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okul odevi

iki kere iki dort

iki kere dort sekiz

iki sekiz onalt1
tekrarlal

diyor 6gretmen.
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birden civil civil
lirkusu geciyor gokten
cocuk goriiyor onu
duyuyor tiirkiisiini kusun
el ediyor:

kurtar beni

gel oyna benimle

minik kus!

alcalip iniyor kus

ve bagliyor oynamaya ¢ocukla.
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diyor 6gretmen.

girer mi aklina ¢cocugun
kug onunla oynarken...
iki kere dort

iki sekiz onalt1

onalt1 onalt1 daha

ne eder?

hi¢bir sey etmez
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hem ne diye edecekmig ki

cekip gitmek varken serde
otuziki etmek marifet degil ki...
¢ocuk siranin goziine koyuyor kusu
ve tiim ¢ocuklarda
yankilanirken tiirkiisii kugun
alip bagin1 gidiyor sekizle sekiz
ardindan dortle dort ve ikiyle iki
derken birler de kiriyor kirisi

ne bir kaliyor ortada ne iki...
kusg siirdiiriiyor oyunu

bir tiirkii tutturuyor ¢ocuk

bas bas bagiriyor 6gretmen
yeter artik bu maskaralik!
umurunda degil ¢ocuklarin
tiirkiisiinii dinlemek varken kusun.
baghyor yikilmaya

duvarlart sinifin

camlar kum oluyor yeni bagtan
miirekkepler su

siralar agac

tebesirler kaya

kalemler kus...

—Jacques Prévert—
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Basic theory of n-local fields

Abstract

n-local fields arise naturally in the arithmetic study of algebro-geometric objects.
For example, let X be a scheme which is integral and of absolute dimension n. Let
F' be the field of rational functions on X. Then to any complete flag of irreducible
subschemes

XoCX1C"'CXn71CXn:X,

with dim(X;) =i for i = 0, ..., n, there corresponds a completion F(Xj,...,X,) of
the field F' introduced by Parshin, which is an example of an n-local field, in case
each X; is non-singular for i = 0,...,n. This n-local field F(Xo,---,X,) plays a
central role in the class field theory of X, introduced by Parshin and Kato.

In this thesis, we develop the basic theory of n-local fields, including a complete
elementary proof of Parshin’s classification theorem; and for an n-local field K,
introduce the sequential topology on K and K*, and study the Kato-Zhukov higher

ramification theory, including the Hasse-Arf theorem, for K.



Ozet

Yiiksek boyutlu yerel cisimler, cebirsel geometrik objelerin aritmetigini incelerken
kargsimiza dogal bir bicimde ¢cikmaktadir. Soyle ki, boyutu n olan integral bir cebirsel

sema X i¢inde secilen herhangi bir
X()CX1C"'CXn_1CXn:X,

indirgenemez altgemalar zinciri i¢in Parshin, X iizerinde taniml olan rasyonel fonksiy-
onlar cismi F’nin tamlamgi F(Xo,---,X,) n-yerel cismini tanimlamigtir. Elde

edilen bu n-yerel cismi F'(Xg, -+, X,,), X gsemasimin aritmetigini (sinif cisim teorisini)
incelerken, klasik global sinif cisim kuraminda oldgu gibi, merkezi bir rol oynamak-

tadir.

Bu tezde yiiksek boyutlu yerel cisimlerin temel kurami inga edilmekte, Parshin
siniflandirma teoreminin basit bir ispati1 verilmekte, K ile bir n-yerel cismini gdster-
mek kaydiyla, K cisminin toplamsal ve carpimsal topolojileri insa edilmekte ve
Kato-Zhukov yiiksek dallanma kurami, genellegtirilmis Hasse-Arf teoreminin icere-

cek sekide incelenmektedir.
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Chapter 1

Krull valuations and valued rings

We start by reviewing the basic theory of valuations on a ring R.

1.1 Ordered groups

Definition 1.1.1. An abelian group (I',+,0) is said to be totally ordered , if there
exists a total ordering < on I' compatible with the group structure. That s, if x <y

then v+ 2z <y+z, forallz €. Wewritex <y ifx <y and x # y.

Lemma 1.1.1. An abelian group (I',+,0) has a total ordering < compatible with
the group operation + if and only if there exists a subset P which is closed under +,

satisfying the disjoint decomposition
I'=PU{0}U(—P),
where —P ={p eI : —p e P}.

Proof. Take P to be the subset of I" consisting of positive elements with respect to

<. Conversely, for x,y € I, define the relation < by

<y ifand onlyif y—2z¢€ PU{0}.



Let I'y,--- ,I',, be totally ordered abelian groups. Then I'y x --- T, is a totally

ordered abelian group with respect to the lexicographic ordering. Namely
(al’... ’an) < (bla"' ’bn)

if and only if
ay =by, -a; 1 =bi_1,a; < b
for some 1 <17 <n.
Let (I',+,0,<) be a totally ordered abelian group. We add a formal element
+00 to I' and extend the order < of I" to IV = I" U {400} by setting a < +o0, and

+oo < 400.

Definition 1.1.2. Let (I'1, <1), and (I'y, <3) be two totally ordered abelian groups.
A mapping
J:T1—Ty

is called an order homomorphism, if f is a homomorphism which respects the total

orderings in the sense that

a <y = fla) <z f(B).

Given an ordered group (I', <), a subset ¥ of ' is called convex, if for every

a,B € X theset liap ={y €l :a <y <3} is asubset of X.

Lemma-Definition 1.1.1. Let (I', <) be an ordered group. Let Cr denote the col-
lection of all convex subgroups of I'. The collection Cr is totally ordered by inclusion,

and the cardinality of the mazximal chain of non-trivial proper convexr subgroups of

I’ is called the rank of I', and denoted by rk(I).

Definition 1.1.3. An ordered group (I', <) is said to be discrete if it satisfies the

following conditions:
1. The collection Cr of all convex subgroups of ' is well ordered;

2. If f : T — T is any nontrivial order homomorphism, where (I",<') is any

other ordered group, then f(7v) has an immediate successor for all v € .

2



Theorem 1.1.1. Let (I', <) be a discrete ordered group of finite rank n. Then there
exists an ordered isomorphism

r = z»
where Z" s ordered lexicographically by <jep.

In view of this theorem, by a rank n discrete ordered group we shall always

understand (Z", <je;).

1.2 Valued rings
Definition 1.2.1. A I'-valued valuation v on a ring R is function
v:R—T,
subject to the following properties:
1. v(a) = o0 if and only if a = 0;
2. v(ab) = v(a) + v(b);
3. v(a+b) > min(v(a),v(d)),

for each a,b € R, where T" is a totally ordered abelian group. We say that (R,v) is
a valued ring. If R is a field, then we say that (R,v) is a valued field.

Remark 1.2.1. Note that, if R is a ring with valuation v, then it is clear that
v(1g) = Or, since v(1g) = v(1g) + v(1g). Therefore v(—1g) = v(1g). If o, € R
with v(a) < v(B) then

v(a+B) 2 min(v(e),v(F)) = v(a)

which means v(a + () = v(«).



Lemma-Definition 1.2.1. Let (R,v) be a valued ring. Then
O, ={a € R:v(a) >0}

1s a ring and called the mazimal order of the valuation v. In case R is a field, which
will be the case in our study, the ring O, (which will be called the ring of integers

of v) is a local ring with the mazimal ideal
M, ={a € R:v(a) >0}
which coincides with the non-invertible elements O,. The multiplicative group
U, =0, — M,
of invertible elements of O, s called the group of units of v.The quotient field
R, = O,/ M,
1s called the residue field of v.

Proof. Indeed, o € O} if and only if v(a) > 0 and v(a™') = —v(a) > 0, which
means v(«) = 0. Hence the ring of integers O, is a local ring and the ideal M, is

maximal. O

Lemma 1.2.1. Let R be an integral domain and vy be a valuation on R with the
value group T =T U {oo}. Then the map v : ff(R) — I" given by
v(a/B) = vr(a) — vr(B)

defines a valuation on the field of fractions ff(R) of R.

Proof. We will just show that the map v : ff(R) — I" is well-defined in the sense
that if o/ = o/, then vg(a) — vr(B) = vr() — vgr(F’), which is evident as
af = d's. O
Definition 1.2.2. Let (R,v) be a valued ring. The image v(R*) in T of the mul-
tiplicative group R* of R is called the value group of v. In case v(R*) is a rank n

discrete ordered group with respect to the order induced by I, then we say that (R, v)

18 a rank n discrete valued ring.

In the next chapter we shall study rank 1 discrete valued fields, that is necessary

in our investigation of n-local fields.



1.3 Examples

1. A map | - || from a ring R to R is called an absolute value on R if it satisfies

the following conditions:
le] > 0if w50, [|O]] =0,

lec]l = llall-[I5]],
lo =+ Bl < flel] + [15]]-

An absolute value is called a non-archimedean if it satisfies the ultrametric
property:
o+ Bl < maz(||all, [|8]])-

One can show that for an non-archimedean absolute value ||| on R, we have,

if [j]| # [|8]], then

lov + B = max({[ex]], [I5]})-

2. Let R be a field with Z-valued valuation v, and d be a real number in (0, 1).
For a € R, set ||all, = d"“). Then |a||, = 0 if and only if a = 0 and || - ||, is
positively defined. If o, 5 € F' then

Bl = " = @D = @B = |all,[|5]]..
Moreover,
lac+ 8|, = @@+ < @@ = max(a”), @) = max([Jal.|15]].),
which means || - ||, is an ultrametric on F.

3. Let F = K(X) and || - || be a nontrivial absolute value on F', which is trivial
on the multiplicative group of the base field. If «, 5 € F(X), then

le+ BI" < Hlel[™ +--- + 181" < (n 4+ 1) max(flaf|™, | 5]]")-

5



By taking the n-th roots of both sides and letting n goes to infinity one gets
o+ 8| < max(||a|],||3]|), which means that || - || is an ultrametric absolute

value. There are two cases:

- [|[X]| > 1. If f=>"" ja; X" then ||f]] = || X||™, thus for « = f/g € K(X)

lal| = ||X71Hf(deg(f)*deg(g))'

We define v (a) as deg(g) — deg(f).

2- || X|| < 1. Tt is clear that for o in K(X), |la]] < 1. Let p be a monic
polynomial of minimal degree satisfying the condition ||p(X)| < 1. Since
lel] < [|8]] implies [l + B[] = [|5]| we have, if p g then [[g(X)|| = 1.
To see this, write ¢ = p.h + r with 0 < deg(r) < deg(p), then clearly

vp(g) = vp(r) = 1. From this, one can deduce that
lg(O) = [lp(X)|[*re @,

where v,(x)(g(X)) is the largest integer &k such that p(X)* divides g(X),

which defines a valuation on K[X]. We can extend this valuation by

setting vp(X)(a) = vp(X)(f) — vp(X)(g), where a = f/g.

4. Let R be a finite ring, v be a valuation and || - || be an absolute value on R.
Let a € R then 0 = v(1) = v(al®l) = |R*|v(), which means v(a) = 0, thus v

is trivial. One can show in the same way that ||«|| = 1, i.e. || -] is also trivial.

5. Let A be the subring of a field F' generated by 1g. It is clear that, if an
absolute value || - || on F'is an ultrametric, then || Al < 1. Conversely, suppose

that ||A|| < 1. If o € F, then

I1+a = I+ el < 317 1ol < o+ Dmax(al”. 1,

1=0

and first taking the n th roots of both sides and then letting n goes to infinity
we see that ||1 + «| < max(1, ||«||), which means that || - || is an ultrametric.
In light of this fact, we can easily show that, every absolute value on a field
with positive characteristic must be an ultrametric, since the subring A is a

finite field in this case.



6. Let ' = Q. For a fixed prime number p, define

vp(n/m) = vy(n) — vy(m),

where v,(n) is the greatest integer where p®»(™ divides n. Then the ring of

integers is {n/m :m,n € Z,p{m}. The map

¢:0,, —F,

1

sending n/m to nin~" is a ring epimorphism with kernel {n/m € O,, : p|n},

which means that the residue field O,, is isomorphic to the finite field I, with

p elements.

7. Let F be a field, and v be a valuation on it. For f(X) = Zf:m a; X", where
o # 0, put
v (f(X)) = (m, v(am)),
where Z x v(F*) is ordered lexicographically. Let f(X) = Zf;ml ;X" and
g(X) = Zfimz B; X" be two elements in F[X]. Then

v (f(X)g(X)) = (m1+ma, v(om, On,))
= (m1+ ma,v(am,) + v(Bms))
= (m1,v(om,)) + (m2,v(Bm,))
= v (f(X)) +v"(9(X)).

There are two cases.

(a) my = may:
In this case, either o, + G, = 0 or ayp, + 5, # 0. If iy + By, = 0, then

clearly v*(f(X)) = v*(9(X)) = v*(f(X)+g(X)). Suppose am, 4+, # 0.
Then,

v(f(X) +9(X)) = (mu,v(am, + Bm,))
> (mlamin(v(aﬂu)’v(ﬁﬂn))))

= min(v*(f(X)),v*(9(X))).



(b) mi > Mmoy:

Then
v (f(X)+9(X)) = (ma, v(Bm,)) = v"(9(X)) = min(v"(f(X)), v*(9(X))).

This means that, v* defines a valuation on F[X]. We extend v* to F(X)
by setting v*(f(X)/g9(X)) = v*(f(X)) — v*(g9(X)). Since v* is a group ho-
momorphism between the multiplicative group F[X]* and Z x v(F*), v* is
well-defined on F(X). Checking that v* is a valuation on F(X) is just as

same as in the case of F[X]|.Then, the ring of integers O,, of v« is given by

0. { e e . AR > (o), o } |
deB(f(X)) = des(g(X)) = m, v(01n) > v(h)

and the maximal ideal M, of O,, is

M, = {f(X)/9(X) € F(X) : deg(f(X)) > deg(g(X))}-



Chapter 2

Discrete valuation fields

Throughout this chapter, by a discrete valued field (F,v), we mean a rank 1 discrete
valued field.

2.1 Uniformizing elements and the ideal structure
of O,

Definition 2.1.1. Let F' be a discrete valuation field. An element w € O, is called
a uniformizing (or prime) element if v(m) generates the value group v(F*). Since

any nontrivial subgroup of 7 is isomorphic to Z under the map

1 ~
—:nl — 7,

n

we may assume that v(F*) = Z, that is v is normalized.
Lemma 2.1.1. If char(F) # char(F,), then char(F) =0 and char(F,) # 0.

Proof. Suppose char(F) =p # 0. Then p =0 in F, so p = 0 in F,, which means
char(F,) = p. This proves the lemma. O

Lemma 2.1.2. Let (F,v) be a valuation field and J be a non-zero ideal of the ring
of integers O,. Let a € J and f € O,. If v(a) < v(B) then B € J.

Proof. Since v(3) > v(«a), we have v((/a) > 0. Hence 3/a € O,. Lemma follows

from the fact that 5 = a.(G/«). O



Lemma 2.1.3. Let F' be a discrete valuation field, and © be a uniformizing element.
Then the ring of integers O, is a principal ideal domain, and every nonzero ideal of

O, is generated by ©", for some n € N.

Proof. Let a € O, and n = v(«). Then v(ar™™) = 0, which means a = 7"u where,
u is a unit in O,. From this observation and by Lemma 2.1.2, one sees that, if [ is
an ideal of O, then I = 7*0,, where k = min{n € N : n = v(a) for some a € I}.
This also shows in particular that, M, = 7O,, and O, has no non-trivial minimal

ideal. [l

2.2 wv-adic topology

Let F be a discrete valuation field with the valuation v. Since [|all, = d"® is a
norm on F, dy(a,) = |la — B, = d*® P with d € (0,1) defines a metric on
F', hence induces a Hausdorff topological space structure on F'. Let a € F', and
consider the open ball B,(a) of radius d™" centered at o. If 3 € (a + 7" O,),
then d(a — 8) < d"!, hence 3 € B,(«). Conversely, one can show that B, («) is
contained a + 7"Q,. This means, the topology defined by the decreasing chain of
ideals

(M) D (7*) DD (7") -, forneN
which will be called as v-adic topology, coincides with the metric topology.

Lemma 2.2.1. The field F with the topology defined above is a topological field.
That 1s, the field operations 4+, X and the inversion map are continuous with respect

to the above mentioned topology.

Proof. Let a,, — a and (3, — 3. We have to show that o,,— 3, — a—0, a3, — af3,

and o, — a~!. Note that, a,, — a means v(a, — a) — oo and vice versa. But,
v(( = B) = (e, — B,)) = min (v(a — ), v(B = Bn)) — o0

v(af — @y 3,) > min (v(a — ) + v(B),v(8 — B,) + v(an)) — oo

via ™t —at) > v(a—a,) —v(a) —v(a,) — oo,

10



which means all the operations are continuous. O

Lemma 2.2.2. Let F be a field which has a discrete valuation structure with respect
to the valuations vy and vy. Then the topologies induced by the valuations coincide

if and only if v = vy. Note that viF™* = v ™" = 7.

Proof. The sufficiency is clear. So let us assume the topologies 77 and 75 induced
by the valuations vy, vs respectively coincide. We know that o™ — 0 with respect
to 7; if and only if v;(a”) = nv;(a0) — oo which means v;(a) > 1. On the other
hand, since the topologies coincide any sequence converging to 0 with respect to 73
is also converges to 0 with respect to 75, and vice versa. Thus, we conclude that
vi(a) > 0 if and only if va(ar) > 0. Let 7y, m2 be prime elements with respect to
vy and ve respectively. Since v1(m) = 1 and vy(me) = 1 it follows that vy(me) > 1
and vy(m1) > 1. If vy(m;) > 1 then vy(my ') > 0 hence vy (75 'm) > 0 which means

v1(m) < 0. This yields a contradiction, thus vy(m) = vy(mg) = 1.

11



Chapter 3

Complete discrete valuation fields:

Local fields

Throughout this chapter by a discrete valued field (F,v) we mean a rank 1 discrete
valued field.

Let F' be a valuation field an v be the valuation on it. As we had seen that the
topologies induced by the norm given by the v and the O, coincide, we may say that
a sequence «,, in F'is a Cauchy sequence if for all z € N there exists N € N such
that Vk,l > N v(ay, — «y) > z. A discrete valuation field F is said to be complete,

if every Cauchy sequence in F' has a limit in F.

3.1 Completion

Let () be a Cauchy sequence in F. There are two cases, either v(«,) is bounded

or not.

1. Suppose it is unbounded, and suppose that there exists an integer z such that
for infinitely many integer i, v(a;) = 2. Let N € N be such that for r,s > N
we have v(a, — as) > |z| + 1. We know that there exists | € N with [ > N
and v(qy) = z. Also there exists k > N such that v(a;) > |2| + 1. Such m
exists since v(q,) is unbounded. But v(ay — o) = z < |z| + 1. this yields a

contradiction, thus we conclude that lim v(«,) exists and equal to +oc.

12



2. Suppose v(ay,) is bounded. Suppose that there exist z; # zy integers such that
for infinitely many natural numbers i, j, v(a;) = 21 and v(a;) = 29. As above

one can show that this situation yields a contradiction.
Thus if {a,} is a Cauchy sequence then limv(w,) exists.

Lemma 3.1.1. The set C(F') = C of all Cauchy sequences in F in forms a ring with
respect to componentwise addition and multiplication, and the set Co(F) = Co of all

Cauchy sequences tending to 0 forms a maximal ideal of C. The quotient field
F=C/C
15 a discrete valuation field with respect to the the induced valuation
v:F — ZU {0}
defined by
v(ay,) = limo(ay,).
Proof. Let {a,},{B.}be two Cauchy sequences. Let z € N be given. Then there
exists NV € N such that whenever ny, my, ny, ms > N we have
V(i — Q) > 2 and V(Bny — Bmy) > 2.

So we conclude that

U((an - ﬁn) - (am - ﬁm» > min(v(an - O‘m)v U(ﬁm - ﬁn)) > kv

which means sum of two Cauchy sequences is again a Cauchy sequence. On the

other hand we have

U(O‘nﬁn - O‘mﬂm) Z min (U(an - am) + U(ﬁn)v U(ﬁn - 67”) + U(Oém))). (31)

Since v(cv,) and v(f3,,) are bounded below and v(«a,, —ay, ), v(5, — Bn) tend to infinity
as n, m tend to infinity, we see that the product of two Cauchy sequences is again a
Cauchy sequence. Let {«a,} be a Cauchy sequence in C — Cy, which means 0 is not
a limit point of {a,}, so only finitely many «,, = 0. Consider the ideal J generated
by Co U {a,,}. Let N be a positive integer so that for n > N «,, # 0. Put 3, = «,, !
forn > N and 3, = 0 for n < N. Then 1 — {a,}{8,} € J, which means J = C,

hence Cy is maximal. O
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3.2 Universality

Proposition 3.2.1. Let F' be a discrete valuation field with the valuation v. Then
there is a complete field F' with valuation 0, and a continuous field embedding i : F' —
F, which 1s universal in the following sense. Whenever there exists a continuous
field embedding 7 : F' — K in to a complete field, there exists unique p : F— K,

such that the following diagram commutes:

N e
K

To prove the Proposition we have just need follow the routine procedure of

completing the rational numbers Q to R.

3.3 Examples

1. The completion of Q with respect to the valuation v, is called the p-adic field
and denoted by Q,.

2. The completion of K (X) with respect to vy is the Laurant series K ((X)) with

the valuation
o0

( Z a, X") =min{n € Z: a,, # 0}.

n>—00
It is clear that vix(x) = vx. We know that K[[X]] C K((X)). Moreover,
if f € K[[X]] with f(0) # 0, then 1/f € K[[X]] € K((X)). Also 1/X €
K((X)), thus K(X) C K((X)). An element h € K((X)) can be written as
h=X7"%f+g, where f € K[X], k €N, and g € K[[X]]. We’d seen that such
f is always an element of K (X). Let g = > ;> @, X", and put

Gn = i a; X"
i=0

14



For n < m € N we have v(g, — gm) = v(> -, @ X") = n, thus {g,} is a
Cauchy sequence converging to g. So h, = f + g, — h, which means K(X) is
dense in K((X)). Also it it is clear that O,, = K[[X]] and M,, = XK[[X]],

hence the residue field K ((X)), is K again.

. Let F be a field with a discrete valuation v, and F be its completion. We ex-
tend the v* on F(X) to F((X)) in the following way. For f(X) = > nom X",
o, € F, a7 0, put

v (f(X)) = (m, 0(am))-
Let f(X) € O,+. This means either m > 0 or m =0 and ap € Oy. If m > 0
then f(X) € XF[[X]]. If m = 0 and o € Oy then f — ap € XK[[X]], thus
O, = O, —|—XF[[X]]. If f € M, then either m > 0 or m = 0 and a9 € M.

S0, My = Oy + X F[[X]], thus the residue field of ﬁ((X))v = 0/ M

15



Chapter 4

Structure theory of complete discrete

valuation fields

Throughout this chapter by a discrete valued field (F,v) we mean a rank 1 discrete
valued field.

4.1 The equal characteristic case: Teichmiiller rep-
resentatives

Let F' be a complete discrete valuation field with ring of integers O and residue field

F = k. Let m be a prime element and T be a set of coset representatives of k in O.

Proposition 4.1.1. Every element a € O can be written uniquely as a convergent

series

o0
a= Zenw”, with 6, € T.
n=0
Similarly, every element o € F' can be written uniquely as

a = Z 0,7", with 0, € T.

n>—oo

Proof. Since for any o € K, 77" ®a € O, the second assertion follows from the

first. So, let a € O; by definition of T, there exists unique 6, € S such that
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a—0y=0 mod (7). Thus a = 0y + a;7 for some a; € O. Similarly a; = 0; + as7

[eS)
1=n

which means a = 6y + ;7 + aom?, and so on. Since v(> ;o a;7) > n we have
a— > 07 — 0, and since all series of the form ) 6,7" is convergent, existence

follows.. The uniqueness of this expression is clear. O]

Observe that we can generalize the assertion of the above proposition as follows:
Let F' be a complete discrete valuation field with respect to the valuation v, T be
a set of coset representatives of F, and for each i € Z let m; € F be such that

v(m;) =i. Then every element o € F' can be written as a convergent series

o= Z 0,m,, with 8, € T.

n>—00
Lemma 4.1.1. Let R be a local ring that is Hausdorff and complete for the topology
defined by decreasing sequence a, D a, - - - of ideals such that a,.a, C n+m. Suppose
that ay is the mazimal ideal and let R = A/a, is a field. Let f(X) be a polynomial
with coefficients in R such that the reduced polynomial f € R[X] has a simple root
A € R. Then f has unique root x € R such that a = \.

Proposition 4.1.2. Let R be a local ring that is Hausdorff and complete for the
topology defined by decreasing sequence a; D a, --- of ideals such that a,.a, C n+ m.
Suppose that R = R/a, is field of characteristic zero. Then R contains a system of

representatives ok R which is a field.

Note that any discrete valuation ring R with the topology induced by the valu-
ation on it, or equivalently the topology given by the decreasing sequence of ideals

(m),---,(7"™), where 7 is a prime element satisfies the condition of the proposition.

Proof. Since characteristic of R is zero, ¢ : Z — R is injective. Since R/a; is of
characteristic zero we have ¢(Z) Na; = 0, thus every element of ¢(Z) is invertible
in R, which means R contains an isomorphic copy of the field Q. Hence by Zorn’s
Lemma there exists a maximal subfield T of R. Let T be its image in R. Since T
is a subfield and a; N T = 0, we see that the map ¢ : T — R given by 6 — 0 is
injective, hence T is a field. We will show that T = R.

17



Our first claim is that R is algebraic over T. Suppose not! Then there exists
a € R such that a is transcendental over T. Also a € R must be transcendental over
T. Indeed if f(X) is a monic polynomial in T[X] such that f(a) = 0, then f(a) = 0,
which contradicts with the assumption that @ is transcendental over T. So the bar
map sends T|a] to T[a] ~ T[X] isomorphically. Since a is transcendental over T,
Tla] Na;, = 0, thus a is invertible in R, which means R contains the field T(a). But
this contradicts with the maximality of T, hence R is algebraic over T.

So, for any A\ € R, there exists a unique f minimal polynomial over T. Since
the characteristic is zero R is separable over T, which means X is a simple root of f.
Let f € T[X] be a coset representative for f. By the previous lemma, there exists

a € R such that Z = X\ with f(a) = 0. O

Proposition 4.1.3. Let R be a ring that is Hausdorff and complete for the topology
defined by decreasing sequence a, D a, - - - of ideals such that a,.a, C n+m. Suppose

that the residue ring R = R/a, is perfect of characteristic p > 0. Then

1. There exists one and only one system of representatives f : R — T C R which

commutes with p-th powers. That is f(A) = f(A)P.

2. An element a € R belongs to T = f(K) if and only if a is a p" th power for
alln > 0.

3. T is multiplicative, i.e. f(Ap) = f(A)f(w).
4. If the characteristic of R is p > 0, then T is additive.
Proof. For A € R and n € N put

L,\) = {zeR:z=X""},
U,(\) = {2 € R:z € L,(\)}. (4.1)

If x € L,(A\) then

thus " € Ly, which means U,, C Lg. Let a,b € U,(\), then there exists z,y € L, ()\)

such that a = 27" ,b = y?". Since T =7 we have z — y € a;, by the following lemma
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stated below, we see that 27" —y?" € a,,1, whence U, ()\) form a Cauchy filter base.
So we may set f(A) = lim(U,(\)). This limit exits and well-defined since U, is
Cauchy filter, R is complete and Hausdorff.

Now, we’ll show that a € T := {lim(U,(\) : A € K} = f(K) if and only if a is a
p"-th power for all n > 0. The necessity follows from the construction. Indeed, any
element of U, is a p" th power and lim U,, = (,,c;y Un. Suppose a is a p" th power
for all n > 0. Let A = a. By hypothesis there exists y € R such that a = y?". Since
a=M\ y"" =\ thus § = A" ", hence y € L,()\), which also means that a € U,(\).
But lim U,, = (U, which show the sufficiency.

If a,b € R are p™ th power then ab is also a p™ th power. So T is a multiplicatively
closed set. On the other hand, if the characteristic of R is p then a+b = 2" +y*" =
(z +y)*". 0

Lemma 4.1.2. Under the assumptions of the above proposition a = b ( mod a,,)

implies a?" = 0P ( mod Gy, 1p).

Proof. We know that (a — b)? € a,,, C a,,41. Since the characteristic is p > 0 we

have

a? — b’ = (a—0b)
thus a” — b € a,,11. The rest follows by induction. ]

Note that in the context of valuation fields the lemma is equivalent to say that

v(a — B) > n implies v(a®” — BP") > n +m.

Theorem 4.1.1. Let ' a complete discrete valuation field with respect to the valu-
ation v. If the characteristic of the residue field F = 0 or the characteristic of F is

non-zero and F' is perfect, then

F~ F(X).

Proof. The theorem follows from Proposition 4.1.1, Proposition 4.1.2 and the Propo-
sition 5.2. L

Definition 4.1.1. The set T is called the Teichmaiiller representatives of the residue
field.
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4.2 Unequal characteristic case: Witt vectors

Let A = Z[Xo, X1, -+, Yy, Y1, - - -] be the ring of polynomials in variables Xg, X7, -+, Yy, Y3

over the integers. We define
Wn(X07 tee 7XTL) = ZpiXipn_l n Z O,
=0

in particular Wy = Xy, W = X{+pX;. Note that W,,(Xo, -+, X,,) = W1 (X, -+,
P Xy, and Wi, (Xo, -+, X)) = X5 4 pWo 1 (X1, -+, X).

Proposition 4.2.1. There exists unique polynomials
w;:(X(]? aXna}/by"' 7Yn) S A, n Z 0

such that
Wn(X(b e 7Xn) * Wn(YEb T 7Yn) = Wn<w§7 e Jw*>7

where x stands for + or X.

Proof. We observe that there exist unique polynomials w; where wg = X+ Yy and

wg = XoYp. For n > 1 we deduce that

pnwz - W"(XO7 T 7Xn) * Wn(Yb, cee ,Yn) — (pow;pn + ... _'_pnflw* )
= Wn—l(ng te 7X7ZZ—1) * Wn—l(YE)pa ce ,Yp_l) — Wn—l(wgp, T )

n

+ (p" X, *p"Y,).

The uniqueness of w} is clear. Now we’ll show that p"w’ € p™A. Note that if
9(Xo,Yp, ) € A then g(Xo, Yo, - )P — g(XF,Yd, -+ ) € pA. This follows from the
fact that the summands of g(X{, Yy, - -) are the summands of g(Xo, Yp, - - - )? which
are not divisible by p. Moreover, if f — g € pA then f? — g* € p?A (c.f. Lemma 4.2
), thus we conclude that

m—1

g(X()?}/O?'”)pm_g(X(])JaYE)pv"'>p EpmA

So for 0 < i < n—1 we have w}(Xo, Yy, -+, X;, V)P —wi (X, YL, -, XPYF) € pA.
Thus

n—1—i

pi(w:(XOa va e 7Xiv Yvi)p)pnilii - piw;‘k(X(])?v Y()p> e ’szv Y;p)p € pnAv

20
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which means means

Wn—l(wgpv"' 7W*p )_Wn—l(w(’;(X(I))vybp)v"' 7wS(Xg7"' vXp

n—1 n—1»

Y()p7 U aYp—l)) € pnA

n

On the other hand we have W,,_1(X?, -+, X?_ ) )«W,,  (YP, - [ YP ) =W q(wif, -+ ,wl ).

n—1

Thus we get

plwr =W q(wy’y -+ wl ) — Wi (wgs - wl ) + (p" X, x p"Y,),

n—1 n
which means p"w; € p"A hence w}, € A. O
Corollary 4.2.1. With the notations of the Proposition 4.2.1 we have

Wi (Koo s Xy Yo, -+ Vo) = wi(XB, -+ | XD YD, - YD) € pA.

We now return to the case where the characteristics of the base field F and F
are different. We know that, this means, char(F) = 0 and char(F) = p > 0. Let
a, B be two elements in the ring of integers O of F', m be a prime element, and S be
a set Teichmiiller representatives for the residue field F. We know that there exists
unique 6;,v; € S such that

o= Z 07" and b= Z’yﬂri.
i>0 i>0
Also there exists unique p;7, p} € S such that
a—i—ﬁ:Zp;r?Ti and axﬁ:prwi
i>0 i>0
We'll investigate the relation between 6;,7; and p; for * = + or * = x. Since an
element is a Teichmiiller representative if and only if it is p"th power for all n € N

n—u

— i and A" = o7,

n—u

there exists elements €;,&;, \I € S such that efn_i =0;,¢&

where * = + or * = X. We observe that if * = + then,

Zemi + Z’yﬂri — Zpﬁr" = Zpﬁri - Zeﬂi - Z%’Wi,
i=0 i=0 i=0

i>n >n >n

and if * = x then,

n n n

i % X, 4 X, %
g ‘91'71')(5 %W—E pimt = g p; T
i=0 i=0 i=0

- (Z eﬂi)ﬁ - @(Z %‘Wi)-
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But this means
n n n

E O,m" * g T E pim" mod 7"t
i=0 i=0 i=0

i n—1i

for * = + or * = x. By replacing 6;,v;, p* by € € Dy respectively we get

3 3

n

Z ep" ! x z": EpnTt = z”: Nxp™™" mod 7"
i=0 i=0

1=0

Note that if 7 = p then the last equivalency is nothing but
Wn()\?p e 7)‘:1) = Wn<€0 e 7671) * Wn(&h o 7§n) mod pn+1.

Proposition 4.2.2. With the above notations, we have the following identity

i —it+1 —i+1 P

p;‘kzw:(eg_vellj 7"’70§)7§g_7£f T i?) mod p, @ > 0,

where w; are the polynomials defined in the proof of the Proposition 4.2.1.

Proof. We'll proceed by induction. Suppose the assertion of the proposition holds

for ¢« < n — 1, which means for 0 <i <n — 1 we have

)\:pnfi = wi{(ﬁgnfz’ Efnfi’ o ’efn7i7 ggnfi’ gfnfi’ o 7£ipn7i)'
In the proof of the Proposition 4.2.1 we have seen that if g(X) € A then g(X)? —
g(X?) € pA. Writing g(X)"" — g(X™") as g(X)”" — g(X?)"" + g(X7)"" —
GXPV" T g (XPPP e g(XPTTP 4 g(XPTT)P — g(XP") we see that g(X)P" —
g(X?") € pA. Thus

n—1i n—i

; —i i
U}:<68 , €1 ) 6 7§§ 7§f 7"'7611') )Ew:(q]uel?"'7€i7§0)§1""7§i)p mOdp

From this we deduce that for i <n —1

n—1i

Ajp Ew:(e(J?El?”' 761'7507517”' 7§’i>pn_z mod p.

By the remark following the Lemma we see that for : <n — 1

n—i n-+1

pl)\jp Epiw;k(eg,el,--- 762'7507517"' 7§i)p"*’ mOdp
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hence

n—1 ' n—1

Gy kP T i,k prt n+1
E A = E pwi(60761,‘"7€i,507§1,“'7fz’) mod p" ™.
=0 i=0

On the other hand we know that

Wa(Ags s AL) = Waleo -+ en) * Wa(o, - &)

= Walwg(eo, o) wp(€o, - éns o, &) mod p™
and combining these two facts we get
PN, = phwp(eo, € oo, &) mod ptt
which implies the assertion of the proposition. O
Corollary 4.2.2. With the above notation we have
p;i = wi (0o, ,0;,70, - %) mod p.

Proof. As we had seen in the proof of the Proposition 4.2.1 modulo p, p; is equivalent
to wi(eo, - €, 6o, &) [

From the proof of the proposition we deduce that

Corollary 4.2.3. Let (D Gf_ipi) x (> yf’_i) = Zp(*)p_i where 0;,7;, p*) are Teich-

1

miiller representatives comes from 5.2, and x = + or x = X. Then
Pi Ewg*)(907"' 79i7707"' 77@) mod Y

COI'Ollary 4.2.4. (Z Qf_lpl) * (Z 77%7_1) = wz(*)(007 e 79i7 Yo, 7’}/'1)
Definition 4.2.1. A ring R is said to be a p-ring if it satisfies the hypothesis of the
Proposition 5.2. A p-ring is said to be strict if a,, = p" R and ip p is not zero divisor
n R.

We know that, thanks to Proposition 5.2, a p-ring is always have a set of Teich-

miiller representatives. By the Proposition 4.1.1 for 6, € T

Z eipi

converges to an element o of R. On the other hand, if R is strict then can be written

in this way uniquely. The element 6; is called the coordinates of «.
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Proposition 4.2.3. Let R and R’ be two p-rings with residue fields k and k' respec-
tiwely. If R is strict then for any homomorphism ¢ : k — k', there exists a unique

homomorphism g : R — R’ such that ¢(@) = g(«).

Proof. Let T and T’ be two systems of Teichmiiller representatives for R and R’
respectively given by the lifting maps f and f’ respectively. Suppose g : R — R’
satisfying the assertions of the proposition. Then for a € R is equal to >_ 6;p° we

have
gla) = Q(Z Oip') = Zg(@i)pi = Z f'(6(6:))p".
Thus g is unique. By Corollary 4.2.4 it follows that the map defined in this unique

way is in fact a homomorphism. O

Corollary 4.2.5. Let R and R are two strict p-rings. If the residue fields of are

same then R and R' are canonically isomorphic.

Lemma 4.2.1. Let k and k' be two two perfect rings of characteristic p > 0. Suppose
that there exists a surjective ring homomorphism ¢ : k — k'. If there exists a strict

p-ring R with residue ring k, then there exists strict p-ring R with residue ring k'.

Proof. We will define an equivalence relation on R, then take R’ as the quotient
ring modulo this equivalence relation. For a,3 € R with coordinates 6; and ~;

respectively, set
a = (3 if and only if ¢(0;) = &(;)

for all 7. If a5 = g and B; = (5, then by the Corollary 4.2.4 the R’ of R by the
equivalence relation is a ring. Let x € R’, and o € R be a representatives for = with
coordinates ;. Then & = ¢(6;) is independent of the choice of the representative

Q. O

Theorem 4.2.1. (Classification theorem) For every perfect ring k of characteristic

p, there exists a unique strict p-ring W (k) with residue field k.
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Chapter 5

Extensions of valuation fields

Let F' be a field and L be an extension of F' which is discrete valuation with respect
to the valuation v, with the value group I'. Then v induces a valuation vy on F
in the obvious way. In this situation we say that L/F is an extension of valuation

fields. It is clear that the value group vo(F™*) is a totally ordered subgroup of I".

5.1 Definition of e(L/F,v) and f(L/F,v)

Definition 5.1.1. The number e =| v(L*)/vo(F*) | is called the ramification index
e(L/F,v) of the extension L/F.

We know that o € O,, C F* if and only if vy(a) = v(«) > 0, which means
a € O,, thus
Oy =0, N F".

With the same way we can show that
My, = M, NF*.
Now, consider the map
i Fyy =0/ My, — Oy/ M, =F,

defined by

Qi
I
Qi

25



If & = 3 then o — 8 € M,,. Since M,, C M,, it follows that & = ﬂ: hence 17 is
well-defined. Also we see that 4 is injective, thus we may view F, as an extension

of the field F,,.

Definition 5.1.2. The number f = [F, : F,] is called the residue degree of the
extension L/F, and denoted by f(L/F,v).

By using the very beginning results of the group theory and linear algebra, one

can prove the following lemma:

Lemma 5.1.1. Let L D M D F be a chain of fields. Suppose L is a valuation field
with the valuation v. Let vy be the valuation on M induced by v. Then we have the
following equalities:

e(L/F,v) = e(L/M, v)e(M/F.vy)

f(L/F7U> = f(L/Mav)f(M/F7UM>
Lemma 5.1.2. With the above notation, if L/F is finite of degree n and vq is

discrete, then the ramification index e(L/F,v) is finite, and v is discrete.

Proof. For e < e(L/F,v), let ay,--- ,a. be elements in L* such that the elements

are all distinct in the quotient group v(L*)/v(F*). Since
e(L/F,v) = [o(L7)/v(F7)],
such «;’s are always exist. Suppose

Zciai = (0 with c; € .

=1

By the choice of «;’s we have v(c;a;) = v(«;). It follows that

v(cia;) # v(cjay),

whenever i # j. Thus v(>_;_, ¢;oy) = min(v(¢;a;)) which is on the other hand equal
to infinity. Thus ¢; = 0 for all 7, i.e. «;’s are linearly independent over F. So e < n,

which proves the first assertion of the lemma.
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Since v(L*) D vo(F™*) = Z the value group of v is infinite, thus in order to prove
the second assertion of the lemma, it suffices to prove that v(L*) is cyclic. Let 7 be
a prime element of vy. As we had shown that the ramification index is finite, we see
that there is only finitely many positive elements v(L*) which are less then v(m) = 1,
say aq,--- , ., where e is the ramification index. Without loss of generality we may
assume min(v(«a;)) = v(ay). We claim that v(«;) generates the value group v(L*).
We have

ev() = v(a)+--+v(m) =keZ,

N J
'

e many

ev(eg) = v(ag) 4+ +v(ay) =1€Z

e many

Since v(aq) < v(w;) it follows that £ < I. So there exist positive integers s, such
that [ = sk + r, where 0 < r < k. We see that r = v((aj °a;)¢). From this, we
deduce that 0 < v(a; ;) < v(ay). Thus r = 0, which means [ = sk, equivalently

k many

Ve

[v(ar) + - +v(a)] +- + [v(ar) + -+ v(al)T =v(a) + - v(w).

Na J

N/ Vv
e many e many

From this, we conclude that

v(og) + -+ v(ag) = v(ay),

N S
'

k many

which proves the second assertion of the lemma. O

From now on we’ll deal with discrete valuations. Let F' C L be two fields with
discrete valuations v and w respectively. The valuation w is said to be an extension
of v, if the topology by wy is equivalent to the topology defined by v. In this
situation, we write w|v and use the notations e(w|v) and f(w|v). We shall assume
that w(L* = Z) and v(F*) C Z. Let 7, and m, be prime elements for (F,v) and
(L,w). Then w(r:,) € v(F*). Since v(F™) is cyclic it follows that e(w|v) = w(m,).

Lemma 5.1.3. Let [L: F] =n < oo, then e(w|v) f(w|v) < n.
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Proof. Let e = e(w|v) and f < f(wv). Let
A={b,---0;} C O,
be where A is a linearly independent set over O,/ M,. We will show that
{07},

where i =1,---  fand 7 =0,--- ,eis a linearly independent set over F'. Suppose

Z cijQﬂrj =0

for ¢;; € F and not all ¢;; = 0. If necessary, by multiplying the expression Z” cij0;m
by a suitable c,;ll, we may assume that some of the ¢;;’s do not belong to M,,. Now,
by multiplying a suitable power of m, we may assume that c;; € O,, but not all in
M,. We observe that if ). ¢;;0; € M,, then ZEZ-]@- = 0. Since {6;}; is a linearly
independent set, it follows that ¢;; = 0, hence ¢;; € M,, which is impossible. Thus
there exists an index j such that >, ¢;;6; ¢ M,,. Let jo be such minimal. We claim

that
f e

W(Z(Z Cijei)ﬂ-j) = Jo-

j=1 i=1
Observe that the claim contradict with the fact that the above sum is equal to zero.

Now, suppose Y ¢;;60; ¢ M,, but then
Z cijti € Oy — M,,

thus w(}_ ¢;;6;) = 0, and this proves the claim. O

5.2 Extensions of complete discrete valuation fields

Let F be a discrete valuation field and F be its completion. We know that, if
o € F, with a representing Cauchy sequence (ay,) in F, then 9(ay,) = limov(a,)
and v(a,) € Z for all natural number n. Thus it follows that, o(F*) = Z. So the
ramification index of the extension F /Fis equal to 1. Also the residue degree of the
extension is equal to 1. This means that, if F is not complete, then [F' : F] # e.f.

On the contrary, we have the following proposition for the complete fields.
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Proposition 5.2.1. Let L D F' be two complete discrete valuation fields with respect
to the valuations v, w respectively. Moreover suppose that wlv, f = f(w|v),

e = e(wlv) < oco. If m, is a prime element of L with respect to w and 6y,--- ,0;
are elements of Oy, such that 6, - - 79_f form a basis for the vector space Ly, over
the field F, then the set {0;7)} is a basis for L over F, and for the O,-module O,
where 1 < i< fand 0 < j <e—1. If f is finite, then n = ef.

Proof. Let S C O, be a set of coset representatives for F, and & € L,,. Since {0;}
is basis of F,, there exists finite number of elements 5, € F, with s; € S, such that

o= Z{Zl 5;0;. But this means the set
f
R = {Zsﬂi : s, € Sand s; =0 for all most all i € Z }
i=1

is a set of coset representatives for L. Let m, be a prime element with respect to v,
and for m € N, we set

k,ﬂ_]

T = Ty Ty

where m = ek + j,0 < j < e. Thus w(m,) = m, so by the remark following the
Proposition 4.1.1, it follows that an element o € L can be expressed as a convergent

series

o= mewm with p,, € R'.

m

Writing p,,, in terms of the elements of R and 6;’s

f
Pm = Z Pm,iOm With ppn; € R,

i=1

we get

o = Z <Zpek+jji7rf> 92'7Tj.
k

i:j
This means the set {0;77 } is a spanning set of L over F. By the proof of the previous
Lemma, we further know that {6;7/ } is a linearly independent set over F'. Thus the
set {0;7] } is a basis of L over F. The assertion concerning the module part follows

from this fact directly. O]
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Theorem 5.2.1. Let F' be a complete field with respect to a discrete valuation v,
and let L be an extension of F' of degree n. Then there exists unique extension w of

the valuation v on L, and w = %v o Np/p with f = f(w|v). The field L is complete

with respect to w.
Proof. Let w' =vo Np/p and «, 3 € L. Since v is a valuation on F, we see that
w' (o) =vo Npjp(a) =00

if and only if Nz, () = 0. But norm of an element is zero if and only if the element

is zero. So w’ satisfies the first property of being a valuation. Secondly, observe that
vo Npp(afB) =v(Nyr(a)Nyr(B)) = v(Npra)+v(NyrB)
= w'(a) +w'(3).

Assume that w'(a) > w'(B), for a, § € L*. We shall show that w'(a + §) > w'(3).

Since
w'(a+ 3) = v(Npyr(B)Neyr(l+a/B)) = w'(8) + w'(1+a/B),
it suffices to show that w'(1 4 n) > 0 whenever w'(n) > 0. Let

fX)=X" 4 ap  X™ - 4ag

be the minimal polynomial of ) over . Then Npg/r(n) = (=1)™ag. We know that
Npp(a) =a™if o € F, thus if [L : F(n)] = s, then we have

Niye(n) = Newy/e(Nesea () = (1) a)’.
So w'(n) = v(((—=1)"ag)®) = sv(ag). From this, we deduce that v(a) > 0. Thus
by the Remark 1.2.1, we get v(a;) > 0. On the other hand we have the following
equality
(=1)"Nrwye(L+m) = f(=1) = (=1)" + an(=1)""" + - + ao.
To see this equality, first note that norm of an element « in a field L over F' is the

product of elements o;(a), where «; runs through the automorphisms of L which

are fixing F'. Thus, if 0;(n) = n; then
Ny p(1+n) =141+ m).
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On the other hand, we have the following equality

a(=)""= > I
JQI{II,---,n} jeJ
J|=i

Clearly this summand occurs in the left hand side. And every summand of the left

hand side can be written in this way uniquely. From this equality we deduce that
Np@wyr(l+n) 20,

and

NL/F(l + 7]) > O,

which means w'(1 +n) > 0, thus w’ is a valuation on L.

If « € F'* then
w' (o) =vo Npjp(a) =v(a") = nv(a).

So the valuation %w’ is an extension of v. But the group %w’(L*) is not necessarily
equal to Z. Let e be the ramification index e(iw’[v). By the Lemma 5.1.2, e is

finite. Consider the following map on L to Q,
€ !/ *
w=—-w :L"— Q.
n

Let m, be a prime element of w, note that m, is a prime element with respect to w’
also. Thus w(m,) = Sw'(my), since e is the ramification index of % Therefore it
follows that w(m,) = 1. Hence w is a discrete valuation on L.

Now, let L be the completion of L with respect to w and w be the discrete
valuation on L. We know that e(L|L) = 1 and f(L|L) = 1. By the Lemma 5.1.1
and the remark following the Lemma 5.1.3 and bearing the Proposition 5.2.1 we see
that

A

n<[L: F| = o(LIF)f(LIF) = o(EIL)e(L, F)f(LIL)f(L|F) < n.

which means [L : F] = n, thus L = L which means L is complete with respect to w.

Also from this equality we deduce that £ = f. O
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Theorem 5.2.2. Let Ly be a complete discrete valuation field of characteristic zero
and suppose that the characteristic of the residue field Ly is p > 0.Let Ly be a
complete discrete valuation field of characteristic zero where p is a prime element in
Lo. Moreover, suppose that the characteristic of the residue field Ly = p and there
exists a field embedding i : Ly — L. Then there exists a field embedding i : Ly — Ly

such that
vp, 01 =e(Ly)vp,,
where
e(L1) = v, (p),
and

for every a € Op,.

Proof. We give a proof for the theorem, where the field L, is perfect. For the general
case (c.f. [3]). Since L, is perfect, by the theorem there exists a set 7" of Teichmiiller

representatives, with the corresponding function
Ja: L_2 — Lo.
Note that, by the lemma 4.1.1, every 6 € Ly can be written uniquely as

Z f2(0,)p°.

Define

1: Ly — Iy

i) L00p°) =) ifi(B)p",

where f; : Ly — L, is a lifting function in the sense of theorem 5.2. By the corollary

4.2.2 1 is a field homomorphism and it satisfies the desired properties. l
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5.3 Elimination of wild ramification:
Epp’s theorem

In this section we fix a complete discrete valuation field K with residue field K of
positive characteristic p.

In the mixed characteristic case, i.e. char K = 0, we fix the field £ which consists
of those elements that are algebraic over the fractional field ky of W (F'), where
F = ﬂfpi. In the equal characteristic case, we fix a base subfield ky in K, which
is complete with respect to the induced valuation, and has I, as a residue field. It
is clear that ko is equal to ko((«)), for some a € K, where the valuation of « is
positive. In this case, k denote the algebraic closure of koF' in K.

In the both cases, k is said to be the constant subfield of K.

Theorem 5.3.1. (/Epp/) Let L/K be a finite extension of complete discrete valu-
ation fields, k the constant subfield of K. Then there exists a finite extension l/k
such that e(IL/kK) = 1.
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Chapter 6

n-local fields

6.1 Definition of n-local fields

Definition 6.1.1. A field K is said to be an n-local field over a finite field (resp.
more generally a perfect field) Ko, if K is a complete discrete valuation field with

respect to v = v, and there exists a chain of fields
K = Kn7 Kn—h T aKla KOa

where each K;y1 is a complete discrete valuation field with respect to the valuation
vip1with the residue field K; for 1 < i < n —1, and Ky is finite field (resp. more
generally a perfect field). K, is also denoted by ki or K, and called the first
residue field of K. (The finite field F, with q elements is called a 0-local field.)

Examples
1. F,((X)) is a 1-local field.

2. For k, n — 1 dimensional local field, we put a valuation on k((X)) by setting

U(Z a; X") =m,
>m
where a,, # 0. This valuation turns £((X)) in to a complete discrete valuation

field with residue field &.

34



3. For a complete discrete valuation field F', consider the following field:

“+oo

K=F{X}}={> aX:aq€F inf(a;) > —oo, lim (a;) = +oo}

1——00

Define v;(>" @;X") = minwvg(a;). Since inf,, a; > —oo such minimum al-
ways exists. Let f = > f;X',g = > g;X?. We know that v(f; + ¢;) >
min(v(f;),v(g;)), thus

min or(f; + g1) > min(o(£). o(9;)) = min(or(f), ve(9)),

so vp(f +g) = min(ve(f),vr(g))-

Now, suppose that ve(f) = v(f,) and vp(g) = v(gm) where vp(f;) > vr(fy)
and vp(g;) > vp(gm) whenever i < n and j < m. Let fg = h = Y hX".
We’ll show that

min v (h) = o) =0( Y fgy)
it+j=ntm

If i < n then since v(f,) and v(g,,) are minimal and their indexes are also
minimal vp(f;) > vp(f,) and vp(g;) > ve(gm) , from this we conclude the

following strict inequality

v(fig;) >2 ve(fugm) whenever i # n.

So V(hntm) = v(fugm)- It is also clear that min; ; > vp(fngm), thus v(h) >
vp(f) +vr(g). Hence one gets v(h) = v(f) + v(g). So v is really a valuation.
Now we will show that F{{X}} is complete with respect to v. Let f, be a
Cauchy sequence in F{{X}}. This means, as n,m tends to infinity, v (f, —
fm) = minvg(fn; — fmi) tends to infinity. Thus for each i € Z, f,,; is a Cauchy
sequence in F’ with respect to vp. Completeness of F implies that f,,; converges

to a unique point in F. Put
a; = lim f,,; fori e Z.

Now, one can easily show that > a;X* = lim f,, which means F{{X}} is

complete with respect to vg.

35



An element f € F{{X}} is element of ring of integers O,, if and only if

VK

minvg(f;) > 0, and f € M, if and only if minvg(f;) > 0. This means
Ou = 0, {{X}} and M, = M, {{X}}. Define

¢ O = Oy ({X}} = Opp /M ((1))

as > a; X" +— > a;t'. It is clear that ¢ is a ring homomorphism, which is onto
and its kernel is M,{{X}}. Thus, the residue field of F{{X}} is the Laurent
series with coefficients in the residue field of F'.

Let F' be a complete field and consider the field K = F{{X}}{{Y}}. Then
the residue field of K is F'((t;)) where F" is the residue of F{{X}} = F((t3)).
Thus the residue field of K is F((t1))((t2)).

Lemma 6.1.1. K; = K((X){{Y'}} is isomorphic to Ky = K((Y))((X)).

Proof. We define @ : K((X)){{Y}} — K((Y))((X)) as follows: For o € K((X)){{Y}}

o= Zfz’(X)Yi € K((X){{Y}},

where
fz(X) _ Z a(z)XJ
J>—o00
put
O(a) =Y g (Y)X"

where ¢,(Y) =>_ a!?Y. First we will show that range of ® is really K({(Y)((X)).
In order to do this we have to show that g,.(Y") = 0 for almost all negative . Suppose
for all k € Z there exists 7 < k such that ¢,(Y) = Y al’Y? # 0. This means, for
some i € Z, the coefficient at? # 0. So we conclude that v(f,) = r < k, thus

inf v(f;) = —oo, which is impossible. Let

vk () fi(X)Y') =k,
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which means

min{vx(fi(X)):i1€Z} = min{je€Z: aéi) # 0}

i,jEZ
= UX(fk(X)

= min{j € Z: a§k) # 0}.
On the other hand

VK, (CI)(Q)) = UK2(Z gT(Y)Xr>

= min{vy (g,(Y))}

)
min{j € Z: a,” # 0}

= min{j €Z: agk) # 0}

= k.
Thus we have lemma. O

Remark 6.1.1. Let K be a field endowed with the trivial valuation v. Then clearly
(K,v) is complete discrete valuation field. So we may consider the field K{{X}}
introduced in the previous example. Then K{{X}} = K((X)), as any convergent
sequence in K must be constant. In particular, F {{X}} =F,((X)).

Definition 6.1.2. For a local field k the fields

E{X G} X H(Xma2) - ((XR)), 0<m<n—1

are n-dimensional local fields and they are called the standard fields.

6.2 System of local parameters

Throughout this section K denotes an n-local field with the chain of complete dis-
crete valuation fields

K = Kann—la e 7K17K07
with respect to the valuations v = v,,v,_1, -+ ,v1.
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Definition 6.2.1. An n-tuple (t1,--- ,t,) € K™ is called a system of local parame-
ters of K if t; is a unit in K; for j > i and the residue class of t; in K; is a prime

element for 1 <1 <n.

Lemma 6.2.1. Let k be a local field. For the standard field

K =k{X1}} - {{Xn} H(Ximg2)) - (X)),

the n-tuple (X1, -+, X, 7, , Xinto, -+, X)) where w is a prime element of k forms

a system of local parameters for K.

Proof. Let ¢ be an index where m +1 <n —i¢ <n. Then

Knoi = k{{X0 - {5 H(Xmg2)) -+ (Kmi))

Thus X,,_; is a prime element of K,_;, and we also know that X,,_; is constant in

K,,—iy1 which means it is a unit O; for j > m — 1. O

This system of local parameters is called the canonical system of local parame-
ters.
We will now give a non-standard definition of the lexicographic ordering on Z",

following Madunts and Zhukov [7],[10].

Definition 6.2.2. The lexicographic order of Z" is defined in the following way.
Fori= (i1, -+ ,in) <j=(j1, - ,Jn) if and only if

ik < Jhylktl = Jhat, " 5dn = Jn  for some k < n.

We now introduce the mapping

defined by

v(i)(a) _ vi(at;”(")(a) . _t;—:l(ﬂl)(a))’ for 1<i<n.

where the residue means the residue in the field K; and v™(a) = v,(a). Extend

the mapping v to K by setting v(0) = +o00
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Lemma 6.2.2. The map v : K — Z" U {oco} defined above is a rank n discrete

valuation.

Proof. Let a, 3 € K. Suppose we had shown that v" 7 (af) = v" 7 (a) +v"7(3) for

0=7<1<n-—1. Then we have

n—i —v()(q —p(E+D) (o
v (@B) = vilapt” O )
_ (Oétgv( () Z_:l(wl) ﬁt;v(m . .t;"l(iﬂ)(g))
—fu(n) —1}(1+1) —1)( ) —v(i+1) B
= ( tn ... tz—i—l ) wtn ) ti+1 ())

= v(a) + 0 (B),
(6.1)

which means v is a group homomorphism. Now suppose v(«) > v(/3). We will show

that v(a + 3) > (). Since v is a group homomorphism it follows that

v(ia+ B) =v(B) +v(l + a/f).

Since v(a/3) > 0, in order to prove the mentioned inequality above, it suffices to
show for z € K, v(x) > 0 implies v(1 + x) > 0.

Let 2 € K such that v(z) > 0, so v (x) is non-negative, which means v (x) > 0.
Since v = v, is a valuation v(™ (1 + z) > 0. If v™ > 0 then clearly v(1 + z) > 0,

if not, then

v D1+ ) = vy (L4 2)t" ") = 0,0 (TF2).

Clearly, if v,—; > 0 then v(1+z) > 0 and if v,_; = 0 then v 2 (1+2) = v,_s(1+2),
continuing this way one concludes the desired inequality. Thus v is really a valuation

on K. O

Lemma-Definition 6.2.1. Let K be an n-local field with respect to the rank n
discrete valuation v. Then the local ring O, = {a € K : v(a) > 0} is called the ring
of integers of K with the mazimal ideal M, = {a € K : v(a) > 0}.

Lemma 6.2.3. The residue field O | My is isomorphic to the last residue field K
of K.
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Proof. Consider the map

¢: 0k — Kp

a +— @, the residue of o in K .

It is clear that ¢ is a ring homomorphism. We will show that ker¢ = M,. Let

a € M,. So there exists an index 1 <7 < nsuch that
v(a) >0 and v™(a) = =t (a) =0,

thus

0 < v (a) = v(aty"" @15 = vy(a),

which means & € M,,, hence its residue in K;_; is zero, thus its residue in K is also
zero. Hence ¢(a) = 0, and « € ker ¢. Conversely, suppose that ¢(a) = 0. We know
that v(a) = (vW(a),--- ,v™(a)) > 0. Suppose that v?@(a) = --- = v™(a) = 0,
then

() = vi(ats””@ 157V @) = g (@),

Since the residue of o in K is zero, its residue in K is contained in the maximal
ideal M,,, thus v (a) > 0, thus v(a) > 0. Whence ker ¢ = M, which proves the

Lemma. ]

6.3 Ideal structure of Of

In what follows, we denote the the ring of integers O, of a fixed n-local field K with
respect to v by Ok and denote the the maximal ideal M, of the ring of integers by
M.

Definition 6.3.1. For 1 < I < n put P(i;, -+ ,i,) = Pg(i, -+ ,i,) = {a €
K : (09(a), -, o™ (a)) > (if,--- ,in)}. In particular P(0,---,0) = Ok and
(v () (@) = (i )} p ( ) K

n many
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Lemma 6.3.1. For any non-zero ideal J of Ok there exists (i, - ,i,) such that
J=P(ij,- ,ip).
It is clear that such (iy,- -+ ,i,) must be unique. The ring Ok is not Noetherian.

Proof. Let J be a non-zero ideal of O and put i, = min{v™(a) : a € J}. It is
clear that J C P(i,). Suppose that J # P(i,), and for all s € Z there exists a € J
with v™(a) = i, and v Y(a) < s. Let 3 € P(i,), then there exists a € J with
(v (a),v™(a)) < (v"=V(3),v™(3)). Thus by the Lemma 2.1.2 it follows that

B € J, which means J = P(i,), a contradiction. This means
in_1 = min{v™ V(a) : v™(a) =iy, a € J} > —c0.
There are two cases. Either J = P(i,,_1,1%,) or
in—o = min{v™ 2 (a) : v™(a) = in, V" V(a) = in_1,a € J} > —c0.
We define 4,,_; in this way. If J # P(i,--- ,i,) then
i1 = min{v®(a) : v (a) = ip, -, 0P (a) =iy, a € J} > —o0,

and it is clear that J = P(iy,--- ,i,). If n > 1 then P(i,1) C P(i + 1,1) which
means {P(i,1)};en is an ascending chain of ideals which is not stationary. Hence

Of is not Noetherian. ]

6.4 The group structure of K~
Definition 6.4.1. The multiplicative group
Uk = O
15 called the group of units with respect to v, and the multiplicative subgroup

Ve =1+ Mg
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of Uk s called the principal units with respect to v. For 1 <1 < n the multiplicative
groups

UK(ila"' )Zn) :1+P(Zl7 ain)a

for all (iy,- -+ ,i,) € Z"" are called the higher unit groups with respect to v.

Lemma 6.4.1. Consider the Teichmiiller representatives T' = {[a] : o € Ky} of the
last residue field Ky in K. Then

UK ~ T P VK7
and if (tn, - ,t1) is a local system of parameters of K, then

Proof. This follows by Parshin’s structure theorem (cf. Chapter 7), which reduces

the lemma to the determination of the invertible of elements of formal power series.

O

6.5 Extensions of n-local fields

Throughout this section K stands for an n-local field with the corresponding chain

of complete discrete valuation fields
K=K, K, 1, ,Ki, K
with the respecting valuations
V= Up, Up_1, " , 01

respectively.

Let L be a finite extension of K. In view of the Theorem 5.2.1, it follows that, L is a
complete discrete valuation field with respect to w = %v o Ny i, which extends the
valuation v on K. Therefore, the residue field of L, =: L,_; is an extension field of

the residue field K, _; of K. In view of the Lemma 5.1.3, degree of this extension,
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which is equal to the residue degree f(w|v) of the extension L/K, is finite. Therefore
L, is a complete discrete valuation field. Now, the following Proposition follows

by induction.

Proposition 6.5.1. If L is a finite extension of K, then there exists a canonical n-

local field structure on L with the corresponding chain of complete discrete valuation

fields
L= L'ern—la e 7L17L0

with the respective valuations
W = Wp, Wp—1 ", W1,

where

B 1
- f(Lalk)

Wy = UnONLn/K,“wn—l:”' , W1

f(LIK)

U1 ONL1/K1'

The following proposition is easy to prove and generalizes the result of Chapter

Proposition 6.5.2. Given a finite extension L/K. Let ty,--- ,t, and t},--- |t be
local system of parameters for the fields K and L respectively. Let w and v be the

valuations on L and K. Then the matriz

€1 0 0
) * €9 O
E(L|IK) == (w7 (t:))1<ij<n = )
* ok 0
% x ey

where e; = e;(LIK) = e(L;|K;), 1 < i < n, satisfies
[L: K] = f(L|K).det(E(L|K),

where f(L|K) = [Lo : Ko.
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Chapter 7

Parshin’s structure theorem for

n-local fields

Note that for a local field K, there are three cases:

1. char(K) = char(K) = 0,
2. char(K) = char(K) =p > 0,
3. char(K) =0, char(K) = p > 0.

The following theorem, due to Parshin, classifies n- local fields in terms of standard

fields.

7.1 Statement of Parshin’s classification theorem

Theorem 7.1.1. Let K be an n-local field with the corresponding chain of complete

discrete valuation fields
K=K, K, 1, -, K, K.
Then
1. If char(K,) = char(Ky) = p > 0, then K is isomorphic to
Fa((X31)) -+ ((Xa));
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2. If char(K,) = char(Ky) = 0, then K is isomorphic to

k((X1>> T ((Xn—l));

where k is a local field of characteristic 0.

3. If char(K;+1) = 0 and char(K,,) = p, then K is isomorphic to a finite
extension of a standard field of the form

X {X b (Xing2)) - - (X)),

moreover, there exists a finite extension of K which is standard.

7.2 Proof: Equal characteristic case

Suppose char(K) = p > 0. Then K is a complete discrete valuation of characteristic
p > 0. By the structure theorem of complete discrete valuation fields of characteristic
p, K is isomorphic to K;((X;)) = Ko((X1)). But Kj is a finite field. Thus K; =
F,((X1)), where ¢ = p/ for some positive integer f. Again using the structure
theorem we deduce that K = F,((X;))---((X,)). If characteristic of K; is zero,
then by the use of the structure theorem of complete discrete valuation fields of

equal characteristic, it follows that K = K;((X1)) -+ ((Xn-1))-

7.3 Proof: unequal characteristic case

Suppose that we are in the third situation. Without loss of generality we may
assume that the characteristic of K is equal to zero, and the characteristic of K,_;

is equal to p. Then by the previous section
Ky =Fe((X1)) -+ (X))

Let ko = ff(W(F,)) be the field of fractions of the Witt ring W (F,) over F,. We
know that ky is a complete discrete valuation field with the residue field F,. Now,

put

K= ko{{t1}} - {{tar}).
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where t1,--- ,t,_1,7 is a system of local parameters of K. Then the residue field of

K’ is equal to the field

Ro{{ti}} - {{Taa}} = Fo((X1)) - (X)) = Ko

Thus by Theorem 5.2.2, it follows that the field K’ embeds in K . Since the residue
degree

f=HEK/K)=[K: K|

is finite. By Proposition 5.2.1, we see that the extension K/K' is finite. Now,
by Epp’s theorem 5.3.1, there exists a finite extension k = ko(«) of kg, such that
e(kK/kK') = 1. Thus, we just have to show that the field kK, which is a finite

extension over K, is a standard field, Which follows from the lemma below.

Lemma 7.3.1. Let L be a finite extension of the standard field

K=k {Xi}} - {Xn 1 (Xong2)) - - (X))
Ife(L/K) =1, then L is standard.
Proof. Without loss of generality, we may assume that
L= K(a),

for some « in the algebraic closure of K. Observe that, the lemma follows at once,

if a is algebraic over the field

Koy = E{{X0 - {{ X H(Xong2)) - (K1)

Suppose that a is not algebraic over K,,_;. We know that the algebraic closure of K
is contained in the field of Puiseuz series over k in variables X1, -+, X,, Xpnao, -+, Xi
given by

FXE - X (X)) - (X)),

Let



where ¢, is an element of Puiseux series over K,_;. Since « is not algebraic over
K, _1, there exists ¢ € Q — Z, such that ¢, # 0. By multiplying a suitable power
of X,,, we may assume ¢, < 0. In this case, wee see that the valuation of a given
by the norm map is a rational number, which contradicts with the fact that the

ramification index e(L/K) of L/K is 1.
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Chapter 8

Topologies on the additive and the

multiplicative groups of an n-local

field

In this chapter, we shall define the topology on K and K*, where K is an n-local
field (which is natural from the point of view of K-theoretic local class field theory

of Kato and Parshin) inductively. These topologies are called sequential topologies.

8.1 Topology on K™

In order to do define a nice topology on K™ in the sense of K-theoretic class field
theory, the strategy will be the following. Let K be an n-local field with the corre-

sponding chain of complete discrete valuation fields
K=K, K, 1, ,K, Ky
with the corresponding valuations
Upy Up_1 """ , U1

respectively. By the definition, Ky is a finite field, say Ko = F, = F,s. Therefore

K, is either a finite extension of Q, or K is F,((X)). Thus there are two cases:

48



1. Ky =F,((X)): In this case, in view of the Lemma 6.1.1, K =F,((X;)) - - - ((X5))-
The topology of such fields will be defined inductively in the first subsection

of this section.

2. K;/Q, is a finite extension. In this case, we have two cases for the complete
discrete valuation field K5, which are K;{{X}} and K;((X)). In the latter
case the topology will be defined inductively in the first subsection, while in

the former case the topology will be defined in the second subsection.

For a standard field K of mixed characteristic, that is

K = Ko{{Xi}} - {{Xn} H(Ximp2)) - (X)),

combination of section 1 and section 2 constructs the topology on K.

Thus, we suppose in the next two subsections, that K is a field that has a
topological structure on it. For some technical reasons, we will always assume that
+ is a continuous mapping but X is sequentially continuous.

Let C be a subclass of the sequences of neighborhoods of zero in K, where a
sequence of neighborhoods (U;)iez of zero in K is contained in C if and only if

U; = K for all most all positive 1.

8.1.1 Topology on Laurent series K((X))

We construct a topology on K ((X)) in the following way: For (U;);cz € C put,

+o0
U{UZ} = { Z aiXi Ta; € Ul}
i>—00

It is clear that for (U;)iez, (Vi)iez € C we have (U; NV;)iez € C and Ugy,y NUpyy =

Uiv,nv;y, thus we may set the set
B = {U(Ui) : (Ui)ieZ € C}

as a base of open neighborhoods of 0 in K ((X)).
Let (™ be a sequence in K((X)) converging to zero with respect to the topology
defined above. Let k € Z be fixed and V be an open neighborhood of zero in K.
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Put U; = K if i # k and U, = V.Since u™ — 0, there exists a positive integer N
such that for m > N we have
u™ € Uy, = { Z a; X" :a; € Up},
i>>—00

(m

(m)

which means a\™ c V. Thus we conclude that for fixed integer k, the sequence a,,

tends to 0.
Now, we assume that the topology on K is Ty. Suppose that the set {i : al # 0} is
unbounded below. In this case, without loss of generality we may assume al”) # 0.
Since K is a Ty space, for all n € N, there exists an open neighborhood V_,, of 0
such that o) ¢ V_,. Put,

V if i <0,

Ui:
K if 2 > 0.

Then clearly, for any n € N, u(™ ¢ Uy, since a(,"?z ¢ U_,, which contradicts with the
fact that u(™ is converging to zero. Thus {i : a # 0} is bounded below.

Conversely, let

[e.9]

u™ = Z al(-n)Xi

i>—00
(n)

i

be a sequence in K((X)). Suppose that for a fixed integer ¢, the sequence a
tends to 0 as n goes to infinity, and there exists m € Z such that for all n € N,
u™ € XmK[[X]]. Let (U;)iez € C. Then by the definition of C, there exists M € N
such that for k£ > M we have Uy = K. Since a;(n) tends to 0 as n goes to infinity,
for m < ¢ < M, there exists N; such that whenever n > N; then agn) C U;. Let

N = max{N,}, then for n > N we have aﬁ”) € Uy,, which means that the sequence

a§”) tends to zero in K ((X)) with respect to the topology defined above.

Thus we have the following:
Lemma 8.1.1. A sequence u™ = Y2 az(n)Xi in K((X)) converges to zero if
and only if there exists an integer m such that u™ € X™K[[X]] for all n and for
(n)

%

each integer i, the sequence a

on K.

15 converging to O € K with respect to the topology
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Recall the following definition from general point-set topology.
Definition 8.1.1. Let 11 and T, be two topological spaces. A function
T — 13

is said to be sequentially continuous, if for every sequence (T,)nen in 11 converging

to x the corresponding sequence (f(xy,))nen in To converges to f(x).

Proposition 8.1.1. Multiplication in the topology defined on K((X)) is a sequen-

tially continuous map.

Proof. Let av,, B, be two sequences in K((X))((Y)) converging to 0. We will show

that the product sequence v, (3, also converges to 0. Let

Qp = Z fz(n)Xla

(8.1)

Since «a,, and [, are converging to zero, by the previous lemma, we see that for a

)

fixed 7, the sequences fi(n) and gi(" converge to zero and there exists m € Z such

that a,, £, is contained in X" K|[[X]], for all n. Let
By ==Y < 3 flgn)gl(n)>Xi'
i>—00 k=i
It is clear 6,, € X*"K[[X]]. So, in order to show that 6,, tends to zero, we just have
to show that, for a fixed 7, the sequence

> Mg

k+l=i

converges to zero. Since K is sequentially compact we see that, for fixed [, k the
sequence

flgn)gl(n)
converges to zero. Since there is only finitely many k,! such that £+ [ = 7 and
f,gn) £ 0 and gl(n) # 0. Thus the sum of them converges to zero. Hence we have the

Proposition. [
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Remark 8.1.1. Note that, the multiplication x on K((X))((Y)) is not a continuous

binary operation.

Lemma 8.1.2. Let (U;)iez, € C, then the topological closure Uy, of the set Uy, is
equal to
o0
Ug, =1 Z ;X" a; € U;}.
i>—o0

Proof. First we will show that the set Uy, is closed. In order to do this, we will
show that its complement is open. Let f = >°% fiX® be a Laurent series in
(Ug,)¢. This means there exists an integer k such that fi ¢ Uj. So there exists an
open neighborhood V' of zero in K such that the open set fr+V around f does not
intersect with Uy. So, the open set f + Uy, around f does not intersect with UUH
which means the complement of U, is open, thus U, is closed.

Let D be a closed set containing Up,. Since D is closed set containing Uy, it contains

all the limit points of Uy,. Let f = >

az(n)

a; X" € Ug,. So for each i there exists
(n)

i

>>—00
€ U; converging to a;. Then clearly, for a fixed ¢ a; ' converges to zero in K
and f — f™ € X™K[[X]] for some integer m. Thus by the previous lemma, f — f(™
converges to zero, which means f(™ tends to f. But this means any element in Ug,

is a limit point of the set Uy,, thus we have the lemma. l

Proposition 8.1.2. Let K be a Ty topological field. Then the topology on K((X))((Y))

defined as above is non-locally compact.

Proof. Suppose K((X))((Y)) is locally compact. Then there exists an open neigh-
borhood of 0 in K ((X))((Y")) whose closure is compact. Let U be an open neighbor-
hood of 0 in K ((X))((Y)) with compact closure. Without loss of generality, we may
assume that U is of the form U x,, where (UX) € C(K((X))). By the Lemma 8.1.2
we have U = Ugxy- Let N € N be such that for all k> N the set U¥ = K((X)).
The existence of such N follows from the definition of C(K((X))). Now consider

the sequence

>>—00
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where fi(n) = X", Since for any n € N and m € Z the sequence f/" is not contained
in X™K[[X]] by the Lemma 8.1.1, f is not convergent. But this means that u(™
has no convergent subsequence, which contradicts with the fact that U is compact.

Thus K((X))((Y)) is not locally compact.

8.1.2 Topology on Laurent series K{{X}}

In this section, we further assume that K is a complete discrete valuation field with
respect to the valuation v, with finite residue field K. Moreover, we assume that the
topological structure on K is define via the valuation v. Therefore, in this section
K has a topological field structure.(See the introductory discussion in the beginning
of this chapter.)

Note that K{{X}} is 2-local field with the residue field K{{X}}, which is equal
to K((t)). Consider the subclass C(K) of the sequences of neighborhoods of zero in
K, where a sequence of neighborhoods (U;);ez of zero in K is contained in C if and

only if

1. The intersection of U; contains a non-zero ideal Pg(c).

2. For any ideal Pg(l), there exists s € Z such that Pg(l) C U;.

For such a sequence U;, put

U{Ul} = { Z CLZ'Xi Ta; € UZ}

i>>—00

Then the collection of all such sets Uyy,, forms a base of neighborhoods of 0 in
K{{X}}. The topology on K{{X}} introduced in this way satisfies the properties

listed in the previous section, where the proofs are almost identical.

8.1.3 Topology on a general n-local field

Let K an n-local field. We know by Parshin classification theorem that, K is a finite

extension of a standard n-local field

Ky = kE{Xa}} - {Xan  H(Xmy2)) - - (X)),
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where k is a 1-local field. Introduce a topology on K to be the finite dimensional

K,,-vector space topology on K. This is equivalent to say that the topology on K

Ky)

is homeomorphic to the product topology on K,LK: , induced from K,,, which is

constructed inductively in the previous two subsections.

8.1.4 Properties of the sequential topology on K+

In this subsection, we shall list the basic properties of the sequential topology intro-

duced on the additive group K of the n-local field K.
1. (K,+,0) is a complete and separated topological group.

2. If n > 1, then every base of neighborhoods of the identity element 0 is un-

countable.

3. If n > 1, then the multiplication defined on K is sequentially continuous, but

not continuous.
4. For each ¢ € K — {0}, the map

m: K — K

a = ca,

for every a € K, is a homeomorphism.

8.2 Topology on K~

As usual, we let K to be an n-local field with corresponding chain of complete
discrete valuation fields

K:Kn7 7K17K0

with respective valuations v = v,,v,_1,--- ,v;. Furthermore, let (¢,,---,%;) be a

local system of parameters.
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8.2.1 char(K,-1)=0p
In this case, define the topology on K* via the isomorphism
K*~7t®- - ®Zt, ® Uk
as follows. The topology on the piece U is given by the isomorphism
Uk ~T & Vg,

where the group of principal units Vi has the induced topology from the sequential
topology on K, and T has the discrete topology. Now, the topology on K is defined
to be the product topology on

where the free abelian part

Lty @ -+ - D Ly,

has the discrete topology and Uy has the topology just defined above.

8.2.2 char(K)="---=char(Ky4+1) =0, char(K,,) =p
In this case, we will introduce the topology on K* again by the isomorphism
K*~7t&-- & Zt, ® Uk,
where the free abelian part
It @ --- B Ly,

has the discrete topology, and Uk has the weakest topology which makes the pro-
jection map

proj : Ux — Uk, ,,

continuous. That is a set U C Uk is open if and only if proj(U) is open in Uk, ,,.

Note that, this projection map sits in the exact sequence

1—>1—|—PK(1,O,,0)—>UK—>UKm+1—>1
N——

n—m-—2
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8.2.3 Properties of the sequential topology on K~

In this subsection, we shall list the basic properties of the sequential topology intro-

duced on the multiplicative group K™ of the n-local field K.
1. K* is a complete topological space.
2. Multiplication on K™ is sequentially continuous, but not continuous for n > 2.

3. If n < 2 then K* is a topological group with a countable base of open sub-

groups.

8.3 Final remark

In this chapter, we have seen that the topologies introduced on K+ and K* are not
locally compact. Thus there is no Haar measure on the n-local field K nor on K*.
It is an important open problem to develop a theory of "abstract harmonic analysis"

on n-local fields (that is, an alternative Tate’s thesis for n-local fields).
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Chapter 9

Kato-Zhukov ramification theory of

n-local fields

In this chapter we shall review the higher ramification theory of an n-local field K.

In the case n = 1, that is K is a finite extension of the basic fields K = F,((X))
or Q,, there exists a beautiful theory of ramifications (c.f. [9]). Namely, for a finite
Galois extension L/K with corresponding Galois group G, there exists a nice lower
filtration (Gi)icr._, of G, which behaves well with sub-extensions of L/K. Also,
there exists an upper filtration (Gi)z‘eRZ,l which is defined by a piece-wise linear
continuous function ¢,k defined on R>_; called the Hasse-Herbrand function of
the extension L/K and the lower filtration of G, which behaves well with the sub-
extensions of L/K. The most important property of lower and upper ramification
filtration is that the local Artin reciprocity map which is a continuous bijection
from G = Gal(L/K) to K* /Ny k(L*) defines a bijective correspondence between
upper filtration of G and the higher unit groups U‘(K) of K*. (Note that both
filtration (G*)ier,_, and (U*(K))icr,_, form a basis of neighborhoods in G and K*
respectively.)

The higher ramification theory of 2-local fields started with the investigation of
V. G. Lomadze in [6] and improved by K. Kato, T. Saito in [5] and by I. Zhukov
in [11]. The higher ramification theory of a general n-local field is still fragmentary.

The task of this chapter is to summarize the theory for a general n-local field.
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9.1 Integration on totally ordered Q-vector spaces

Definition 9.1.1. A totally ordered abelian group I' with a Q action is called a
totally ordered vector space over Q if the order structure of I' is compatible with the

Q action. That is, for all a, 3 € T,
a<f=qa<qf Vg Q.

Given an ordered set I'. For @ € I' we denote the possibly the empty set
{eT: B <a}by (—o00,a). The set (a, 00) is defined in the same way.

Given a step function g : I' — Q, the support supp(g) of g is defined to be the set
supp(g) = {a € T': g(a) # 0}
Definition 9.1.2. Let I' be a totally ordered Q-vector space. A function
g:I'—=Q
18 called a step function, if there exists an increasing finite sequence

ap<ap <<

— n

of elements in T', such that the restricted functions g|;, , where I; = (o1, ;) for

i=1,---,n; and gl(—sc,a0): Gl(anco) are all constant functions.

Let g : I' — Q be a step function. For «a, 3 € T', such that a < 3, we define the
definite integral ff g(z)dx € T by

/jg(m)dw = Zz;: cila — ay_q),

where oy = «,---,a, = [ € I' is any increasing finite sequence, such that the
restricted function to the interval (a;_1, ;) is constant with the value ¢; € Q for

i=1,--,n.

Lemma 9.1.1. If g : ' — Q is any step function, and if o, B € ', such that o < 3,

then there erists a finite increasing sequence g =< a1, -+ < ap, = 3 in I' such
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that the function gl(a, .. @ a constant function for i = 1,--- ,n. Moreover, the
definite integral ffg(:v)d:v € I' along a to (B is independent of the choice of the finite

increasing sequence ag = a < -+ < ap, = (. If 0 € I with 3 < 0, then

/jg(m)dm = /jg(a:)d:r + /: g(x)dx.

For «, 3 € T such that o < 3, the definite integral fﬁa g(x)dx € T is defined by

/ﬁag(x)da: _ /jg(x)dx.

Let g : I' — Q be a step function. Suppose that supp(g) is bounded from above,
that is, there exists 3 € I', such that for all @ € supp(g) we have o < 3. In this

case, for o € I', we can define the improper integral f;o g(z)d(z) along the interval

[ s = [t

where 3 is an upper bound for the support of g. Similarly, for a step function

(v, 00) as follows:

g : I' — Q whose support is bounded below, for a € I', the improper integral

J°_ g(x)d(x) is defined in the obvious way.

Definition 9.1.3. A function h : I' — T is said to be a quasi-linear (piecewise
linear), if there exists a finite increasing sequence oy <,--- < o, in L', such that the
restricted function h; = h|(a,_,.a,) has the form

hi(a) = g+ 1,
for every a € (a1, ), where g;,r; € Q.
Remark 9.1.1. Inverse of a bijective quasi-linear map s also quasi-linear.

Let S denote the Q-linear space of all Q-valued step functions on I'. Let L denote
the Q-linear space of all quasi-linear functions on I'. For a fixed « € T, consider the
mapping

I,:S— L

by



for every § € I'. Note that, the image, I,(g) : ' — [ is indeed a quasi-linear
map. In fact, if g is a step function with the corresponding finite increasing chain
of elements

apg<ap <o <y

in ', where g has a constant value ¢; on the interval (o;_1, «;). Then
[1,(0)] = ¢.0 + r;
for every 0 € (a;_1, ), where g;,7; € Q such that

q; = g(aiflxaifl; Oé)a

Qi1
r; = / g(x)dx,

which means the image [/,,] is really a quasi-linear map. Now, consider the composite

and

map

S 2o LS L) L,

where Lg is the subspace of all constant functions. We claim that the kernel Sy of
this map is equal the subspace of S consisting of all functions I' — Q with finite
support. Let g € S be a step function, such that g(a;) = ¢; for ¢y < -+ < @, in
I, and g(a) = 0 if a # «a; for i = 1,--- ,n. Then clearly faﬂg(a:)dx = 0, for every
a, 3 € I'. Conversely, suppose g € S be such that for all 3 € T, faﬂg(x)dx =q,
for some ¢ € Q, and suppose that support of ¢ is not finite. But, then there exist
ag,an € I' with a3 < ay such that (g, as) has infinitely many elements, and the

value of g on (o, ) is constant, which is non-zero, say q. Then

1(9)) (1) — [La(g)](02) = / " g)dz - / " g(@)dz

which means the kernel is equal to the set of those elements whose supports are

finite. To sum up, we have the following lemma.
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Lemma 9.1.2. The linear map
I,:S— L

given by

induces an isomorphism of Q-linear spaces between the spaces S/Sy and L/ Ly.

Lemma 9.1.3. Let g : I' — Q be a step function, such that g(3) >0, for all € .

Then the quasi-linear map 1,(g) € L is a bijection.

In the light of the lemma 9.1.2, from now on, by a Q-valued step function on
I', we mean an equivalence class of step functions with respect to the equivalence

relation defined modulo Sj.
Remark 9.1.2. (i) Since the induced linear map, again denoted by
Ia . S/SO — L/Lo,

which s defined by
B
L(6)(8) = [ gla)dz+ Lo

for every g € S/Sy is bijective, it has a linear inverse D,
D, :L/Ly— S/So,
which we call it the derivative map.
(ii)) The Lemma 9.1.8 also applies in this new formulation of the mapping 1.

(iii) The formal properties of the usual integration and derivation theory remains

valid. Namely, the chain rule, change of variables etc. formulas applies to 1,

and D,,.
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9.2 Upper and lower ramification groups

(Abstract theory)

In order to develop higher ramification theory of n-local fields we have to general-
ize the Hasse-Herbrand function and introduce higher ramification groups in that
general context.

In this section we fix a totally ordered Q-vector space I', and a finite group G.

Definition 9.2.1. An upper (resp. lower) filtration on G by I' is defined to be a
family of normal subgroups (G*)aer (resp. (Ga)acr) indexzed by T' subject to the

following conditions: Let o, 3 € T,
1. G* C GP (resp. G, C Gg) whenever a < 3;
2. G =G (resp. G =Gy);

3. For each 1# 0 € G, the set {a € ' : 0 € G*} (resp. {a €10 € G*}) has a

mazimal element with respect the total ordering on T'.
Lemma 9.2.1. 1. Let {Ga}aer be a lower filtration of G defined by T'. Define
pa=¢:I' =T

defined by ,
#(9) = [ [Galda

for every B € I'. Then ¢ s a bijective quasi-linear function.

2. The inverse function
bg=v =9 1:T =T,
which is a bijective quasi-linear map by Remark 9.1.1, is explicitly defined by
g 1
w(8) = [ l6°| da.
0
for every B € 1.
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3. Let (Go)aer be a lower filtration on G by I'. Define
G = Gym1(a),
for each o € T'. This defines an upper filtration of G by I.
4. Let (G*)aer be an upper filtration on G by I'. Define
G, = Gw‘l(a)7
for each o € I'. This defines a lower filtration of G by I

Proof. The first part follows by Lemma 9.1.3. For the second part observe that

»(B) »(B)
/0 GO da :/O G| dar
g 1 7
==/\@r¢@m
0

8
~ [ 16 Gulda
0

B8
:/da
0

- 8.

The first equality comes from the very definition of upper filtration. As for the
second equality we use the change of variables. Namely, we substitute o~ !(a) by a.

The third equality follows from the Remark 9.1.2. [
Definition 9.2.2. Let (Gy)acr be a lower filtration on G by I'. The mapping
p:I'—=T

defined by
B
= G,ld
#(9) = [ |Galda

for every 3 € T', and the inverse map

p=¢ T T,
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defined by
B
w(o) = [ 167 da,
0
for every B € ' are called the Hasse-Herbrand functions with respect to the lower

filtration (Ga)aer of G by T.

Let (Ga)aer be a lower filtration on G by I', and let H be a subgroup of G.

Introduce:
(i) an induced lower filtration on H by I as
H,=HNG,,
for every a € T';
(ii) an induced upper filtration on H by I as
(G/H)* = (G*H)/H,

for every a € I', where G“ is defined by the lower filtration and the Hasse-
Herbrand function ¥ : ' — T.

Proposition 9.2.1. Let H be a normal subgroup of G. Let g, Vg, respectively oy,
Yu and pa/u, Ya/m be the corresponding Hasse-Herbrand functions on I'. Then the

following transitivity laws hold:
(i) vc = pa/u ° on;

(ii) Y = Yo YG/H-

We know that
H#1®) = H, =G, NH,

which means
H® = HwH(a) = GwH(a) NH

= @GqeeWn(@) g

— Gre/perr@u(@) N g

— G‘PG/H(O‘) N H.
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9.3 Kato-Swan conductor (Abstract theory)

We keep the notation and assumptions of the previous section.

Let (G4) be a lower filtration on G by I', and let G* be the associated upper
filtration of G by I' defined by the Hasse-Herbrand function ¢¢ : I' — I'. In what
follows, we fix a field F', and impose the following condition on the lower filtration
of G by I:

|G| 1 char(F)

for every a € T. (For example, if F = Q,, F = @p, or ' = C this condition is
automatically satisfied.)

Let F' be a finite dimensional F-vector space, and let
p:G— Autp(V)

be a group homomorphism. That is, p is a representation of G in the vector space
V over F. Then V can be viewed as a F'G-module of finite type via the arrow p.

Recall that the G-invariant subspace of V' is defined by
VO =Ly eV :p)(h)=h, Yh € G},
for every a € I'.

Definition 9.3.1. The Kato-Swan conductor of the representation p : G — Autp(V),
with respect to the lower filtration (Gg)aer on G by T, is defined to be the value

ksw(V) € T given by the integral
ksw(V) = / G| dimp(V/VE)da
0

Note that, for a representation p : G — Autpr(V'), the Kato-Swan conductor can
be reformulated as
ksw(V) = /OO dimpz(V/V9)da,
0
by changing the variables.
Now, in the remaining of this section, we fix a lower filtration (G4 )aer on G by
I'. Basic properties of the Kato-Swan conductor, with respect to this fixed filtration,

of a given representation are as follows:
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Lemma 9.3.1. Consider the exact sequence of F'G-modules of finite type
0>V -V ->V"—0.

Then
ksw(V) = ksw(V') + ksw(V").

Lemma 9.3.2. Let H be a subgroup of G. Let
€ H — Autp(W)

be a representation of H in a finite dimensional F-vector space W . For the induced

module V = Ind$ (W), the induced representation
Indg(€) : G — Autp(V),
has the Kato-Swan conductor
kswe(V) = (G H)kswy (W) + dimp(V)kswe(F(G/H)),

where kswa (V') is defined with respect to the fized filtration on G by T, and kswg (W)

18 defined with respect to the induced lower filtration on H by I'.

In the previous lemma, F(G/H) denotes the F-vector space with natural basis
{gH : g € R(G/H)}, where R(G/H) denotes a complete set of coset representatives
for H in GG. Note that G acts on the natural basis of F'(G/H) in the obvious way.

Therefore, there exists a representation (regular representation)
r:G— Autp(F(G/H)).

So the Kato-Swan conductor kswg(F(G/H)) with respect to the fixed filtration on
G by I, is defined.

Lemma 9.3.3. Let H be a normal subgroup of G, and let 7 : G/H — Autp(W)
be a representation of G/H in a finite dimensional F-vector space W. Then there

exists a natural representation T of G in W over F defined by the composition
TGS G/H D Autp(W),
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which has Kato-Swan conductor
kswa(W) = kswg/u(W),

where the Kato-Swan conductor kswa(W) is defined with respect to the fized filtra-
tion on G by I, while the Kato-Swan conductor ksweg u(W) is defined with respect
to the lower filtration on G/H by T, induced by the fized lower filtration on G.

9.4 Case of n-local fields

In this section we fix an n-local field K with respect to the rank n discrete valuation
v = (Up, - ,v1), and a finite Galois extension L/K, with corresponding Galois
group Gal(L/K) = G. Recall that, there exists a natural n-local field structure on

L, given by the valuation w = (wy, -+ ,w;), where

1
W; = —V; © NL/Ka

fi

fori=1,---,n (cf. Proposition 6.5.1). We further assume that
(i) The integral closure W of Ok in L is a valuation ring;
(ii) W = Ok]a| for some a € W.

Such extensions are called well-ramified extensions.

In what follws, we shall introduce a lower filtration on G = Gal(L/K) by I' = Q™,
which is a totally ordered Q-vector space with respect to the lexicographic ordering
in the sense of Zhukov, as follows. For a € T', let GG, be the normal subgroup of G
defined by

Go={0€G:w(o(a)a™ —1)>al,

where W = Of|a]. Now, we claim that, the collection (G )aer is a lower filtration on
G by T'. Normality of G,, in G follows easily as the extension L/K is a well-ramified

extension. For a, 8 € T, it is clear that

Gq C G,
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whenever a > 3. Moreover the subgroup Gy = G as w(o(a)) = w(a). Thus it

remains to prove the following lemma:

Lemma 9.4.1. Let 0 € G —{idL}. Then the mazimal element 11, of the set
{aeT:0eG,}
18
e = w(o(a)a™t —1).
Proof. Clearly follows by the definition. O]

Therefore, the collection (Gy)aer is a lower filtration on G by I'. Now, following
the lines of the abstract theory, we can define the corresponding Hasse-Herbrand
functions ¢ and ¢ on I', and the associated upper filtration on G by I', defined
by the lower filtration and the Hasse-Herbrand function 1¢.

In this setting the Kato-Swan conductor has the following form. Let
p:G— Autp(V)

be a Galois representation in a finite dimensional F-vector space V. Then the

corresponding Kato-Swan conductor ksweg(V) with respect to the lower filtration

(Ga)acgr on G by Q" is defined by
kswe(V) = / (G| dim g (V/VE)da,
0

where 0 is the zero vector in Q.

9.5 Hasse-Arf theorem for n-local fields

In this section we shall state the generalization of the celebrated theorem of H.
Hasse and C. Arf on 1-local fields to n-local fields. We shall follow the notation of
the previous two sections. Furthermore, we shall assume that the extension L/K is
an abelian extension. That is, the corresponding Galois group G = Gal(L/K) is an

abelian group.
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Theorem 9.5.1 (Hasse-Arf generalized by K. Kato and T. Saito). Let
p:G— Autp(V)

be any Galois representation in a finite dimensional F-vector space V. Then the
Kato-Swan conductor kswg(V') defined with respect to the lower filtration (Gy)acgr

introduced in the previous section satisfies
kswa(V) € Z".

Proof. For the proof in two dimensional case (cf([5])). For a sketch of proof in the
general case (cf.[11]). O

9.6 Final remark

The theory of Kato-Swan conductors is the generalization of the theory of Artin
conductors to n-local fields. Artin conductors are important in the analysis of L-
functions attached to Galois representations of global fields. It is conjecturally
expected that, Kato-Swan conductors will play an important role in the analysis
of L-functions attached to the Galois representations of higher dimensional global
fields; that is, representations of the fundamental group of schemes. However, this
general setting seems to be much richer than the classical theory, as the recent
research predicts that, there are finer and more general ramification invariants, gen-

eralizing Kato-Zhukov theory.
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