld, which
will be the case in our study, the ring Ov (which will be called the ring of integers
of v) is a local ring with the maximal ideal

Mv := {α ∈ R : v(α) > 0}

which coincides with the non-invertible elements Ov. The multiplicative group

Uv := Ov −Mv

of invertible elements of Ov is called the group of units of v.The quotient �eld

Rv := Ov/Mv

is called the residue �eld of v.

Proof. Indeed, α ∈ O∗
v if and only if v(α) ≥ 0 and v(α−1) = −v(α) ≥ 0, which

means v(α) = 0. Hence the ring of integers Ov is a local ring and the ideal Mv is
maximal.

Lemma 1.2.1. Let R be an integral domain and vR be a valuation on R with the
value group Γ′ = Γ ∪ {∞}. Then the map v : ff(R) → Γ′ given by

v(α/β) 7→ vR(α)− vR(β)

de�nes a valuation on the �eld of fractions ff(R) of R.

Proof. We will just show that the map v : ff(R) → Γ′ is well-de�ned in the sense
that if α/β = α′/β′, then vR(α) − vR(β) = vR(α′) − vR(β′), which is evident as
αβ′ = α′β.

De�nition 1.2.2. Let (R, v) be a valued ring. The image v(R∗) in Γ of the mul-
tiplicative group R∗ of R is called the value group of v. In case v(R∗) is a rank n

discrete ordered group with respect to the order induced by Γ, then we say that (R, v)

is a rank n discrete valued ring.

In the next chapter we shall study rank 1 discrete valued �elds, that is necessary
in our investigation of n-local �elds.
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1.3 Examples

1. A map ‖ · ‖ from a ring R to R is called an absolute value on R if it satis�es
the following conditions:

‖α‖ > 0 if α 6= 0, ‖0‖ = 0,

‖αβ‖ = ‖α‖.‖β‖,

‖α + β‖ ≤ ‖α‖+ ‖β‖.

An absolute value is called a non-archimedean if it satis�es the ultrametric
property:

‖α + β‖ ≤ max(‖α‖, ‖β‖).

One can show that for an non-archimedean absolute value ‖‖ on R, we have,
if ‖α‖ 6= ‖β‖, then

‖α + β‖ = max(‖α‖, ‖β‖).

2. Let R be a �eld with Z-valued valuation v, and d be a real number in (0, 1).
For α ∈ R, set ‖α‖v = dv(α). Then ‖α‖v = 0 if and only if α = 0 and ‖ · ‖v is
positively de�ned. If α, β ∈ F then

‖αβ‖v = dv(αβ) = dv(α)+v(β) = dv(α)dv(β) = ‖α‖v‖β‖v.

Moreover,

‖α + β‖v = dv(α+β) ≤ dmin(v(α),v(α)) = max(dv(α), dv(β)) = max(‖α‖v‖β‖v),

which means ‖ · ‖v is an ultrametric on F .

3. Let F = K(X) and ‖ · ‖ be a nontrivial absolute value on F , which is trivial
on the multiplicative group of the base �eld. If α, β ∈ F (X), then

‖α + β‖n ≤ ‖α‖n + · · ·+ ‖β‖n ≤ (n + 1) max(‖α‖n, ‖β‖n).
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By taking the n-th roots of both sides and letting n goes to in�nity one gets
‖α + β‖ ≤ max(‖α‖, ‖β‖), which means that ‖ · ‖ is an ultrametric absolute
value. There are two cases:

1- ‖X‖ > 1. If f =
∑n

i=0 aiX
i, then ‖f‖ = ‖X‖n, thus for α = f/g ∈ K(X)

‖α‖ = ‖X−1‖−(deg(f)−deg(g)).

We de�ne v∞(α) as deg(g)− deg(f).

2- ‖X‖ ≤ 1. It is clear that for α in K(X), ‖α‖ ≤ 1. Let p be a monic
polynomial of minimal degree satisfying the condition ‖p(X)‖ < 1. Since
‖α‖ < ‖β‖ implies ‖α + β‖ = ‖β‖ we have, if p - g then ‖g(X)‖ = 1.
To see this, write g = p.h + r with 0 < deg(r) < deg(p), then clearly
vp(g) = vp(r) = 1. From this, one can deduce that

‖g(X)‖ = ‖p(X)‖vp(X)(g),

where vp(X)(g(X)) is the largest integer k such that p(X)k divides g(X),
which de�nes a valuation on K[X]. We can extend this valuation by
setting vp(X)(α) = vp(X)(f)− vp(X)(g), where α = f/g.

4. Let R be a �nite ring, v be a valuation and ‖ · ‖ be an absolute value on R.
Let α ∈ R then 0 = v(1) = v(α|R

∗|) = |R∗|v(α), which means v(α) = 0, thus v

is trivial. One can show in the same way that ‖α‖ = 1, i.e. ‖ · ‖ is also trivial.

5. Let A be the subring of a �eld F generated by 1F . It is clear that, if an
absolute value ‖ · ‖ on F is an ultrametric, then ‖A‖ ≤ 1. Conversely, suppose
that ‖A‖ ≤ 1. If α ∈ F , then

‖(1 + α)n‖ = ‖1 + α‖n ≤
n∑

i=0

‖
(

n

i

)
‖.‖α‖i ≤ (n + 1) max(‖α‖n, 1),

and �rst taking the n th roots of both sides and then letting n goes to in�nity
we see that ‖1 + α‖ ≤ max(1, ‖α‖), which means that ‖ · ‖ is an ultrametric.
In light of this fact, we can easily show that, every absolute value on a �eld
with positive characteristic must be an ultrametric, since the subring A is a
�nite �eld in this case.
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6. Let F = Q. For a �xed prime number p, de�ne

vp(n/m) = vp(n)− vp(m),

where vp(n) is the greatest integer where pvp(n) divides n. Then the ring of
integers is {n/m : m, n ∈ Z, p - m}. The map

φ : Ovp → Fp

sending n/m to n̄m̄−1 is a ring epimorphism with kernel {n/m ∈ Ovp : p|n},
which means that the residue �eld Ovp is isomorphic to the �nite �eld Fp with
p elements.

7. Let F be a �eld, and v be a valuation on it. For f(X) =
∑k

i=m αiX
i, where

αm 6= 0, put
v∗(f(X)) = (m, v(αm)),

where Z × v(F ∗) is ordered lexicographically. Let f(X) =
∑k1

i=m1
αiX

i and
g(X) =

∑k2

i=m2
βiX

i be two elements in F [X]. Then

v∗(f(X)g(X)) = (m1 + m2, v(αm1βm2))

= (m1 + m2, v(αm1) + v(βm2))

= (m1, v(αm1)) + (m2, v(βm2))

= v∗(f(X)) + v∗(g(X)).

There are two cases.

(a) m1 = m2:
In this case, either αm1 +βm2 = 0 or αm1 +βm2 6= 0. If αm1 +βm2 = 0, then
clearly v∗(f(X)) = v∗(g(X)) ≥ v∗(f(X)+g(X)). Suppose αm1+βm2 6= 0.
Then,

v∗(f(X) + g(X)) = (m1, v(αm1 + βm2))

≥ (m1, min(v(αm1), v(βm1))))

= min(v∗(f(X)), v∗(g(X))).

7



(b) m1 > m2:
Then

v∗(f(X)+g(X)) = (m2, v(βm2)) = v∗(g(X)) = min(v∗(f(X)), v∗(g(X))).

This means that, v∗ de�nes a valuation on F [X]. We extend v∗ to F (X)

by setting v∗(f(X)/g(X)) = v∗(f(X)) − v∗(g(X)). Since v∗ is a group ho-
momorphism between the multiplicative group F [X]∗ and Z × v(F×), v∗ is
well-de�ned on F (X). Checking that v∗ is a valuation on F (X) is just as
same as in the case of F [X].Then, the ring of integers Ov∗ of v∗ is given by

Ov∗ =



f(X)/g(X) ∈ F (X) :

deg(f(X)) > deg(g(X)), or

deg(f(X)) = deg(g(X)) = m, v(αm) ≥ v(βm)



 ,

and the maximal ideal Mv∗ of Ov∗ is

Mv∗ = {f(X)/g(X) ∈ F (X) : deg(f(X)) > deg(g(X))}.

8



Chapter 2

Discrete valuation �elds

Throughout this chapter, by a discrete valued �eld (F, v), we mean a rank 1 discrete
valued �eld.

2.1 Uniformizing elements and the ideal structure
of Ov

De�nition 2.1.1. Let F be a discrete valuation �eld. An element π ∈ Ov is called
a uniformizing (or prime) element if v(π) generates the value group v(F ∗). Since
any nontrivial subgroup of Z is isomorphic to Z under the map

1

n
: nZ ∼−→ Z,

we may assume that v(F ∗) = Z, that is v is normalized.

Lemma 2.1.1. If char(F ) 6= char(F̄v), then char(F ) = 0 and char(F̄v) 6= 0.

Proof. Suppose char(F ) = p 6= 0. Then p = 0 in F , so p̄ = 0 in F̄v, which means
char(F̄v) = p. This proves the lemma.

Lemma 2.1.2. Let (F, v) be a valuation �eld and J be a non-zero ideal of the ring
of integers Ov. Let α ∈ J and β ∈ Ov. If v(α) ≤ v(β) then β ∈ J .

Proof. Since v(β) ≥ v(α), we have v(β/α) ≥ 0. Hence β/α ∈ Ov. Lemma follows
from the fact that β = α.(β/α).
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Lemma 2.1.3. Let F be a discrete valuation �eld, and π be a uniformizing element.
Then the ring of integers Ov is a principal ideal domain, and every nonzero ideal of
Ov is generated by πn, for some n ∈ N.

Proof. Let α ∈ Ov, and n = v(α). Then v(απ−n) = 0, which means α = πnu where,
u is a unit in Ov. From this observation and by Lemma 2.1.2, one sees that, if I is
an ideal of Ov then I = πkOv, where k = min{n ∈ N : n = v(α) for some α ∈ I}.
This also shows in particular that, Mv = πOv, and Ov has no non-trivial minimal
ideal.

2.2 v-adic topology

Let F be a discrete valuation �eld with the valuation v. Since ‖α‖v = dv(α) is a
norm on F , dv(α, β) = ‖α − β‖v = dv(α−β) with d ∈ (0, 1) de�nes a metric on
F , hence induces a Hausdor� topological space structure on F . Let α ∈ F , and
consider the open ball Bn(α) of radius d−n centered at α. If β ∈ (α + πn+1Ov),
then d(α − β) ≤ dn+1, hence β ∈ Bn(α). Conversely, one can show that Bn(α) is
contained α + πnOv. This means, the topology de�ned by the decreasing chain of
ideals

(π) ⊃ (π2) ⊃ · · · ⊃ (πn) · · · , for n ∈ N

which will be called as v-adic topology, coincides with the metric topology.

Lemma 2.2.1. The �eld F with the topology de�ned above is a topological �eld.
That is, the �eld operations +, × and the inversion map are continuous with respect
to the above mentioned topology.

Proof. Let αn → α and βn → β. We have to show that αn−βn → α−β, αnβn → αβ,
and α−1

n → α−1. Note that, αn → α means v(αn − α) →∞ and vice versa. But,

v
(
(α− β)− (αn − βn)

) ≥ min
(
v(α− αn), v(β − βn)

) →∞

v(αβ − αnβn) ≥ min
(
v(α− αn) + v(β), v(β − βn) + v(αn)

) →∞

v(α−1 − α−1
n ) ≥ v(α− αn)− v(α)− v(αn) →∞,

10



which means all the operations are continuous.

Lemma 2.2.2. Let F be a �eld which has a discrete valuation structure with respect
to the valuations v1 and v2. Then the topologies induced by the valuations coincide
if and only if v1 = v2. Note that v1F

∗ = v2F
∗ = Z.

Proof. The su�ciency is clear. So let us assume the topologies T1 and T2 induced
by the valuations v1, v2 respectively coincide. We know that αn → 0 with respect
to Ti if and only if vi(α

n) = nvi(α) → ∞ which means vi(α) ≥ 1. On the other
hand, since the topologies coincide any sequence converging to 0 with respect to T1

is also converges to 0 with respect to T2, and vice versa. Thus, we conclude that
v1(α) > 0 if and only if v2(α) > 0. Let π1, π2 be prime elements with respect to
v1 and v2 respectively. Since v1(π1) = 1 and v2(π2) = 1 it follows that v1(π2) ≥ 1

and v2(π1) ≥ 1. If v2(π1) > 1 then v2(π
−1
2 π1) > 0 hence v1(π

−1
2 π1) > 0 which means

v1(π) < 0. This yields a contradiction, thus v2(π1) = v1(π2) = 1.

11



Chapter 3

Complete discrete valuation �elds:
Local �elds

Throughout this chapter by a discrete valued �eld (F, v) we mean a rank 1 discrete
valued �eld.

Let F be a valuation �eld an v be the valuation on it. As we had seen that the
topologies induced by the norm given by the v and the Ov coincide, we may say that
a sequence αn in F is a Cauchy sequence if for all z ∈ N there exists N ∈ N such
that ∀k, l > N v(αk − αl) > z. A discrete valuation �eld F is said to be complete,
if every Cauchy sequence in F has a limit in F .

3.1 Completion

Let (αn) be a Cauchy sequence in F . There are two cases, either v(αn) is bounded
or not.

1. Suppose it is unbounded, and suppose that there exists an integer z such that
for in�nitely many integer i, v(αi) = z. Let N ∈ N be such that for r, s > N

we have v(αr − αs) > |z| + 1. We know that there exists l ∈ N with l > N

and v(αl) = z. Also there exists k > N such that v(αl) > |z| + 1. Such m

exists since v(αn) is unbounded. But v(αk − αl) = z < |z| + 1. this yields a
contradiction, thus we conclude that lim v(αn) exists and equal to +∞.

12



2. Suppose v(αn) is bounded. Suppose that there exist z1 6= z2 integers such that
for in�nitely many natural numbers i, j, v(αi) = z1 and v(αj) = z2. As above
one can show that this situation yields a contradiction.

Thus if {αn} is a Cauchy sequence then lim v(αn) exists.

Lemma 3.1.1. The set C(F ) = C of all Cauchy sequences in F in forms a ring with
respect to componentwise addition and multiplication, and the set C0(F ) = C0 of all
Cauchy sequences tending to 0 forms a maximal ideal of C. The quotient �eld

F̂ = C/C0

is a discrete valuation �eld with respect to the the induced valuation

v : F̂ → Z ∪ {∞}

de�ned by
v(αn) = lim v(αn).

Proof. Let {αn},{βn}be two Cauchy sequences. Let z ∈ N be given. Then there
exists N ∈ N such that whenever n1,m1, n2,m2 > N we have

v(αn1 − αm1) > z and v(βn2 − βm2) > z.

So we conclude that

v((αn − βn)− (αm − βm)) ≥ min(v(αn − αm), v(βm − βn)) > k,

which means sum of two Cauchy sequences is again a Cauchy sequence. On the
other hand we have

v(αnβn − αmβm) ≥ min
(
v(αn − αm) + v(βn), v(βn − βm) + v(αm))

)
. (3.1)

Since v(αn) and v(βn) are bounded below and v(αn−αm), v(βn−βm) tend to in�nity
as n,m tend to in�nity, we see that the product of two Cauchy sequences is again a
Cauchy sequence. Let {αn} be a Cauchy sequence in C − C0, which means 0 is not
a limit point of {αn}, so only �nitely many αn = 0. Consider the ideal J generated
by C0 ∪ {αn}. Let N be a positive integer so that for n > N αn 6= 0. Put βn = α−1

n

for n > N and βn = 0 for n ≤ N . Then 1 − {αn}{βn} ∈ J , which means J = C,
hence C0 is maximal.

13



3.2 Universality

Proposition 3.2.1. Let F be a discrete valuation �eld with the valuation v. Then
there is a complete �eld F̂ with valuation v̂, and a continuous �eld embedding i : F ↪→
F̂ , which is universal in the following sense. Whenever there exists a continuous
�eld embedding j : F ↪→ K in to a complete �eld, there exists unique ϕ : F̂ → K,
such that the following diagram commutes:

F →i F̂

↘j ↓ ϕ

K

.

To prove the Proposition we have just need follow the routine procedure of
completing the rational numbers Q to R.

3.3 Examples

1. The completion of Q with respect to the valuation vp is called the p-adic �eld
and denoted by Qp.

2. The completion of K(X) with respect to vX is the Laurant series K((X)) with
the valuation

v(
∞∑

nÀ−∞
αnXn) = min{n ∈ Z : αn 6= 0}.

It is clear that v↑K(X) = vX . We know that K[[X]] ⊂ K((X)). Moreover,
if f ∈ K[[X]] with f(0) 6= 0, then 1/f ∈ K[[X]] ⊆ K((X)). Also 1/X ∈
K((X)), thus K(X) ⊂ K((X)). An element h ∈ K((X)) can be written as
h = X−kf + g, where f ∈ K[X], k ∈ N, and g ∈ K[[X]]. We'd seen that such
f is always an element of K(X). Let g =

∑∞
i=0 αiX

i, and put

gn =
n∑

i=0

αiX
i.

14



For n < m ∈ N we have v(gn − gm) = v(
∑m

i=n αiX
i) = n, thus {gn} is a

Cauchy sequence converging to g. So hn = f + gn → h, which means K(X) is
dense in K((X)). Also it it is clear that OvX

= K[[X]] and MvX
= XK[[X]],

hence the residue �eld K((X))v is K again.

3. Let F be a �eld with a discrete valuation v, and F̂ be its completion. We ex-
tend the v∗ on F (X) to F̂ ((X)) in the following way. For f(X) =

∑
n≥m αnXn,

αn ∈ F̂ , αm 6= 0, put
v∗(f(X)) = (m, v̂(αm)).

Let f(X) ∈ Ov∗ . This means either m > 0 or m = 0 and α0 ∈ Ov̂. If m > 0

then f(X) ∈ XF̂ [[X]]. If m = 0 and α0 ∈ Ov̂ then f − α0 ∈ XK[[X]], thus
Ov∗ = Ov̂ + XF̂ [[X]]. If f ∈ Mv∗ then either m > 0 or m = 0 and α0 ∈ Mv̂.
So, Mv∗ = Ov̂ + XF̂ [[X]], thus the residue �eld of ¯̂

F ((X))v∗ = Ov̂/Mv̂∗
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Chapter 4

Structure theory of complete discrete
valuation �elds

Throughout this chapter by a discrete valued �eld (F, v) we mean a rank 1 discrete
valued �eld.

4.1 The equal characteristic case: Teichmüller rep-
resentatives

Let F be a complete discrete valuation �eld with ring of integers O and residue �eld
F = k. Let π be a prime element and T be a set of coset representatives of k in O.

Proposition 4.1.1. Every element a ∈ O can be written uniquely as a convergent
series

a =
∞∑

n=0

θnπn, with θn ∈ T.

Similarly, every element α ∈ F can be written uniquely as

α =
∑

n>−∞
θnπ

n, with θn ∈ T.

Proof. Since for any α ∈ K, π−v(α)α ∈ O, the second assertion follows from the
�rst. So, let a ∈ O; by de�nition of T, there exists unique θ0 ∈ S such that
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a− θ0 ≡ 0 mod (π). Thus a = θ0 + a1π for some a1 ∈ O. Similarly a1 = θ1 + a2π

which means a = θ0 + θ1π + a2π
2, and so on. Since v(

∑∞
i=n aiπ

i) ≥ n we have
a−∑n

i=0 θiπ
i → 0, and since all series of the form

∑
θnπn is convergent, existence

follows.. The uniqueness of this expression is clear.

Observe that we can generalize the assertion of the above proposition as follows:
Let F be a complete discrete valuation �eld with respect to the valuation v, T be
a set of coset representatives of F v and for each i ∈ Z let πi ∈ F be such that
v(πi) = i. Then every element α ∈ F can be written as a convergent series

α =
∑

n>−∞
θnπn, with θn ∈ T.

Lemma 4.1.1. Let R be a local ring that is Hausdor� and complete for the topology
de�ned by decreasing sequence a1 ⊃ a1 · · · of ideals such that an.am ⊂ n + m. Suppose
that a1 is the maximal ideal and let R̄ = A/a1 is a �eld. Let f(X) be a polynomial
with coe�cients in R such that the reduced polynomial f̄ ∈ R̄[X] has a simple root
λ ∈ R̄. Then f has unique root x ∈ R such that ā = λ.

Proposition 4.1.2. Let R be a local ring that is Hausdor� and complete for the
topology de�ned by decreasing sequence a1 ⊃ a1 · · · of ideals such that an.am ⊂ n + m.
Suppose that R = R/a1 is �eld of characteristic zero. Then R contains a system of
representatives ok R which is a �eld.

Note that any discrete valuation ring R with the topology induced by the valu-
ation on it, or equivalently the topology given by the decreasing sequence of ideals
(π), · · · , (πn), where π is a prime element satis�es the condition of the proposition.

Proof. Since characteristic of R is zero, φ : Z ↪→ R is injective. Since R/a1 is of
characteristic zero we have φ(Z) ∩ a1 = ∅, thus every element of φ(Z) is invertible
in R, which means R contains an isomorphic copy of the �eld Q. Hence by Zorn's
Lemma there exists a maximal sub�eld T of R. Let T be its image in R. Since T

is a sub�eld and a1 ∩ T = 0, we see that the map ϕ : T → R̄ given by θ 7→ θ is
injective, hence T is a �eld. We will show that T = R.
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Our �rst claim is that R is algebraic over T. Suppose not! Then there exists
a ∈ R such that ā is transcendental over T. Also a ∈ R must be transcendental over
T. Indeed if f(X) is a monic polynomial in T[X] such that f(a) = 0, then f̄(ā) = 0,
which contradicts with the assumption that ā is transcendental over T. So the bar
map sends T[a] to T[ā] ' T[X] isomorphically. Since ā is transcendental over T,
T[a]∩ a1 = 0, thus a is invertible in R, which means R contains the �eld T(a). But
this contradicts with the maximality of T, hence R is algebraic over T.

So, for any λ ∈ R, there exists a unique f̄ minimal polynomial over T. Since
the characteristic is zero R is separable over T, which means λ is a simple root of f̄ .
Let f ∈ T[X] be a coset representative for f̄ . By the previous lemma, there exists
a ∈ R such that x̄ = λ with f(a) = 0.

Proposition 4.1.3. Let R be a ring that is Hausdor� and complete for the topology
de�ned by decreasing sequence a1 ⊃ a1 · · · of ideals such that an.am ⊂ n + m. Suppose
that the residue ring R = R/a1 is perfect of characteristic p > 0. Then

1. There exists one and only one system of representatives f : R → T ⊂ R which
commutes with p-th powers. That is f(λp) = f(λ)p.

2. An element a ∈ R belongs to T = f(K) if and only if a is a pn th power for
all n ≥ 0.

3. T is multiplicative, i.e. f(λµ) = f(λ)f(µ).

4. If the characteristic of R is p > 0, then T is additive.

Proof. For λ ∈ R and n ∈ N put

Ln(λ) = {x ∈ R : x̄ = λp−n},
Un(λ) = {xpn ∈ R : x ∈ Ln(λ)}. (4.1)

If x ∈ Ln(λ) then
xpn = x̄pn

= (λp−n

)pn

= λ,

thus xpn ∈ L0, which means Un ⊆ L0. Let a, b ∈ Un(λ), then there exists x, y ∈ Ln(λ)

such that a = xpn
, b = ypn . Since x = y we have x− y ∈ a1, by the following lemma
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stated below, we see that xpn − ypn ∈ an+1, whence Un(λ) form a Cauchy �lter base.
So we may set f(λ) = lim(Un(λ)). This limit exits and well-de�ned since Un is
Cauchy �lter, R is complete and Hausdor�.
Now, we'll show that a ∈ T := {lim(Un(λ) : λ ∈ K} = f(K) if and only if a is a
pn-th power for all n ≥ 0. The necessity follows from the construction. Indeed, any
element of Un is a pn th power and lim Un =

⋂
n∈N Un. Suppose a is a pn th power

for all n ≥ 0. Let λ = ā. By hypothesis there exists y ∈ R such that a = ypn . Since
ā = λ, ypn = λ, thus ȳ = λp−n , hence y ∈ Ln(λ), which also means that a ∈ Un(λ).
But lim Un =

⋂
Un, which show the su�ciency.

If a, b ∈ R are pn th power then ab is also a pn th power. So T is a multiplicatively
closed set. On the other hand, if the characteristic of R is p then a+b = xpn

+ypn
=

(x + y)pn .

Lemma 4.1.2. Under the assumptions of the above proposition a ≡ b ( mod am)

implies apn ≡ bpn
( mod an+m).

Proof. We know that (a − b)p ∈ apm ⊂ am+1. Since the characteristic is p > 0 we
have

ap − bp = (a− b)p

thus ap − bp ∈ am+1. The rest follows by induction.

Note that in the context of valuation �elds the lemma is equivalent to say that
v(α− β) ≥ n implies v(αpm − βpm

) ≥ n + m.

Theorem 4.1.1. Let F a complete discrete valuation �eld with respect to the valu-
ation v. If the characteristic of the residue �eld F = 0 or the characteristic of F is
non-zero and F is perfect, then

F ' F (X).

Proof. The theorem follows from Proposition 4.1.1, Proposition 4.1.2 and the Propo-
sition 5.2.

De�nition 4.1.1. The set T is called the Teichmüller representatives of the residue
�eld.
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4.2 Unequal characteristic case: Witt vectors

Let A = Z[X0, X1, · · · , Y0, Y1, · · · ] be the ring of polynomials in variables X0, X1, · · · , Y0, Y1

over the integers. We de�ne

Wn(X0, · · · , Xn) =
n∑

i=0

piXpn−1

i n ≥ 0,

in particular W0 = X0, W1 = Xp
0+pX1. Note that Wn(X0, · · · , Xn) = Wn−1(X

p
0 , · · · , Xp

n−1)−
pnXn, and Wn(X0, · · · , Xn) = Xpn

0 + pWn−1(X1, · · · , Xn).

Proposition 4.2.1. There exists unique polynomials

w∗
n(X0, · · · , Xn, Y0, · · · , Yn) ∈ A, n ≥ 0

such that
Wn(X0, · · · , Xn) ∗Wn(Y0, · · · , Yn) = Wn(w∗

0, · · · , w∗
n),

where ∗ stands for + or ×.

Proof. We observe that there exist unique polynomials w∗
0 where w+

0 = X0 +Y0 and
w×

0 = X0Y0. For n ≥ 1 we deduce that

pnw∗
n = Wn(X0, · · · , Xn) ∗Wn(Y0, · · · , Yn)− (p0w∗pn

0 + · · ·+ pn−1w∗
n−1)

= Wn−1(X
p
0 , · · · , Xp

n−1) ∗Wn−1(Y
p
0 , · · · , Y p

n−1)−Wn−1(w
∗p
0 , · · · , w∗p

n−1)

+ (pnXn ∗ pnYn).

The uniqueness of w∗
n is clear. Now we'll show that pnw∗

n ∈ pnA. Note that if
g(X0, Y0, · · · ) ∈ A then g(X0, Y0, · · · )p − g(Xp

0 , Y p
0 , · · · ) ∈ pA. This follows from the

fact that the summands of g(Xp
0 , Y p

0 , · · · ) are the summands of g(X0, Y0, · · · )p which
are not divisible by p. Moreover, if f − g ∈ pA then fp − gp ∈ p2A (c.f. Lemma 4.2
), thus we conclude that

g(X0, Y0, · · · )pm − g(Xp
0 , Y p

0 , · · · )pm−1 ∈ pmA.

So for 0 ≤ i ≤ n−1 we have w∗
i (X0, Y0, · · · , Xi, Yi)

p−w∗
i (X

p
0 , Y p

0 , · · · , Xp
i , Y p

i ) ∈ pA.
Thus

pi(w∗
i (X0, Y0, · · · , Xi, Yi)

p)pn−1−i − piw∗
i (X

p
0 , Y p

0 , · · · , Xp
i , Y p

i )pn−1−i ∈ pnA,
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which means means

Wn−1(w
∗p
0 , · · · , w∗p

n−1)−Wn−1

(
w∗

0(X
p
0 , Y p

0 ), · · · , w∗
0(X

p
0 , · · · , Xp

n−1, Y
p
0 , · · · , Y p

n−1)
) ∈ pnA.

On the other hand we have Wn−1(X
p
0 , · · · , Xp

n−1)∗Wn−1(Y
p
0 , · · · , Y p

n−1) = Wn−1(w
∗p
0 , · · · , w∗p

n−1).
Thus we get

pnw∗
n = Wn−1(w

∗p
0 , · · · , w∗p

n−1)−Wn−1(w
∗p
0 , · · · , w∗p

n−1) + (pnXn ∗ pnYn),

which means pnw∗
n ∈ pnA hence w∗

n ∈ A.

Corollary 4.2.1. With the notations of the Proposition 4.2.1 we have

w∗
n(X0, · · · , Xn, Y0, · · · , Yn)p − w∗

n(Xp
0 , · · · , Xp

n, Y p
0 , · · · , Y p

n ) ∈ pA.

We now return to the case where the characteristics of the base �eld F and F̄

are di�erent. We know that, this means, char(F ) = 0 and char(F̄ ) = p > 0. Let
α, β be two elements in the ring of integers O of F , π be a prime element, and S be
a set Teichmüller representatives for the residue �eld F̄ . We know that there exists
unique θi, γi ∈ S such that

α =
∑
i≥0

θiπ
i and β =

∑
i≥0

γiπ
i.

Also there exists unique ρ+
i , ρ×i ∈ S such that

α + β =
∑
i≥0

ρ+
i πi and α× β =

∑
i≥0

ρ×i πi

We'll investigate the relation between θi, γi and ρ∗i for ∗ = + or ∗ = ×. Since an
element is a Teichmüller representative if and only if it is pnth power for all n ∈ N
there exists elements εi, ξi, λ

∗
i ∈ S such that εpn−i

i = θi, ξ
pn−i

i = γi and λ∗p
n−i

i = ρ∗i ,
where ∗ = + or ∗ = ×. We observe that if ∗ = + then,

n∑
i=0

θiπ
i +

n∑
i=0

γiπ
i −

n∑
i=0

ρ+
i πi =

∑
i>n

ρ+
i πi −

∑
i>n

θiπ
i −

∑
i>n

γiπ
i,

and if ∗ = × then,
n∑

i=0

θiπ
i ×

n∑
i=0

γiπ
i −

n∑
i=0

ρ×i πi =
∑
i>n

ρ×i πi

− (
∑
i>n

θiπ
i)β − α(

∑
i>n

γiπ
i).
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But this means
n∑

i=0

θiπ
i ∗

n∑
i=0

γiπ
i ≡

n∑
i=0

ρ∗i π
i mod πn+1,

for ∗ = + or ∗ = ×. By replacing θi, γi, ρ
∗
i by εpn−i

i , ξpn−i

i , λ∗p
n−i

i respectively we get
n∑

i=0

εip
n−i ∗

n∑
i=0

ξip
n−i ≡

n∑
i=0

λi∗pn−i mod πn+1.

Note that if π = p then the last equivalency is nothing but

Wn(λ∗0, · · · , λ∗n) ≡ Wn(ε0 · · · , εn) ∗Wn(ξ0, · · · , ξn) mod pn+1.

Proposition 4.2.2. With the above notations, we have the following identity

ρ∗i ≡ w∗
i (θ

p−i

0 , θp−i+1

1 , · · · , θp
i , ξ

p−i

0 , ξp−i+1

1 , · · · , ξp
i , ) mod p, i ≥ 0,

where w∗
i are the polynomials de�ned in the proof of the Proposition 4.2.1.

Proof. We'll proceed by induction. Suppose the assertion of the proposition holds
for i ≤ n− 1, which means for 0 ≤ i ≤ n− 1 we have

λ∗p
n−i

i ≡ w∗
i (ε

pn−i

0 , εpn−i

1 , · · · , εpn−i

i , ξpn−i

0 , ξpn−i

1 , · · · , ξpn−i

i ).

In the proof of the Proposition 4.2.1 we have seen that if g(X) ∈ A then g(X)p −
g(Xp) ∈ pA. Writing g(X)pn − g(Xpn

) as g(X)pn − g(Xp)pn−1
+ g(Xp)pn−1 −

g(Xp2
)pn−2

+g(Xp2
)pn−2

+ · · ·−g(Xpn−1
)p +g(Xpn−1

)p−g(Xpn
) we see that g(X)pn−

g(Xpn
) ∈ pA. Thus

w∗
i (ε

pn−i

0 , εpn−i

1 , · · · , εpn−i

i , ξpn−i

0 , ξpn−i

1 , · · · , ξpn−i

i ) ≡ w∗
i (ε0, ε1, · · · , εi, ξ0, ξ1, · · · , ξi)

pn−i

mod p.

From this we deduce that for i ≤ n− 1

λ∗p
n−i

i ≡ w∗
i (ε0, ε1, · · · , εi, ξ0, ξ1, · · · , ξi)

pn−i

mod p.

By the remark following the Lemma we see that for i ≤ n− 1

piλ∗p
n−i

i ≡ piw∗
i (ε0, ε1, · · · , εi, ξ0, ξ1, · · · , ξi)

pn−i

mod pn+1
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hence
n−1∑
i=0

piλ∗p
n−i

i ≡
n−1∑
i=0

piw∗
i (ε0, ε1, · · · , εi, ξ0, ξ1, · · · , ξi)

pn−i

mod pn+1.

On the other hand we know that

Wn(λ∗0, · · · , λ∗n) ≡ Wn(ε0 · · · , εn) ∗Wn(ξ0, · · · , ξn)

≡ Wn(w∗
0(ε0, ξ0), · · · , w∗

n(ε0, · · · , εn, ξ0, · · · , ξn) mod pn+1,

and combining these two facts we get

pnλ∗n ≡ pnw∗
n(ε0, · · · , εn, ξ0, · · · , ξn) mod pn+1,

which implies the assertion of the proposition.

Corollary 4.2.2. With the above notation we have

ρ∗i ≡ w∗
i (θ0, · · · , θi, γ0, · · · , γi) mod p.

Proof. As we had seen in the proof of the Proposition 4.2.1 modulo p, ρ∗i is equivalent
to w∗

i (ε0, · · · , εi, ξ0, · · · , ξi)
pn−i .

From the proof of the proposition we deduce that

Corollary 4.2.3. Let (
∑

θp−i

i pi) ∗ (
∑

γp−i

i ) =
∑

ρ
(∗)p−i

i where θi, γi, ρ
(∗) are Teich-

müller representatives comes from 5.2, and ∗ = + or ∗ = ×. Then

ρi ≡ ω
(∗)
i (θ0, · · · , θi, γ0, · · · , γi) mod p.

Corollary 4.2.4. (
∑

θp−i

i pi) ∗ (
∑

γp−i

i ) = ω
(∗)
i (θ0, · · · , θi, γ0, · · · , γi).

De�nition 4.2.1. A ring R is said to be a p-ring if it satis�es the hypothesis of the
Proposition 5.2. A p-ring is said to be strict if an = pnR and ip p is not zero divisor
in R.

We know that, thanks to Proposition 5.2, a p-ring is always have a set of Teich-
müller representatives. By the Proposition 4.1.1 for θi ∈ T

∑
θip

i

converges to an element α of R. On the other hand, if R is strict then can be written
in this way uniquely. The element θi is called the coordinates of α.

23



Proposition 4.2.3. Let R and R′ be two p-rings with residue �elds k and k′ respec-
tively. If R is strict then for any homomorphism φ : k → k′, there exists a unique
homomorphism g : R → R′ such that φ(α) = g(α).

Proof. Let T and T ′ be two systems of Teichmüller representatives for R and R′

respectively given by the lifting maps f and f ′ respectively. Suppose g : R → R′

satisfying the assertions of the proposition. Then for α ∈ R is equal to
∑

θip
i we

have
g(α) = g(

∑
θip

i) =
∑

g(θi)p
i =

∑
f ′(φ(θi))p

i.

Thus g is unique. By Corollary 4.2.4 it follows that the map de�ned in this unique
way is in fact a homomorphism.

Corollary 4.2.5. Let R and R′ are two strict p-rings. If the residue �elds of are
same then R and R′ are canonically isomorphic.

Lemma 4.2.1. Let k and k′ be two two perfect rings of characteristic p > 0. Suppose
that there exists a surjective ring homomorphism φ : k → k′. If there exists a strict
p-ring R with residue ring k, then there exists strict p-ring R′ with residue ring k′.

Proof. We will de�ne an equivalence relation on R, then take R′ as the quotient
ring modulo this equivalence relation. For α, β ∈ R with coordinates θi and γi

respectively, set
α ≡ β if and only if φ(θi) = φ(γi)

for all i. If α1 ≡ α2 and β1 ≡ β2, then by the Corollary 4.2.4 the R′ of R by the
equivalence relation is a ring. Let x ∈ R′, and α ∈ R be a representatives for x with
coordinates θi. Then ξi = φ(θi) is independent of the choice of the representative
α.

Theorem 4.2.1. (Classi�cation theorem) For every perfect ring k of characteristic
p, there exists a unique strict p-ring W (k) with residue �eld k.
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Chapter 5

Extensions of valuation �elds

Let F be a �eld and L be an extension of F which is discrete valuation with respect
to the valuation v, with the value group Γ′. Then v induces a valuation v0 on F

in the obvious way. In this situation we say that L/F is an extension of valuation
�elds. It is clear that the value group v0(F

∗) is a totally ordered subgroup of Γ′.

5.1 De�nition of e(L/F, v) and f (L/F, v)

De�nition 5.1.1. The number e =| v(L∗)/v0(F
∗) | is called the rami�cation index

e(L/F, v) of the extension L/F .

We know that α ∈ Ov0 ⊂ F ∗ if and only if v0(α) = v(α) ≥ 0, which means
α ∈ Ov, thus

Ov0 = Ov ∩ F ∗.

With the same way we can show that

Mv0 = Mv ∩ F ∗.

Now, consider the map

i : F v0 = Ov0/Mv0 ↪→ Ov/Mv = Fv

de�ned by
ᾱ 7→ ¯̄α.
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If ᾱ = β̄ then α − β ∈ Mv0 . Since Mv0 ⊂ Mv, it follows that ¯̄α = ¯̄β hence i is
well-de�ned. Also we see that i is injective, thus we may view F v as an extension
of the �eld F̄v0 .

De�nition 5.1.2. The number f = [F v : F v0 ] is called the residue degree of the
extension L/F , and denoted by f(L/F, v).

By using the very beginning results of the group theory and linear algebra, one
can prove the following lemma:

Lemma 5.1.1. Let L ⊃ M ⊃ F be a chain of �elds. Suppose L is a valuation �eld
with the valuation v. Let vM be the valuation on M induced by v. Then we have the
following equalities:

e(L/F, v) = e(L/M, v)e(M/F, vM)

f(L/F, v) = f(L/M, v)f(M/F, vM)

Lemma 5.1.2. With the above notation, if L/F is �nite of degree n and v0 is
discrete, then the rami�cation index e(L/F, v) is �nite, and v is discrete.

Proof. For e ≤ e(L/F, v), let α1, · · · , αe be elements in L× such that the elements

v(α1), · · · , v(αe)

are all distinct in the quotient group v(L∗)/v(F ∗). Since

e(L/F, v) = |v(L∗)/v(F ∗)|,

such αi's are always exist. Suppose
e∑

i=1

ciαi = 0 with ci ∈ F ∗.

By the choice of αi's we have v(ciαi) = v(αi). It follows that

v(ciαi) 6= v(cjαj),

whenever i 6= j. Thus v(
∑e

i=1 ciαi) = min(v(ciαi)) which is on the other hand equal
to in�nity. Thus ci = 0 for all i, i.e. αi's are linearly independent over F . So e ≤ n,
which proves the �rst assertion of the lemma.
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Since v(L∗) ⊃ v0(F
∗) = Z the value group of v is in�nite, thus in order to prove

the second assertion of the lemma, it su�ces to prove that v(L∗) is cyclic. Let π be
a prime element of v0. As we had shown that the rami�cation index is �nite, we see
that there is only �nitely many positive elements v(L∗) which are less then v(π) = 1,
say α1, · · · , αe, where e is the rami�cation index. Without loss of generality we may
assume min(v(αi)) = v(α1). We claim that v(α1) generates the value group v(L∗).
We have

e.v(α1) = v(α1) + · · ·+ v(α1)︸ ︷︷ ︸
e many

= k ∈ Z,

e.v(αi) = v(αi) + · · ·+ v(αi)︸ ︷︷ ︸
e many

= l ∈ Z
.

Since v(α1) ≤ v(αi) it follows that k ≤ l. So there exist positive integers s, r such
that l = sk + r, where 0 ≤ r < k. We see that r = v((α−s

1 αi)
e). From this, we

deduce that 0 ≤ v(α−s
1 αi) < v(α1). Thus r = 0, which means l = sk, equivalently

k many︷ ︸︸ ︷[
v(α1) + · · ·+ v(α1)

]
︸ ︷︷ ︸

e many

+ · · ·+ [
v(α1) + · · ·+ v(α1)

]
= v(αi) + · · · v(αi)︸ ︷︷ ︸

e many

.

From this, we conclude that

v(α1) + · · ·+ v(α1)︸ ︷︷ ︸
k many

= v(αi),

which proves the second assertion of the lemma.

From now on we'll deal with discrete valuations. Let F ⊂ L be two �elds with
discrete valuations v and w respectively. The valuation w is said to be an extension
of v, if the topology by w0 is equivalent to the topology de�ned by v. In this
situation, we write w|v and use the notations e(w|v) and f(w|v). We shall assume
that w(L∗ = Z) and v(F ∗) ⊂ Z. Let πv and πw be prime elements for (F, v) and
(L,w). Then w(πe

w) ∈ v(F ∗). Since v(F ∗) is cyclic it follows that e(w|v) = w(πv).

Lemma 5.1.3. Let [L : F ] = n < ∞, then e(w|v)f(w|v) ≤ n.
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Proof. Let e = e(w|v) and f ≤ f(w|v). Let

A = {θ1, · · · θf} ⊂ Ow

be where A is a linearly independent set over Ov/Mv. We will show that

{θiπ
j}i,j,

where i = 1, · · · , f and j = 0, · · · , e is a linearly independent set over F . Suppose
∑

cijθiπ
j = 0

for cij ∈ F and not all cij = 0. If necessary, by multiplying the expression
∑

i,j cijθiπ
j

by a suitable c−1
kl , we may assume that some of the cij's do not belong toMv. Now,

by multiplying a suitable power of π, we may assume that cij ∈ Ov, but not all in
Mv. We observe that if

∑
i cijθi ∈ Mw, then

∑
c̄ij θ̄i = 0. Since {θ̄i}i is a linearly

independent set, it follows that c̄ij = 0, hence cij ∈ Mv, which is impossible. Thus
there exists an index j such that

∑
i cijθi /∈Mw. Let j0 be such minimal. We claim

that

w(

f∑
j=1

(
e∑

i=1

cijθi)π
j) = j0.

Observe that the claim contradict with the fact that the above sum is equal to zero.
Now, suppose

∑
cijθi /∈Mv, but then

∑
cijθi ∈ Ov −Mv,

thus w(
∑

cijθi) = 0, and this proves the claim.

5.2 Extensions of complete discrete valuation �elds

Let F be a discrete valuation �eld and F̂ be its completion. We know that, if
α ∈ F̂ , with a representing Cauchy sequence (αn) in F , then v̂(αn) = lim v(αn)

and v(αn) ∈ Z for all natural number n. Thus it follows that, v̂(F̂ ∗) = Z. So the
rami�cation index of the extension F̂ /F is equal to 1. Also the residue degree of the
extension is equal to 1. This means that, if F is not complete, then [F̂ : F ] 6= e.f .
On the contrary, we have the following proposition for the complete �elds.
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Proposition 5.2.1. Let L ⊃ F be two complete discrete valuation �elds with respect
to the valuations v, w respectively. Moreover suppose that w|v, f = f(w|v),
e = e(w|v) < ∞. If πw is a prime element of L with respect to w and θ1, · · · , θf

are elements of Ow such that θ̄1, · · · , θ̄f form a basis for the vector space Lw over
the �eld F v then the set {θiπ

j
w} is a basis for L over F , and for the Ov-module Ow

where 1 ≤ i ≤ f and 0 ≤ j ≤ e− 1. If f is �nite, then n = ef .

Proof. Let S ⊂ Ov be a set of coset representatives for F v and ᾱ ∈ Lw. Since {θ̄i}
is basis of Fw, there exists �nite number of elements s̄i ∈ F̄v with si ∈ S, such that
α =

∑f
i=1 s̄iθ̄i. But this means the set

R′ = {
f∑

i=1

siθi : si ∈ S and si = 0 for all most all i ∈ Z }

is a set of coset representatives for L. Let πv be a prime element with respect to v,
and for m ∈ N, we set

πm = πk
vπ

j
w,

where m = ek + j, 0 ≤ j < e. Thus w(πm) = m, so by the remark following the
Proposition 4.1.1, it follows that an element α ∈ L can be expressed as a convergent
series

α =
∑
m

ρmπm with ρm ∈ R′.

Writing ρm in terms of the elements of R and θi's

ρm =

f∑
i=1

ρm,iθm with ρm,i ∈ R,

we get

α =
∑
i,j

( ∑

k

ρek+j,iπ
k
v

)
θiπ

j.

This means the set {θiπ
j
w} is a spanning set of L over F . By the proof of the previous

Lemma, we further know that {θiπ
j
w} is a linearly independent set over F . Thus the

set {θiπ
j
w} is a basis of L over F . The assertion concerning the module part follows

from this fact directly.
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Theorem 5.2.1. Let F be a complete �eld with respect to a discrete valuation v,
and let L be an extension of F of degree n. Then there exists unique extension w of
the valuation v on L, and w = 1

f
v ◦NL/F with f = f(w|v). The �eld L is complete

with respect to w.

Proof. Let w′ = v ◦NL/F and α, β ∈ L. Since v is a valuation on F , we see that

w′(α) = v ◦NL/F (α) = ∞

if and only if NL/F (α) = 0. But norm of an element is zero if and only if the element
is zero. So w′ satis�es the �rst property of being a valuation. Secondly, observe that

v ◦NL/F (αβ) = v(NL/F (α)NL/F (β)) = v(NL/F α) + v(NL/F β)

= w′(α) + w′(β).

Assume that w′(α) ≥ w′(β), for α, β ∈ L∗. We shall show that w′(α + β) ≥ w′(β).
Since

w′(α + β) = v(NL/F (β)NL/F (1 + α/β)) = w′(β) + w′(1 + α/β),

it su�ces to show that w′(1 + η) ≥ 0 whenever w′(η) ≥ 0. Let

f(X) = Xm + am−1X
m−1 + · · ·+ a0

be the minimal polynomial of η over F . Then NF (η)/F (η) = (−1)ma0. We know that
NL/F (α) = αn if α ∈ F , thus if [L : F (η)] = s, then we have

NL/F (η) = NF (η)/F

(
NL/F (η)(η)

)
= ((−1)ma0)

s.

So w′(η) = v(((−1)ma0)
s) = sv(a0). From this, we deduce that v(a) ≥ 0. Thus

by the Remark 1.2.1, we get v(ai) ≥ 0. On the other hand we have the following
equality

(−1)mNF (η)/F (1 + η) = f(−1) = (−1)m + am(−1)m−1 + · · ·+ a0.

To see this equality, �rst note that norm of an element α in a �eld L over F is the
product of elements σi(α), where αi runs through the automorphisms of L which
are �xing F . Thus, if σi(η) = ηi then

NF (η)/F (1 + η) = Πi(1 + ηi).
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On the other hand, we have the following equality

ai(−1)m−i =
∑

J⊆{1,··· ,n}
|J |=i

∏
j∈J

ηj.

Clearly this summand occurs in the left hand side. And every summand of the left
hand side can be written in this way uniquely. From this equality we deduce that

NF (η)/F (1 + η) ≥ 0,

and

NL/F (1 + η) ≥ 0,

which means w′(1 + η) ≥ 0, thus w′ is a valuation on L.
If α ∈ F ∗ then

w′(α) = v ◦NL/F (α) = v(αn) = nv(α).

So the valuation 1
n
w′ is an extension of v. But the group 1

n
w′(L∗) is not necessarily

equal to Z. Let e be the rami�cation index e( 1
n
w′|v). By the Lemma 5.1.2, e is

�nite. Consider the following map on L to Q,

w =
e

n
w′ : L∗ → Q.

Let πw be a prime element of w, note that πw is a prime element with respect to w′

also. Thus w(πw) = e
n
w′(πw), since e is the rami�cation index of w′

n
. Therefore it

follows that w(πw) = 1. Hence w is a discrete valuation on L.
Now, let L̂ be the completion of L with respect to w and ŵ be the discrete

valuation on L̂. We know that e(L̂|L) = 1 and f(L̂|L) = 1. By the Lemma 5.1.1
and the remark following the Lemma 5.1.3 and bearing the Proposition 5.2.1 we see
that

n ≤ [L̂ : F ] = e(L̂|F )f(L̂|F ) = e(L̂|L)e(L, F )f(L̂|L)f(L|F ) ≤ n.

which means [L̂ : F ] = n, thus L̂ = L which means L is complete with respect to w.
Also from this equality we deduce that e

n
= f .
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Theorem 5.2.2. Let L1 be a complete discrete valuation �eld of characteristic zero
and suppose that the characteristic of the residue �eld L1 is p > 0.Let L2 be a
complete discrete valuation �eld of characteristic zero where p is a prime element in
L2. Moreover, suppose that the characteristic of the residue �eld L2 = p and there
exists a �eld embedding i : L2 → L1. Then there exists a �eld embedding i : L2 → L1

such that

vL1 ◦ i = e(L1)vL2 ,

where

e(L1) = vL1(p),

and

i(α) = i(α),

for every α ∈ OL2.

Proof. We give a proof for the theorem, where the �eld L2 is perfect. For the general
case (c.f. [3]). Since L2 is perfect, by the theorem there exists a set T of Teichmüller
representatives, with the corresponding function

f2 : L2 → L2.

Note that, by the lemma 4.1.1, every θ ∈ L2 can be written uniquely as

∑
f2(θs)p

s.

De�ne

i : L2 → L1

by

i(
∑

f2(θs)p
s) =

∑
if1(θs)p

s,

where f1 : L2 → L2 is a lifting function in the sense of theorem 5.2. By the corollary
4.2.2 i is a �eld homomorphism and it satis�es the desired properties.
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5.3 Elimination of wild rami�cation:
Epp's theorem

In this section we �x a complete discrete valuation �eld K with residue �eld K of
positive characteristic p.

In the mixed characteristic case, i.e. charK = 0, we �x the �eld k which consists
of those elements that are algebraic over the fractional �eld k0 of W (F ), where
F = ∩K

pi

. In the equal characteristic case, we �x a base sub�eld k0 in K, which
is complete with respect to the induced valuation, and has Fp as a residue �eld. It
is clear that k0 is equal to k0((α)), for some α ∈ K, where the valuation of α is
positive. In this case, k denote the algebraic closure of k0F in K.

In the both cases, k is said to be the constant sub�eld of K.

Theorem 5.3.1. ([Epp]) Let L/K be a �nite extension of complete discrete valu-
ation �elds, k the constant sub�eld of K. Then there exists a �nite extension l/k

such that e(lL/kK) = 1.
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Chapter 6

n-local �elds

6.1 De�nition of n-local �elds

De�nition 6.1.1. A �eld K is said to be an n-local �eld over a �nite �eld (resp.
more generally a perfect �eld) K0, if K is a complete discrete valuation �eld with
respect to v = vn and there exists a chain of �elds

K = Kn, Kn−1, · · · , K1, K0,

where each Ki+1 is a complete discrete valuation �eld with respect to the valuation
vi+1with the residue �eld Ki for 1 ≤ i ≤ n − 1, and K0 is �nite �eld (resp. more
generally a perfect �eld). Kn−1 is also denoted by kK or Kv and called the �rst
residue �eld of K. (The �nite �eld Fq with q elements is called a 0-local �eld.)

Examples

1. Fq((X)) is a 1-local �eld.

2. For k, n− 1 dimensional local �eld, we put a valuation on k((X)) by setting

v(
∑
i≥m

aiX
i) = m,

where am 6= 0. This valuation turns k((X)) in to a complete discrete valuation
�eld with residue �eld k.
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3. For a complete discrete valuation �eld F , consider the following �eld:

K = F{{X}} = {
+∞∑
−∞

aiX
i : ai ∈ F, inf

vF

(ai) > −∞, lim
i→−∞

(ai) = +∞}

De�ne vk(
∑

aiX
i) = min vF (ai). Since infvF

ai > −∞ such minimum al-
ways exists. Let f =

∑
fiX

i, g =
∑

gjX
j. We know that v(fi + gi) ≥

min(v(fi), v(gi)), thus

min
i∈N vF (fi + gi) ≥ min

i,j∈N(v(fi), v(gj)) = min(vF (f), vF (g)),

so vF (f + g) ≥ min(vF (f), vF (g)).

Now, suppose that vF (f) = v(fn) and vF (g) = v(gm) where vF (fi) > vF (fn)

and vF (gj) > vF (gm) whenever i < n and j < m. Let fg = h =
∑

hsX
s.

We'll show that

min vF (hs) = v(hn+m) = v(
∑

i+j=n+m

figj).

If i < n then since v(fn) and v(gm) are minimal and their indexes are also
minimal vF (fi) > vF (fn) and vF (gj) ≥ vF (gm) , from this we conclude the
following strict inequality

v(figj) >6= vF (fngm) whenever i 6= n.

So v(hn+m) = v(fngm). It is also clear that mini,j ≥ vF (fngm), thus v(h) ≥
vF (f) + vF (g). Hence one gets v(h) = v(f) + v(g). So v is really a valuation.
Now we will show that F{{X}} is complete with respect to v. Let fn be a
Cauchy sequence in F{{X}}. This means, as n,m tends to in�nity, vK(fn −
fm) = min vF (fni− fmi) tends to in�nity. Thus for each i ∈ Z, fni is a Cauchy
sequence in F with respect to vF . Completeness of F implies that fni converges
to a unique point in F . Put

αi = lim fni for i ∈ Z.

Now, one can easily show that
∑

αiX
i = lim fn, which means F{{X}} is

complete with respect to vK .

35



An element f ∈ F{{X}} is element of ring of integers OvK
if and only if

min vF (fi) ≥ 0, and f ∈ MvK
if and only if min vF (fi) > 0. This means

OvK
= OvF

{{X}} and MvK
= MvF

{{X}}. De�ne

ϕ : OvK
= OvF

{{X}} → OvF
/MvF

((t))

as
∑

aiX
i 7→ ∑

āit
i. It is clear that ϕ is a ring homomorphism, which is onto

and its kernel is Mv{{X}}. Thus, the residue �eld of F{{X}} is the Laurent
series with coe�cients in the residue �eld of F .
Let F be a complete �eld and consider the �eld K = F{{X}}{{Y }}. Then
the residue �eld of K is F ′((t1)) where F ′ is the residue of F{{X}} = F̄ ((t2)).
Thus the residue �eld of K is F̄ ((t1))((t2)).

Lemma 6.1.1. K1 = K((X)){{Y }} is isomorphic to K2 = K((Y ))((X)).

Proof. We de�ne Φ : K((X)){{Y }} → K((Y ))((X)) as follows: For α ∈ K((X)){{Y }}

α =
∞∑
−∞

fi(X)Y i ∈ K((X)){{Y }},

where

fi(X) =
∞∑

jÀ−∞
a

(i)
j Xj

put

Φ(α) =
∞∑
−∞

gr(Y )Xr

where gr(Y ) =
∑

a
(i)
r Y i. First we will show that range of Φ is really K((Y ))((X)).

In order to do this we have to show that gr(Y ) = 0 for almost all negative r. Suppose
for all k ∈ Z there exists r < k such that gr(Y ) =

∑
a

(i)
r Y i 6= 0. This means, for

some i ∈ Z, the coe�cient a
(i)
r 6= 0. So we conclude that v(fr) = r < k, thus

inf v(fj) = −∞, which is impossible. Let

vK1(
∞∑
−∞

fi(X)Y i) = k,
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which means

min{vX(fi(X)) : i ∈ Z} = min
i,j∈Z{j ∈ Z : a

(i)
j 6= 0}

= vX(fk(X)

= min{j ∈ Z : a
(k)
j 6= 0}.

On the other hand

vK2(Φ(α)) = vK2(
∞∑
−∞

gr(Y )Xr)

= min
r∈Z {vY (gr(Y ))}

= min
r∈Z {j ∈ Z : a(j)

r 6= 0}
= min{j ∈ Z : a

(k)
j 6= 0}

= k.

Thus we have lemma.

Remark 6.1.1. Let K be a �eld endowed with the trivial valuation v. Then clearly
(K, v) is complete discrete valuation �eld. So we may consider the �eld K{{X}}
introduced in the previous example. Then K{{X}} = K((X)), as any convergent
sequence in K must be constant. In particular, Fq{{X}} = Fq((X)).

De�nition 6.1.2. For a local �eld k the �elds

k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn)), 0 ≤ m ≤ n− 1

are n-dimensional local �elds and they are called the standard �elds.

6.2 System of local parameters

Throughout this section K denotes an n-local �eld with the chain of complete dis-
crete valuation �elds

K = Kn, Kn−1, · · · , K1, K0,

with respect to the valuations v = vn, vn−1, · · · , v1.
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De�nition 6.2.1. An n-tuple (t1, · · · , tn) ∈ Kn is called a system of local parame-
ters of K if ti is a unit in Kj for j > i and the residue class of ti in Ki is a prime
element for 1 ≤ i ≤ n.

Lemma 6.2.1. Let k be a local �eld. For the standard �eld

K = k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn)),

the n-tuple (X1, · · · , Xm, π, ,Xm+2, · · · , Xn) where π is a prime element of k forms
a system of local parameters for K.

Proof. Let i be an index where m + 1 < n− i ≤ n. Then

Kn−i = k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xm−i)).

Thus Xm−i is a prime element of Kn−i, and we also know that Xm−i is constant in
Kn−i+1 which means it is a unit Oj for j > m− i.

This system of local parameters is called the canonical system of local parame-
ters.

We will now give a non-standard de�nition of the lexicographic ordering on Zn,
following Madunts and Zhukov [7],[10].

De�nition 6.2.2. The lexicographic order of Zn is de�ned in the following way.
For i = (i1, · · · , in) < j = (j1, · · · , jn) if and only if

ik < jk, ik+1 = jk+1, · · · , in = jn for some k ≤ n.

We now introduce the mapping

v = (v(1), · · · , v(n)) : K∗ → Zn

de�ned by

v(i)(α) = vi(αt
−v(n)(α)
n · · · t−v(i+1)(α)

i+1 ), for 1 ≤ i ≤ n,

where the residue means the residue in the �eld Ki and v(n)(α) = vn(α). Extend
the mapping v to K by setting v(0) = +∞
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Lemma 6.2.2. The map v : K → Zn ∪ {∞} de�ned above is a rank n discrete
valuation.

Proof. Let α, β ∈ K. Suppose we had shown that vn−j(αβ) = vn−j(α)+ vn−j(β) for
0 = j < i ≤ n− 1. Then we have

v(n−i)(αβ) = vi(αβt
−v(n)(αβ)
n · · · t−v(i+1)(αβ)

i+1 )

= vi(αt
−v(n)(α)
n · · · t−v(i+1)(α)

i+1 βt
−v(n)(β)
n · · · t−v(i+1)(β)

i+1 )

= vi(αt
−v(n)(α)
n · · · t−v(i+1)(α)

i+1 ) + vi(βt
−v(n)(β)
n · · · t−v(i+1)(β)

i+1 )

= v(i)(α) + v(i)(β),

(6.1)

which means v is a group homomorphism. Now suppose v(α) ≥ v(β). We will show
that v(α + β) ≥ (β). Since v is a group homomorphism it follows that

v(α + β) = v(β) + v(1 + α/β).

Since v(α/β) ≥ 0, in order to prove the mentioned inequality above, it su�ces to
show for x ∈ K, v(x) ≥ 0 implies v(1 + x) ≥ 0.
Let x ∈ K such that v(x) ≥ 0, so v(n)(x) is non-negative, which means v(n)(x) ≥ 0.
Since v(n) = vn is a valuation v(n)(1 + x) ≥ 0. If v(n) > 0 then clearly v(1 + x) > 0,
if not, then

v(n−1)(1 + x) = vn−1((1 + x)t
−v(n)(1+x)
n ) = vn−1(1 + x).

Clearly, if vn−1 > 0 then v(1+x) > 0 and if vn−1 = 0 then v(n−2)(1+x) = vn−2(1+x),
continuing this way one concludes the desired inequality. Thus v is really a valuation
on K.

Lemma-De�nition 6.2.1. Let K be an n-local �eld with respect to the rank n

discrete valuation v. Then the local ring Ov = {α ∈ K : v(α) ≥ 0} is called the ring
of integers of K with the maximal ideal Mv = {α ∈ K : v(α) > 0}.

Lemma 6.2.3. The residue �eld OK/MK is isomorphic to the last residue �eld K0

of K.
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Proof. Consider the map

φ : OK → K0

α 7→ ᾱ, the residue of α in K0 .

It is clear that φ is a ring homomorphism. We will show that ker φ = Mv. Let
α ∈Mv. So there exists an index 1 ≤ i ≤ nsuch that

v(i)(α) > 0 and v(n)(α) = · · · = v(i+1)(α) = 0,

thus

0 < v(i)(α) = vi(αt
−v(n)(α)
n · · · t−v(i+1)(α)

i+1 ) = vi(ᾱ),

which means ᾱ ∈Mvi
, hence its residue in Ki−1 is zero, thus its residue in K0 is also

zero. Hence φ(α) = 0, and α ∈ ker φ. Conversely, suppose that φ(α) = 0. We know
that v(α) = (v(1)(α), · · · , v(n)(α)) ≥ 0. Suppose that v(2)(α) = · · · = v(n)(α) = 0,
then

v(1)(α) = vi(αt
−v(n)(α)
n · · · t−v(2)(α)

2 ) = v1(ᾱ).

Since the residue of α in K0 is zero, its residue in K1 is contained in the maximal
ideal Mv1 , thus v(1)(α) > 0, thus v(α) > 0. Whence ker φ = Mv, which proves the
Lemma.

6.3 Ideal structure of OK

In what follows, we denote the the ring of integers Ov of a �xed n-local �eld K with
respect to v by OK and denote the the maximal ideal Mv of the ring of integers by
MK .

De�nition 6.3.1. For 1 ≤ l ≤ n put P (il, · · · , in) = PK(il, · · · , in) = {α ∈
K : (v(l)(α), · · · , v(n)(α)) ≥ (il, · · · , in)}. In particular P (0, · · · , 0︸ ︷︷ ︸

n many

) = OK and

P (1, 0, · · · , 0︸ ︷︷ ︸
n−1 many

) = MK.
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Lemma 6.3.1. For any non-zero ideal J of OK there exists (il, · · · , in) such that

J = P (il, · · · , in).

It is clear that such (il, · · · , in) must be unique. The ring OK is not Noetherian.

Proof. Let J be a non-zero ideal of OK and put in = min{v(n)(α) : α ∈ J}. It is
clear that J ⊆ P (in). Suppose that J 6= P (in), and for all s ∈ Z there exists α ∈ J

with v(n)(α) = in and v(n−1)(α) < s. Let β ∈ P (in), then there exists α ∈ J with
(v(n−1)(α), v(n)(α)) < (v(n−1)(β), v(n)(β)). Thus by the Lemma 2.1.2 it follows that
β ∈ J , which means J = P (in), a contradiction. This means

in−1 = min{v(n−1)(α) : v(n)(α) = in, α ∈ J} > −∞.

There are two cases. Either J = P (in−1, in) or

in−2 = min{v(n−2)(α) : v(n)(α) = in, v(n−1)(α) = in−1, α ∈ J} > −∞.

We de�ne in−j in this way. If J 6= P (i2, · · · , in) then

i1 = min{v(1)(α) : v(n)(α) = in, · · · , v(2)(α) = i2, α ∈ J} > −∞,

and it is clear that J = P (i1, · · · , in). If n > 1 then P (i, 1) ⊂ P (i + 1, 1) which
means {P (i, 1)}i∈N is an ascending chain of ideals which is not stationary. Hence
OK is not Noetherian.

6.4 The group structure of K×

De�nition 6.4.1. The multiplicative group

UK = O×
K

is called the group of units with respect to v, and the multiplicative subgroup

VK = 1 +MK
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of UK is called the principal units with respect to v. For 1 ≤ l ≤ n the multiplicative
groups

UK(il, · · · , in) = 1 + P (il, · · · , in),

for all (il, · · · , in) ∈ Zn−l are called the higher unit groups with respect to v.

Lemma 6.4.1. Consider the Teichmüller representatives T = {[α] : α ∈ K0} of the
last residue �eld K0 in K. Then

UK ' T ⊕ VK ,

and if (tn, · · · , t1) is a local system of parameters of K, then

K× ' Zt1 ⊕ · · · ⊕ Ztn ⊕ UK .

Proof. This follows by Parshin's structure theorem (cf. Chapter 7), which reduces
the lemma to the determination of the invertible of elements of formal power series.

6.5 Extensions of n-local �elds

Throughout this section K stands for an n-local �eld with the corresponding chain
of complete discrete valuation �elds

K = Kn, Kn−1, · · · , K1, K0

with the respecting valuations

v = vn, vn−1, · · · , v1

respectively.
Let L be a �nite extension of K. In view of the Theorem 5.2.1, it follows that, L is a
complete discrete valuation �eld with respect to w = 1

f
v ◦NL/K , which extends the

valuation v on K. Therefore, the residue �eld of Lw =: Ln−1 is an extension �eld of
the residue �eld Kn−1 of K. In view of the Lemma 5.1.3, degree of this extension,

42



which is equal to the residue degree f(w|v) of the extension L/K, is �nite. Therefore
Ln−1 is a complete discrete valuation �eld. Now, the following Proposition follows
by induction.

Proposition 6.5.1. If L is a �nite extension of K, then there exists a canonical n-
local �eld structure on L with the corresponding chain of complete discrete valuation
�elds

L = Ln, Ln−1, · · · , L1, L0

with the respective valuations

w = wn, wn−1 · · · , w1,

where

w = wn =
1

f(L|K)
vn ◦NLn/Kn , wn−1 = · · · , w1 =

1

f(L1|K1)
v1 ◦NL1/K1 .

The following proposition is easy to prove and generalizes the result of Chapter
5.

Proposition 6.5.2. Given a �nite extension L/K. Let t1, · · · , tn and t′1, · · · , t′n be
local system of parameters for the �elds K and L respectively. Let w and v be the
valuations on L and K. Then the matrix

E(L|K) := (w(j)(ti))1≤i,j≤n =




e1 0 · · · 0

∗ e2 · · · 0

∗ ∗ · · · 0

∗ · · · ∗ en




,

where ei = ei(L|K) = e(Li|Ki), 1 ≤ i ≤ n, satis�es

[L : K] = f(L|K).det(E(L|K),

where f(L|K) = [L0 : K0].
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Chapter 7

Parshin's structure theorem for
n-local �elds

Note that for a local �eld K, there are three cases:

1. char(K) = char(K) = 0,

2. char(K) = char(K) = p > 0,

3. char(K) = 0, char(K) = p > 0.

The following theorem, due to Parshin, classi�es n- local �elds in terms of standard
�elds.

7.1 Statement of Parshin's classi�cation theorem

Theorem 7.1.1. Let K be an n-local �eld with the corresponding chain of complete
discrete valuation �elds

K = Kn, Kn−1, · · · , K1, K0.

Then

1. If char(K1) = char(K0) = p > 0, then K is isomorphic to

Fq((X1)) · · · ((Xn));
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2. If char(K1) = char(K0) = 0, then K is isomorphic to

k((X1)) · · · ((Xn−1));

where k is a local �eld of characteristic 0.

3. If char(Km+1) = 0 and char(Km) = p, then K is isomorphic to a �nite
extension of a standard �eld of the form

k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn)),

moreover, there exists a �nite extension of K which is standard.

7.2 Proof: Equal characteristic case

Suppose char(K) = p > 0. Then K1 is a complete discrete valuation of characteristic
p > 0. By the structure theorem of complete discrete valuation �elds of characteristic
p, K1 is isomorphic to K1((X1)) = K0((X1)). But K0 is a �nite �eld. Thus K1 =

Fq((X1)), where q = pf for some positive integer f . Again using the structure
theorem we deduce that K = Fq((X1)) · · · ((Xn)). If characteristic of K1 is zero,
then by the use of the structure theorem of complete discrete valuation �elds of
equal characteristic, it follows that K = K1((X1)) · · · ((Xn−1)).

7.3 Proof: unequal characteristic case

Suppose that we are in the third situation. Without loss of generality we may
assume that the characteristic of K is equal to zero, and the characteristic of Kn−1

is equal to p. Then by the previous section

Kn−1 = Fq((X1)) · · · ((Xn−1)).

Let k0 = ff(W (Fq)) be the �eld of fractions of the Witt ring W (Fq) over Fq. We
know that k0 is a complete discrete valuation �eld with the residue �eld Fq. Now,
put

K ′ = k0{{t1}} · · · {{tn−1}}.
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where t1, · · · , tn−1, π is a system of local parameters of K. Then the residue �eld of
K ′ is equal to the �eld

k0{{t1}} · · · {{tn−1}} ' Fq((X1)) · · · ((Xn−1)) = Kn−1.

Thus by Theorem 5.2.2, it follows that the �eld K ′ embeds in K . Since the residue
degree

f = f(K/K ′) = [K : K ′]

is �nite. By Proposition 5.2.1, we see that the extension K/K ′ is �nite. Now,
by Epp's theorem 5.3.1, there exists a �nite extension k = k0(α) of k0, such that
e(kK/kK ′) = 1. Thus, we just have to show that the �eld kK, which is a �nite
extension over K, is a standard �eld, Which follows from the lemma below.

Lemma 7.3.1. Let L be a �nite extension of the standard �eld

K = k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn)).

If e(L/K) = 1, then L is standard.

Proof. Without loss of generality, we may assume that

L = K(α),

for some α in the algebraic closure of K. Observe that, the lemma follows at once,
if α is algebraic over the �eld

Kn−1 = k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn−1)).

Suppose that α is not algebraic over Kn−1. We know that the algebraic closure of K

is contained in the �eld of Puiseux series over ka in variables X1, · · · , Xm, Xm+2, · · · , Xn

given by
ka{{XQ

1 }} · · · {{XQ
m}}((XQ

m+2)) · · · ((Xn)Q).

Let
α =

∑

q∈Q
cqX

q
n,
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where cq is an element of Puiseux series over Kn−1. Since α is not algebraic over
Kn−1, there exists q ∈ Q − Z, such that cq 6= 0. By multiplying a suitable power
of Xn, we may assume cq < 0. In this case, wee see that the valuation of α given
by the norm map is a rational number, which contradicts with the fact that the
rami�cation index e(L/K) of L/K is 1.
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Chapter 8

Topologies on the additive and the
multiplicative groups of an n-local
�eld

In this chapter, we shall de�ne the topology on K+ and K×, where K is an n-local
�eld (which is natural from the point of view of K-theoretic local class �eld theory
of Kato and Parshin) inductively. These topologies are called sequential topologies.

8.1 Topology on K+

In order to do de�ne a nice topology on K+ in the sense of K-theoretic class �eld
theory, the strategy will be the following. Let K be an n-local �eld with the corre-
sponding chain of complete discrete valuation �elds

K = Kn, Kn−1, · · · , K1, K0

with the corresponding valuations

vn, vn−1 · · · , v1

respectively. By the de�nition, K0 is a �nite �eld, say K0 = Fq = Fpf . Therefore
K1 is either a �nite extension of Qp or K1 is Fq((X)). Thus there are two cases:
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1. K1 = Fq((X)): In this case, in view of the Lemma 6.1.1, K = Fq((X1)) · · · ((Xn)).
The topology of such �elds will be de�ned inductively in the �rst subsection
of this section.

2. K1/Qp is a �nite extension. In this case, we have two cases for the complete
discrete valuation �eld K2, which are K1{{X}} and K1((X)). In the latter
case the topology will be de�ned inductively in the �rst subsection, while in
the former case the topology will be de�ned in the second subsection.

For a standard �eld K of mixed characteristic, that is

K = K0{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn)),

combination of section 1 and section 2 constructs the topology on K.
Thus, we suppose in the next two subsections, that K is a �eld that has a

topological structure on it. For some technical reasons, we will always assume that
+ is a continuous mapping but × is sequentially continuous.

Let C be a subclass of the sequences of neighborhoods of zero in K, where a
sequence of neighborhoods (Ui)i∈Z of zero in K is contained in C if and only if
Ui = K for all most all positive i.

8.1.1 Topology on Laurent series K((X))

We construct a topology on K((X)) in the following way: For (Ui)i∈Z ∈ C put,

U{Ui} := {
+∞∑

iÀ−∞
aiX

i : ai ∈ Ui}.

It is clear that for (Ui)i∈Z, (Vi)i∈Z ∈ C we have (Ui ∩ Vi)i∈Z ∈ C and U{Ui} ∩ U{Vi} =

U{Ui∩Vi}, thus we may set the set

B :=
{
U(Ui) : (Ui)i∈Z ∈ C

}

as a base of open neighborhoods of 0 in K((X)).
Let u(n) be a sequence in K((X)) converging to zero with respect to the topology

de�ned above. Let k ∈ Z be �xed and V be an open neighborhood of zero in K.
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Put Ui = K if i 6= k and Uk = V .Since u(n) → 0, there exists a positive integer N

such that for m > N we have

u(m) ∈ U(Ui) = {
∞∑

iÀ−∞
aiX

i : ai ∈ Ui},

which means a
(m)
i ⊂ V . Thus we conclude that for �xed integer k, the sequence a

(m)
k

tends to 0.
Now, we assume that the topology on K is T0. Suppose that the set {i : an

i 6= 0} is
unbounded below. In this case, without loss of generality we may assume a

(n)
−n 6= 0.

Since K is a T0 space, for all n ∈ N, there exists an open neighborhood V−n of 0

such that a
(n)
−n /∈ V−n. Put,

Ui =





Vi if i < 0,

K if i ≥ 0.

Then clearly, for any n ∈ N, u(n) /∈ UUi
since a

(n)
−n /∈ U−n which contradicts with the

fact that u(n) is converging to zero. Thus {i : an
i 6= 0} is bounded below.

Conversely, let

u(n) =
∞∑

iÀ−∞
a

(n)
i X i

be a sequence in K((X)). Suppose that for a �xed integer i, the sequence a
(n)
i

tends to 0 as n goes to in�nity, and there exists m ∈ Z such that for all n ∈ N,
u(n) ∈ XmK[[X]]. Let (Ui)i∈Z ∈ C. Then by the de�nition of C, there exists M ∈ N
such that for k > M we have Uk = K. Since ai(n) tends to 0 as n goes to in�nity,
for m ≤ i ≤ M , there exists Ni such that whenever n > Ni then a

(n)
i ⊂ Ui. Let

N = max{Ni}, then for n > N we have a
(n)
i ∈ UUi

, which means that the sequence
a

(n)
i tends to zero in K((X)) with respect to the topology de�ned above.

Thus we have the following:

Lemma 8.1.1. A sequence u(n) =
∑∞

iÀ−∞ a
(n)
i X i in K((X)) converges to zero if

and only if there exists an integer m such that u(n) ∈ XmK[[X]] for all n and for
each integer i, the sequence a

(n)
i is converging to 0 ∈ K with respect to the topology

on K.
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Recall the following de�nition from general point-set topology.

De�nition 8.1.1. Let T1 and T2 be two topological spaces. A function

f : T1 → T2

is said to be sequentially continuous, if for every sequence (xn)n∈N in T1 converging
to x the corresponding sequence (f(xn))n∈N in T2 converges to f(x).

Proposition 8.1.1. Multiplication in the topology de�ned on K((X)) is a sequen-
tially continuous map.

Proof. Let αn, βn be two sequences in K((X))((Y )) converging to 0. We will show
that the product sequence αnβn also converges to 0. Let

αn =
∞∑

iÀ−∞
f

(n)
i X i,

βn =
∞∑

iÀ−∞
g

(n)
i X i.

(8.1)

Since αn and βn are converging to zero, by the previous lemma, we see that for a
�xed i, the sequences f

(n)
i and g

(n)
i converge to zero and there exists m ∈ Z such

that αn, βn is contained in XmK[[X]], for all n. Let

αnβn = θn =
∞∑

iÀ−∞

( ∑

k+l=i

f
(n)
k g

(n)
l

)
X i.

It is clear θn ∈ X2mK[[X]]. So, in order to show that θn tends to zero, we just have
to show that, for a �xed i, the sequence

∑

k+l=i

f
(n)
k g

(n)
l

converges to zero. Since K is sequentially compact we see that, for �xed l, k the
sequence

f
(n)
k g

(n)
l

converges to zero. Since there is only �nitely many k, l such that k + l = i and
f

(n)
k 6= 0 and g

(n)
l 6= 0. Thus the sum of them converges to zero. Hence we have the

Proposition.
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Remark 8.1.1. Note that, the multiplication × on K((X))((Y )) is not a continuous
binary operation.

Lemma 8.1.2. Let (Ui)i∈Z ∈ C, then the topological closure UUi
of the set UUi

is
equal to

UU iZ := {
∞∑

iÀ−∞
aiX

i : ai ∈ U i}.

Proof. First we will show that the set UŪi
is closed. In order to do this, we will

show that its complement is open. Let f =
∑∞

iÀ−∞ fiX
i be a Laurent series in

(UŪi
)c. This means there exists an integer k such that fk /∈ Uk. So there exists an

open neighborhood V of zero in K such that the open set fk +V around f does not
intersect with Uk. So, the open set f + UWi

around f does not intersect with U Ūi
,

which means the complement of UŪi
is open, thus UU i

is closed.
Let D be a closed set containing UUi

. Since D is closed set containing UUi
it contains

all the limit points of UUi
. Let f =

∑∞
iÀ−∞ āiX

i ∈ UŪi
. So for each i there exists

a
(n)
i ∈ Ui converging to ai. Then clearly, for a �xed i a

(n)
i converges to zero in K

and f − f (n) ∈ XmK[[X]] for some integer m. Thus by the previous lemma f − f (n)

converges to zero, which means f (n) tends to f . But this means any element in UŪi

is a limit point of the set UUi
, thus we have the lemma.

Proposition 8.1.2. Let K be a T0 topological �eld. Then the topology on K((X))((Y ))

de�ned as above is non-locally compact.

Proof. Suppose K((X))((Y )) is locally compact. Then there exists an open neigh-
borhood of 0 in K((X))((Y )) whose closure is compact. Let U be an open neighbor-
hood of 0 in K((X))((Y )) with compact closure. Without loss of generality, we may
assume that U is of the form U(UX

i ), where (UX
i ) ∈ C(K((X))). By the Lemma 8.1.2

we have U = U
(UX

i )
. Let N ∈ N be such that for all k > N the set UX

k = K((X)).
The existence of such N follows from the de�nition of C(K((X))). Now consider
the sequence

u(n) =
∞∑

iÀ−∞
f

(n)
i Y i
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where f
(n)
i = X−n. Since for any n ∈ N and m ∈ Z the sequence fn

i is not contained
in XmK[[X]] by the Lemma 8.1.1, fn

i is not convergent. But this means that u(n)

has no convergent subsequence, which contradicts with the fact that U is compact.
Thus K((X))((Y )) is not locally compact.

8.1.2 Topology on Laurent series K{{X}}
In this section, we further assume that K is a complete discrete valuation �eld with
respect to the valuation v, with �nite residue �eld K. Moreover, we assume that the
topological structure on K is de�ne via the valuation v. Therefore, in this section
K has a topological �eld structure.(See the introductory discussion in the beginning
of this chapter.)

Note that K{{X}} is 2-local �eld with the residue �eld K{{X}}, which is equal
to K((t)). Consider the subclass C(K) of the sequences of neighborhoods of zero in
K, where a sequence of neighborhoods (Ui)i∈Z of zero in K is contained in C if and
only if

1. The intersection of Ui contains a non-zero ideal PE(c).

2. For any ideal PE(l), there exists s ∈ Z such that PE(l) ⊂ Ui.

For such a sequence Ui, put

U{Ui} = {
∑

iÀ−∞
aiX

i : ai ∈ Ui}.

Then the collection of all such sets U{Ui} forms a base of neighborhoods of 0 in
K{{X}}. The topology on K{{X}} introduced in this way satis�es the properties
listed in the previous section, where the proofs are almost identical.

8.1.3 Topology on a general n-local �eld

Let K an n-local �eld. We know by Parshin classi�cation theorem that, K is a �nite
extension of a standard n-local �eld

Kn = k{{X1}} · · · {{Xm}}((Xm+2)) · · · ((Xn)),
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where k is a 1-local �eld. Introduce a topology on K to be the �nite dimensional
Kn-vector space topology on K. This is equivalent to say that the topology on K

is homeomorphic to the product topology on K
[K:Kn]
n , induced from Kn, which is

constructed inductively in the previous two subsections.

8.1.4 Properties of the sequential topology on K+

In this subsection, we shall list the basic properties of the sequential topology intro-
duced on the additive group K+ of the n-local �eld K.

1. (K, +, 0) is a complete and separated topological group.

2. If n > 1, then every base of neighborhoods of the identity element 0 is un-
countable.

3. If n > 1, then the multiplication de�ned on K is sequentially continuous, but
not continuous.

4. For each c ∈ K − {0}, the map

cm : K → K

α 7→ cα,

for every α ∈ K, is a homeomorphism.

8.2 Topology on K×

As usual, we let K to be an n-local �eld with corresponding chain of complete
discrete valuation �elds

K = Kn, · · · , K1, K0

with respective valuations v = vn, vn−1, · · · , v1. Furthermore, let (tn, · · · , t1) be a
local system of parameters.
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8.2.1 char(Kn−1) = p

In this case, de�ne the topology on K× via the isomorphism

K× ' Zt1 ⊕ · · · ⊕ Ztn ⊕ UK

as follows. The topology on the piece UK is given by the isomorphism

UK ' T ⊕ VK ,

where the group of principal units VK has the induced topology from the sequential
topology on K, and T has the discrete topology. Now, the topology on K× is de�ned
to be the product topology on

Zt1 ⊕ · · · ⊕ Ztn ⊕ UK ,

where the free abelian part
Zt1 ⊕ · · · ⊕ Ztn,

has the discrete topology and UK has the topology just de�ned above.

8.2.2 char(K) = · · · = char(Km+1) = 0, char(Km) = p

In this case, we will introduce the topology on K× again by the isomorphism

K× ' Zt1 ⊕ · · · ⊕ Ztn ⊕ UK ,

where the free abelian part
Zt1 ⊕ · · · ⊕ Ztn,

has the discrete topology, and UK has the weakest topology which makes the pro-
jection map

proj : UK → UKm+1

continuous. That is a set U ⊆ UK is open if and only if proj(U) is open in UKm+1 .
Note that, this projection map sits in the exact sequence

1 → 1 + PK(1, 0, · · · , 0︸ ︷︷ ︸
n−m−2

) → UK → UKm+1 → 1.
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8.2.3 Properties of the sequential topology on K×

In this subsection, we shall list the basic properties of the sequential topology intro-
duced on the multiplicative group K× of the n-local �eld K.

1. K× is a complete topological space.

2. Multiplication on K× is sequentially continuous, but not continuous for n > 2.

3. If n ≤ 2 then K× is a topological group with a countable base of open sub-
groups.

8.3 Final remark

In this chapter, we have seen that the topologies introduced on K+ and K× are not
locally compact. Thus there is no Haar measure on the n-local �eld K nor on K×.
It is an important open problem to develop a theory of "abstract harmonic analysis"
on n-local �elds (that is, an alternative Tate's thesis for n-local �elds).
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Chapter 9

Kato-Zhukov rami�cation theory of
n-local �elds

In this chapter we shall review the higher rami�cation theory of an n-local �eld K.
In the case n = 1, that is K is a �nite extension of the basic �elds K = Fq((X))

or Qp, there exists a beautiful theory of rami�cations (c.f. [9]). Namely, for a �nite
Galois extension L/K with corresponding Galois group G, there exists a nice lower
�ltration (Gi)i∈R≥−1

of G, which behaves well with sub-extensions of L/K. Also,
there exists an upper �ltration (Gi)i∈R≥−1

which is de�ned by a piece-wise linear
continuous function ψL/K de�ned on R≥−1 called the Hasse-Herbrand function of
the extension L/K and the lower �ltration of G, which behaves well with the sub-
extensions of L/K. The most important property of lower and upper rami�cation
�ltration is that the local Artin reciprocity map which is a continuous bijection
from G = Gal(L/K) to K×/NL/K(L×) de�nes a bijective correspondence between
upper �ltration of G and the higher unit groups U i(K) of K×. (Note that both
�ltration (Gi)i∈R≥−1

and (U i(K))i∈R≥−1
form a basis of neighborhoods in G and K×

respectively.)
The higher rami�cation theory of 2-local �elds started with the investigation of

V. G. Lomadze in [6] and improved by K. Kato, T. Saito in [5] and by I. Zhukov
in [11]. The higher rami�cation theory of a general n-local �eld is still fragmentary.
The task of this chapter is to summarize the theory for a general n-local �eld.
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9.1 Integration on totally ordered Q-vector spaces

De�nition 9.1.1. A totally ordered abelian group Γ with a Q action is called a
totally ordered vector space over Q if the order structure of Γ is compatible with the
Q action. That is, for all α, β ∈ Γ,

α ≤ β ⇐⇒ qα ≤ qβ ∀q ∈ Q≥0.

Given an ordered set Γ. For α ∈ Γ we denote the possibly the empty set
{β ∈ Γ : β < α} by (−∞, α). The set (α,∞) is de�ned in the same way.
Given a step function g : Γ → Q, the support supp(g) of g is de�ned to be the set

supp(g) = {α ∈ Γ : g(α) 6= 0}.

De�nition 9.1.2. Let Γ be a totally ordered Q-vector space. A function

g : Γ → Q

is called a step function, if there exists an increasing �nite sequence

α0 ≤ α1 ≤ · · · ≤ αn

of elements in Γ, such that the restricted functions g|Ii
, where Ii = (αi−1, αi) for

i = 1, · · · , n; and g|(−∞,α0), g|(αn,∞) are all constant functions.

Let g : Γ → Q be a step function. For α, β ∈ Γ, such that α ≤ β, we de�ne the
de�nite integral

∫ β

α
g(x)dx ∈ Γ by

∫ β

α

g(x)dx =
n∑

i=1

ci(αi − αi−1),

where α0 = α, · · · , αn = β ∈ Γ is any increasing �nite sequence, such that the
restricted function to the interval (αi−1, αi) is constant with the value ci ∈ Q for
i = 1, · · · , n.

Lemma 9.1.1. If g : Γ → Q is any step function, and if α, β ∈ Γ, such that α ≤ β,
then there exists a �nite increasing sequence α0 =≤ α1, · · · ≤ αn = β in Γ such
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that the function g|(αi−1,αi) is a constant function for i = 1, · · · , n. Moreover, the
de�nite integral

∫ β

α
g(x)dx ∈ Γ along α to β is independent of the choice of the �nite

increasing sequence α0 = α ≤ · · · ≤ αn = β. If θ ∈ Γ with β ≤ θ, then
∫ θ

α

g(x)dx =

∫ β

α

g(x)dx +

∫ θ

β

g(x)dx.

For α, β ∈ Γ such that α ≤ β, the de�nite integral
∫ α

β
g(x)dx ∈ Γ is de�ned by

∫ α

β

g(x)dx = −
∫ β

α

g(x)dx.

Let g : Γ → Q be a step function. Suppose that supp(g) is bounded from above,
that is, there exists β ∈ Γ, such that for all α ∈ supp(g) we have α ≤ β. In this
case, for α ∈ Γ, we can de�ne the improper integral

∫∞
α

g(x)d(x) along the interval
(α,∞) as follows: ∫ ∞

α

g(x)d(x) =

∫ β

α

g(x)d(x),

where β is an upper bound for the support of g. Similarly, for a step function
g : Γ → Q whose support is bounded below, for α ∈ Γ, the improper integral
∫ α

−∞ g(x)d(x) is de�ned in the obvious way.

De�nition 9.1.3. A function h : Γ → Γ is said to be a quasi-linear (piecewise
linear), if there exists a �nite increasing sequence α0 ≤, · · · ≤ αn in Γ, such that the
restricted function hi = h|(αi−1,αi) has the form

hi(α) = qiα + ri,

for every α ∈ (αi−1, αi), where qi, ri ∈ Q.

Remark 9.1.1. Inverse of a bijective quasi-linear map is also quasi-linear.

Let S denote the Q-linear space of all Q-valued step functions on Γ. Let L denote
the Q-linear space of all quasi-linear functions on Γ. For a �xed α ∈ Γ, consider the
mapping

Iα : S → L

by
[Iα(g)](β) =

∫ β

α

g(x)dx
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for every β ∈ Γ. Note that, the image, Iα(g) : Γ → Γ is indeed a quasi-linear
map. In fact, if g is a step function with the corresponding �nite increasing chain
of elements

α0 ≤ α1 ≤ · · · ≤ αn

in Γ, where g has a constant value ci on the interval (αi−1, αi). Then

[Iα(θ)] = qiθ + ri

for every θ ∈ (αi−1, αi), where qi, ri ∈ Q such that

qi = g(αi−1)(αi−1, α),

and
ri =

∫ αi−1

α

g(x)dx,

which means the image [Iα] is really a quasi-linear map. Now, consider the composite
map

S
Iα−→ L

can.−−→ L/L0,

where L0 is the subspace of all constant functions. We claim that the kernel S0 of
this map is equal the subspace of S consisting of all functions Γ → Q with �nite
support. Let g ∈ S be a step function, such that g(αi) = ci for α1 ≤ · · · ≤ αn in
Γ, and g(α) = 0 if α 6= αi for i = 1, · · · , n. Then clearly

∫ β

α
g(x)dx = 0, for every

α, β ∈ Γ. Conversely, suppose g ∈ S be such that for all β ∈ Γ,
∫ β

α
g(x)dx = q,

for some q ∈ Q, and suppose that support of g is not �nite. But, then there exist
α1, α2 ∈ Γ with α1 ≤ α2 such that (α1, α2) has in�nitely many elements, and the
value of g on (α1, α2) is constant, which is non-zero, say q. Then

[Iα(g)](α1)− [Iα(g)](α2) =

∫ α1

α

g(x)dx−
∫ α2

α

g(x)dx

=

∫ α2

α1

g(x)dx

= q(α1)− α2

6= 0,

which means the kernel is equal to the set of those elements whose supports are
�nite. To sum up, we have the following lemma.
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Lemma 9.1.2. The linear map

Iα : S → L

given by

[Iα(g)](β) =

∫ β

α

g(x)dx

induces an isomorphism of Q-linear spaces between the spaces S/S0 and L/L0.

Lemma 9.1.3. Let g : Γ → Q be a step function, such that g(β) > 0, for all β ∈ Γ.
Then the quasi-linear map Iα(g) ∈ L is a bijection.

In the light of the lemma 9.1.2, from now on, by a Q-valued step function on
Γ, we mean an equivalence class of step functions with respect to the equivalence
relation de�ned modulo S0.

Remark 9.1.2. (i) Since the induced linear map, again denoted by

Iα : S/S0 → L/L0,

which is de�ned by

Iα(g)(β) =

∫ β

α

g(x)dx + L0

for every g ∈ S/S0 is bijective, it has a linear inverse Dα,

Dα : L/L0 → S/S0,

which we call it the derivative map.

(ii) The Lemma 9.1.3 also applies in this new formulation of the mapping Iα.

(iii) The formal properties of the usual integration and derivation theory remains
valid. Namely, the chain rule, change of variables etc. formulas applies to Iα

and Dα.
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9.2 Upper and lower rami�cation groups
(Abstract theory)

In order to develop higher rami�cation theory of n-local �elds we have to general-
ize the Hasse-Herbrand function and introduce higher rami�cation groups in that
general context.

In this section we �x a totally ordered Q-vector space Γ, and a �nite group G.

De�nition 9.2.1. An upper (resp. lower) �ltration on G by Γ is de�ned to be a
family of normal subgroups (Gα)α∈Γ (resp. (Gα)α∈Γ) indexed by Γ subject to the
following conditions: Let α, β ∈ Γ,

1. Gα ⊆ Gβ (resp. Gα ⊆ Gβ) whenever α ≤ β;

2. G = G0 (resp. G = G0);

3. For each 1 6= σ ∈ G, the set {α ∈ Γ : σ ∈ Gα} (resp. {α ∈ Γ : σ ∈ Gα}) has a
maximal element with respect the total ordering on Γ.

Lemma 9.2.1. 1. Let {Gα}α∈Γ be a lower �ltration of G de�ned by Γ. De�ne

ϕG = ϕ : Γ → Γ

de�ned by

ϕ(β) =

∫ β

0

|Gα|dα

for every β ∈ Γ. Then ϕ is a bijective quasi-linear function.

2. The inverse function

ψG = ψ = ϕ−1 : Γ → Γ,

which is a bijective quasi-linear map by Remark 9.1.1, is explicitly de�ned by

ψ(β) =

∫ β

0

|Gα|−1dα,

for every β ∈ Γ.
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3. Let (Gα)α∈Γ be a lower �ltration on G by Γ. De�ne

Gα = Gϕ−1(α),

for each α ∈ Γ. This de�nes an upper �ltration of G by Γ.

4. Let (Gα)α∈Γ be an upper �ltration on G by Γ. De�ne

Gα = Gψ−1(α),

for each α ∈ Γ. This de�nes a lower �ltration of G by Γ.

Proof. The �rst part follows by Lemma 9.1.3. For the second part observe that
∫ ϕ(β)

0

|Gα|−1dα =

∫ ϕ(β)

0

|Gϕ−1(α)|−1dα

=

∫ β

0

|Ga|−1ϕ′(a)da

=

∫ β

0

|Ga|−1|Ga|da

=

∫ β

0

da

= β.

The �rst equality comes from the very de�nition of upper �ltration. As for the
second equality we use the change of variables. Namely, we substitute ϕ−1(α) by a.
The third equality follows from the Remark 9.1.2.

De�nition 9.2.2. Let (Gα)α∈Γ be a lower �ltration on G by Γ. The mapping

ϕ : Γ → Γ

de�ned by

ϕ(β) =

∫ β

0

|Gα|dα

for every β ∈ Γ, and the inverse map

ψ = ϕ−1 : Γ → Γ,
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de�ned by
ψ(β) =

∫ β

0

|Gα|−1dα,

for every β ∈ Γ are called the Hasse-Herbrand functions with respect to the lower
�ltration (Gα)α∈Γ of G by Γ.

Let (Gα)α∈Γ be a lower �ltration on G by Γ, and let H be a subgroup of G.
Introduce:

(i) an induced lower �ltration on H by Γ as

Hα = H ∩Gα,

for every α ∈ Γ;

(ii) an induced upper �ltration on H by Γ as

(G/H)α = (GαH)/H,

for every α ∈ Γ, where Gα is de�ned by the lower �ltration and the Hasse-
Herbrand function ψG : Γ → Γ.

Proposition 9.2.1. Let H be a normal subgroup of G. Let ϕG, ψG, respectively ϕH ,
ψH and ϕG/H , ψG/H be the corresponding Hasse-Herbrand functions on Γ. Then the
following transitivity laws hold:

(i) ϕG = ϕG/H ◦ ϕH ;

(ii) ψG = ψH ◦ ϕG/H .

We know that
HϕH(α) = Hα = Gα ∩H,

which means

Hα = HψH(α) = GψH(α) ∩H

= GϕG(ψH(α)) ∩H

= GϕG/H◦ϕH(ψH(α)) ∩H

= GϕG/H(α) ∩H.
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9.3 Kato-Swan conductor (Abstract theory)

We keep the notation and assumptions of the previous section.
Let (Gα) be a lower �ltration on G by Γ, and let Gα be the associated upper

�ltration of G by Γ de�ned by the Hasse-Herbrand function ψG : Γ → Γ. In what
follows, we �x a �eld F , and impose the following condition on the lower �ltration
of G by Γ:

|Gα| - char(F )

for every α ∈ Γ. (For example, if F = Q`, F = Qp, or F = C this condition is
automatically satis�ed.)

Let F be a �nite dimensional F -vector space, and let

ρ : G → AutF (V )

be a group homomorphism. That is, ρ is a representation of G in the vector space
V over F . Then V can be viewed as a FG-module of �nite type via the arrow ρ.
Recall that the Gα-invariant subspace of V is de�ned by

V Gα = {v ∈ V : ρ(v)(h) = h, ∀h ∈ Gα},

for every α ∈ Γ.

De�nition 9.3.1. The Kato-Swan conductor of the representation ρ : G → AutF (V ),
with respect to the lower �ltration (Gα)α∈Γ on G by Γ, is de�ned to be the value
ksw(V ) ∈ Γ given by the integral

ksw(V ) =

∫ ∞

0

|Gα| dimF (V/V Gα)dα.

Note that, for a representation ρ : G → AutF (V ), the Kato-Swan conductor can
be reformulated as

ksw(V ) =

∫ ∞

0

dimF (V/V Gα

)dα,

by changing the variables.
Now, in the remaining of this section, we �x a lower �ltration (Gα)α∈Γ on G by

Γ. Basic properties of the Kato-Swan conductor, with respect to this �xed �ltration,
of a given representation are as follows:
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Lemma 9.3.1. Consider the exact sequence of FG-modules of �nite type

0 → V ′ → V → V ′′ → 0.

Then
ksw(V ) = ksw(V ′) + ksw(V ′′).

Lemma 9.3.2. Let H be a subgroup of G. Let

ξ : H → AutF (W )

be a representation of H in a �nite dimensional F -vector space W . For the induced
module V = IndG

H(W ), the induced representation

IndG
H(ξ) : G → AutF (V ),

has the Kato-Swan conductor

kswG(V ) = (G : H)kswH(W ) + dimF (V )kswG(F (G/H)),

where kswG(V ) is de�ned with respect to the �xed �ltration on G by Γ, and kswH(W )

is de�ned with respect to the induced lower �ltration on H by Γ.

In the previous lemma, F (G/H) denotes the F -vector space with natural basis
{gH : g ∈ R(G/H)}, where R(G/H) denotes a complete set of coset representatives
for H in G. Note that G acts on the natural basis of F (G/H) in the obvious way.
Therefore, there exists a representation (regular representation)

r : G → AutF (F (G/H)).

So the Kato-Swan conductor kswG(F (G/H)) with respect to the �xed �ltration on
G by Γ, is de�ned.

Lemma 9.3.3. Let H be a normal subgroup of G, and let τ : G/H → AutF (W )

be a representation of G/H in a �nite dimensional F -vector space W . Then there
exists a natural representation τ of G in W over F de�ned by the composition

τ : G
can−−→ G/H

τ−→ AutF (W ),
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which has Kato-Swan conductor

kswG(W ) = kswG/H(W ),

where the Kato-Swan conductor kswG(W ) is de�ned with respect to the �xed �ltra-
tion on G by Γ, while the Kato-Swan conductor kswG/H(W ) is de�ned with respect
to the lower �ltration on G/H by Γ, induced by the �xed lower �ltration on G.

9.4 Case of n-local �elds

In this section we �x an n-local �eld K with respect to the rank n discrete valuation
v = (vn, · · · , v1), and a �nite Galois extension L/K, with corresponding Galois
group Gal(L/K) = G. Recall that, there exists a natural n-local �eld structure on
L, given by the valuation w = (wn, · · · , w1), where

wi =
1

fi

vi ◦NL/K ,

for i = 1, · · · , n (cf. Proposition 6.5.1). We further assume that

(i) The integral closure W of OK in L is a valuation ring;

(ii) W = OK [a] for some a ∈ W .

Such extensions are called well-rami�ed extensions.
In what follws, we shall introduce a lower �ltration on G = Gal(L/K) by Γ = Qn,

which is a totally ordered Q-vector space with respect to the lexicographic ordering
in the sense of Zhukov, as follows. For α ∈ Γ, let Gα be the normal subgroup of G

de�ned by
Gα = {σ ∈ G : w(σ(a)a−1 − 1) ≥ α},

where W = OK [a]. Now, we claim that, the collection (Gα)α∈Γ is a lower �ltration on
G by Γ. Normality of Gα in G follows easily as the extension L/K is a well-rami�ed
extension. For α, β ∈ Γ, it is clear that

Gα ⊆ Gβ,
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whenever α ≥ β. Moreover the subgroup G0 = G as w(σ(a)) = w(a). Thus it
remains to prove the following lemma:

Lemma 9.4.1. Let σ ∈ G− {idL}. Then the maximal element µσ of the set

{α ∈ Γ : σ ∈ Gα}

is
µα = w(σ(a)a−1 − 1).

Proof. Clearly follows by the de�nition.

Therefore, the collection (Gα)α∈Γ is a lower �ltration on G by Γ. Now, following
the lines of the abstract theory, we can de�ne the corresponding Hasse-Herbrand
functions ϕG and ψG on Γ, and the associated upper �ltration on G by Γ, de�ned
by the lower �ltration and the Hasse-Herbrand function ψG.

In this setting the Kato-Swan conductor has the following form. Let

ρ : G → AutF (V )

be a Galois representation in a �nite dimensional F -vector space V . Then the
corresponding Kato-Swan conductor kswG(V ) with respect to the lower �ltration
(Gα)α∈Qn on G by Qn is de�ned by

kswG(V ) =

∫ ∞

0

|Gα| dimF (V/V Gα)dα,

where 0 is the zero vector in Qn.

9.5 Hasse-Arf theorem for n-local �elds

In this section we shall state the generalization of the celebrated theorem of H.
Hasse and C. Arf on 1-local �elds to n-local �elds. We shall follow the notation of
the previous two sections. Furthermore, we shall assume that the extension L/K is
an abelian extension. That is, the corresponding Galois group G = Gal(L/K) is an
abelian group.
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Theorem 9.5.1 (Hasse-Arf generalized by K. Kato and T. Saito). Let

ρ : G → AutF (V )

be any Galois representation in a �nite dimensional F -vector space V . Then the
Kato-Swan conductor kswG(V ) de�ned with respect to the lower �ltration (Gα)α∈Qn

introduced in the previous section satis�es

kswG(V ) ∈ Zn.

Proof. For the proof in two dimensional case (cf([5])). For a sketch of proof in the
general case (cf.[11]).

9.6 Final remark

The theory of Kato-Swan conductors is the generalization of the theory of Artin
conductors to n-local �elds. Artin conductors are important in the analysis of L-
functions attached to Galois representations of global �elds. It is conjecturally
expected that, Kato-Swan conductors will play an important role in the analysis
of L-functions attached to the Galois representations of higher dimensional global
�elds; that is, representations of the fundamental group of schemes. However, this
general setting seems to be much richer than the classical theory, as the recent
research predicts that, there are �ner and more general rami�cation invariants, gen-
eralizing Kato-Zhukov theory.
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