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Abstract  

In the last decades, it became possible to manufacture high mobility two-

dimensional conductors. The study of electron transport in such two dimensional 

conductors has led to discovery of many new physical phenomena, two of which were 

awarded with Nobel prizes.  The reduction in the dimensions of a conductor drastically 

changes the scattering properties of carriers.  Intercarrier scattering angle is also 

severely reduced in two dimensions.  Recently, it was shown that this kind of directional 

scattering can be exploited to achieve electron multiplication and absolute negative 

resistance in a three terminal configuration.  Experimental results suggest that such an 

effect should boost as the device size shrinks and can be useful to fabricate compact 

high frequency sources that are not yet within the reach of conventional semiconductor 

devices. 

The purpose of this thesis is to extend further the experimental study of such 

phenomena, and in particular, to understand its dependence on the device size.  For this 

a new fabrication method has been developed.  This method gives a greater flexibility to 

shrink the device size down to sub-microns.  The new generation of fabricated devices 

produce high electron multiplication ratios up to 5.    
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IKI BOYUTLU ELEKTRON GAZINDA YÖNELMIS SAÇILMADAN 

KAYNAKLI EKSI DIRENCIN INCELENMESI

   
Engin KARABUDAK  

MDBF, Master Tezi, 2006  

Tez Danismani: Doç. Dr.  Ismet I. Kaya

    

Anahtar Kelimeler: Iki Boyutlu Elektron Gazi, Mutlak Eksi Direnç, Elektron-

elektron saçilmalari, yönelmis saçilma   

Özet    

Yakin geçmiste yüksek hareketlilikli iki boyutlu iletkenlerin üretilmesi mümkün 

olmustur.  Bu iki boyutlu iletkenlerde yapilan çalismalar, ikisi Nobel ödülü alan birçok 

yeni fiziksel olayin kesfine yolaçmistir. Boyut sayisindaki azalmayla elektron saçilma 

nitelikleri çok degismekte ve elektron-elektron çarpisma açisi çok daralmaktadir. Yakin 

zamanlarda, bu tür yöneltilmis saçilmalarin iki boyutta, elektron çogalmasina ve mutlak 

eksi direnç elde edilmesinde kullanilabilecegi gösterilmistir. 

 

Deneyler aygit boyutlari 

daha da küçüldügünde bu etkinin güçlenecegini göstermekte ve yeni bir THz radyasyon 

kaynagi yapiminda kullanma olasiligini göstermektedir.

   

Bu tezin ana amaci, deneysel olarak daha da küçültülmüs, elektron çogaltma 

 

aygiti üretme metodu gelistirmek ve üretilen aygitlarin elektriksel özelliklerini 

boyutlarina bagli olarak incelemektir. Bu yeni üretim metodu aygit boyutlarinin mikron 

alti büyüklüklere indirilebilmesini mümkün kilmaktadir. Bu çalismada üretilen 2 mikron 

baz uzunlugundaki aygitin akim transfer oranin 5’e kadar çikabildigi gözlenmistir. 
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Chapter 1    

INTRODUCTION    

1.1. Motivation  

Earlier experiments done by I. I. Kaya [1,2] demonstrated absolute negative 

resistance in a three terminal device fabricated on a AlGaAs/GaAs two dimensional 

electron gas (2DEG). The layout of the device is shown in Figure 1.1. The device 

exploits the enhanced directionality of electron-electron scattering angle in two 

dimensions to achieve current reversal or potential depression in the middle contact of a 

three terminal device. Results suggest enhancement of the effect in smaller devices. 

Fabrication of a smaller device (~ 1 µm in base length) is needed in order to improve 

negative resistance. The main motivation of this thesis is to develop a new fabrication 

method to achieve smaller device dimensions and characterize them to understand the 

size effects.  Using this new method is more efficient and simpler. A device with 2 µm 

base length has been fabricated and characterized.  

1.2. Two Dimensional Electron Gas  

Since electrons are fermions, they obey the Fermi-Dirac statistics.  Their energy 

distribution function is: 

1/)(exp

1
)(0 kT

f                                                    (1.1) 

where µ is the chemical potential, e is the energy, k is the Boltzman constant and T is 

the  temperature.  
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                                           Figure 1.1 : Hot Electron Device in 2DEG[1], 

a) Schematics and  b) Energy diagram of the device.   

 

Figure 1.2  :  Fermi circle of a 2DEG under applied electric field.  

In two dimensional systems, electrons form a circular Fermi surface (see Figure 

1.2).  With the application of an electric field, Fermi surface shifts in the direction of  
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the field applied.  The shift of the Fermi surface results asymmetric charged particle 

distribution.  Asymmetry causes a potential in the opposite direction. This is called 

Coulomb potential [3].  If there is no dominant phonon scattering, system tries to relax 

to a symmetric distribution due to the electron-electron (e-e) scattering mechanism.  

This process is called momentum relaxation [4]. 

At low temperatures, electron-electron scattering mechanism is the only momentum 

relaxation process.  If a high energy electron is scattered with a low energy electron, 

both electrons must have energies outside the Fermi circle, due to Pauli Exclusion 

Principle. This restricts the scattering angle severely in 2DEG compared to 3D 

conductors.  

In this system, e-e scattering angle is restricted by Pauli’s Exclusion Principle, 

energy conservation and momentum conservation.  Therefore, e-e scattering in a two 

dimensional system is a small angle process [5]. In other words, e-e scattering is 

directional in 2DEG.  

1.3. AlGaAs / GaAs Two Dimensional Electron Gas (2DEG)  

1.3.1. AlGaAs / GaAs 2DEG  

In 1978, R. Dingle et al. [6], reported the first modulation doped AlGaAs / GaAs 

superlattice structure.  Molecular beam epitaxy (MBE) is used to produce atomically 

smooth layers of GaAs and AlxGa1-xAs superlattice.  Today, the system is known as 

AlGaAs / GaAs 2DEG.  Figure 1.3 shows the band structure of a generic 2DEG.  In 

modulation doped superlattice, all carriers and their donor impurities are separated from 

each other, so that high mobility can be reached. 

There is a conduction band energy difference of 0.3 eV between GaAs and 

AlGaAs.  Therefore, when an epitaxially thin and clean layer AlGaAs is grown on 

GaAs, there is a formation of triangular potential.  At low temperatures,  conduction 

electrons from donor impurities cool down to triangular potential barriers. Energy 

quantization occurs in this triangular potential well in one direction. Therefore, electrons 

have mobility only in two dimensions.  Two dimensional transport properties are 

different in comparison to three dimensional transport [5]. 
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Figure 1.3: Band Structure of the interface between n-AlGaAs and intrinsic GaAs. 

Excess electrons condense in the triangular well and form the 2DEG when cooled to 

cryogenic temperatures [7].  

 

Figure 1.4: Band Structure of GaAs [8].  

Two dimensional electron gas is formed between GaAs and AlGaAs layers. This 

system has three main advantages for experimental work: 
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i)  Electron mobility in AlGaAs/ GaAs 2DEG is higher than bulk GaAs, because 

the donors that supply the electrons are located in a remote region of the wafer which 

does not contain impurity [6].  Therefore, electron impurity scattering rate is reduced.     

            ii) 2DEG has very low carrier density.  Therefore, electron densities can be 

controlled by applied electric field via metallic gates placed on the surface.  When a 

negative potential is applied to the surface metallic gate, gate potential depletes the area 

below.  Therefore, the carrier density changes. Electron density under biased gate is  

                      N =  m* ( EF  - F )  / p 2                                        (1.2) 

where EF is the Fermi Energy;  N is the electron density under the biased gate;  F is the 

electrostatic potential under the gate due to basing and,  m* is the effective electron 

mass [9].  

J. Spector et al. [10] used surface lithographic gates in order to construct 

refractive prism for ballistic electron beams.  L.W. Molenkamp et al. [11] collimated the 

electron beam by point contact.  B. J. van Wees  et al. [12] showed the conductance 

quantization of a point contact. 

 iii) Two dimensional electron gas can be shaped by etching. Etching of 2DEG,  

helps the formation of predefined two dimensional  conductors.  

In this thesis, one sample of 2DEG structures has been used. 

Sample 8789 which was grown by Karl Eberl at MPI-FKF in Stuttgart, has the 

mobility of µ = 9.0 x 105 cm2 / V . s  and the sheet electron density of Ns = 2 x 1011  cm-2 

at 4.2 K.  The mobility is related to mean free time between the scattering events via 

Drude conductance formula: 

                                                      =  
*m

e
                                                                 (1.3) 

where m* is the effective mass of electron for GaAs (m* = 0.067 me) (me  is free electron 

mass), e is electron’s charge, t  is average inelastic scattering time. (t = 3.4 x 10-11 s for 

8789);   

In two dimensions, density of states is: 

                                                       2D   =   
2

*m
                                                      (1.4) 

                 For kB T << EF ; Fermi energy and Fermi velocity are given as 

                                                     EF = Ns   /  2D                                                                     (1.5) 
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     where kB is Boltzman constant, T is temperature in Kelvin. 

                                                
*

2

m

E
v F

F                                                    (1.6) 

Inelastic mean free path is defined as  

                                                      lmfp =  vF   x    t                                                  (1.7)  

These values for sample 8789 are calculated as EF  = 7.1 meV, vF = 1.9 x 105 m / s and   

l  = 6.6 µm.  

Electron transport is ballistic for dimensions smaller than inelastic mean free path.  

Ballistic devices show different characteristics than usual diffusive devices (see 

[9][13][14]). 

Figure 1.5 :   Calculated effective potentials, electron densities of 2DEG and velocities 

of electrons in 2DEG (left). Calculated effective potential and electron density 

distribution of  2DEG (a) 77 K , (b) 300 K,  (right) Steady state velocity and population 

of electrons  versus electric field that is applied, characteristics at (c) 77 K and (d) 300 

K. From Kiyoyuki and Hess  [15] .  
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1.3.2. Transport Properties of AlGaAs / GaAs 2DEG  

Yokoyama and Hess [15] calculated electronic multisubband states and transport 

properties of  single well AlGaAs/GaAs 2DEG. During the calculations five lowest 

subbands are being considered. (Electron densities of subbands at 77 K and 300 K are 

seen in Figure 1.5 (a) and (b)).  Electron velocities and electron occupation numbers in 

subbands including L-valley, are calculated.  The results are shown in Figure 1.5 (c) and 

(d). Here, the electron population in L-valley at higher fields is noticeable.  

Scattering mechanisms that limits the electron mobility in AlGaAs / GaAs 

2DEG, can be divided in two groups as extrinsic and intrinsic [14] .  Extrinsic effects are 

charged impurity scatterings. They are result of unintentional doping of bulk GaAs and 

AlGaAs spacer layers. Improvements in growth and fabrication techniques can reduce 

extrinsic effects.  

Intrinsic effects are remote ionized impurity scattering and lattice phonons. 

Remote ionized impurity scattering is a result of highly doped AlGaAs layer.  Remote 

ionized impurity can be reduced  by the presence of undoped AlGaAs spacer layer 

between GaAs and doped AlGaAs.  

 

Figure 1.6 : Mobility of  2DEGs with different spacer layer width versus temperature 
[17]. 

Figure 1.6 from Hirakawa and Sakaki [17] , displays the mobility versus 

temperture for 2DEG structures with different spacer layer thicknesses. 
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Phonon scattering also limits the conductance  [16].  Phonon scattering can not 

be reduced, because phonon scattering is the intrinsic property of all atomic crystals.   

Kawamura and Sarma [16] calculated the phonon scattering contribution in range of 1-

300 K, with variational-subband-wave-function model and with Random Phase 

Approximation (RPA).  They assumed lowest subband occupation for calculations.  

Results imply three physically distinct regions.  Bloch-Gruneisen (BG) region (0 – 4 K), 

equipartition region (EP) (4 - 40 K), inelastic regime (above 40 K) are expressed.  In 

BG region, effect of acoustic phonons and thermal energy is comparable, therefore 

instead of phonons, remote ion scattering limits the electron mobility. In equapartition 

region, electron mobility is limited by deformation-potential coupled acoustic phonons 

and piezoelectric coupled acoustic phonons.  In this regime, thermal energy is higher 

than acoustic phonons, which means electron scattering is quasi-elastic.  In inelastic 

region, LO phonons contribute to electron mobility, which results in inelastic scattering 

of electrons. 

Developments in molecular beam epitaxy (MBE) led to an immediate 

improvement in mobility of AlGaAs / GaAs 2DEG.  Mobilities in the order of 107 cm2 / 

V-s can be achieved in cryogenic temperatures [18].  Figure 1.7 shows the improvement 

of mobility from 1978  [6]  to 1989   [18].  

 

Figure 1.7:  Hall mobility of some landmark samples in history from Ref . [18].  
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1.3.3. Quasiparticle Lifetime in AlGaAs / GaAs 2DEG  

In BG regime of temperature, electron mean free path is determined by remote 

ion scattering [16].  Electron transport is influenced by elastic electron-electron 

scattering.  Elastic electron-electron scattering does not change the total momentum, 

whereas, elastic electron-electron scattering determines the quasi particle lifetime.  

Inelastic Coulomb lifetime t ee is an important parameter for the behavior of 2DEG 

systems at low temperatures.  

Boltzmann Transport Equation (BTE)  [7] must be solved in order to calculate 

the scattering lifetime. 

collt

f

p

f
)x

c

1
(e

r

f

t

f
HvE                                  (1.8) 

                  f(p,r)  is the  non-equilibrium distribution function and    p is the momentum;  

r is the  position,  v is the velocity ,  E is the electric field and H is the magnetic field.  

Analytical solution of Boltzmann Transport Equation is not possible for realistic 

systems.  Therefore, approximation methods are used to calculate t ee.  Giuliani and 

Quinn  [3], used perturbative approach based upon the random-phase approximation in 

order to calculate tee in two dimension (see Eq 1.9. and Eq 1.10). 

m

qp
OKT

p

q

EE

E TFF

F

TF

FF

F

heee

)2(2)2(2

,,
2

ln
2

1
ln

4

1
(1.9)  

FETBk
Fp
TFq

FE

TBk

FE

TBkFE

heee
,1

)2(2
ln2lnln

2

2

1             (1.10)  

where  is the  small excitation energy, p F  is the fermi momentum,  t ee is inelastic 

coulomb lifetime and )2(
TFq is  the Thomas – Fermi screening wave vector in two 

dimensions. 

            Equations 2.2 and 2.3 are successful while interpreting the experimental 

results of various studies [19][20][21][22][23][24][25]. 

            Guiliani and Quinn [3] calculated the electron-plasmon excitations at 

zero temperature. They concluded that there is a finite excitation energy threshold c for 

decay into plasmon. 
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4
3~

arccos
3

1

3
cos

2
1

3

2
1232

CFE

)s(rFEp)CF(EFEem
c

          (1.11) 

where FEsr
sr 1

3
2

42.0
)(

~ ; sr is the average interelectronic distance measured in 

Bohr radii.  

Fukayama and Abrahams [26] evaluated diffusion propagator diagrammatically 

in two dimensional metals in the existence of inelastic scattering due to screen Coulomb 

interactions.  

              
1,ln

2

1,ln
21

1

2

T
T

T

E

T

T
T

E

E

T

F

F

F

e

                                      (1.12)    

                             

where e is the inelastic scattering lifetime and is the elastic scattering lifetime,  

22
1 )(4 DET F ; 22 em ; 2/2

FvD .  

 

Figure 1.8 :  Tunneling electrons between two-dimensional electron systems from 

Murphy el al. [27] (left): typical 2D-2D tunneling resonances observed at various 

temperatures in a sample with equal electron density (Ns = 1.6 x 1011 cm-2 ) in the two 

2DES’s. Inset show simplified band diagrams on and off resonance. (right): Tunneling 

resonance width vs temperature for all samples (having eight different densities). On 

dividing T by TF and the resonance width (minus the zero temperature limit G0 

(linewidth) by EF all the data collapse onto single curve. The dashed lines are the 

calculations of GQ [3]  and FA [26]. 
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Murphy el al.  [27] used tunneling electrons between two-dimensional electron 

systems, in order to measure quasiparticle lifetime of electrons. Different temperatures 

give different tunneling resonances. (Figure 1.8.a)  Linewidth is measured at half width 

at half maximum.  Due to Heisenberg Uncertanity principle, electron lifetime is 

calculated from linewidth (G).  Results showed a factor of 6 disagreement with the  

theory [3] (Figure 1.8b).      

Figure 1.9 : Dependence of the response function  on the energy e and angle, f : (a)  = 

0.1 ;  (b)  = 0.32 ;  where  = ( e0 – F ) / F , From Ref. [34] .   

Lian Zheng and S. Das Sarma [28] tried to understand the discrepancy between 

Giuliani and Quinn calculations [2] and Murphy et al.  [27].  They calculated t ee using a 

single loop dynamically screened Coulomb interaction within random-phase 

approximation.  It is claimed  that reason is due to missing  ( p / 2 )2 in Eq 1.13.  Their 

asymptotic results [15] are shown Eq. 1.13 and Eq. 1.14.  

TkEfor
E

Tk

E

TkE

T BF
F

B

F

BF

heee

ln
8

1
2

        (1.13) 
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TkEfor

EE

E
BF

FF

F

heee

ln
4

1
2

         (1.14) 

              Equation 1.13. is in excellent agreement with tunneling experiments results of 

Murphy et al. [27].   

1.4. Electron – Electron Scattering Angle in AlGaAs / GaAs 2DEG  

Electron- electron scattering in two dimensional systems is shown to be a small 

angle process. That is proved in many studies [29][30][31][32][33].  

Figure 1.10 : Schematic and measurement results of device that is fabricated by 

Yanovsky et al. [30]. (a) The schematic view of the e-e scattering indicatric g(a) in a 2D 

system (solid line); dashed line is the 3D case. (b)  Layout of the device,  i: injecter; 

d:detector;  O: scattering point;   (c) e-e scattering indicatrix  g(a) obtained from 

experiment (1) Vi  = -0.8 mV , (2) -1.2 mV, (3) -2.06 mV, (4) -2.3 mV, (5) -3.5 mV, (6) 

-3.8 mV, Inset: small angular peak width da (squares) as a function of Vi.From Ref. 

[30]. 
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Buhmann et al.  [34] calculated the electron-electron scattering mechanism in 2D 

degenerate systems both analytically and numerically (Figure 1.9). The result shows the 

directional scattering theoretically.  In Figure 1.9, response function  is the probability 

of e-e scattering.  Angle f is the angle between scattering electrons. F  is Fermi energy 

of the system and e0 is the energy of non-equilibrium electron that is scattered. 

Yanovsky et al. [30] tried to show small angular process experimentally. In 

Figure 1.10.a, |g(a)|da characterizes the probability of scattering theoretically. The 

scattering angle is shown as a. 

 

Their sample has ns = 2.8 x 1011 cm-2 and lmfp = 10 µm.  

Figure 1.10.a shows the theoretical plot.  Experimental results can be seen in Figure 

1.10.c. Inset of Figure.1.10.c shows the angular peak width versus injection energy.   

1.5. Lateral Hot Electron Devices in AlGaAs / GaAs 2DEG  

1.5.1. Lateral Tunneling Electron Spectroscopy  

 

Figure 1.11 : Lateral tunneling electron spectroscopy;  (a) At top, Layout of the device  

(b) Energy diagram of the device (c) SEM picture of the device.  (d) A schematic 

description of the potential distribution for a biased device, VEB < 0 and VCB > 0. From 

Palevski et al.  [35]. 
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Palevski et al. [35] demonstrated the lateral tunneling in a two depleted barrier 

system. VEB and VCB are the barrier height of barriers.  Hot electrons are tunneled from 

one electrostatic barrier (injector) and energy spectrum of electrons (spectrometer) are 

detected by tuning the second barrier (see Figure 1.11.d).  They detected narrow 

injected electron distribution which was the same as injected electrons. Direct ballistic 

transport is verified (see Figure 1.12).  

       

1.5.2.  Hot Ballistic Transport  

Sivan et al.  [13]  tried to investigate the hot-electron transport and its 

dependence to injection energy. Hot electrons that have energy below LO-phonon 

emission (36 meV) have reached 2 µm ballistic transport length, which is an order of 

magnitude longer than theoretical electron-hole excitation  [36]  and more than electron 

plasmon scattering   [37]. Oscillation in the periods of LO-phonon emission is observed. 

(See Figure 1.13.)  

 

    

Figure 1.12: The ballistic distribution of electrons for different injection energies as a 

function of excess normal energy above the Fermi Level in the base from Palevski et al. 

[35]. The peaks of the distributions follow rigidly the injection energy. 
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Figure 1.13 : Device that shows the long mean free path of hot electrons in 2DEG. (left) 

(a) Layout and energy diagram of  structure. Dark regions are gates. I: Injector ; C: 

collector. (b)  The oscillations in the transfer ratio (solid line) and collector current 

(dashed line) versus injection energy. At barrier energy is fixed to 23 eV above EF. Two 

types of voltage for two values of injector gate voltages measured at T = 4.2 K. 

Noticeable negative differential transconductance (dIC / dVI ). From U. Sivan et al.   

[13].  

  

Figure 1.14: Device that shows the higher subband transition of hot electrons (a) 

Experimental Device (b) detected voltage versus magnetic field for different currents 

from B. Laikhtman, et al. [14].   
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1.5.3.  Long Mean Free Path of Hot Electrons  

Laikhtman et al. [14] tried to understand unexpected long free path results of 

Sivan et al.  [13]. They suggested that the second subband transport can be the reason. 

Electrons with different injection energies are focused by magnetic field to a point 

contact (see Figure 1.14). Maximum potential of detector is shifted at -9 meV. 

Calculations from data showed the first-second subband energy difference is 15 meV. 

The result is also verified with Raman Spectroscopy.  They concluded that long mean 

free path and the absence of electron-plasmon scattering (at about 10 meV) is due to 

higher subband transport.   

1.6. Transport Effects Dominated by e-e Scattering  

1.6.1. THETA Devices  

Brill and Heiblum [38]  fabricated a THETA (tunneling hot electron transfer 

amplifier).  The structure is fabricated by molecular-beam epitaxy. They study the 

interactions of injected hot electrons and cold electrons, passing briefly through a thin 

doped GaAs. In this device,  hot electrons are emitted by tunneling through very thin 

doped GaAs layer (see Figure 1.15.a).  They observed electron multiplication at base 

region.  Theoretical study of system shows that it is due to heating effect. High energy 

electrons increase the electron temperature in the base region which raises the current 

transfer ratio above unity. Directional scattering phenomenon is also discussed as a 

possible reason of electron multiplication.  But magnetic field measurements agree with 

heating effect picture.  As seen in Figure 1.15.c,  transfer ratio exceeds unity when VC 

(collector potential) is at positive bias.  They have concluded that heating effect both 

depends on injection energy and current.  Electron temperature is measured in the range 

of 10-20 K.  

Dellow et al.  [39] proposed that THETA device can be used to create THz 

oscillator, because e-e scattering is a very fast mechanism (10-100 fs).  
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Figure 1.15 : THETA device ; (a) Conduction Band Profile of THETA device, with 

typical biasing, including band bending calculated from Poisson equation; (b) 

differential, (c) static transfer ratios, measured versus injection energy.   

Kaya et al. [40] used in-stu focused ion beam implantation to fabricate hot 

electron transistor, similar to THETA device.  Transfer ratio graeater than unity is 

observed.  Schematic diagram of structure and negative resistance data are shown in 

Figure 1.16. and in Figure 1.17 respectively.    

 

Figure 1.16 :  Schematic diagram of oscillator structure (top) showing epilayer 

sequence, (bottom) vertical projection of completed structure.  
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                    Figure 1.17:  Base current as a function of emitter injection current at 2.4 K 

for VCB = 0.4 and 0.5 V  [40].   

1.6.2. Absolute Negative Resistance in 2DEG:   

           Layout of the device is shown in Figure 1.18.a. [1].  This is a three terminal 

device, two electrostatic barriers are placed on asymmetrically patterned two 

dimensional electron gas.  Electron multiplication effect results in a potential drop at the 

middle contact.  Momentum and current transfer ratio exceeds unity.  Negative 

resistance is attributed to directional electron-electron scattering.  

           In conventional electronic devices, electron transport is diffusive.  The 

resistivity of these devices depend on electron impurity or electron phonon scattering.  

Electron-electron scattering does not effect the resistance of diffusive transport. But 

when the device dimension is smaller than impurity and phonon scattering, the transport 

is ballistic. 

Electron-electron scattering is directional in two dimensional systems.  In 

general, electron-electron scattering is restricted to energy conservation, momentum 

conservation and Pauli’s exclusion principle.  This restriction results small angle 

scattering in two dimensional systems.  Therefore when there is a hot electron, it is 

scattered with a cold electron without much loosing its direction.     

Figure 1.18.c shows the base negative resistance that is measured.   There are 

three terminals in the device. Emitter (E), Collector (C) and base (B).  The measurement 

of Figure 1.18,  VC and VB are connected to ground. E is biased to -25 mV in order to 
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inject hot electrons.   Therefore, electrons are injected from E and collected at B and C.   

Two electrostatic barriers are called gate emitter (VGE) and gate collector (VGC).  VGE is 

biased to -540 mV in Figure 1.18.c.  Currents IC , IB and IE  is plotted versus VGC.  At 

low values of  VGC , injected current IE is shared between collector and emitter. But at 

higher VGC values ( -270mV < VGC < -350mV), IB  reverses its direction and IE exceeds 

the value of IC.   

 

Figure 1.18 :  The device that shows the absolute negative resistance in 2DEG from [1] 

(a) Layout of device, (b) Energy diagram of device, (c) Measured currents through three 

terminals, IE, IC and IB versus collector gate voltage, VGC; VGE = -540mV, VE = -25mV, 

VB = VC = 0. T = 4.2K,  inset represents the measurement configuration. Curve labeled 

as GC is the measured equilibrium conductance of the collector barrier for VC = 1mV 

(after substracting lead resistance), VGE = VE = VB = 0V, f C is the calculated collector 

barrier height from equilibrium conductance data according to Eq. 1.15.   (d) The DC 

current transfer ratio a = | (IC / IE)|   versus emitter voltage, VE, as the emitter barrier is 

increased in steps, VGE = -550mV,-555mV,…..-700mV, VGC = -330 mV  (e) The 

momentum transfer ratio,   versus injected power calculated from data in (d) (solid 

lines) and corresponding VE vs Pin curves (dashed line).  



 

20

    
Electrons that are injected to E transfer their energy to cold electrons in the 

base region. Therefore,  scatterred cold electron can also surmount collector gate barrier.  

Therefore, absolute negative resistance of base terminal is due to directional scattering. 

In directional scattering, momentum is preserved in one direction due to small angle 

between scattered electrons.  

If, we assume the transmission probability of collector barrier as step function   

T (E- ) = T (E- - fC ).  Then conductance can be calculated by    
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  (1.15)  

where w is the width of the collector channel, e  is the charge of an electron. fC and fB 

are the distribution functions of base and collector terminal [1]. Dependence of f C on 

VGC can be calculated from Eq. 1.15.  The resultant fC is shown in Figure 1.18.c.   

Figure 1.18.d shows the injection energy dependence of transfer ratio | IC / IE |. 

With increasing injection energy,  higher energy electron can  surmount GE,  hence 

scattered electrons will have higher momentum in order to surmount collector barrier.  

Therefore, transfer ratio increases with injection energy.  The peaks at 36 meV and 72 

meV are due to LO-phonon emissions.  Dependence of transfer ratio on base length  

also agrees with directional scattering picture.  At longer base lengths,  electron-electron 

scattering broadening and impurity scattering will decrease the transfer ratio. It is seen 

in Figure 1.18.d.  

In Figure 1.18.e, Momentum transfer ratio  = (PC,X / PE,X) versus injected power 

(Pin) is plotted. PE,X and PC,X is given as; 

                 e/EI)FEEV(e*m2x,PE                                                  (1.16) 

                  e/
C

I
C

*
m2

xc,
P                                                            (1.17) 

where e is equal to one electron charge, m*  is reduced mass of electron, EF is the  

fermi energy,  f C  is the height of collector barrier.  

Also in Figure 1.18.e, VE versus Pin is plotted. PC,X and  PE,X are calculated from 

VE values, and collector barrier height. Interestingly, momentum transfer ratio is also 

exceeding unity in some curves. Therefore, in one direction, momentum of collected 

electrons is greater than that of injected electrons.   
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Figure 1.19  :  Measured base potential and absolute negative resistance of device from 

[1] (a) Base Voltage, VB versus VE for the same set of VGE, VGC values as in Figure 

1.18.d. Inset shows the measurement configuration  (b) Three terminal resistance; RCB = 

(VB – VC) / I and current, I = IE = -IC versus VE at various temperatures. VGE = -550mV, 

VGC = -340mV.  

In Figure 1.20.a base terminal potential is measured with respect to collector 

terminal when IB equals to zero.  VB versus VE is shown in the figure.  When IB smaller 

than zero in current measurements, VB is higher than zero in the voltage measurements.  

Figure 1.20.b shows the calculated base terminal resistance at different temperatures. As 

seen in the figure, absolute negative resistance of base terminal decreases with 

increasing temperature.    
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1.6.3. Quantum Electron Pumping 

          

Govorov and Heremans  [41] theoretically studied hydrodynamic phenomena 

originating from electron-electron collisions in two dimensional Fermi system.  

Theoretically, they offered that electron beam sweeping past an aperture creates a 

pumping effect.   They proposed that main reason of this phenomenon is specific 

potential distribution induced by the injected electrons.  Therefore,  repulsive coulomb 

interaction between electrons would form attractive force when passing from an 

aperture.  They have characterized system theoretically and proposed that this pumping 

effect is qualitatively different from Bernoulli pumping effect.  Figure 1.20.a shows the 

pumping effect schematically.  Inset shows the theoretical dependence of  pumping 

effect on temperature. Figure 1.20.b shows the nonequlibrium electron density as a 

function of the in-plane coordinates.  As seen in Figure 1.20.b,  nonequlibrium electron 

density has high positive value at the middle but in the neighbor region, nonequlibrium 

electron density has negative values.  This is atributed to form pumping effect.     

Figure 1.20 : Theoretical quantum electron pumping device from [41] : (a) Schematic of 

theoretically offered quantum electron pumping in theoretical mesoscopic device. (b) 

Calculated nonequilibrium electron density as a function of in-plane coordinates. lee = e-

e scattering mean free path.  
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Chapter 2   

EXPERIMENT   

In the experimental part the fabrication procedure and measurement setup is 

described. Then, mechanism of electron multiplication is shown.  Lastly, 

characterization of device is explained.    

2.1 Fabrication:  

2.1.1. Cleaving and Cleaning  

 

Sample is cleaved 5 mm X  5 mm dimensions. 

 

Wafers are cleaned in ultrasonic cleaner in the acetone for 5 minutes. 

 

Wafers are cleaned with 3 steps of Aceton and 3 steps of IPA.  

 

Samples are dried with gas N2. 

 

Dehydration at 110 oC for 1 minute.  

2.1.2. Mesa  

 

Spin of AZ-5214 with 6000 rpm for 40 second. 

 

Bake on hot plate at 110oC for 50 second. 

 

Expose UV light for 40 second with at 5 mW / cm2 with Mask-  LEP-M. 

 

Develop with  1:4 AZ-400 K:H2O  for 20 second 

 

Post-bake: 110oC for 2 minutes. 
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Etch in 1:H2SO4+8:H2O2+320:H2O for 45 second.  

 
Dektak measurements show the depth of 100 nm. 

 
Clean with Aceton + IPA + Dry N2.  

2.1.3. Ohmic Contacts  

 

Clean with Aceton + IPA + Dry N2.  

 

Spin: 1300 rpm / 2 second ; 6000 rpm / 40 second. 

 

Bake at 110oC for 60 second. 

 

Exposure with Mask-LEN at 6 mW/cm2  for 9 second. 

 

Postbake on hotplate at 120oC for 2 minutes. 

 

Flood exposure (no mask) at 6 mW/cm2 for 28 second. 

 

Development with AZ-726 K for 55 second. 

 

Box Coater Evaporation: 350 Å Ge + 700 Å + 400 Å Ni + 1500 Å Au. 

 

Lift-off with Aceton for 2 hours.  

 

Anneal in forming gas at 450oC for 60 second.  

2.1.4. Fine Gates with Electron Beam Lithography  

 

Clean with Aceton + IPA + Dry N2.  

 

Spin with 1000 rpm for 4 second + 4000 rpm for 60 second which gives 140 nm 

resist thickness. 

 

Bake in oven at 160oC for 1 hour. 

 

E-beam pattern is drawn on resist with e-beam system with dose: 260 µC / cm2. 

 

Develop in 1:3 MBIK:IPA for 60 second, rinse in IPA 60 second, Dry with 

nitrogen gas. 

 

Box Coater Evaporation: 50 Å Cr + 150 Å Au. 

 

Lift-off with Aceton for 12 hours.  

2.1.5. Gate Pads  

 

Clean with Aceton + IPA + Dry N2. 

 

Spin Az-5214, 1300 rpm / 2 second , 6000 rpm / 40 second. 
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Bake on hot plate at 110oC / 60 second. 

 
Exposure using Mask-LEN-G at 6 mW / cm2 for 9 second. 

 
Postbake on hotplate at 120oC for 2 minutes. 

 
Flood exposure at 6 mW/cm2 for 28 seconds. 

 
Develop in AZ-726 for 55 second. 

 

Box Coater Evaporation 100 Å Cr + 1500 Å Au. 

 

Lift-off with Aceton for 12 hours.  

2.1.6.Bonding  

 

Devices are cleaved into individual devices. 

 

Each device is attached to chip holder with AZ-5214 resist.  

 

The pads are connected by wire bonding.  

2.2. Device:  

 

Figure 2.1 : Schematic of Device that is fabricated: Ohmic Contacts: (E: Emitter; C: 

Collector; B1: Base1; B2: Base2); Metallic Gates: (FE: Focus Emitter; FC: Focus 

Collector; GE: Gate Emitter; GC1:Gate Collector1; GC2: Gate Collector2). The 

diamond shape is the mesa. The drawing is not to scale.  
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A new developed device schematic is shown in Figure 2.1.  The distance 

between GE barrier and GC1 barrier is 1 µm.  The distance between GE barrier and 

GC2 barrier is 2 µm.  Focus peaks to gate is 300 nm.  Gates are used to isolate the 

barrier region (e-beam paterned region) from the rest of the device.  

In the developed fabrication procedure, FE and FC are used in order to define 

conductor.  In this way one can reduce the device size to submicron.  Previous design 

was using etched mesa and gates. Alligning of mesa to gates were not easy.  In the new 

scheme, we define the conductor by FE and FC and hence there is only one EBL step.  

Optical lithography had three layers, first layer was mesa layer, second was 

ohmic contact layer, third was called gate layer.  Mesa layer is used to etch the 2DEG 

layer, so that we fabricate a shaped 2DEG layer.  Second layer was ohmic contact which 

is used to send and receive electrons to 2DEG active layer.  Third layer is gate, which is 

used to form barriers and focus on 2DEG.  The actice device is placed at the center. 

Gate metals are made by Cr/Au evaporation.  Chromium is used to stick the 

metallic layer to 2DEG wafer surface, because Au can not stick to the surface of 2DEG.  

After Cr, we coat Au on Cr, because Au is very good conductor and very resistive 

against to oxidation. In the development process of this method. In the initial devices Ti 

is used instead of Cr. However, conduction is observed between optic lithography and 

ebeam lithography, possibly due to the oxidation of Ti.    

 

Figure 2.2 : Photograph of the fabricated device taken by an optical microscope.  
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Figure 2.3: AutoCAD Drawing of optical lithographic layout. Red is the ohmic contact, 

blue is the mesa layer, green is metallic gates.   

 

                          Figure 2.4: Optical microscopy of  fabricated device.  

Metallic gates on surface of the 2DEG are used to deplete the 2DEG 

electrostatically.  Biasing a negative potential on the gates decreases the electronic 
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density under it and forms a barrier.  This property of 2DEG is used in barrier regions of 

the device. If high enough negative bias is given to the gates, they totally deplete the 

electron density under them and they inhibit the electron transport. This property is used 

in the focus gates. By applying high negative bias (-1,9 V) to FE and FC, the conducting 

area gets into the pattern defined by gates. 

Working principles are similar to previous design [1] which is explained in 

section 1.6.3.  Directional scattering and electron multiplication is explained in section 

2.3.  Schematics of the our device is shown Figure 2.1. Energy diagram of the device 

can be seen in Figure 2.6. There are two types of gates in the design (focus gates and 

barrier gates).  Electrostatic focus gates are used to define the conductor.  With high bias 

of focus gates, two dimensional channel is formed instead of etched conductor of 

previous design.  GE and GC2, are used to form electrostatic barriers. GE is used to 

inject hot electron to base region as seen in Figure 2.6.  GC2 is used to collect scattered 

electron beam.  If we don’t use, GC2, scattered electrons will thermalize and we could 

not see electron multiplication.  Ohmic contacts E, B1, B2 and C are used to inject and 

collect the current.  

In the development process of this fabrication method, positive AZ5214 (see 

Figure 2.5.b) is used which results lift-off problems of gates and ohmic contact. Finally, 

negative AZ-5214 is used in the process (see Figure 2.5.a), which solves the lift-off 

problem.   

(a)

  

(b) 

Figure 2.5 : SEM image of positive and negative profile of AZ-5214  (a) Negative AZ-

5214 profile after development, (b) Positive AZ-5214 profile after development.    
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2.3.   Mechanism 

 

Figure 2.6 : e-e scattering mechanism in the device; In (a), (b) and (c), it is assumed that  

base length is smaller than mean free path of electron, therefore,  system is ballistic. (a) 

when all emitter current pass the base ballistically, not electron multiplication,  (b) e-e 

scattering results electron multiplication; (c)  e-e scattering can not result electron 

multiplication due to high collector barrier.  

         In Ref. [2] it has been shown that electron-electron scattering results in negative 

resistance.  The mechanism that is proposed in there is shown in Figure 2.6.  If injected 

electrons surmount GE, they transfer their energy to cold electron. Energy transfer 

occurs via electron-electron scattering.  When a hot electron is scattered by cold 
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electron,  a multiplied beam of electron are formed.  In 2DEG, electron-electron 

scattering is small angle process [21] . Therefore, multiplied electrons convey their 

forward momentum for several generations.  If beam of electrons can surmount 

collector barrier, electron multiplication due to directional scattering is observed.   

2.4. The Measurement Setup   

The measurements are done at 4.2 K with Agilent 4156C Precision 

Semiconductor Parameter analyzer. Sample is inserted into the liquid helium 

transportation dewar with a temperature sensor on it. 

1.5 K measurements are done with Oxford Instruments Cryostat. 1.5 K 

temperature is reached with pumping the liquid helium in the sample space by a rotary 

pump. Cryostat has a Superconducting Magnet that has been used to test the effect of 

magnetic field.  Temperature measurements are done by Oxford Instruments ITC 503 

temperature controller.  

1.5 K measurements are done after the initial tests at 4.2 K measurement.  4.2 K 

measurements showed the base terminal current reversal as expected [1].  However, 

unexpected collector terminal terminal current reversal is also observed. The aim of 1.5 

K measurements is to investigate further this affects. Variable temperature and magnetic 

field are the other parameters which we used in 1.5 K measurements. 

Figure 2.7: Testing of emitter gate function, IE , IC and IB versus VGE; VE = -

100mV;  VF = 0; VB = VC = 0. 1mV  
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2.5. Device Characterization   
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Figure 2.8 : Testing of GC, IE, IC and IB vs VGC2; VC = -100mV; VF = 0V; VE = VB = 0V.  
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Figure 2.9 : Testing of FC. Currents through the terminals vs VF, VE = - 1 mV,   VE = 
VB =  0 V.  

  Characterization of the device is started with testing of the barriers.  This test is 

important to verify that gates can deplete the 2DEG completely.  If a gate can not 

deplete the 2DEG layer, then current may leak on the undesired paths.  



 

32

 
          Figure 2.7 shows the testing of GE.  At the values of 595 mV, IE becomes zero; 

verifying that the gate emitter works.          

FE can also block all electrons under the focus gates at about -600 mV (see Figure 

2.9). This shows that at -600 mV, electrons can only transport through the opening 

defined by FE. Further increasing the bias from -600 mV to -5 V depletes opening and 

current is reduced to zero. 

           Figure 2.8. shows that the FC can also block all electrons at -605 mV.                             
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Chapter 3   

RESULTS AND DISCUSSION     

Data is collected  at  4.2 K and 1.5 K with 4156C Semiconductor Analyzer. Ohmic 

contacts (E, C, B1 and B2) are used to inject carriers to 2DEG active layer. Focus gates 

(FC and FE) are used to form narrow electrostatic transport  channel.  In Ref. [1] the 

device has an etched 2DEG channel.  The channel has a width of 2 µm.  There is no 

narrow mesa channel in our device.  Similar narrow channel is formed by focus metallic 

gates.  Isolation is obtained by negative biasing of FE and FC that are connected 

together in all measurements.  At 4.2 K, VF = -1.9 V is applied.  Later, at 1.5 K, VF = -

2.2 V is used.  Bias is increased in 1.5 K measurement, because some leakage current in 

4.2 K measurement is observed. Increasing the bias to -2.2 V at 1.5 K measurements 

have solved the leakage current problem.  

In Ref. [1] the device had only one base terminal, whereas the device in this 

study has two base terminals B1 and B2 which are connected to each other in the 

measurements.  This is expected to increase the base negative voltage and current.    

In Ref.  [1] the device had two different gate barriers (12 µm and 5 µm).  Our device 

has also two gate barriers. GC1 is 1 µm away from GE. GC2 is 2 µm away from GE.  

While designing the device, the idea was to make measurement with both GC1 and 

GC2.  In measurements, absolute negative resistance with GC2  is observed. However, 

the same effect with GC1 is not observed.  The reason can be the electrostatic channel 

that is formed between GC2 and FC.  This electrostatic channel cannot be formed 

between GC1 and FC, because the distance between them is very high. This distance is 

300 nm between focus collector and GC2, but 1.3 µm between focus collector and GC1.  
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Focus gate at 2.2 V bias can form electrostatic channel to GC2, but it can not form 

electrostatic channel even at -7 V bias to GC1.  Without electrostatically isolated 

channels, leakage current from other sides of the device destroys the directional 

scattering effect.    

The device is designed in order to observe the absolute negative resistance at the base 

terminal. However, in the measurements absolute negative resistance at collector 

terminal is also observed.   

3.1.  4.2 K Measurements  

All measurements are started at the temperature of liquid helium, 4.2 K.  The 

device is mounted on to the socket in the sample holder.  The sample holder is dipped 

into the liquid helium dewar. The measurements are done with 4156C Semiconductor 

Analyzer.  

After observing proper device operation, the measurements are performed at 1.5 

K. The reason for the experiments to be taken 1.5 K, is to further reduce the phonons in 

2DEG and to increase the mfp of electrons.   

     In order to observe all related phenomena about absolute negative resistance,  

and because of nine independent variables that neede to be varied, a strategic plan for 

measurements is needed.  These variables are the voltages on FC (VFC), FE (VFE), Base1 

(VB1), Base2 (VB2), Emitter (VE), Collector (VC), Gate-Collector1 (VGC1), Gate-

Collector2 (VGC2) and Gate-Emitter (VGE).  In order to make reasonable number of 

measurements, some parameters have to be taken as constants. Thus, FC and FE  are 

biased to a constant value.  At 4.2 K, bias was 1.9 V.  Furthermore, absolute negative 

resistance can not be observed with GC1 due to the reasons that mentioned before.  As a 

result, the measurements have 5 independent variables; VE, VC , VB, VGE and VGC.   

                  

3.1.1 Dependence of  Currents on Injection Energy.  

         IE, IB, IC is measured with respect to VE for various VGC and VGE settings.  

Current reversal at the base terminal is an expected phenomenon [1].  Negative IB 

(Figure 3.1) is observed at specific values of VGC, VGE and VE, this is due to mechanism 

of electron multiplication (See Figure.2.6).  IB has a minimum value of -210 nA at 

injection energy of -225 mV, at VGE  = -750 mV and VGC2  = -390 mV.   
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Figure 3.1 :  IB  versus VE at different VGC2 values at 4.2 K.  VGC2 = -310, -330,…..-450 

mV; VGE = -750 mV, VB = VC = 0 V.   
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Figure 3.2 : IC  versus VE at various VGC2 values at 4.2 K.  VGC2 = -110, -150…..-430 

mV; VGE = -750 mV.    

            Current reversal at the collector terminal is an unexpected phenomenon. 

Negative IC (Figure 3.2) is observed at different specific values of VGC, VGE and VE in 

comparison to negative IB (Figure 3.2). At the same VGE, negative IC  is observed at 

higher injection energies. Despite that, IC is observed at lower values of VGC2. This can 
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be related to heating effect of base region [30] (see Figure 3.7). IC has minimum value 

of -450 nA at specific VGE, VE and VGC2 as shown in Figure 3.2.    

3.1.2 Dependence of Base Current on the Emitter Barrier  

                 Base current reversal is further investigated in this section as a function of 

VGE.  Results are shown in Figure 3.3 and Figure 3.4.  With increasing VGE, injected 

electrons need higher energies to pass the barrier.  Higher energy electrons have lower 

mean free path [3]. Lower mean free path results higher number of electron-electron 

collisions in the base region (see figure 2.6).  There is higher negative current in the 

base terminal with increasing VGE as shown in Figure 3.4.  

                 Figure 3.3 is the original experimental data. As seen in the data, there is some 

leakage current from collector to base.  VF is not enough to close the distance between 

GC2 and FC. The problem is solved by increasing the bias from -1.9V to -2.2V in 1.5 K 

measurements. 

0 -50 -100 -150 -200 -250 -300 -350
-250
-200
-150
-100
-50

0
50

100
150

  
I B

 (
nA

)

VE (mV) 

Figure 3.3 :  IB  vs VE at various VGE values at 4.2 K.  VGC2 = -390 mV; VGE = -400mV 

to -920mV in 2mV steps; VB = VC = 0.   

             There are four peaks in the data of Figure 3.4.  As discussed previously, 

negative resistance of base terminal increases with increasing VGE, but it has some limit. 
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If electron energy exceeds 36 mV, then an optical phonon is emitted with the energy of 

36 mV reducing the energy of electron. Three peaks in the graph that are at 36mV, 72 

mV and 108 mV corresponding to one two and three longitudinal optical phonons (LO-

phonons) of GaAs strcture. The monotonic decrease higher than -170 mV of VE, is 

attributed to heating of the electron system.    

0 -50 -100 -150 -200 -250 -300 -350
-250
-200
-150
-100

-50
0

50
100
150

  

I B
 (

nA
)

VE (mV)  

Optic Phonons

 

Figure 3.4 : Same  curves as in Figure 3.3 after subtracting the leakage currents.   

3.1.3 Dependence of Collector Current on the Emitter Barrier  

         Negative collector current at various collector barrier height is seen in Figure 3.5. 

Figure 3.6 is after correcting the leakage current.  There is only one peak in the data of 

Figure 3.6.   Increase of negative collector voltage up to -260 mV is due to effect of 

heating.  In higher injection energies, negative potential decrease.  This decrease is due 

to heating of collector terminal. 

         Negative IC has minimum value of -500 nA. The mechanism of collector current 

reversal is possibly not directional scattering.  Instead, negative IC is the result of heating 

of base region. High energy electrons heat the base region. Heating will reduce the 

chemical potential in two dimensional systems [42]. Chemical potential decrease in base 

region will result in potential gradient between base and collector. Therefore, if GC is 

low enough, electrons flows from collector to base region.  (see Figure 3.7) 
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Figure 3.5: IC  vs VE at various VGE values at 4.2 K, VF = -1,9V; VGC2  = -250mV; VGE  = 

-670mV to -950mV with -10mV steps; VB = VC = 0 V; VF = -1.9 V.  
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Figure 3.6 : Data in Figure 3.5 after leakage current corrections.  

Figure 3.7 :   Collector current reversal due to Base Heating at high Emitter Current. 
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3.1.4 Dependence of Currents on Collector Barrier at Different Emitter Barrier 

Heights  

Previous measurements showed us that collector barrier height is both critical in 

the mechanisms of negative resistance of base and collector. Therefore, we measured 

the dependence of currents on collector barrier height at different emitter gate heights.  

Figure 3.8 shows the dependence of IB on VGE. Figure 3.9 shows the collector current 

dependence on collector barrier height. At small values of VGC2, IB is constant.  Then 

with increasing collector barrier IC increases. This increase is reasonable, because with 

increasing collector barrier height, collector resistance increases.  Therefore, electrons 

prefer to go base terminal.  Further increase of VGC2 results in decrease of IB.  This 

decrease is due to directional scattering.  Scattered electrons directly pass to collector 

region.  (see Figure 2.6.b)   
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Figure 3.8:  IB versus VGC2 at various VGE values at 4.2 K. ; VGE = -739 mV, -743 mV, -

747 mV, -751 mV,  ...., 767 mV; VE = -226 mV;  VB = VC = 0 V; VF = -1.9 V.     

IC and its dependence on GC height is shown in Figure 3.9.  There are four different 

regions. At small values of VGC2,  IC  is not dependent on VGC2. Because VGC2 does not 

deplete the active layer at small values.  Between -100 mV to -200 mV,  there is a 

decrease of current down to -300 nA. Decrease to a negative value is due to heating 
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effect  (see Figure 3.7).  Further increase of negative biasing of VGC2 results an increase 

of IC up to 600 nA. As seen in Figure 3.9.b,  transfer ratio | (IC / IE ) |  exceeds unity at 

when VGC2  equals to -370 mV and VGE equals to -740 mV. Therefore, there is 

directional scattering.  We can see both directional scattering and heating effect in the 

same graph at the same injection energy.  This is an interasting border between two 

competing phenomenon.  (see section 2.4).   In the interval from -390 mV to -500 mV, 

GC2’s height starts to inhibit electron multiplication and IC decreases to zero.     
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Figure 3.9: IC versus VGC2 various VGE values at 4.2 K and transfer ratio;  (a) VGE = -722 

mV, -728 mV, -734 mV, -740 mV; VE = -226 mV. (b) Transfer ratio | (IC / IE ) |  

calculated from a.             

              

3.1.5     Dependence of Base Terminal Potential on Injection Energy 

                

              In previous measurements, electron multiplication is observed by current 

recording.  In this measurement, we make IB = 0 A and we only measure VB with respect 

to VC.  Figure 3.10 shows the resultant VB.  This is the  result of electron multiplication 

effect [1].  In this configuration, electron multiplication results in a maximum of 2 mV 

potential at -230 mV injection energy. 
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3.1.6 Dependence of Collector Terminal Potential on Injection Energy  

In this measurement, we measure VC at IC = 0 A to observe the effect of base heating 

(see Figure 3.7).  Figure 3.11 shows the result.    Measured VC has a maximum of 1 mV 

at -270 mV.  Absolute potential is lower compared to base potential due to directional 

scattering. This result shows experimentally that heating base region results in a positive 

potential in collector terminal.  Also, in agreement with the current measurements, the 

collector positive potential is observed, if the height of GC2 is low.       

Figure 3.10: VB versus VE  at various VGE values at 4.2 K ; VGE = -670 mV, -690 mV 

,…., -950 mV;  VF = -1.9 V;   IB = 0 A ; VC = 0V ; VGC2 = -370 mV.    

3.1.7 Current Transfer Ratio   

Electron multiplication mechanism can result in negative current and positive potential 

at the base terminal in various configurations.  Transfer ratio (a = |IC / IE|) is the ratio of 

collected electron at collector over emitter electron from emitter terminal (Figure 3.12). 

Transfer ratio increases with injection energy. This is reasonable; because with 

increasing energy, electron’s mean free path decreases. Therefore, number of electron-

electron scattering events increases in the base region, which increases the transfer ratio.   
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Figure 3.11 : VC versus VE at various VGE values at 4.2 K; VGE = -670 mV, -690 mV, -

710 mV,..., -950 mV; VF = -1.9 V;  VGC2 = -260mV;  IC = 0 A;  VB = 0 V;    
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        Figure 3.12 : a = | IC / IE | versus VE  calculated from selected data from Figure 

3.4.;   

       a has a highest value of 5.5 near VE = -300 mV.   In Ref [1] a ~3 at VE = -100 mV 

at 4.2 K.  Despite we see a value of 5.5, we can not exceed the value of 3 at injection 

energy -100 mV.  This can be due to etched channel that is used in Ref. [1]; instead we 
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have formed our channel electrostatically.  Electron scattering from the walls of etched 

channel may increase the effect of electron multiplication.    

3.2 1.5 K Measurements 

                 

There are two physically interesting phenomena in these measurement. Current 

reversal in base terminal as observed before [1]; and currents reversal at the collector 

terminal which is a new observation. Due to 1.5 K measurement results, the discussion 

section is divided in two main parts.  The first part is focused on base terminal absolute 

negative resistance, and the second part is focused on collector absolute negative 

resistance.   

Figure 3.13: IB and VB versus VE at various VGE values at 1.5 K (a) IB vs VE ;  VGE  = -

400 to -950mV steps: -2mV;  VGC2 = -362 mV; VF =-2.2 V;  VB  = VC = 0 V;  (b) VB  vs 

VE;  VGE = 0 to -950 mV; VGC2= -362 mV; VF =-2.2 V; IB = 0 A; VC = 0 V. T = 1.5 K.    
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3.2.1      Base Terminal Current and Voltage Reversal    

In addition to similar measurements of 4.2 K, we have added magnetic field 

dependence and temperature dependence of base terminal absolute negative resistance.   

3.2.1.1 Dependence of Base Current Reversal on Injection Energy  

At 1.5 K, dependence of negative IB on VGC2 is shown in Figure 3.13.a.  As 

discussed before, with increasing VGE, electron multiplication shifts to higher injection 

energies.  Three LO-phonon peaks are observed at -36 mV, -72 mV and -108 mV.  

Thermal peak is seen at -150 mV.   There are unexpected peaks at -320 mV and -360 

mV.  These peaks can be due  to higher band excitation of electrons in the structure. 

Further experimental proof is needed in order to discuss the origin of these peaks.    

3.2.1.2. Dependence of Base Potential on Injection Energy at Different Emitter 

Barrier Heights  

In this measurement, IB is set to zero and VB is recorded.  The result is shown in 

Figure 3.13.b. Electron multiplication results in a positive potential at the base terminal.  

The maximum of VB is 1 mV.  The maximum value of VB was 2 mV in the 

measurement of 4.2 K.  They are not comparable, because in each cooling procedure 

electronic system may  change.  In the  data of Figure 3.13b, we can also see LO-

phonon peaks at -36mV, -72 mV and -106 mV of injection energy.  Thermal peak of VB 

and thermal peak of IB are in the same position of VE.  Unexpected peaks at -320 mV 

and -360 mV are more remarkable in Figure 3.13.b in comparison to Figure 3.13.a.   

3.2.1.3 Dependence of Transfer Ratio of Base Negative Current on Injection 

Energy at Different Emitter Barrier Height  

As a next step, transfer ratio |(IC / IE)| of electron multiplication is calculated and 

it is shown in Figure 3.14.b.  In comparison to original data, Figure 3.13.a and Figure 

3.13.b are put together.   In transfer ratio graph, LO-phonon peaks can be seen(-36 mV, 
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-72 mV and -108 mV).  Thermal peak of IB and thermal peak of transfer ratio |(IC / IE)| is 

not in the same injection energy.  Transfer ratio maximum point is at -260 mV of 

injection energy.  But the minimum of  IB  is at -160 mV of injection energy.  Somehow, 

heating effect decreases the base current at -160mV, but transfer ratio starts to decrease 

at -260 mV.   
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Figure 3.14 :(a) same graph as Figure 3.13.a., same configuration  

             (b) Calculated transfer ratio | (IC / IE) | versus VE ; from Figure 3.14.a.   

Transfer ratio | (IC / IE) | maximum has the value of 4 at -260 mV of injection energy.   

At -100 mV injection energy transfer ratio is 2.5.  Additional peaks are seen at -320 mV 

and -360 mV.  It is interesting that these peaks are always in the same position of VE at 

Figure 3.14.b, Figure 3.13.a. and Figure.3.13.b.        
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3.2.1.4 Temperature Dependence  

             Base terminal potential versus VE is measured while IB is set to zero.  The data 

is shown in Figure 3.15.  With increasing VGE, positive VB shifts to higher VE, and VB  

increases as seen in Figure 3.15.  Different colors correspond to different temperatures.  

As seen in the data,  with increasing of temperature from 1.5 K to 40 K, VB decreases 

monotonically in all values of injection energy. With increasing energy, electron mean 

free path decreases [3], also acoustic phonons becomes the dominant scattering 

mechanism [16].  Therefore, electron multiplication mechanism is weakened with 

increasing temperature. Also as seen in Figure 3.17, peak positions shift with 

temperature.  Mean free path (mfp) of electrons shorten with increasing temperature due 

to theory [3].  Mean free path also increases with decreasing injection energy. 

Therefore,  in order to have the same mean free path, increase of temperature, results the 

decrease in injection energy. At the end, we see the same peak at a lower injection 

energy with increasing temperature.   
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Figure 3.15:  Temperature dependence of VB vs VE at various VGE values; VGE = - 

400mV to -700mV in 30mV steps; VGC2 is fixed to -362 mV;  VF  = -2.2V; IB = 0 A; VC 

= 0 V.    
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3.2.1.5 Effect of Magnetic Field  

       Magnetic field dependence of negative IB versus injection energy is shown Figure 

3.16. Different colors refer to different magnetic field values. There are eleven different 

values of VGE. As explained before, negative IB value increases with increment of VGE.  

Magnetic field folds the electrons’ trajectory due to Lorentz Force. Also as explained 

before, electron multiplication is caused by directional scattering.  Therefore, magnetic 

field reduces the probability of scattering electron to reach to collector terminal leading 

to a monotonic increase of IB in all magnetic field values.  The peak positions do not 

change significantly because electron mean free is not affected significantly with 

magnetic field.  Also, higher energy electron multiplication is more resistant to 

magnetic field because scattering electrons at high energy has a higher probability to 

reach collector terminal, despite they are folded much more than lower energy electrons.  

We need to calculate the cyclotron radius in order to compare the results of magnetic 

field dependence.    

Cyclotron frequency wC: 

*m

Be
wC                                                      (3.1) 

          B is magnetic field strength and rc is cyclotron radius.  From the cyclotron 

frequency, we can calculate cyclotron radius rc 

                                                                 CFC wvr /                                                 (3.2) 

          rC is equal to 1540 nm for 50 mT, 720 nm for 100 mT, 360 nm for 200 mT and 72 

nm for 1000 mT.  

           As seen in the results, cyclotron radius reaches the value base length even at 50 

mT.  Circular motion of electrons perturbs the directional scattering and hence reduces 

the negative current.    

3.2.2.   Collector Terminal Current and Voltage Reversal  

In this part the collector current reversal is investigated. Measurements are 

analogous of section.3.2.1.  Dependence of IC and VC on VE and VGE is measured. We 

have also measured the temperature and magnetic field dependences.    
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3.2.2.1 Dependence of Collector Current on Injection Energy 

                 

                Dependence of IC on VE at different VGE is measured. The data is shown in 

Figure 3.17.a. With increasing VGE , IC peaks shift to higher VE (see Figure 3.7).  

Heating effect increases with increasing injection energy. Therefore, the absolute value 

of IC  increases from -200 mV to -250 mV.   Between -250mV to -400mV, electron 

energy is so high that electron system in the collector region is heated up. Therefore, 

they heat both base and collector region. Therefore, chemical potential difference 

between collector and base decreases.   This results in the reduction of current reversal 

from collector.      

Unexpected small peaks at -320 mV and -360 mV is also observed in Figure 3.17.a. 

These peaks are also observed in Figure 3.13.a, Figure 3.13.b, Figure 3.14.a  and Figure 

3.14.b.  These peaks are independent of measurement configuration. These peaks are 

somehow intrinsic property of structure.   
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Figure 3.16 :  Magnetic Field dependence of IB vs VE at various VGE values at 1.5K; VB 

= 0 V; VGE = -400 mV to -700 mV with steps -30 mV; VGC2 = -362 mV; VF = -2.2 V.    
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3.2.2.2 Dependence of Collector Current on Injection Energy 

                 

                Dependence of IC on VE at different VGE is measured. The data is shown in 

Figure 3.17.a. With increasing VGE , IC peaks shift to higher VE (see Figure 3.7).  

Heating effect increases with increasing injection energy. Therefore, the absolute value 

of IC  increases from -200 mV to -250 mV.   Between -250mV to -400mV, electron 

energy is so high that electron system in the collector region is heated up. Therefore, 

they heat both base and collector region. Therefore, chemical potential difference 

between collector and base decreases.   This results in the reduction of current reversal 

from collector.    

  Unexpected small peaks at -320 mV and -360 mV is also observed in Figure 3.17.a. 

These peaks are also observed in Figure 3.13.a, Figure 3.13.b, Figure 3.14.a  and Figure 

3.14.b.  These peaks are independent of measurement configuration. These peaks are 

somehow intrinsic property of structure.  

3.2.2.2. Dependence of  Collector Terminal Potential  on Injection Energy  

        

VB is measured when IB set to zero as described above. VC versus VE at 

different VGE is seen in Figure 3.17.b.   The maximum position of VC is not in the same 

position of the minimum value of Figure 3.17.a.  As discussed before, with increasing 

injection energy, VE first increases up to 1 mV at -260mV.  This is due to increasing 

effect of heating. Between -260 mV to -400mV, VB decreases again due to heating of 

collector region.  Peaks at -320 mV and -360 mV is also seen in this graph.  These peaks 

are seen in the same injection energy at configurations.  Therefore, it is most probably 

intrinsic property of the structure.    

3.2.2.3. Temperature Dependence of Collector Potential   

As seen in the data (Figure 3.18), VC does not monotonically decrease with 

increasing temperature. In the region between -200mV to -280mV, VC monotonically 

decreases with increasing injection energy.  But in the interval between -280mV to -360 

mV, VC first increases in the 1.5 to 3 K; then starts decreasing. This result shows that 

there is a different type of transport in the region.  Also this is the same region that we 
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observe the unexpexted peak (320 mV and 360mV).  Further theoretical work is needed 

to explain this phenomena.   

3.2.2.4. Magnetic Field Dependence of Collector Current Reversal   

As shown in Figure 3.19, magnetic field dependence of negative IC is measured 

at different VGE. As shown in the figure, absolute value of IC decreases with increasing 

magnetic field.  There is a monotonic decrease of absolute value of IC with increasing 

magnetic field.  Magnetic field dependence of IC is significantly higher than magnetic 

field dependence of  IB. The reason of negative IB is directional scattering. The reason of 

negative IC is heating of base region.  Therefore, it is expected that IB would  have 

Figure 3. 17: IC and VC versus VE at various VGE values at 1.5 K ; (a) IC vs VE ; VGE = -

620 mV to -950 mV steps -30 mV; VGC2 = -235 mV; VF is biased to -2.2 V; VC = VB = 0 

V. (b) VC vs VE at IC = 0 A; VGE = -620 mV to -950 mV in 30mV steps; VGC2 = -235 

mV; VF is biased to -2.2V; VB = 0 V. 
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higher magnetic field dependence. But the experimental results show the opposite. 

Further experimental and theoretical study is needed in order to explain this conflict. 

-210 -240 -270 -300 -330 -360

0.0

0.2

0.4

0.6

0.8

1.0

 
1.5 K

  
3 K

  
6 K

 
12 K

 
18 K

 
25 K

 

30 K

 

35 K

 

45 K 

 

V
C

 (m
V

)

VE (mV) 

Figure 3.18 :  Temperature dependence of VC versus VE at various VGE values at 1.5 K; 

IC = 0 nA;  VGE is -700 mV to -900 mV with steps -40 mV;  VGC2 = -235 mV;  VF = -

2.2V . 

      Figure 3.19: Magnetic field dependence of IC versus VE at various VGE  values at 1.5 

K ;VC = 0;  VGE =  -620mV to -950 mV with steps: -33 mV; VGC2 = -235mV; VF = 2.2V;      
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Chapter 4   

CONCLUSION   

A novel electron-electron scattering device with 2 µm base length is fabricated. 

Current reversal in the base terminal is directional scattering and it is observed at 4.2 K. 

Moreover, a current reversal in the collector terminal is observed and attributed to the 

heating of the electronic system. Transfer ratio of the device (| IC / IE| ) becomes 5 at -

300mV emitter injection. Compared to previous results with 5 µm base length, the 

current transfer ratio is not enhanced. This difference can be connected to the etched 

channel of 2DEG. The explanation needs further analysis of data and possibly new 

measurements. 

Results of 4.2 K measurements and their discussions lead to further investigation 

of the absolute negative resistance of the base terminal and collector terminal at 1.5 K. 

Discussion of results at 1.5 K gives birth to a lot of  open questions. Further theoretical 

and experimental studies are needed in order to explain the results. 

Unexpected current reversal of collector terminal is more dependent to magnetic 

field than the reversal current of base terminal. Current reversal effect at collector 

terminal can be seen up to 35 K. Transfer ratio of collector negative current | IB / IE | has 

a maximum value of 2.8. Further experimental studies are essential to explain transfer 

ratio and temperature dependence  of negative collector current.  

Optical phonon peaks are observed at injection energy of -36mV, -72mV and -108mV 

both at base terminal and at collector terminal current/voltage measurements. However, 

there are additional peaks observed at injection energies of 327 meV and 365 meV.  

Further analysis is needed to understand the origin of these unexpected peaks.  
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