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Abstract 
 

 

Time-stamped location information is regarded as spatio-temporal data due to its time 
and space dimensions and, by its nature, is highly vulnerable to misuse. Privacy issues 
related to collection, use and distribution of individuals’ location information are the main 
obstacles impeding knowledge discovery in spatio-temporal data. Suppressing identifiers 
from the data does not suffice since movement trajectories can easily be linked to 
individuals using publicly available information such as home or work addresses. Yet 
another solution could be employing existing privacy preserving data mining techniques. 
However these techniques are not suitable since time-stamped location observations of an 
object are not plain, independent attributes of this object. Therefore, new privacy 
preserving data mining techniques are required to handle spatio-temporal data specifically. 

In this thesis, we propose a privacy preserving data mining technique and two 
preprocessing steps for data mining related to privacy preservation in spatio-temporal 
datasets: (1) Distributed clustering, (2) Centralized anonymization and (3) Distributed 
anonymization. We also provide security and efficiency analysis of our algorithms which 
shows that under reasonable conditions, achieving privacy preservation with minimal 
sensitive information leakage is possible for data mining purposes. 



v 

DAĞITIK ZAMAN-MEKAN VERİLERİNDE GİZLİLİĞİ KORUYAN VERİ 
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Özet 
 
 
 
 

Zaman belirteçli konum bilgisi, doğası gereği art niyetli kullanımlara çok açık. 
Kişilerin konum bilgilerinin toplanması, kullanımı ve dağıtılması ile ilgili gizlilik kaygıları 
zaman-mekan bilgisi içeren verilerde veri madenciliği teknikleri uygulanmasının önündeki 
tek engel. Kimlik belirteçlerinin veriden temizlenmesi kişisel gizliliğin sağlanmasında tek 
başında yeterli olamıyor çünkü umuma açık ev ve işyeri adresleri kullanılarak kişilerin 
hareket yörüngeleri ile kimliklerinin eşlenmesi mümkün. Varolan gizliliği koruyan veri 
madenciliği teknikleri de yeterli olmuyor çünkü bu tekniklerin zaman-mekan bilgisi içeren 
verilere uygulanabilmesi için ardışık konum gözlemlerinin kişilerin birbirinden bağımsız 
nitelikleri olduğunu varsaymak gerekir. Ancak bu varsayım hatalı olacaktır. Bu nedenle 
konum-zaman veritabanlarında veri madenciliğini mümkün kılmak, bu tip veriler için özel 
olarak tasarlanmış algoritmalar gerektirir. 

Bu tezde zaman-mekan nitelikleri olan veriler için bir gizliliği koruyan veri 
madenciliği tekniği ve iki ön-işleme tekniği önerilmiştir: (1) Dağıtık kümeleme, (2) 
Merkezi anonimleştirme ve (3) Dağıtık anonimleştirme. Önerilen tekniklerin güvenlik ve 
performans analizleri de yapılmış ve sonuçta mantıklı varsayımlar altında minimum 
mahrem bilgi kaybıyla veri madenciliğinin mümkün olduğu gözlemlenmiştir. 
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1 INTRODUCTION 
 
 

Advances in wireless technologies gave rise to various wireless services such as 

mobile communication, vehicle telematics and satellite navigation. Today personal digital 

assistants (PDA), mobile phones and various other devices equipped with Global 

Positioning System (GPS), Global System for Mobile Communications (GSM), Bluetooth 

and finally Radio Frequency Identification (RFID) are a part of our daily life. Huge 

amounts of time-stamped location data, regarded as spatio-temporal data due to its time and 

space attributes, are being collected by wireless service providers and such data contains 

valuable information that needs to be discovered. 

 

Researchers designed powerful data mining techniques specifically for handling 

spatio-temporal data. However, when the data miner and the data holder are different 

entities or the data is distributed among various data holders, privacy concerns become a 

determining factor. Collected location information is so precise that, even after removing 

personal identifiers, binding movement trajectories to individuals is easily achievable using 

publicly available information such as home or work addresses. Therefore the data can not 

be shared with the data miner as it is. Sometimes even data mining results themselves 

threaten privacy as described in [1]. 

 

Privacy issues are not restricted to spatio-temporal datasets and have been studied 

extensively in the context of data mining. Yet, existing privacy preserving data mining 

methods do not apply to spatio-temporal data because location observations are not plain, 

independent attributes of an object but exhibit time-series features. Attack scenarios and 

privacy requirements of individuals vary significantly over spatio-temporal data as well. In 

this thesis, we propose three methods for enhancing privacy in spatio-temporal knowledge 

discovery: (1) Distributed clustering through Secure Multi-Party Computation (SMC), (2) 

Centralized anonymization and (3) Distributed anonymization. (1) and (3) apply to 

horizontally partitioned spatio-temporal datasets where each partition contains trajectories 

of distinct moving objects. 
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Our clustering method is based on building the dissimilarity matrix of object 

trajectories, distributed among data holders, through a series of SMC-based comparisons. A 

third party that is trusted only not to collude with the data holders is involved in the 

protocol. We show that unless the third party has background information on the domain of 

the location observations, our secure trajectory comparison protocol does not leak private 

information. 

 

We proposed a privacy preserving distributed clustering technique that was applied 

specifically to spatio-temporal data. To start with contributions of this work are as follows. 

Previous work on privacy preserving clustering proposes methods for partitioning 

algorithms while any clustering algorithm except k-means can be applied by the third party 

in our protocol, once the dissimilarity matrix is built. This technique also does not cause 

any loss of accuracy in clustering. Regarding spatio-temporal data mining, our work is the 

first to propose privacy preserving data mining solutions for distributed spatio-temporal 

data. Finally, our protocol applies to most prominent trajectory functions and therefore has 

diverse application areas in time-series data such as stock market analysis and disease 

diagnosis, where privacy would certainly be a concern. 

 

At the end of our distributed clustering protocol, the third party publishes the 

clustering results to the data miner as sets of objects. However the data miner needs some 

extra information to interpret these results. In order to solve this problem, we also 

concentrate on location anonymization techniques that ensure time-stamped location 

observations of any trajectory are indistinguishable from at least (k-1) other observations 

with the same time-stamp, where k is a parameter of anonymity. 

 

We first propose a centralized anonymization method, where every data holder 

locally anonymizes its data. Our method improves the work in [2] by blocking certain 

attack scenarios explained in [3] and extending the process from location anonymity in 

Location Based Services (LBS) to location anonymity in spatio-temporal datasets, 

especially for data mining purposes. The method employs the quad-tree structure described 

in [4] to produce an anonymization scheme in a top-down fashion. 
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Yet, we also provide a distributed anonymization method because in case of 

horizontally partitioned spatio-temporal datasets, data holders need to locally anonymize 

their data according to the centralized method and aggregate the anonymized datasets, 

which actually is the source of attacks in [3]. Depending on the number of partitions, the 

distributed anonymization method employs either “Secure Sum” or “Secure Greater Than” 

protocols, which are heavily studied in the SMC literature. Third parties are not required 

for these protocols. We prove that our distributed anonymization technique yields the same 

anonymization scheme as the centralized anonymization applied on the aggregation of the 

partitions, which certainly is a very attractive property from the data miner’s viewpoint. 

However, for the sake of increased privacy, data holders would volunteer to bear the costs 

of our protocol as well since aggregation of locally anonymized datasets is vulnerable 

against attacks. 

 

Rest of the thesis is organized as follows: Chapter 2 focuses on necessary background 

information and previous work in the area. Chapter 3 is dedicated to our privacy preserving 

distributed clustering technique based on SMC. We provide definitions of anonymity and 

our location anonymization method in Chapter 4. In Chapter 5, this local anonymization 

method is extended to distributed datasets. Experimental results on communication and 

computation costs of our distributed clustering protocol and information content of the 

anonymization methods are presented in Chapter 6. Finally, we conclude in Chapter 7 and 

designate future research directions. 
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2 BACKGROUND AND RELATED WORK 
 
 

Our work lies in the intersection of various research areas related to privacy issues 

and spatio-temporal data mining. We cover the related work on privacy preserving data 

mining in Section 2.1 and anonymization techniques for protecting individual privacy in 

Section 2.2. Then we provide background information on spatio-temporal datasets and 

trajectory comparison functions in Section 2.3 and present previous work on spatio-

temporal clustering. Finally, related work on privacy protection methods in the context of 

spatio-temporal data is presented in Section 2.4. 

 

2.1 Privacy Preserving Data Mining 
 

Privacy preserving data mining has become a popular research area in the past five 

years. The aim of privacy preserving data mining is ensuring individual privacy while 

maintaining the efficacy of data mining techniques. Agrawal and Srikant initiated the 

research on privacy preserving data mining with their seminal paper on constructing 

classification models while preserving privacy [6].  

 

Mainly two approaches are employed to preserve privacy of individuals in the 

process of data mining: data sanitization and Secure Multi-Party Computation (SMC). 

Among these, sanitization methods achieve privacy by removing sensitive information 

from the database. Association rule hiding method proposed by Saygin et al. in [7] is a 

typical example, where sensitive association rules are hidden by introducing “unknown” 

values to the dataset. Methods based on SMC rely on cryptographic protocols with multiple 

participants. Therefore, these methods apply only to vertically or horizontally partitioned 

datasets and have high communication and computation costs. A dataset is said to be 

horizontally partitioned if each partition contains information of different entities with the 

same schema. Vertical partitioning, on the other hand, occurs if different attributes of an 

object are distributed among data holder parties. SMC-based methods are very significant 

for two reasons: First, the level of privacy provided can be measured by the underlying 

cryptographic tool and the amount of information revealed to each participant. Second, data 
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mining results of SMC-based protocol are highly accurate while sanitization techniques 

usually degrade accuracy. Most data mining techniques, i.e. association rule mining and 

classification, are well studied by followers of both approaches. [6] and [7] are data 

sanitization techniques; [8], [9] and [10] are based on secure multi-party computation 

techniques. 

 

Privacy preserving clustering is not studied as intensively as other data mining 

techniques. In [11] and [12], Oliveira and Zaïane focus on different transformation 

techniques that enable the data owner to share the mining data with another party who will 

cluster it. In [13], they propose methods based on “dimensionality reduction and object 

similarity based representation” for clustering centralized data. Methods in [13] are also 

applicable to vertically partitioned data, in which case each partition is transformed by its 

owner and joined by one of the involved parties who will construct a dissimilarity matrix to 

be input to hierarchical clustering algorithms. [14] and [15] propose model-based solutions 

for the privacy preserving clustering problem. Data holder parties build local models of 

their data which is subject to privacy constraints. Then a third party builds a global model 

from these local models and clusters the data generated by this global model. All of these 

works follow the sanitization approach and therefore trade-off accuracy versus privacy. 

Except [14], none of them address privacy preserving clustering on horizontally partitioned 

data. 

 

Clifton and Vaidya propose a SMC version of k-means algorithm on vertically 

partitioned data in [16]. More recent work in [17] by Jha et al. proposes a privacy 

preserving, distributed k-means protocol on horizontally partitioned data. Inan et al. 

propose another privacy preserving clustering algorithm over horizontally partitioned data 

that can handle numeric, categorical and alphanumeric attributes [18]. In this thesis, we 

propose a method that allows clustering horizontally partitioned datasets with any 

clustering method but k-means, which is well known for its tendency towards identifying 

spherical clusters. On the other hand, clustering results of density-based and hierarchical 

clustering algorithms are of arbitrary shape. These algorithms are also resistant to outliers. 

 



6 

Our distributed clustering method is most related to [13], [17] and [18] since we 

consider the problem of privacy preserving clustering over horizontally partitioned data by 

means of secure multi-party computation of the global dissimilarity matrix which can then 

be input to hierarchical clustering methods. Our dissimilarity matrix construction algorithm 

is also applicable to privacy preserving record linkage and outlier detection problems. 

 

2.2 Anonymization 
 

Anonymization techniques rely on the fact that privacy of sensitive data is a concern 

only if the individuals related to this data can be identified. However, removing personal 

identifiers does not always protect individuals against disclosure of identity. Sweeney 

shows in [19] that using publicly available sources of information such as age, gender and 

zip-code, data records can be de-identified accurately. The most popular solution to 

anonymity problem is k-anonymity, which requires that an individual should be 

indistinguishable from at least (k-1) others in the anonymized dataset [20, 21]. Two 

individuals are said to be indistinguishable if their records agree on the set of quasi-

identifier attributes, which are not unique identifiers by themselves but may identify an 

individual when used in combination [22]. 

 

In [23] Meyerson and Williams reduce the k-anonymity problem to the k-

dimensional perfect matching problem, proving that finding the perfect anonymity scheme 

is NP-hard. Aggarwal et al. strengthen this proof to include ternary attributes [24]. That’s 

why previous work on the area proposes heuristic solutions.  

 

The work by Samarati and Sweeney employs generalization and suppression over a 

Value Generalization Hierarchy (VHG) in a bottom-up fashion [19, 20, 21]. As long as k-

anonymity is not achieved, an element of the quasi-identifier is chosen and generalized. An 

attribute generalized to the root of VGH is said to be suppressed, i.e. contain no 

information. Iyengar presents a solution using genetic algorithms for increasing the 

accuracy of classification models, trained on anonymized datasets [25]. Winkler’s solution 

to the same problem uses simulated annealing [26]. Fung et al. proposes the reverse 

procedure of [19], starting from the most general case and specializing down the VGH.  
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Recent work in the area extends the k-anonymity notion. In [27], LeFevre et al. 

propose multidimensional k-anonymity where quasi-identifier attributes generalized to 

different levels of VGH appear together in the anonymized dataset. The work in [28] 

extends k-anonymity to ℓ-diversity arguing that lack of diversity in sensitive attributes may 

leak identifying information if the attacker is equipped with background information. 

Therefore new methods for anonymization that also consider diversity in sensitive 

attributes are proposed. Truta and Vinay address a problem very similar to [29] that of 

protecting both individual identities by k-anonymization and sensitive attributes by 

diversification. 

 

In [30], Jiang and Clifton propose a k-anonymization method for datasets vertically 

partitioned into two using Secure Set Intersection protocols from the SMC context. In this 

method both data holders first locally anonymize their data and then test if the join on the 

global identifier is k-anonymous. Zhong et al. propose two methods for distributed k-

anonymization of a dataset partitioned horizontally among customers, each holding only 

one data record [31]. The first method for extracting the k-anonymous part of a dataset is 

based on distributing a secret among customers so that this secret can be reconstructed from 

k shares. Customers simply encrypt their data with this secret and send the ciphertexts to 

the data miner who can only open the messages if there are at least k shares of the secret, 

meaning that only k-anonymous data is visible to the data miner. In the second method, 

distributed data is k-anonymized by suppressing some quasi-identifier attributes. However, 

this method leaks the distance between each pair of rows, i.e. the number of non-matching 

quasi-identifier attributes. 

 

Our distributed anonymization method is most relevant to [5] and [31] since we 

study the problem of location anonymization of horizontally partitioned data with a top-

down approach similar to [5]. However, in our problem setting data holders are not 

individuals with their own data but store multiple data records and we address spatio-

temporal data. 
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2.3 Spatio-Temporal Data Mining 
 

Spatio-temporal datasets are composed of time-stamped location observations of 

moving objects. Each entry in the dataset, called an observation, is a triplet in the form: 

(oid, tid, d) where oid is the id of the moving object, tid is the time-stamp and d is the 

spatial component. Trajectory T of a moving object A is the set of all observations where 

oid = A. Number of observations for this trajectory is denoted as length(A) and ith element 

of TA is denoted by TA(i). Figure 2.1 depicts these notions for the sample one dimensional 

spatio-temporal data provided in Table 2.1. 

 

Table 2.1. Spatio-temporal data for trajectories A and B 
 

Time Object A 1 4 7 10 16 
x 0.3 1.9 3.1 5 6.7 Location y 2.1 3.8 4.2 5.6 6.3 

Time Object B 2 4 6 8 
x 1.2 3.4 5.7 7.3 Location y 7.4 8.1 9.8 10.7  

 

Figure 2.1 Trajectories A and B. length(A) = 5 and length(B) = 4 
 

We consider two dimensional spaces, as is the case with GPS data, neglecting altitude 

component. Longitude of the location observation from GPS is referred as x dimension and 

latitude as the y dimension. Yet, different interpretations of the spatial component of these 

t =2 t = 4
t =6 t =8

t =1

t = 4 t =7
t =10 t =16
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observations result in various different applications of the methods of spatio-temporal data 

mining. For example, the two-dimensional space presented above may be temperature and 

atmospheric pressure values of a static sensor in a weather station. In stock market analysis, 

data analysts may be interested in tracking the price fluctuations of particular stocks, 

defining the stock value as the space. In this thesis we particularly consider moving objects. 

Yet, the methods discussed here are completely suitable for knowledge discovery in 

datasets of varying dimensionalities. 

 

Most data mining methods make sense in the spatio-temporal context. Among these, 

spatio-temporal clustering groups similar object trajectories, classification identifies 

behavior rules to predict future movement of objects [32] and association rule mining 

discovers frequently followed patterns [33, 34, 35]. 

 

2.3.1 Spatio-Temporal Clustering 
 

When applied to spatio-temporal data, traditional data mining techniques tend to 

ignore the temporal component of location observations, treating a trajectory as a two-

dimensional vector of geo-references in x and y coordinates. Nanni presents the problems 

caused by such approaches with an elegant example on clustering animal trajectories to 

identify herds [36]. According to this example, traditional clustering techniques would 

reconstruct the total area visited by animals and cluster trajectories with respect to this 

attribute. However, predator and prey would typically live in the same area and therefore be 

clustered with each other. Yet they certainly do not form up a herd. If the temporal 

component was taken into account, one would have observed that predator and prey almost 

never appear together. 

 

Spatio-temporal clustering is usually studied in the context of time-series data 

without special emphasis on clustering moving object trajectories. Gaffney and Smyth 

propose a model-based approach in which members of a cluster are chosen with respect to 

the amount of noise that must be added to transform them into the core trajectory of the 

cluster [37]. This method is extended to resist temporal and spatial shifts in [38]. Ketterlin 
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considers the problem of hierarchical clustering of generic sequences in [39]. Nanni 

proposes k-means and hierarchical agglomerative clustering methods for spatio-temporal 

data in [36] and a density-based clustering method in [40]. 

 

2.3.2 Trajectory Comparison Functions 
 

Clustering moving objects requires robust trajectory comparison functions for 

measuring the similarity between object trajectories. However, trajectory comparison is not 

an easy task since spatio-temporal data is usually collected through sensors and therefore is 

subject to diverse sources of noise. Under ideal circumstances, object trajectories would be 

of the same length and time-stamps of their corresponding elements would be equal. The 

distance between two trajectories satisfying these conditions could be computed using 

Euclidean distance, simply by summing up the distances over all elements with equal time-

stamps. In real world, on the other hand, non-overlapping observation intervals, time shifts 

and different sampling rates are common. Although various trajectory comparison 

functions have been proposed to cope with these difficulties, this topic is still an ongoing 

research area. 

 

Most trajectory comparison functions stem from four basic algorithms: (1) Euclidean 

distance, (2) Longest Common Subsequence (LCSS), (3) Dynamic Time Warping (DTW), 

and (4) Edit distance. We classify these algorithms into two groups with respect to penalties 

added per pair-wise element comparisons: real penalty functions and quantized penalty 

functions. Real penalty functions measure the distance in terms of the Euclidean distance 

between observations while quantized penalty functions increment the distance by values 0 

or 1 at each step depending on spatial proximity of the compared observations. We now 

explain crucial trajectory comparison functions briefly and provide the reasoning behind 

this classification. You may refer to [41] for a detailed discussion on characteristics of these 

algorithms. 
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Euclidean distance, Edit distance with Real Penalty (ERP) and DTW are the 

comparison functions with real penalty. Euclidean distance is a naïve method based on 

comparing the corresponding observations of trajectories with the same length, denoted as 

n. The algorithm terminates in O(n) time, returning the sum of real penalties. Euclidean 

distance function is sensitive to time shifts and noise but the output is a metric value. 

 

ERP measures the minimum cost of transforming the compared trajectory to the 

source trajectory using insertion, deletion and replacement operations [42]. Cost of each 

operation is calculated using real spatial distance values. Cost of replacing observation i 

with observation j is dist(i, j), where dist is the Euclidean distance. However in case of 

insertion (or deletion), added cost is the distance between the inserted (or deleted) 

observation and a constant observation value g, defined by the user. ERP compares all pairs 

of elements in the trajectories, returning a metric value in O(n2) time. The algorithm is 

resistant to time shifts but not to noise. 

 

DTW was initially proposed for approximate sequence matching in speech 

recognition but is generalized to similarity search in time series by authors of [43]. The 

algorithm is very similar to Edit distance but instead of insertions and deletions, stutters are 

used. The ith stutter on x dimension, denoted as stutteri(x), repeats the ith element and shifts 

following elements to the right. Computation cost is O(n2) as expected and resultant 

distance value is non-metric. Allowing repetitions strengthens the algorithm against time 

shifts but not against noise. 

 

Trajectory comparison functions with quantized penalty are LCSS [44] and Edit 

distance on Real Sequence (EDR) [41]. Both algorithms try to match all pairs of elements 

in the compared trajectories and therefore have a computation cost of O(n2). A pair of 

observations is considered a match if they are close to each other in space by less then a 

threshold, ε. LCSS returns the length of the longest matched sequence of observations 

while EDR returns the minimum number of insertion, deletion or replacement operations 

required to transform one trajectory to the other. Although these algorithms are resistant to 

time shifts and noise, distance values are not metric. 
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Notice that in order to measure the distance between two trajectories with any 

comparison function, a matrix of pair-wise observation comparisons, storing the Euclidean 

distance in x and y dimensions, is sufficient. Our distributed clustering protocol applies to 

all comparison functions because we build this matrix in a privacy preserving manner. 

 

2.4 Privacy in Spatio-Temporal Data 
 

Previous work on ensuring privacy of individuals in spatio-temporal data mostly 

consists of anonymization methods, accompanied with some perturbation and obfuscation 

techniques. We present the related work on the latter first and reserve Section 2.4.1 and 

Section 2.4.2 for a detailed discussion on two directions of research on anonymization of 

spatio-temporal datasets, location anonymization and trajectory anonymization, since our 

methods are based on anonymization as well. Access control methods are not taken into 

consideration in this section because they are related to confidentiality of the data rather 

than privacy. 

 

In [45], the authors propose the “path confusion” algorithm for perturbing object 

trajectories so that if the proximity of two non-intersecting paths falls below the threshold 

called perturbation radius, these paths are crossed and their ids are interchanged after the 

intersection point. The key idea is that an adversary can not identify whether these two 

paths were intersecting in the original dataset or not since path confusion is only applied to 

non-intersecting paths. Kido proposes two obfuscation methods for hiding the current 

location and the complete trajectory of a user [46]. In these methods users send fake 

location messages together with the exact location to Location Based Service (LBS) 

provider and choose the appropriate message among the responses of the provider without 

disclosure of sensitive location information. A similar approach in [47] builds a graph of 

locations connected to the user’s location and chooses fake messages from this graph. 
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2.4.1 Location Anonymity 
 

Anonymity requirement of a user depends on the type of disclosed data. In the 

context of LBS, this corresponds to the classification of the provided service as tracking 

LBS and non-tracking LBS. For example, a user who is querying the coffee shops nearby 

certainly is concerned about revealing his current location while in vehicle telematics 

applications, querying and therefore tracking is continuous and thus trajectories should be 

anonymized rather than location observations [3]. In this section, we concentrate on the 

first, i.e. location anonymity. 

 

Gruteser and Grunwald propose “spatial and temporal cloaking” methods in [2], 

which is the first work towards achieving k-anonymity of location observations. These 

methods are based on reducing the spatial and temporal granularity of the observations, 

representing each with intervals, rather than points. Temporal cloaking method defers the 

response to a LBS request at time t1 until at least (k-1) other users visit the same area. When 

this condition is met, at t2, time-stamps of location observations are replaced with the 

interval [t1, t2] minus a random cloaking factor. Spatial cloaking method employs the quad-

tree data structure of [4], proposed initially for efficient indexing and storage of geo-

referenced objects. We explain the quad-tree data structure in Section 4.1. The set of all 

possible requester users are inserted into the root of the quad-tree and the root is partitioned 

into child nodes as long as the observations remain k-anonymous. When no more 

partitioning is possible, the area covered by the quadrant that contains the user request 

determines the interval that the spatial component is represented with. We extend the 

spatial cloaking algorithm in Chapter 4 to handle spatio-temporal datasets rather than single 

LBS requests and block the attacks identified in [3] against this algorithm. 

 

Gedik and Liu propose another location anonymization method, “CliqueCloak”, in 

which every LBS request can set different anonymity requirements using the parameter k 

and the coarsest granularity of the spatial and temporal component [48]. Representing the 

granularities as intervals, a three dimensional cloaking box is built. Then the Minimum 

Bounding Rectangle of the messages that are not yet anonymized built and if the 

anonymization requirements of all messages are satisfied, the messages are transformed. 
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2.4.2 Trajectory Anonymity 
 

Beresford and Stajano introduce the concept of “mix zones”, in which identification 

of users is blocked and fake identifiers (pseudonyms) of incoming user trajectories are 

mixed up while leaving these mixed zones [3]. The authors distinguish these mix zones 

from the “application zones” where location information of users can be traced by the 

pseudonym. Yet, in the proposed method users are allowed not to report until a certain level 

of anonymity is reached, measured by Shannon’s entropy definition. Since the pseudonyms 

are garbled in the mix zones, anonymity of movement trajectories can be achieved after a 

sufficiently large amount of other users enter the mix zone. 

 

In [49], Bettini et al. propose a trajectory anonymization method similar to the 

location anonymization method of [48]. In this method, for each location observation of a 

trajectory, the three dimensional Minimum Bounding Rectangle (MBR) that is crossed by 

at least (k-1) other users is built and remaining observations of these k trajectories are 

anonymized by generalizing to the area of the MBR. 

 

Another trajectory anonymization method that interprets k-anonymity quite 

differently than the others is proposed in [50]. Given a set of sensitive locations, that the 

users do not want to be observed at, a “sensitivity map” is built. Outside the sensitive 

zones, location observations are released as they are. Three algorithms are proposed to deal 

with location updates of users within sensitive zones: In the “Base” algorithm sensitive 

observations are suppressed. In the “Bounded-Rate” algorithm frequency of location update 

messages is restricted with a threshold value. Finally in the “k-Area” algorithm insensitive 

location updates are generalized such that an adversary can not distinguish which of at least 

k sensitive areas the user entered or exited. 
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3 PRIVACY PRESERVING DISTRIBUTED CLUSTERING 
 
 

In this chapter, we propose a privacy preserving clustering technique for horizontally 

partitioned spatio-temporal data where each horizontal partition contains trajectories of 

distinct moving objects collected by a separate site. Consider the following scenario where 

the proposed techniques are applicable: In order to solve the traffic congestion problem of a 

city, traffic control offices want to cluster trajectories of users. However, the required 

spatio-temporal data is not readily available but can be collected from GSM operators. 

GSM operators may not be eager to share their data due to privacy concerns. The solution 

is to apply a privacy preserving spatio-temporal clustering algorithm for horizontally 

partitioned data. 

 

Our method is based on constructing the dissimilarity matrix of object trajectories in 

a privacy preserving manner which can then be input to any clustering algorithm except k-

means. This is because k-means clustering requires measuring the distance between cluster 

means and objects where cluster means are not necessarily chosen from the dataset, as is 

the case in k-medoids clustering. Main contributions are introduction of a protocol for 

secure difference and its application to privacy preserving clustering of spatio-temporal 

data. 

 

3.1 Problem Definition 
 

Suppose that there are N data holders, such that N ≥ 2, which track locations of 

moving objects with unique object id’s. The number of objects in data holder n’s database 

is denoted as size(n). Data holders want to cluster the trajectories of their moving objects 

without publishing sensitive location information so that clustering results will be public to 

each data holder at the end of the protocol. There is a distinct third party, denoted as TP, 

that provides computation power and storage space. TP’s role in the protocol is: (1) 

Managing the communication between data holders, (2) Privately constructing the global 

dissimilarity matrix, (3) Clustering the trajectories using the dissimilarity matrix, and (4) 

Publishing the results to the data holders. 
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Involved parties, including the third party, are assumed to be semi-honest which 

means that they follow the protocol as they are expected to do, but may store any 

information that is available in order to infer private data in the future. Another assumption 

is that, all parties are non-colluding, i.e. they do not share private information with each 

other. TP is trusted only on non-colluding with other parties. Therefore TP is not a trusted 

third party according to the semi-honest model, in which case data holders could simply 

share their private data with TP to carry out the necessary computation locally. 

 

Prior to the protocol we assume that every involved party, including TP, has already 

generated pair-wise keys. Diffie-Hellman key exchange protocol is perfectly suitable for 

key generation [51]. These keys are used as seeds to pseudo-random number generators 

which disguise the exchanged messages. We explain the details of our pseudo-random 

number generator in the next section. Similar generators have been used in various contexts 

and are proven to be cryptographically secure [52]. 

 

3.2 Pseudo-Random Number Generator 
 

Random numbers are of utmost importance for cryptography, since almost any 

cryptographic system depends on a random input at some level. For example, the only 

provably secure encryption scheme, One-Time Pad, depends totally on random bits. 

Similarly, secret keys in symmetric encryption schemes, and private keys in asymmetric 

encryption schemes should be chosen randomly. Otherwise, if orderly sequences are used 

as if they were random, one may face the unpleasant surprise of sending practically 

plaintext messages, with 128 bit encryption schemes, as in the case of Secure Socket Layer 

(SSL) implementation of Netscape Communications [53]. Netscape’s “random” key was 

composed of easily predictable components: the time of the day, the process id and the 

parent process id. In 1996, two PhD students, Ian Goldberg and David Wagner, broke the 

encryption scheme by reverse engineering the program and extracting this orderly key 

generation algorithm. 
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Although truly random numbers do exist in the nature, sampling these numbers 

require additional hardware components to make powerful measurements, i.e. events in the 

quantum level, elapsed time between emission of particles during radioactive decay, 

thermal noise from a semiconductor diode or resistor [54]. However, since almost any 

computer needs random sequences for some reason (not necessarily cryptographic), 

researchers developed Pseudo-Random Number Generators (PRNG) that generate 

seemingly random sequences given a truly random key (a.k.a. seed). PRNGs are considered 

to be cryptographically secure if they pass certain statistical tests on predictability and 

equal distribution of possible values. However, every PRNG has a period indicating the 

number of distinct values that can be generated without repeating any sequence. That’s 

why, in order to generate a large sequence of random numbers, PRNGs with long periods 

should be used. 

 

The PRNG that we use is based on block ciphers that encrypt a plaintext block given 

a key. Block ciphers have different modes of operation, each with unique properties. We 

list the most important modes here:  

 

- Electronic Code Book (ECB) mode: ECB is one of the earliest modes. Ciphertexts 

of identical plaintexts are the same, since consecutive blocks of a long message are 

encrypted independently. 

- Cipher Block Chaining (CBC) mode: In CBC, plaintexts are XORed with the 

ciphertext of the previous block. Since there is no ciphertext for the first block, an 

Initialization Vector (IV) is required to XOR the first plaintext block. 

- Cipher Feedback (CFB) mode: CFB is very similar to CBC. In CFB, the ciphertext 

of the previous block is encrypted and the result is XORed with the plaintext. 

Again, an IV is needed for the first plaintext block. 

- Output Feedback (OFB) mode: OFB acts practically like stream ciphers, generating 

keystreams initially from the IV and then repeatedly, its ciphertext. Plaintext is 

encrypted by XORing with the keystream block. 

- Counter (CTR) mode: This mode is similar to OFB mode. Instead of encrypting 

successive ciphertexts, a counter is used to generate the keystream. 
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Among these modes of operation, OFB and CTR are the most suitable ones for 

generating pseudo-random sequences, due to their keystream property [54]. Only three 

parameters are required to build a PRNG cipher in these modes: key, IV and plaintext. In 

our protocols, we assume that IV and plaintext are public values, globally known to every 

party. The key is the seed of our PRNG and should be secretly shared among the parties 

that want to generate the exact sequence of pseudo-random. 

 

We used Data Encryption Standard (DES) cipher in OFB mode (for practical 

purposes) to implement a PRNG with a long period, depicted in Figure 3.1. Since the block 

size in DES is 56 bits, ideally DES would generate 256 different ciphertexts, each consisting 

of 56 bits. In order to generate a pseudo-random integer, we use the last 32 bits of the 

ciphertext. Similarly, to generate a pseudo-random double, we generate two pseudo-random 

integers, divide the first with the second and multiply with some large number. Although 

such usage of ciphertexts would restrict the period even more compared to the ideal case, 

even 230 pseudo-random ciphertexts are sufficient for a very large spatio-temporal dataset. 

Alternatively, Advance Encryption Standard (AES) cipher with 128 bit key size can be 

used to increase the period of the PRNG.  

 

 
Figure 3.1. Pseudo-random number generator 
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3.3 Secure Distance Protocol for Numeric Attributes 
 

Suppose that there are two parties, Alice and Bob, that want to measure the distance 

between their secret inputs, x and y respectively. Since the distance should be symmetric, 

we define the distance between x and y as the absolute value of the difference, |x - y|. Notice 

that revealing this distance value to Alice would certainly leak private information because 

knowing x as well, Alice would easily infer that either y = x + |x - y| or y = x - |x - y|, 

depending on whose input is larger. Using her background information on the field that 

values x and y chosen are from, she might even be able to infer the exact value of y. 

Consider the case where the inputs are age values and x = 100. If |x – y| = 50, then y = 50 

since it is very unlikely that anybody be at the age of 150. 

 

Reasoning from the above inference channel, it is evident that the secure distance 

protocol requires a third party that does not collude with Alice or Bob. This third party 

should also be unaware of the field that the secret inputs are chosen from, i.e. has no 

background information. Otherwise another attack by the third party is realizable: Again, 

suppose that Alice and Bob are comparing age values and the distance turned out to be 120. 

If the third party knows that age values are being compared and that the oldest person alive 

is 120 years old, which is public information, in that case one of the inputs should be 0 

while the other is 120. Of course, since distances are symmetric, it is not possible to find 

out whose input is which one of these two values. 

 

Let us first consider a naïve approach to measure the distance between two private 

inputs and analyze its security. In this first attempt, depicted in Figure 3.2, Alice disguises 

her values using the pseudo-random values generated by a pseudo-random number 

generator RAT, whose seed she shares with the third party (TP). Alice adds the random 

number generated by RAT, adds it to her private input x and sends the result to Bob. Bob 

subtracts his input from Alice’s message and sends the result to TP. Now that TP have 

received ((RAT + x) - y), he can generate the exact pseudo-random as Alice did, since they 

are sharing the seed. After removing the disguise value, RAT, TP can compute (x - y). Since 

we need |x - y|, he should also compute the absolute value in order to find out the distance.  
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Figure 3.2. Naïve secure difference protocol 

 

This protocol might seem secure at the first sight. The message Bob receives from 

Alice (mA) is completely random since a random number plus another number remain 

random. The message TP receives from Bob (mB) is the final result that we want to convey 

to TP. However there are two privacy implications: (1) Channels between these parties 

should be secured since anybody listening to Alice and Bob can easily compute y = mA - 

mB. Similarly TP can compute x if it learns mA, since x = mA - RAT. And (2) TP learns whose 

input is larger. If mB - RAT > 0, then x > y or vice versa. This is because we are computing x 

- y in this protocol, rather than | x – y |. Consider the case that private inputs are net profits 

of two companies. In this case, revealing the information, which company is more 

profitable, should certainly be regarded as a privacy breach. 

 

In order to solve the second problem with the naïve protocol, we introduce a pseudo-

random bit generator, BAB, whose seed is shared between Alice and Bob. If the bit b, 

generated by BAB is 0, Bob negates his input. Otherwise, Alice does. Since TP does not 

know whose input is negated, it can not infer whether the final value, mB - RAT, is (x - y) or 

(y - x). Messages transferred in this updated protocol are depicted in Figure 3.3. 

 

The channels between the participants of the protocol still need to be secured, 

although an adversary observing the messages has only 50% confidence in the values he 

infers. mB - mA may either be y or -y, depending on the value of b. Similarly, mA - RAT may  
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Figure 3.3. Secure difference protocol 

 

either be x or -x. The obvious question to ask at this point is, what if x = y? TP can 

definitely identify such cases, since | x - y | would be measured as 0. However we do not 

consider such cases as leakage of private information, since blocking such inference would 

be controversial to the aim of the protocol, i.e. computing the correct distance. 

 

3.4 The Clustering Protocol 
 

Dissimilarity matrix is an object by object structure storing the distances between 

each pair of objects. Most clustering algorithms, such as k-medoids, hierarchical clustering 

algorithms and density based clustering algorithms; only require the dissimilarity matrix as 

input. You may refer to [55] for a detailed discussion on these algorithms. Our method to 

achieve privacy preserving clustering on horizontally partitioned spatio-temporal data is 

based on building the global dissimilarity matrix through a series of secure distance 

protocol invocations, discussed in Section 3.3. 

 

In the case of spatio-temporal data, an entry D[i][j] of the dissimilarity matrix D is 

the distance between trajectories of objects i and j calculated using a trajectory comparison 

function. We have two different scenarios, regarding the way a distance is calculated: (1) 

Objects i and j are either at the same data holder’s dataset or (2) Each is at a separate site. 

In the first case, the data holder can locally compute the distance between these objects and 

simply send the value to TP. We defer the discussion on the second case for now, and 

concentrate on collecting locally computed distance values. 
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3.4.1 Sharing Local Dissimilarity Matrices 
 

Since all distance values are to be collected by TP, every data holder first computes 

its local dissimilarity matrix and sends it to TP. Of course this requires that the data holders 

agree on a trajectory comparison function prior to starting the clustering protocol. We 

provide the pseudo-code for constructing the local dissimilarity matrix in Figure 3.4, where 

size(DH) denotes the number of trajectories at data holder DH and distance(x, y) denotes 

the chosen trajectory comparison function. 

 

Begin 
  For m=0 to size(DH)-1 
    For n=0 to m-1 
      D[m][n]= distance(DH[m], DH[n]); 
End 
 

Figure 3.4. Pseudo-code for local dissimilarity matrix construction  
 

In Theorem 3.1, we prove that sharing local dissimilarity matrices of continuous 

variables does not leak any private information unless TP knows the maximum and 

minimum values the variable can assume. Oliveira and Zaiane provide a similar proof 

based on the assumption that given the distance between two points, there are infinitely 

many pairs of points that are equally distant [2]. However, their proof lacks the important 

property about TP having background information or not. In Theorem 3.2, we further prove 

that if TP has background information, sharing local dissimilarity matrices may leak private 

information. 

 

Theorem 3.1. Sharing the local dissimilarity matrix of a continuous variable with a third 

party does not leak private information if this third party has no background information 

about the field that the compared values are chosen from, i.e. the maximum and minimum 

values the variable can assume. 

 

Proof: We provide a proof by contradiction. Suppose that given a dissimilarity matrix D, 

the third party can infer the value of a point p, denoted as x. If we increment the value of 

every point in the original dataset by some value ε, then the new dataset would have exactly 
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the same dissimilarity matrix, D. Notice that since the third party does not know what the 

largest possible value of the variable is, there are infinitely many values for ε.  After this 

simple transformation, the new value of the point p would be (x + ε). However, since x ≠ (x 

+ ε), the third party could not have inferred the exact value of p. Prior probability, P( p = x) 

= 0, because there are infinitely many values that p can assume. Given the dissimilarity 

matrix, D, the posterior probability is P( p = x | D) = 0 again, because for infinitely many 

values ε, we have infinitely many points (x+ ε) that result in the same dissimilarity matrix 

D. Therefore publishing D does not help the third party infer any point p. □ 

 

Theorem 3.2. Sharing the local dissimilarity matrix of a continuous variable with a third 

party may leak private information if this party has background information about the field 

that the compared values are chosen from, i.e. minimum and maximum possible values. 

 

Proof: Now suppose that the third party knows the maximum and minimum values the 

variable can assume. In this case, the third party would also know the maximum possible 

distance between any pair of points. If this distance value appears in the entry D[p][q] of 

D, the third party directly infers that either p has the minimum value (min) and q has the 

maximum value (max) or vice versa. There are only two datasets that the third party should 

consider, the original dataset and its mirror image as depicted in Figure 3.5. This time the 

third party knows the value of each point with 50% confidence. Assuming integer values, 

our prior probability for this case is P( p = min) = 1 / (max - min) and our posterior 

probability is P( p = min | D) = 0.5. Unless (max – min) = 2, background information 

certainly helps the third party infer the values of all points. □ 

 

 
Figure 3.5. Possible inference in sharing local dissimilarity matrices 
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According to Theorem 3.2, data holder sites should ensure that TP does not have any 

background information on the values being compared. This turns out to be a reasonable 

assumption in the context of spatio-temporal data mining because the maximum distance 

between any pair of trajectories depend on the geographical area that location observations 

are collected from and the number of observations, which needn’t (and certainly shouldn’t) 

be shared with TP. 

3.4.2 Secure Comparison of Trajectories 
 

Now that we have proven the security of sharing local dissimilarity matrices, we turn 

our attention to computing the distance for trajectory pairs that are hold by different data 

holders. Building on the secure distance protocol described in Section 3.3, we describe a 

protocol for computing the distance between a trajectory TA of data holder DHA and 

trajectory TB of data holder DHB.  

  

Assume that the protocol starts with DHA, who initializes two pseudo-random 

number generators, rngAB and rngAT. The seed for rngAB is the key shared with DHB and 

the seed for rngAT is the key shared with TP. Then, for each dimension of spatial 

component of TA’s elements (i.e. x-coordinate and y-coordinate), DHA disguises its input as 

follows: if the pseudo-random bit generated by rngAB is 1, DHA negates its input and 

increments it by the pseudo-random number generated by rngAT. Finally, DHA sends the 

disguised values to DHB. Pseudo-code of the protocol at site DHA is provided in Figure 3.6. 

 

Begin 
  Initialize rngAB with the key KAB; 
  Initialize rngAT with the key KAT; 
  For m=0 to length(TA)-1 
    TA[m].x =rngAT.Next + TA[m].x * -1^rngAB.Next; 
    TA[m].y =rngAT.Next + TA[m].y * -1^rngAB.Next; 
  Send TA to DHB; 
End 
 

Figure 3.6. Pseudo-code of trajectory comparison protocol at site DHA 
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DHB’s role in the protocol depends on the comparison function that is to be 

employed. As described in Section 2.4.2, while all comparison functions require computing 

the pair-wise distance between all pairs of locations observations in TA and TB, Euclidean 

distance only compares corresponding location observations.  

 

Therefore in the case of Euclidean trajectory comparison, length(TB) = length(TA) and 

DHB’s output should be of size length(TA). DHB initializes a matrix M of size length(TA) × 2 

and a pseudo-random bit generator rngAB with the key shared with DHA. DHB then negates 

its inputs in a fashion similar to DHA, this time negating only when the generated bit is 0. 

An entry M[n] of M is TA’s nth observation compared to TB’s nth observation in the two-

dimensional space. DHB simply adds its input to the input received from DHA. At the end, 

M is sent to TP by DHB. 

 

If the trajectory comparison function is not Euclidean, DHB initializes a matrix M of 

size length(TB) × length(TA) × 2. An entry M[m][n] of M is TA’s nth observation compared to 

TB’s mth observation in the two-dimensional space. DHB should re-initialize rngAB with the 

secret seed after processing each location observation of TA so that location observations 

are negated correctly. Figure 3.7 depicts the role of DHB in the protocol. 

 
Begin 
  Initialize rngAB with the key KAB; 
  If(Comparison is Euclidean) 
    Initialize M = {length(TA)*2}; 
    For n=0 to length(TA)-1 
      M[n].x += TB[n].x * -1^(rngAB.Next+1)%2; 
      M[n].y += TB[n].y * -1^(rngAB.Next+1)%2; 
  Else 
    Initialize M = {length(TB)* length(TA)*2}; 
    For m=0 to length(TB)-1 
      Re-initialize rngAB with the key KAB; 
      For n=0 to length(TA)-1 
        M[m][n].x +=TB[m].x * -1^(rngAB.Next+1)%2; 
        M[m][n].y +=TB[m].y * -1^(rngAB.Next+1)%2; 
  Send M to TP; 
End 
 

Figure 3.7. Pseudo code of trajectory comparison protocol at site DHB 
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TP subtracts the random numbers added by DHA using a pseudo-random number 

generator, rngAT, initialized with the key shared with DHA. Now, the absolute value of any 

entry M[n] is | TA[n] - TB[n] | for Euclidean trajectory comparisons and the absolute value of 

any entry M[m][n] is | TA[n] - TB[m] | for the other types of trajectory comparisons. These 

values are all that are needed by any comparison function to compute the distance between 

trajectories TA and TB. In Figure 3.8, we provide the pseudo-code of the protocol at TP. 

 

Begin 
  Initialize rngAT with the key KAT; 
  If(Comparison is Euclidean)    
    For n=0 to length(TA[i])-1 

          M[n].x = |M[n].x – rngAT.Next|; 
          M[n].y = |M[n].y – rngAT.Next|; 

  Else 
    For n=0 to length(TB)-1 
      Re-initialize rngAT with the key KAT; 
      For m=0 to length(TA)-1 
        M[n][m].x = |M[n][m].x – rngAT.Next|; 
        M[n][m].y = |M[n][m].y – rngAT.Next|; 
End 
 
Figure 3.8. Pseudo-code of trajectory comparison protocol at site TP  

 

The trajectory comparison protocol is not symmetric with respect to the roles DHA 

and DHB. Complexity of the protocol at site DHA is O(m) where m is the length of 

trajectory TA and complexity of the protocol at site DHB is O(mn) where n is the length of 

TB. In order to balance the difference between these workloads, TP should ensure that the 

data holders undertake the roles DHA and DHB interchangeably. 

3.4.3 The Complete Protocol 
 

After presenting all building blocks of the clustering protocol, in Figure 3.9, we 

provide the big picture on how TP manages the communication between the data holders 

and finally cluster the data. Notice that since we compute the distance between pair-wise 

trajectories of all pairs of data holders, every party, including TP, should share pair-wise 

keys with each other in order to run the secure distance protocol of Section 3.3. 
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Begin 
  For i=0 to numDHs-1 
    Request the local dissimilarity matrix of DHi; 
  For i=1 to numDHs-1 
    For j=0 to i-1 
      For m=0 to size(DHi)-1 
        For n=0 to size(DHj)-1 
          Compute the distance DHi[m] and DHj[n]; 
End 

Figure 3.9. Protocol management at site TP 
 

Once the distances between all pairs of trajectories are collected at TP, TP builds the 

global dissimilarity matrix G and clusters according to G. Then the clustering results, in the 

form of sets of object ids, are conveyed to any party P that is authorized by the data 

holders. Of course party P would also need accompanying information to interpret the 

clustering results. Chapter 5 on distributed anonymization addresses this problem. 

 

In Theorem 3.2, we have proven that unless TP has background knowledge on the 

field that the compared values are chosen from, sharing local dissimilarity matrices does 

not breach privacy. Our secure distance protocol also makes a similar assumption. For the 

special case of spatio-temporal data this assumption is easily realized: The range of x and 

y-coordinates of moving object locations constitute this background information and if the 

data holders do not collude with TP, inferring these values from the local dissimilarity 

matrices is not possible. Yet, none of the data holders would collude with another data 

holder or the third party because collusion requires disclosing private information. 

Therefore our assumption on non-collusion between participants is very likely to hold. 
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4 CENTRALIZED ANONYMIZATION 
 
 

Anonymity of spatio-temporal data has previously been researched in the context of 

Location Based Services (LBS). In contrast, we consider the anonymity of historical spatio-

temporal data. The difference between anonymity in LBS and historical data is that, LBS 

providers should respond to spatial or spatio-temporal user queries in real-time while data 

mining applications apply offline anonymization, without user interaction. Exploiting this 

advantage, we overcome some problems that anonymization techniques of LBS face, i.e. 

negation, subtraction and linear inference attacks defined in [3]. 

 

We achieve the anonymity of a spatio-temporal database by reducing the spatial 

granularity of location observations. The anonymized location observations are not 

represented by points any more but by spatial containers which are nodes of the quad-tree 

structure of [4], explained in the next section.  

 

In [2], Gruteser and Grunwald propose anonymization techniques based on 

generalizing the temporal attributes as well. Their method is based on deferring an LBS 

request’s response message until a sufficiently large number of similar requests are made 

by other users. However, although such an approach is suitable to LBS systems, it would 

inadvertently decrease the number of location observations of users, which might 

deteriorate the data miner’s confidence in the anonymized database. Therefore, we do not 

consider temporal cloaking in our methods. 

 

4.1 The Quad-tree Data Structure 
 

Quad-tree data structure was initially proposed for efficient indexing of geo-

referenced objects. Any node of the quad-tree, called a quadrant, has two important 

attributes: the area it covers and the set of location observations it contains. The area of a 

quadrant q, denoted by area(q), is a rectangle described by two intervals, (Xmin, Xmax] in 

the x-coordinate and (Ymin, Ymax] in the y coordinate. A location observation ℓ can be 

inserted into q if Xmin < ℓ.x ≤ Xmax and Ymin < ℓ.y ≤ Ymax. We define the total number 
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location observations that quadrant q contains as its size, denoted by size(q). The root of the 

tree bounds the total area that the objects reside in. In the context of spatio-temporal data 

mining, this area is either defined by the data miner through spatial queries or is the domain 

of all possible location observations, i.e. the domain of the GPS data. The root and each 

intermediate node has 4 four children: northwestern (NW), northeastern (NE), southwestern 

(SW) and finally southeastern (SE). Each quadrant covers 1/4th of the area that its parent 

covers and this area does not overlap with any other node at the same depth. Without loss 

of generality, we assume that the lower bounds for the root node of the quad-tree are 0. 

Figure 4.1 depicts a set {a, b, c, d, e} of geo-referenced objects and its corresponding quad-

tree of depth 2. The root node covers the area [(0, XR], (0, YR] ] and its children NW, NE, 

SW and SE cover [(0, XR/2], (YR/2, YR] ], [(XR/2, XR], (YR/2, YR] ], [(0, XR/2], (0, YR/2] ], 

[(XR/2, XR], (0, YR/2] ] respectively. In the figure, quad-tree links are denoted with straight 

lines while members of leaf nodes are denoted with dashed lines. 

 

 
Figure 4.1. Quad-tree of a set of spatial objects 

 

The depth of a quad-tree depends on the number of objects it contains and the balance 

between the child nodes. Every node has a bucket size defining the maximum number of 

objects it can store. If an object is to be inserted into a full leaf node, then this node is split 

and its objects are partitioned into its child nodes. Optimally, a quad-tree storing n objects 

would be of depth log4 n. However, since we build quad-trees to organize the spatial 
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granularities at which geo-referenced objects are represented, we omit the bucket size 

property. In other words, buckets have infinite capacity and the decision of partitioning 

depends on other criterion. Yet, this new criterion does not affect the O(n) complexity of 

traversing all leaf nodes.  

 

4.2 Spatio-Temporal k-Anonymity Definitions 
 

Before explaining our anonymization methods, we provide necessary definitions in 

this section. Our anonymization technique relies on the k-anonymity method, which 

requires proper identification of quasi-identifiers and their corresponding value 

generalization hierarchies (VGH). Quasi-identifiers of spatio-temporal data are location 

observations, since, after removing personal identifiers, the only possible attack is linking a 

location observation with an object through cross-matching geo-references against publicly 

available home and work addresses. For example, suppose that the attacker knows that geo-

reference G corresponds to the publicly available address of a detached house A. Without 

any anonymization, G would be revealed to the attacker as it is, who can directly infer that 

any trajectory containing the geo-reference G should be the trajectory of someone related to 

the owner of the house at this address, A. Therefore we should anonymize location 

observations before publishing any spatio-temporal data. 

 

Once quasi-identifiers are determined, one should provide the value generalization 

hierarchies for anonymization. Similar to [2], we propose using the quad-tree structure as 

the generalization hierarchy, representing the spatial components of location observations 

with the area of the quadrant which contains it. That’s why, the terms quadrant and spatial 

container are used interchangeably in the definitions. We first define the k-anonymity of a 

location observation in Definition 4.1. 

 

Definition 4.1: (k-anonymity of location observations) Given a spatio-temporal database S, 

location observation ℓ instantiated at time point t is k-anonymous if there are at least (k-1) 

other location observations instantiated at t that are in the same spatial container as ℓ. 
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Anonymizing location observations may not be sufficient to protect individual 

privacy against complex attackers. Suppose that trajectories of the moving objects are 

anonymized and published. Although every location observation of a trajectory is 

anonymous by itself, combining the result of multiple geo-reference-to-address lookups, a 

trajectory can be linked to a unique individual whose privacy would then be breached. In 

Figure 4.2, we represent such attacks with trajectories of four objects (A-D) with two 

location observations each where At denotes the location observation of object A with time-

stamp t. Notice that the number of observations in spatial containers H and W are at least 2, 

therefore the observations are 2-anonymous. 

 

 
Figure 4.2. Possible attack against location observation anonymity 

 
The attack scenario is as follows: Many home addresses are mapped to the area 

covered by container H. Similarly many work addresses are mapped to the area covered by 

container W. However, among all users, object A is the only one who lives in H and works 

in W. Similar arguments also hold for object C. Therefore, given the anonymized location 

observations, it is possible that objects can still be linked with trajectories. In accordance 

with this corollary, anonymizing complete trajectories rather than location observations 

provides more privacy. 

 

Definition 4.2: (k-anonymity of trajectories) Given a spatio-temporal database S, trajectory 

T of a moving object is k-anonymous if there are at least (k-1) other trajectories such that 

all location observations of these trajectories with the same time-stamp are in the same 

spatial container as T. 
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Achieving the anonymity of trajectories is a more complex problem compared to the 

anonymity of location observations. As a first step towards achieving anonymity in spatio-

temporal databases, in this thesis, we try to solve the location anonymization problem by 

blocking inference channels against the methods of [2]. These inference methods, formally 

discussed in [3], are explained in the next section. 

 

4.3 Location Anonymity in Spatio-Temporal Databases 
 

Finding the optimal anonymization is an NP-hard problem, as proven by Meyerson 

and Williams in [23] through reduction from the k-dimensional perfect matching problem. 

Therefore, anonymization techniques usually propose heuristic methods rather than 

exhaustively searching for optimal solutions. Our method to achieve location anonymity in 

spatio-temporal databases follows the top-down specialization approach of [5], starting 

from the most general case where every location observation with the same time-stamp is 

in the quad-tree root, and specializing down the tree as long as the location anonymity 

condition is not violated. 

 

Beresford shows in [3] that Gruteser and Grunwald’s spatial cloaking algorithm is 

vulnerable to different types of attacks that are realizable because of the container choices 

the algorithm makes. Every location observation is anonymized independently which 

introduces overlapping quadrants to the anonymized data. In other words, both an 

intermediate quadrant and its child node become leaf nodes. By inspecting the number of 

location observations contained in these quadrants, an attacker can breach individual 

privacy by invalidating the k-anonymity condition. Three attacks are identified in [3]:  

 

i. Subtraction attack: The number of location observations contained in a child of 

some leaf quadrant (i.e. size of the child node) is revealed to the attacker. Since 

the revealed quadrant is of finer granularity than the leaf node, its location 

observations are certainly not k-anonymous. Yet, the attacker can infer this 

private information.  
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ii. Negation attack: The attacker infers that a quadrant is empty. Such inference is 

only possible if a parent quadrant and some (but not all) of its four children are 

leaf nodes and the sum of sizes of these child leaf nodes is equal to the size of the 

parent leaf node. All non-leaf children of the parent should be empty in such a 

case.  

 

iii. Linear inference attack: If multiple parameters, k, are applied in parallel for 

different services. By solving linear equations based on different anonymizations, 

an attacker can infer the size of the child nodes of a leaf node. 

 

Our method improves the methods of [2] by both blocking these attacks and 

extending the anonymization process to spatio-temporal databases. In order to prevent 

overlapping quadrants, we anonymize all observations at a specific time t at once, rather 

than anonymizing them separately. Figure 4.3 presents the pseudo code of the location 

anonymization algorithm which returns the anonymized spatio-temporal database given the 

original database and the anonymity parameter, k. 

 

LocationAnonymizer(Spatio-temporal Database S, Int K) 
Begin 
  For Each Timestamp T∈S 
    L = Set of observations at T; 
    Initialize Quad-tree Root; 

        Set the total area covered as Root’s area; 
    If |L| > K 
      Insert L into Root; 
      PartitionRec(Root, K); 
      For Each Observation X ∈ S 
       Replace spatial component of X with its container; 
    Else 
      L = Ø; 
  Return S 
End 

Figure 4.3. Pseudo code of the location anonymization algorithm 
 

The algorithm requires indexing observations with respect to their time-stamps since 

an observation O is anonymized only with those observations instantiated at the same time 

as O. If, for any time-stamp, the number of observations is less than the parameter k, then 
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corresponding observations are suppressed, because otherwise, k-anonymity property 

would be violated. For the set L of location observations with identical time-stamps, we 

initially build a quad-tree whose root is as large as the total area covered by the database. 

Then, all location observations of L are inserted into the root node. Since we assume 

infinite bucket size for the quadrant, we assume here that L fits in the memory and can be 

inserted into the root at once. Afterwards, location observations of the root are partitioned 

recursively to obtain finer granularity spatial containers, moving down in the quad-tree and 

specializing location observations. Therefore we keep decreasing the area that each location 

observation is represented without violating the k-anonymity constraint. Finally, if none of 

the quad-tree’s leaf nodes can no more be partitioned, spatial component of the original 

location observations are replaced with the area covered by their containers. 

 

Given a quad-tree, the recursive partitioning algorithm, summarized in Figure 4.4, 

tries to partition the root node by inspecting whether any of the four children would violate 

the k-anonymity property. If this is not the case, we then recursively try partitioning the 

child nodes so as to specialize the location observations as much as possible. 

 

PartitionRec(Quad-tree Root, Int K) 
Begin 
  Quad-tree Temp = Root; 
  Partition Temp into 4 quadrants and set their members; 
  If( |Temp → NW| ≥ k and |Temp → NE| ≥ k and 
      |Temp → SW| ≥ k and |Temp → SE| ≥ k) 
    Root = Temp; 
    PartitionRec(Root → NW, k); 
    PartitionRec(Root → NE, k); 
    PartitionRec(Root → SW, k); 
    PartitionRec(Root → SE, k); 
End 

Figure 4.4. Pseudo code of the recursive quadrant partitioning algorithm 
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Our partitioning algorithm ensures that none of the spatial containers overlap with 

each other by disallowing a child quadrant and its parent to co-exist in the final quad-tree 

structure. This property is enforced by either partitioning all location observations of a 

quadrant into its child nodes or not partitioning the quadrant at all. Since there is no 

overlapping between quadrants, subtraction, negation and linear inference attacks can not 

be realized. As a final remark, notice that the partitioning algorithm does not impose a 

balanced quad-tree and leaf nodes can be at different depths of the tree. 
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5 DISTRIBUTED ANONYMIZATION 
 
 

Anonymization of horizontally partitioned data can easily be achieved by locally 

anonymizing the partitions and aggregating these anonymized partitions. However, the 

global solution to the anonymization of such distributed data tends to contain far more 

information compared to the aggregation of local solutions. In this chapter, we propose a 

Secure Multi-Party Computation (SMC) protocol for distributed anonymization of 

horizontally partitioned spatio-temporal data with the aim of minimizing the information 

loss caused by generalizations and increase the data quality as much as possible while 

achieving k-anonymity. We prove that our method returns the same anonymization scheme 

as the centralized case explained in Chapter 4. 

 

The information content of our distributed anonymization protocol is much larger 

compared to aggregated local anonymization since lack of similar quasi-identifier attributes 

(i.e. location observations) may force the data holders to generalize more than required. 

Consider the following scenario where benefits of distributed anonymization are obvious: 

Every data holder has (k-1) tuples where k is the global anonymization parameter. All data 

holders would have to suppress their local datasets and share no data at all, while a better 

solution would very likely to exist if these data holders could collaborate while 

anonymizing. 

 

Our distributed anonymization protocol consists of three phases: (1) In the local 

anonymization phase, every data holder locally anonymizes its data according to the top-

down centralized algorithm of the previous chapter. (2) Then, in the sharing and merging 

phase, the data holders share their specialization trees with each other. (3) Finally, in the 

collaborative anonymization phase, data holders further specialize through either secure 

“greater than” function evaluation or secure sum protocols. 
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5.1 Problem Definition 
 

Suppose that there are N parties, such that N ≥ 2, each party holding a horizontal 

partition of a spatio-temporal dataset. Rather than aggregating their locally anonymized 

datasets, the data holders want to anonymize their data collaboratively such that the 

information content of the collaboratively anonymized dataset will be the same as the 

information content of the dataset that is first aggregated and then locally anonymized 

using the centralized anonymization method described in Section 4.  

 

Participants of the protocol are assumed to act according to the semi-honest model. 

One of the data holders is designated as the coordinator data holder who collects and 

merges the local specialization trees, shares the merged tree with other data holders and 

notifies them of SMC protocol results. We choose the first data holder for this task, 

denoting the coordinator data holder as DHC or DH1 interchangeably. 

 

Data holders should share pair-wise secret keys in two-party settings to encrypt 

messages. They should also globally set the parameter k of anonymization which will be 

known by each party and agree on the total area covered by the roots of their quad-trees. 

 

5.2 Local Anonymization Phase 
 

The outcome of the local anonymization phase is a summary structure that we call 

“specialization tree” referring to the top-down approach of anonymization. Since the 

centralized anonymization method is discussed extensively before, in this section we 

concentrate on the structure of specialization trees and explain how they are built from 

anonymized data.  

 

The quad-tree structure corresponds to Value Generalization Hierarchies (VGH) in 

the location anonymization process. The function of quad-trees is providing generalization 

values at different granularities and efficient indexing of location observations. On the 

other hand, a specialization tree indicates the quadrants of finest granularity that location 

observations can be specialized to in a top-down manner. Therefore nodes of a 

specialization tree are in fact quadrants of the quad-tree. However, specialization trees do 
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not contain actual location observations since we only need the spatial partitioning of the 

total area covered by the root of the quad-tree in the sharing and merging phase. Even the x 

and y-coordinate intervals representing these areas can be omitted since every data holder 

can calculate the area of a quadrant using its depth and the area of the quad-tree root, which 

was agreed on in advance. Notice that a data holder builds as many specialization trees as 

the number of distinct time-stamps in its dataset. This is due to the fact that every location 

observation is anonymized within the set of location observations with identical time-

stamps. 

 

In order to build the specialization tree of a set of anonymized location observations, 

we start with the root of the quad-tree. If the root contains any location observations, or 

equivalently if there are at least k location observations in the original dataset, then a 

corresponding node for the root is created in the specialization tree. Then for all non-empty 

nodes of the quad-tree, a corresponding node is created recursively in the specialization 

tree. Pseudo code of this algorithm is provided in Figure 5.1 below. 

 

SpecTree BuildSpecTree(QuadTree Root) 
Begin 
  If(|Root| ≥ k) 
    SpecTree Result = new SpecNode; 
    Return BuildSpecTreeRec(Root, Result); 
End  
SpecTree BuildSpecTreeRec(QuadTree Root, SpecTree Result) 
Begin 
  If(Root has children) 
    Create child nodes of Result; 
    Result → NW = BuildSpecTreeRec( Root → NW,  

Result → NW); 
    Result → NE = BuildSpecTreeRec( Root → NE,  

Result → NE); 
    Result → SW = BuildSpecTreeRec( Root → SW,  

Result → SW); 
    Result → SE = BuildSpecTreeRec( Root → SE,  

Result → SE); 
  Return Result; 
End 

Figure 5.1. Pseudo code of specialization tree generation 
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Figure 5.2 depicts a small set of 2-anonymous location observations and its 

corresponding specialization tree. Figure 5.2.a is a two-dimensional representation of all 

location observations within their finest granularity containers and Figure 5.2.b is the 

specialization tree. The depth of the specialization tree is 3 because the quadrant of finest 

granularity in the quad-tree covers 4-3 = 1/64 of the root’s area. Leftmost and rightmost 

children of the specialization tree’s root are non-leaf nodes because the northwestern and 

southeastern quadrants of the quad-tree’s root are partitioned. 

 

 
Figure 5.2. Sample specialization tree 

(a) Two dimensional set of location observations  
(b) Specialization tree of the 2-anonymous dataset 

 

5.3 Sharing and Merging Phase 
 

Sharing and merging phase utilizes the fact that if a quadrant is locally k-anonymous 

in one of the data holders’ dataset, it should be k-anonymous globally since the parameter k 

denotes the global anonymity requirement for privacy. Therefore all data holders can safely 

specialize their data up to the finest granularity leaf node of the merged specialization tree 

without violating global k-anonymity. As discussed before, specialization tree is a summary 

of the anonymized data. Since even sharing the anonymized data itself is safe in terms of 

privacy, publishing the specialization tree does not leak private information as well. 
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We provide a particular scenario that demonstrates the necessity of merging. There 

are two telecommunication companies, DHA and DHB, who want to anonymize their data 

collaboratively. Most of DHA’s costumers live in the northern side of the city while DHB’s 

costumers are from the southern side. When these parties locally anonymize their datasets, 

DHA’s specialization tree will be unbalanced towards left since only a small portion of all 

costumers live to the south. Similarly, the depth of DHB’s specialization tree will be much 

larger on the right compared to the left. Now suppose that sharing and merging phase is 

omitted. The intersection of the local quadrants would consist of containers in very coarse 

granularities. Therefore many iterations of SMC based collaborative anonymization would 

be required to achieve the quad-tree that would easily be attained after the merging phase. 

The data holders would also have to put considerable amount of effort to harmonize the 

granularities of their spatial containers so as to prevent the attacks. 

 

The advantage of specialization according to the merged tree is three-fold: First, the 

number of specializations in the collaborative anonymization phase is minimized. 

Collaboration requires Secure Multi-Party Computation (SMC) and is the most costly phase 

of our distributed anonymization protocol. Second, easy traversal of local specialization 

trees in the third phase is facilitated. Without identical specialization trees, data holders 

would have to identify the intersection of their trees. Hence we propose sharing and 

merging before collaborative anonymization. Finally, the attack scenarios against [2] are 

prevented by synchronizing the quad-trees among data holders. After merging the 

specialization trees, every party specializes its data according to the merged tree, which 

ensures that aggregated anonymized data does not contain any overlapping container. A 

detailed discussion of these attacks is provided in Section 4.3.  

 

The sharing and merging phase starts with every data holder sharing its specialization 

tree with the coordinator data holder, DHC. Once the sharing is completed, DHC merges all 

trees according to the algorithm of Figure 5.3 and sends the resultant tree to all data 

holders. The merge algorithm recursively merges two input trees by replacing any container 

with its counterpart if the counterpart is of finer granularity. 
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SpecTree Merge(SpecTree S1, SpecTree S2, SpecTree Result) 
Begin 
  If(Both S1 and S2 has children) 
    Create child nodes of Result; 
    Result → NW = Merge( S1 → NW, S2 → NW, Result → NW); 
    Result → NE = Merge( S1 → NE, S2 → NE, Result → NE); 
    Result → SW = Merge( S1 → SW, S2 → SW, Result → SW); 
    Result → SE = Merge( S1 → SE, S2 → SE, Result → SE); 
  Else If(S1 has children) 
    Result = S1; 
  Else //S2 has children 
    Result = S2; 
  Return Result; 
End 

Figure 5.3. Pseudo code of specialization tree merging 
 

Upon receiving the merged specialization tree, all data holders further specialize their 

local data according to the merged tree. The algorithm for updating the quad-tree, given a 

specialization tree, is provided in Figure 5.4.  

 

QuadTree UpdateQuadTree(QuadTree QRoot, SpecTree SRoot) 
Begin 
  If(SRoot has children & QRoot does not have children) 
    Partition QRoot into 4 quadrants and set  
        their members; 
  If(SRoot has children) 
    QRoot → NW = UpdateQuadTree( QRoot → NW, SRoot → NW); 
    QRoot → NE = BuildSpecTree( QRoot → NE, SRoot → NE); 
    QRoot → SW = BuildSpecTree( QRoot → SW, SRoot → SW); 
    QRoot → SE = BuildSpecTree( QRoot → SE, SRoot → SE); 
  Return QRoot; 
End 

Figure 5.4. Pseudo code of specialization tree merging 
 

Quad-tree updating through a specialization tree is essentially the reverse of the 

specialization tree building algorithm of Figure 5.2. For any quadrant whose correspondent 

in the specialization tree has children, we first partitioned the quad-tree if it is not already 

partitioned. Then every child node of this quadrant is updated recursively with the 

appropriate node of the specialization tree. 
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5.4 Collaborative Anonymization Phase 
 

In the collaborative anonymization phase, data holders traverse the leaf nodes of the 

merged specialization tree simultaneously, searching for any quadrant that can be 

partitioned into child quadrants of finer granularity while preserving k-anonymity. 

Extending the notation of Section 4.1, we denote the number of location observations 

contained in quadrant q at a data holder DHi as localSize(DHi, q). Similarly, the global set 

size of a quadrant, which is the sum of all local sizes, is denoted as globalSize(q).  

 

Quadrant q can be partitioned if and only if globalSize’s of all of its children are 

greater than k. However evaluating the predicate globalSize(q) ≥ k is not trivial. Local sizes 

should be considered private information because the data holders do not yet know whether 

k-anonymity property will hold after partitioning. That’s why we propose two methods for 

evaluating this predicate in Section 5.4.1 and Section 5.4.2, based on which we outline the 

algorithm for collaborative anonymization of a quadrant in Figure 5.6. 

 

CollaborativeAnonymization(QuadTree QRoot) 
Begin 
  If(globalSize(QRoot → NW)≥ k  

        and globalSize(QRoot → NE)≥ k  
        and globalSize(QRoot → SW)≥ k  
        and globalSize(QRoot → SE)≥ k) 

    Partition QRoot into 4 quadrants and set  
      their members;  
    CollaborativeAnonymization(QRoot → NW); 
    CollaborativeAnonymization(QRoot → NE); 
    CollaborativeAnonymization(QRoot → SW); 
    CollaborativeAnonymization(QRoot → SE); 
End 

Figure 5.5. Pseudo code of collaborative anonymization of a quadrant 
 

DHC’s mission in this phase is initiating collaborative anonymization on appropriate 

quadrants of the merged quad-tree. If a partition is to be partitioned, DHC informs all data 

holders so that quad-trees at different sites remain identical. Such synchronization while 

merging and collaboratively anonymizing ensures that leaf quadrants do not overlap, 

preventing the attacks scenarios discussed in Section 4.3. 
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5.4.1 Secure Sum 
 

If the number of data holders, N > 2, we use a secure sum protocol based on Pseudo-

Random Number Generators (PRNG), similar to [56]. The PRNG we proposed in Section 

3.2 is perfectly suitable for this purpose. The coordinator data holder, DHC, disguises its 

private input by adding the next pseudo-random of the generator and the disguised value is 

circulated among the other data holders. Each data holder adds its local size to the value it 

receives and passes the result to the next data holder until the disguised sum eventually 

returns it to DHC, who removes the pseudo-random number and obtains the sum. Then DHC 

checks if the sum is greater than k and notifies every data holder. We describe the protocol 

in Figure 5.5 below. In the figure, DH1 is the coordinator, r is the pseudo-random number 

generated by the PRNG and the local size of the data holder DHi is denoted as size(DHi). 

 

DHC can not infer any private information unless the sum equals size(DHC) in which 

case all other private inputs should be 0. However such inference is unavoidable by the 

nature of the problem. Notice that this protocol requires secure channels among data 

holders. 

 
Figure 5.6. Summation protocol 

 

5.4.2 Secure Greater Than Function Evaluation 
 

In two-party scenarios, secure sum protocol leaks private information since the 

coordinator data holder (DHC) can easily infer the other data holder’s local size of the 

current quadrant by subtracting its local size from the sum. That’s why we propose another 

method based on secure greater than function evaluation for cases where N = 2. 

m = r + ∑
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mG = r + size(DHC) 
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We reduce the problem of checking whether the global size of a quadrant is larger 

than k to the well known “millionaire problem” introduced by Yao [57] where two 

millionaires want to find out who is richer without disclosing how much they are worth. In 

our setting, DH1 has (k - size(DH1)) millions and DH2 has size(DH2) millions. At the end of 

the protocol, if DH2 turns out to be richer, then k - size(DH1) < size(DH2) which implies the 

sum is larger than k. 

 

Yao’s solution to the millionaire problem has a complexity of the domain size of 

compared inputs. Therefore greater than protocols are considered inefficient for comparing 

numeric values with large domains. However, in our case, size of a quadrant is limited to 

the number of trajectories which is relatively small with respect to the total assets of 

millionaires. 

 

5.5 The Complete Protocol 
 

Distributed anonymization protocol at site DHC is provided in Figure 5.7. The data 

holders should run this protocol for all time-stamps in the global spatio-temporal dataset. 

The first phase of the protocol is the same for all data holders. In the second phase, all data 

holders send their specialization trees to DHC, who merges them with its tree and broadcast 

the merged tree. Finally, in the last phase, data holders try to further specialize the merged 

tree through collaborative anonymization. We prove in Theorem 5.1 that our protocol’s 

anonymized output is identical to the centralized anonymization of aggregated horizontal 

partitions. 

 

Begin 
Phase 1: 
  QuadTree QRoot = Locally anonymize the dataset 
  SpecTree MergedTree = BuildSpecTree(QRoot); 
Phase 2: 
  For i=2 to numDHs-1  // DHC=DH1 
    SpecTree S1 = Request SpecTree of DHi; 
    SpecTree S2 = MergedTree; 
    Merge(S1, S2, MergedTree); 
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For i=2 to numDHs-1 
    Send MergedTree to DHi; 
  UpdateQuadTree(QRoot, MergedTree); 
Phase 3: 
  For Each Quadrant Q∈QRoot such that Q is a leaf node 
    CollaborativeAnonymization(Q); 
End 

Figure 5.7. Pseudo code of complete protocol at site DHC 
 
Theorem 5.1. Output of the distributed anonymization protocol is identical to the output of 

centralized anonymization protocol over the aggregation of horizontal partitions. 

 

Proof: We present a proof by induction on the quadrants of the final quad-tree. Notice that 

anonymized datasets are generated using the quad-tree structure. Therefore if quad-trees of 

two anonymizations of the same dataset are identical, then anonymization outputs should 

be identical assuming no faulty partitioning of location observations into child nodes. 

 

As the base case, consider a very small set of location observations distributed among 

data holders which can not be specialized further than the root. There are only three 

scenarios that this can happen: (1) Every data holder has strictly less than k observations, 

(2) At least 1, at most (n-1) data holders has less than k observations, where n is the number 

of horizontal partitions and (3) Every data holder has at least k observations.  

 

Showing that outcome of the distributed anonymization contains the root quadrant is 

easy since the root should already be identified in the local anonymization phase. In the 

second scenario, the problem is solved in the sharing and merging phase since at least one 

of the data holders’ dataset size is larger than k. Finally, in the third scenario, DHC checks 

whether the number of observations in the root is larger than k in the collaborative 

anonymization phase and notifies all data holders not to suppress their datasets. 

 

For the inductive part of the proof, assume that a quad-tree node q is partitioned 

correctly with the distributed anonymization technique. We have three scenarios again: (1) 

q appears in specialization trees of all data holders, (2) At least 1, at most (n-1) 

specialization tree contains q and (3) None of the specialization trees contain q. 
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Local anonymization phase of the distributed technique handles the first scenario. In 

the second scenario, q appears in the merged specialization tree and therefore is generated 

in quad-trees of all data holders after the update. In the third scenario, if the global size of q 

and all its siblings are larger than k, all local quad-trees are partitioned to q in some pass of 

the recursive collaborative anonymization phase. Otherwise, if the global size of q’s at least 

one sibling is strictly smaller than k, q should not be in the anonymization of the 

aggregation of horizontal partitions as well. □ 
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6 EXPERIMENTAL RESULTS 
 
 

In this chapter, the experiments we made for measuring the performance of the 

proposed techniques are explained and discussed in detail. Our distributed clustering 

protocol does not result in any loss of accuracy therefore we performed only two tests: 

communication cost analysis and computation cost analysis. For the anonymization 

methods, information content of the anonymized datasets is measured. The experiments 

were conducted on an Intel Dual-Core Centrino PC with 2MB cache, 2GB RAM and 

1.83GHz clock speed. We used C# programming language to implement the algorithms. 

 

6.1 Synthetic Data Generation 
 

Scarcity of publicly available spatio-temporal datasets indicates the need for privacy 

preserving spatio-temporal data mining methods that we proposed. Only very small 

datasets collected by tracking animals and mass transportation vehicles can be found. 

However, even if these datasets were sufficiently large, using such data in anonymization 

experiments would not be appropriate because animals move in herds and mass 

transportation vehicles always follow predefined trajectories. That’s why, we carried out 

the experiments on synthetic datasets generated by Brinkhoff’s “Network-based moving 

object generator” [58]. 

 

The data generator requires a road network as input, upon which randomly created 

moving objects move. Various different network formats can be loaded to the generator 

among which are files in TIGER/Line format, ESRI Shapefile format or any other random 

or manually built graph convertible to these. Our road network is one of the samples within 

the generator package, from the Oldenburg city, Germany. The network consists of 6105 

nodes, 7035 edges with a width of 23572 and height of 26915 units. 

 

The generator can be controlled through various parameters that are the number of 

objects, the duration of location observation, maximum movement speed of the objects, the 

number of classes of objects and location report probability. Among these, lower the report 
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probability, lower the number of observations for an object that has not yet disappeared will 

be. Maximum speed alters the displacement of objects between consecutive observations. 

Duration of observation parameter adjusts the length of trajectories of objects. 

 

Two types of objects are identified: moving objects and external objects. Pedestrians 

and human controlled vehicles are the moving objects represented as points. While moving 

objects are constrained to follow the edges of the network, external objects are not since 

these are supposed to represent moving events. External objects are depicted as rectangles, 

showing the area that the event they represent affects. Traffic congestion, bad weather 

conditions are some samples of external objects which tend decrease moving object density 

under the area it covers. We do not consider external objects in our experiments since the 

aim of our methods is ensuring privacy rather than reasoning about the data mining results. 

 

The number of moving objects that is generated depends on the number of objects 

that are assumed to exist in the network prior to starting the generation process and the 

number of objects that are introduced at each time point. We always set the number of 

objects at the beginning, blocking the introduction of new objects during the generation. 

 

Generated data contains three types of observations: introduction of a moving object 

labeled newpoint, location observations labeled point and deletion of a moving object 

labeled disappearpoint. Each observation contains the following information: id of the 

object, sequence number of the observation, id of the object class, time-stamp of the 

observation, x-coordinate of the object location, y-coordinate of the object location, current 

speed of the object, x-coordinate of the next node that the object will be passing and y-

coordinate of the next node. Among these, we only use the x-coordinate, y-coordinate, 

time-stamp, and object id, and delete the others. Sorting all location observations first with 

respect to the object id and then with respect to the time-stamp, trajectory of a moving 

object can easily be built. 
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Figure 6.1. Snapshot of Brinkhoff’s Data Generator 

 
Figure 6.1 above is a snapshot of Brinkhoff’s generator at the 5th time point, with the 

parameters that we used throughout our experiments. The outcome of this generation is 

referred as 100 objects over 20 observations data. 
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6.2 Privacy Preserving Distributed Clustering 
 

Three test cases are identified to measure the performance of our distributed 

clustering protocol. These are (1) number of moving objects (trajectories), (2) length of 

object trajectories (duration of observation) and (3) number of horizontal partitions. For 

each of these experiments, we measure the communication and computation overhead of 

our protocol against a baseline protocol. Similar to the privacy preserving protocol, every 

data holder builds its local dissimilarity matrix and shares it with the third party. However, 

for the pair-wise comparisons among trajectories of distinct data holders, private 

information is sent to the third party as plaintext, without any disguise. 

 

Among all suitable clustering algorithms that only require the dissimilarity matrix as 

input, we’ve conducted the experiments using Agglomerative Nesting (AGNES) described 

in [59] that has O(n2) complexity to cluster n objects. 

 

Except for the experiments on the number of partitions, we partitioned the generated 

spatio-temporal datasets into two by distributing object trajectories into two datasets evenly 

so that each data holder has a balanced share. 

6.2.1 Computation Cost Analysis 
 

Computational complexity of distributed clustering depends highly on the choice of 

the trajectory comparison function. As we explained in Section 2.3.2, Euclidean trajectory 

comparison is the only comparison function that has O(n) complexity, where n is the 

trajectory length of both trajectories that are compared. The other comparison functions 

require O(n*m) time to measure the distance between two trajectories of length n and m. 

Because of this distinction, we provide two sets of figures for all tests. In the first set we 

compare trajectories with Euclidean comparison function while in the second set, DTW is 

used as the representative of all O(n*m) comparison functions. We denote our protocol as 

“Protocol” and the baseline protocol as “Baseline” in the figures. 

 

Computation cost of our protocol is always higher than that of the baseline protocol. 

In our protocol, each private input of the data holders is disguised with two pseudo-random 
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numbers that are actually ciphertexts of DES. As expected, encryption is not free and the 

gap between the two protocols in each figure is the price paid for privacy. 

 

Both protocols have quadratic complexity with respect to the total number of objects, 

n, since O(n2) comparisons are required to fill in the dissimilarity matrix and the 

complexity of AGNES is O(n2) as well. The experiments conducted on varying number of 

object trajectories, each consisting of 50K observations, complies with this reasoning, as 

shown in Figure 6.2 and Figure 6.3. The situation is pretty much similar for both linear (i.e. 

Euclidean) and quadratic (i.e. DTW) trajectory comparison functions. The straight lines 

denote the total execution times including the clustering of the dissimilarity matrix while 

the time spent on clustering is not included in the measurements of the dashed lines. 
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Figure 6.2. Computation cost of Euclidean comparison with varying number of objects 
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Computation Costs - DTW

0

50000

100000

150000

200000

2000 4000 6000 8000 10000

Number of Objects

C
P

U
 T

im
e 

(s
ec

.)

Protocol Baseline Protocol w/o Clustering Baseline w/o Clustering
 

Figure 6.3. Computation cost of DTW with varying number of objects 
 

In order to measure the correlation between the number of observations and the 

execution time, we generated 1K trajectories with varying lengths. The total execution 

times of the protocols are depicted in Figure 6.4 and Figure 6.5 below. Since the number of 

objects is fixed, the CPU time spent on clustering does not change. That’s why we only 

present the execution times without clustering. Execution times of the protocol with 

increasing trajectory lengths are supposed to increase linearly using Euclidean comparison 

and quadratically using DTW.  

 

However, the results are contradictory for large trajectory lengths due to a property of 

the generator: Each moving object is assigned a destination node after reaching where the 

object disappears, irrespective of the duration of observation. Consequently, even if the 

duration of observation is set as 1K time points, objects start disappearing much earlier. We 

solved this problem by slowing down the objects and decreasing the duration of test cases 

by a factor of 100. That’s why the numbers of observations vary between 10 and 50, which 

are pretty low values for testing complexity. 
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Figure 6.4. Computation cost of Euclidean comparison with varying number of 
observations 

 
Execution times of the baseline protocol using DTW seems to increase somewhat 

linearly with respect to increasing trajectory lengths in Figure 6.5, which is most probably 

due to linear processing of 1K objects dominating quadratic comparison complexity for 

trajectories of length 10 to 50. 
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Figure 6.5. Computation cost of DTW with varying number of observations 
 

One of the most interesting experiments is on the number of data holders or 

equivalently, the number of partitions. For this experiment, we generated a spatio-temporal 
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dataset of 2K objects, observed for duration of 50K time points. This dataset is then 

horizontally partitioned by distributing the complete trajectories over the data holders so 

that each party holds the same number of trajectories. The results are depicted in Figure 6.7 

and Figure 6.8, excluding the time spent on clustering. 

 

The results in Figure 6.7 capture the expected behavior of our protocol very well. 

Denoting the number of objects as c and the number of partitions as k, complexity of the 

global dissimilarity matrix construction is O(c2) and complexity of each local dissimilarity 

matrix construction is O(c2/k2), assuming balanced shares at each data holder. After 

receiving the local dissimilarity matrices, TP should fill in O(c2-k*(c2/k2)) pair-wise 

trajectory distances to obtain the global dissimilarity matrix. These pair-wise comparisons 

are the most time consuming part of the whole protocol because building a local 

dissimilarity matrix is rather fast compared to pair-wise comparisons involving 

troublesome pseudo-random number generation. Therefore, although the execution time 

increases with increasing number of partitions, the corresponding curve is similar to that of 

a function of the order O(c2-c2/k). On the other hand, the baseline protocol’s complexity 

does not depend on the number of partitions because different distribution of objects to data 

holders only changes the sender of trajectories to TP. 
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Figure 6.6. Computation cost of Euclidean comparison with varying number of partitions 
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Figure 6.7. Computation cost of DTW with varying number of partitions 
 

The execution times that we provide in the figures are measured without 

parallelization, simply by summing the execution times at each site. However, the actual 

execution time of the protocols would be much smaller since parallel computing at different 

sites is possible. For example, while comparing trajectories with DHB according to Figure 

3.6, DHA does not have to wait DHB to complete its processing after sending the output but 

can start preparing the next output. Ideally, complexity of the protocol would boil down to 

the complexity of the third party, assuming no network delay. We discuss the network 

requirements to realize this improvement after presenting the communication costs. 

6.2.2 Communication Cost Analysis 
 

We discuss the communication cost of our protocol by providing three sets of tests on 

(1) Communication cost of transferring dissimilarity matrices to TP and communication 

cost of pair-wise trajectory comparisons among different data holders using (2) Euclidean 

trajectory comparison functions and (3) Quadratic trajectory comparison functions. 

Although we had to choose a representative function for computation analysis, results of 

the communication cost tests apply to all quadratic comparison functions. 

 

In both our protocol and the baseline protocol, cost of transferring local dissimilarity 

matrices is always much smaller than the cost of pair-wise comparisons because of the 

lengthiness of generated trajectories, which is the reason we are providing separate figures 
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for the communication cost of sending local dissimilarity matrices and pair-wise 

comparisons. Since there is no difference between our protocol and the baseline protocol 

concerning transferring local dissimilarity matrices to TP, we do not make a distinction 

between the two protocols in dissimilarity matrix figures. 

 

Pair-wise comparison of trajectories by Euclidean comparison function requires 

trajectories of equal length, denoted by n. In our clustering protocol, DHA transfers a vector 

of size O(n) to DHB who, after processing this vector, sends a vector of size O(n) to TP. 

The overall communication complexity is O(n). In the baseline protocol, both DHA and 

DHB send their trajectories to TP, transferring O(n) location observations in total. 

Therefore, the communication cost of comparing two trajectories with the baseline protocol 

always equals that of our protocol when the distance between trajectories is measured by 

the Euclidean comparison function. 

 

Baseline protocol’s communication complexity does not depend on the comparison 

function because the data holders always send their trajectories directly to TP. On the 

contrary, while comparing a trajectory of length m using quadratic comparison functions, 

DHB’s output size increases to O(n*m) in our protocol compared to O(n+m) complexity of 

the baseline protocol. 

 

The first set of figures on local dissimilarity matrix costs contain only one curve 

labeled as “Both protocols” because the results are the same with our protocol and the 

baseline protocol. For the other set on communication costs of Euclidean pair-wise 

comparison and quadratic pair-wise comparison, we denote our protocol as “Protocol” and 

the baseline protocol as “Baseline”. 

 

Falling in line with the communication complexity analysis, our protocol and the 

baseline protocol has the same communication cost in case of Euclidean trajectory 

comparisons. On the other hand, due to O(m*n) output at DHB per trajectory comparison, 

communication costs of our protocol are quadratically larger compared to the baseline 

protocol when the distance between trajectories is measured by quadratic comparison 
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functions. Figure 6.8 and Figure 6.9 depicts these costs with varying number of objects, 

observed an interval of 50K time-points. Local dissimilarity matrices grow quadratically 

with respect to the number of objects. Therefore cost of transferring the matrices increases 

quadratically in both protocol as shown in Figure 6.10. 
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Figure 6.8. Communication cost of Euclidean comparison with varying number of objects 
 

Communication Costs - Quadratic

0

100000

200000

300000

400000

2000 4000 6000 8000 10000

Number of Objects

C
om

m
un

ic
at

io
n 

Co
st

 
(M

B
)

Protocol Baseline
 

Figure 6.9. Communication cost of DTW with varying number of objects 
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Figure 6.10. Communication cost of local dissimilarity matrices with varying number of 
objects 

 
Figure 6.11 and Figure 6.12 depict the correlation between the duration of 

observation and communication costs on test datasets consisting of 1K objects. As 

expected, costs of both protocols are identical when Euclidean trajectory distances are used 

and our protocol transfers quadratically larger amount of information with quadratic 

comparison functions. The figures imply that increasing trajectory lengths require O(n) 

communication with linear comparison and O(m*n) in case of quadratic comparison 

functions. We do not provide figures for costs of transferring local dissimilarity matrices 

since the number of objects in each dataset is constant. 
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Figure 6.11. Communication cost of Euclidean comparison with varying number of 
observations 
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Figure 6.12. Communication cost of DTW with varying number of observations 
 

Analysis of varying communication costs with respect to different number of 

partitions is similar to our computation cost analysis. Both Figure 6.13 and 6.14 imply the 

communication complexity of O(c2-k*(c2/k2)) due to increasing amount of pair-wise 

trajectory comparisons. A dataset containing 2K objects with 50K observations was evenly 

distributed among data holders in these tests. 
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Figure 6.13. Communication cost of Euclidean comparison with varying number of 
partitions 
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Figure 6.14. Communication cost of DTW with varying number of partitions 
 

Since the number of objects in the dataset is the same for each test, the number of 

trajectories in each partition decreases linearly with increasing number of data holders. 

Consequently, cost of transferring local dissimilarity matrices decreases quadratically as in 

Figure 6.15. 

 

Figure 6.14 can be interpreted through Figure 6.15 as well. The number of trajectory 

distances required to fill in the global dissimilarity matrix remains constant and local 

dissimilarity matrices shrink quadratically with varying number of partitions. This 
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necessitates more pair-wise comparisons among data holders which is highly costly in 

terms of both computation and communication. Therefore costs of both protocols increase 

when the data is distributed among more data holders. 
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Figure 6.15. Communication cost of local dissimilarity matrices with varying number of 
partitions 

 
We now return to the discussion on the required bandwidth that should be attained 

between involved parties so as to realize the “no communication overhead” assumption of 

the computation cost analysis. Obviously, the calculations presented here are highly 

correlated with the computing power of the PC that the experiments are conducted on. If 

the participants have more powerful machines, their connections with each other should be 

faster. Our formulation of minimum necessary bandwidth relies on the data processing 

speed of the third party who would certainly be the bottleneck due to high incoming data 

rate in case of slow network connections. Data processing speed is defined as the average 

amount of data consumed per unit time. Table 6.1 provides the maximum processing 

speeds of the third party for each test scenario. According to the table, clustering with 

Euclidean comparison function requires 107Mb/sec. bandwidth at least, while the time 

consumed in DTW comparisons decreases the bandwidth requirement to 47Mb/sec. 

 

 



62 

Table 6.1. Maximum processing speeds for the test cases 
 

Test Case Comm. Cost 
(MB) 

Comp. Cost 
(sec.) 

Processing Speed 
(Mb/sec.) 

Number of objects (Euclidean) 34500 2586 106 
Number of objects (DTW) 384787 70465 43 
Number of observations (Euclidean) 375 28 107 
Number of observations (DTW) 4560 774 47 
Number of partitions (Euclidean) 1540 124 99 
Number of partitions (DTW) 10904 1875 46 
 
 

6.3 Location Anonymity 
 

Apart from the three test cases of our distributed clustering technique, experiments on 

the parameter k were conducted as well for the location anonymization methods. We are 

particularly interested in the information content after the anonymization which we 

measure by a formula derived from Shannon’s entropy formulation, tailored specifically to 

the quad-tree structure [60]. We define the information content of an anonymized spatio-

temporal database in Definition 6.1, based on the information content of its quad-trees 

formulated in Definition 6.2. 

 

Definition 6.1: (Information content of a k-anonymized spatio-temporal database) Given 

an anonymized spatio-temporal database S, information content H(S) of the database is 

defined as the sum of information contents of its quad-trees over all time points t∈T, 

denoted as H(QTt). 

∑
∈

=
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Definition 6.2: (Information content of a quad-tree) Given the quad-tree QT of an 

anonymized set of location observations L, information content H(QT) of the quad-tree is 

defined as the sum of self-information of all leaf nodes in QT, denoted as Leaf(QT). 
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In order to measure the quality of anonymization, we provide two sets of experiments 

for each test case. Results of the first set are labeled “Local” because we provide 

information content measurements of locally anonymized and then aggregated data. In the 

second set labeled “Distributed”, data is anonymized with our distributed anonymization 

protocol. For the experiments that are conducted with multiple values of k, the labels 

“Local, k = k” and “Distributed, k = k” are used. Since the information content of the 

distributed protocol is actually that of our centralized anonymization technique applied to 

the aggregation of partitions, the discussion on the experimental results labeled 

“Distributed” directly applies to our centralized anonymization method. Therefore we do 

not present any separate discussion on centralized anonymization in this section. 

 

In our experiments, we also measure the improvement in information content 

between the locally anonymized and aggregated dataset SL and the collaboratively 

anonymized dataset SD in terms of the information gain G(SL, SD), defined as the percentage 

of extra information  SD contains: G(SL, SD) = (H(SD) - H(SL)) / H(SL) * 100. 

 

The parameter k of anonymization is vital for the test cases concerning the 

distribution and size of the spatio-temporal dataset. That’s why we first discuss the 

correlation between anonymity requirement and information content with varying k. Figure 

6.16 depicts the results on a dataset containing 100 location observations of 10K moving 

objects distributed evenly to 2 data holders. According to this figure, information content of 

an anonymized dataset decreases logarithmically with increasing anonymity requirements, 

identified by k. 
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Figure 6.16. Information content with varying anonymity requirements 
 

The reason why the correlation is logarithmic can be explained through a simple 

example. Consider a k-anonymized set of n location observations, in which every leaf 

quadrant contains exactly k observations. Information content would be calculated as -

log(k/n) since there should be n/k leaf quadrants. If the anonymity requirement was 2k, 

information content would drop down to -log(2*k/n) changing logarithmically with respect 

to k, considering constant number of observations as in our case. 

 

In Figure 6.17, we provide the amount of information gain achieved by the 

distributed anonymization algorithm with varying values of k. According to the figure, 

information gain increases exponentially until k = 100 which turns out to be an important 

threshold value for the generated test dataset. Consider the detailed test results in Figure 

6.18. In order to 100-anonymize the dataset locally, data holders 540-anonymize the data. 

Therefore information content of the local anonymization experiment does not change until 

k = 540 while distributed anonymization method’s information content keeps decreasing 

logarithmically till k = 180, which explains the logarithmic decrease in information gain. 

Between k = 200 to k = 440, information contents of the two techniques are the same 

because each dataset is over-anonymized. After k = 440, information gain increases 

exponentially. Also notice that local anonymization method suppresses all location 

observation at for k ≥ 640 while distributed anonymization can resist until k = 1200. 
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Figure 6.17. Information gain with varying anonymity requirements 
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Figure 6.18. Information content with varying anonymity requirements 
 

We now provide the experimental results related to the structure of the spatio-

temporal dataset, over constant values k = 10 and k = 100. Lower anonymity requirement, k 

= 10, ensures that over-anonymization does not occur and the higher requirement is a local 

maxima of the information gain in Figure 6.17. 

 

According to the results of Figure 6.19, as the number of objects in a dataset 

increases, anonymity can be achieved within quadrants of finer granularity. Therefore the 

anonymized dataset is less generalized and contains more information. The experiments of 

Figure 6.19 were conducted over 100 time points and the data was partitioned into 2. 
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Notice that the information content of aggregation of locally anonymized datasets does not 

change because of over-anonymization at k = 100. Table 6.2 provides the information gain 

of our protocol in the experiments of Figure 6.19. Our protocol performs %12 and %74 

better than the local anonymization for k = 10 and k = 100 respectively in terms of the 

information content. 
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Figure 6.19. Information content with varying number of objects 
 

Table 6.2. Information gain with varying number of objects 
 

Information Gain (%)# of Objects k = 10 k = 100 
2000 30,30 151,38 
4000 6,73 0 
6000 7,78 31,86 
8000 7,64 79,34 
10000 7,63 108,15 

Average 12,02 74,15 
 

Information content varies linearly with respect to the number of observations since 

the information content of a spatio-temporal database is the sum of information contents 

over each time point. Figure 6.20 depicts this correlation for k = 10 and k = 100 on datasets 

of 10K objects each, partitioned into 2. Since larger anonymity requirements imply more 
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generalization and less information, measurements for k = 100 are below k = 10. Table 6.3 

provides the information gain of our protocol in the experiments of Figure 6.20. Our 

protocol performs %9 and %112 better than the local anonymization for k = 10 and k = 100 

respectively. 
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Figure 6.20. Information content with varying number of observations 
 

Table 6.3. Information gain with varying number of observations 
 

Information Gain (%)# of Observations k = 10 k = 100 
10 7,93 114,28 
20 9,56 102,43 
30 8,43 123,21 
40 10,50 106,66 
50 9,62 115,05 

Average 9,21 112,33 
 

The results in Figure 6.21, conducted on a dataset containing 10K objects over 100 

time points with varying number of partitions, comply with the proof of Theorem 5.1. 

Information content of our protocol does not change with respect to the distribution of the 

data, while the total information content of locally anonymized datasets either decrease 

logarithmically (k = 10) or stay constant (k = 100) due to shrinking dataset sizes and over-
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anonymization respectively. Table 6.4 provides the information gain of our protocol in the 

experiments of Figure 6.21. Our protocol performs %23 and %281 better than the local 

anonymization for k = 10 and k = 100 respectively. 
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Figure 6.21. Information content with varying number of partitions 
 

Table 6.4. Information gain with varying number of partitions 
 

Information Gain (%)# of Partitions k = 10 k = 100 
2 7,63 281,68 
4 17,01 325,31 
6 22,08 267,97 
8 29,66 270,69 

10 37,90 278,97 
Average 22,86 281,68 
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7 CONCLUSIONS AND FUTURE WORK 
 
 

In this thesis, we studied privacy aspects of horizontally partitioned spatio-temporal 

data from the data mining perspective. We specifically focused on clustering moving object 

trajectories and anonymizing location observations both locally and collaboratively. 

 

Our distributed clustering method is based on sharing local dissimilarity matrices 

with a third party, who builds the global dissimilarity matrix of the distributed spatio-

temporal data using local dissimilarity matrices and a series of secure trajectory 

comparisons among the data holders. Security analysis implies that unless the third party 

has background information on the domain of the spatial components of location 

observations, sharing local dissimilarity matrices does not leak private information. 

However, considering that the distance between any pair of trajectories depend on the 

geographical area that location observations are collected from and the number of 

observations, such background information is not readily available if not provided by the 

data holders. 

 

In order to measure the communication and computation costs of our protocol, we 

used the synthetic spatio-temporal data generator of [58] and designed a simple baseline 

protocol in which privacy is disregarded. In compliance with the complexity analysis, the 

experiments show that if the distance between trajectories is measured by Euclidean 

comparison function, the communication costs of our protocol are the same as the baseline 

protocol, i.e. there is no communication overhead. On the other hand, when quadratic 

comparison functions are used, our protocol has quadratically larger communication costs. 

As expected, computation costs of our protocol are much higher than the baseline protocol 

due to expensive pseudo-random number generation process. Yet such costs are the price 

paid in return for privacy and therefore are justifiable. 

 

We provided two definitions of anonymity concerning spatio-temporal datasets and 

attacked the first one, location anonymity, in our anonymization methods. Proposed 



70 

centralized anonymization method improves the previous work in [2] by blocking the 

inference channels identified in [3] and extending the work from anonymity in Location 

Based Services (LBS) to anonymity for data mining purposes. For horizontally partitioned 

spatio-temporal datasets, we proposed a method for collaborative anonymization based on 

sharing specialization trees of locally anonymized datasets and further specializations 

through two Secure Multi-Party Computation (SMC) protocols, Secure Sum and Secure 

Greater Than function evaluation. Our distributed anonymization protocol is proven to 

return the same anonymization scheme as the centralized anonymization method would, 

given the aggregation of horizontal partitions as input. 

 

The experiments on the anonymization methods measure the information content of 

locally anonymized and aggregated spatio-temporal datasets versus that of collaboratively 

anonymized datasets. We were particularly interested in the information gain of distributed 

anonymization which is, although very dependent on the synthetic data, on average around 

%12 for small values of the anonymity requirement, k, and %100 for larger values. As 

observed in the experimental results, for larger numbers of partitions, information gain 

increases logarithmically. 

 

The methods proposed in this thesis imply that preserving privacy of individuals over 

spatio-temporal data is possible for data mining purposes, considering the studied example 

of trajectory clustering. We believe that privacy concerns related to collection and use of 

spatio-temporal data will be voiced more loudly in the near future and therefore research in 

the area is of utmost importance. As future directions of research, we plan to study the 

trajectory anonymization problem that is much harder compared to location anonymization. 

We think that generalizing the proposed distributed anonymization would be an interesting 

work as well. In this general case, quad-trees would be replaced with Value Generalization 

Hierarchies (VGH) defined by domain experts, while the rest of ideas presented would 

remain after simple transformations, i.e. specializing according to VGH rather than 

partitioning a quadrant. 
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