

AN EFFICIENT H.264 INTRA FRAME CODER HARDWARE DESIGN

by

ESRA ŞAHİN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University

Spring 2006

 ii

AN EFFICIENT H.264 INTRA FRAME CODER HARDWARE DESIGN

APPROVED BY:

Assist. Prof. Dr. İlker Hamzaoğlu ………………………….

(Thesis Supervisor)

Assist. Prof. Dr. Ayhan Bozkurt ………………………….

Assist. Prof. Dr. Hasan Ateş ………………………….

DATE OF APPROVAL: ………………………….

 iii

© Esra Şahin 2006

All Rights Reserved

 iv

AN EFFICIENT H.264 INTRA FRAME CODER HARDWARE DESIGN

Esra Şahin

EECS, Master Thesis, 2006

Thesis Supervisor: Assist. Prof. Dr. İlker Hamzaoğlu

ABSTRACT

H.264 / MPEG-4 Part 10, a recently developed international standard for video
compression, offers significantly better video compression efficiency than previous
international standards. Since it is impossible to implement a real-time H.264 video
coder using a state-of-the-art embedded processor alone, in this thesis, we developed an
efficient FPGA-based H.264 intra frame coder hardware for real-time portable
applications targeting level 2.0 of baseline profile.

We first designed a high performance and low cost hardware architecture for real-

time implementation of entropy coding algorithms, context adaptive variable length
coding and exp-golomb coding, used in H.264 video coding standard. The hardware is
implemented in Verilog HDL and verified with RTL simulations using Mentor
Graphics Modelsim. We then designed a high performance and low cost hardware
architecture for real-time implementation of intra prediction algorithm used in H.264
video coding standard. This hardware is also implemented in Verilog HDL and verified
with RTL simulations using Mentor Graphics Modelsim.

We then designed and implemented the top-level H.264 intra frame coder

hardware. The hardware is implemented by integrating intra prediction, mode decision,
transform-quant and entropy coding modules. The H.264 intra frame coder hardware is
verified to be compliant with H.264 standard and it can code 35 CIF (352x288) frames
per second. The hardware is first verified with RTL simulations using Mentor Graphics
Modelsim. It is then verified to work at 71 MHz on a Xilinx Virtex II FPGA on an
ARM Versatile Platform development board. The bitstream generated by the H.264
intra frame coder hardware for an input frame is successfully decoded by H.264 Joint
Model (JM) reference software decoder and the decoded frame is displayed using a
YUV Player tool for visual verification.

 v

ETKİN BİR H.264 İNTRA ÇERÇEVE KODLAYICI DONANIM TASARIMI

Esra Şahin

EECS, Yüksek Lisans Tezi, 2006

Tez Danışmanı: Yard. Doç. Dr. İlker Hamzaoğlu

ÖZET

Yakın tarihte geliştirilmiş uluslararası bir standart olan H.264 / MPEG4 Part 10,

kendinden önceki standartlara göre belirgin şekilde daha iyi sıkıştırma verimi
sunmaktadır. H.264 video kodlayıcısının son teknoloji gömülü işlemcilerle gerçek
zamanlı uygulamasının imkansız olması nedeniyle bu tez çalışmasında taşınabilir
uygulamalar için taban profilinin 2.0 düzeyini hedefleyen FPGA tabanlı H.264 intra
çerçeve kodlayıcı donanımı geliştirilmiştir.

Öncelikle, H.264 standardında kullanılan entropy kodlamasi algoritması icin

gerçek zamanlı çalışan yüksek performanslı ve düşük maliyetli bir donanım mimarisi
Verilog HDL kullanılarak tasarlanmıştır. Tasarımın doğrulama işlemi Mentor Graphics
Modelsim benzetim programı kullanılarak “RTL” benzetimleri ile gerçekleştirilmiştir.
Daha sonra, H.264 standardında kullanılan intra tahmin algoritması için gerçek zamanlı
çalışan düşük maliyetli bir donanım mimarisi tasarlanmıştır. Bu donanım da yine
Verilog HDL kullanılarak gerçekleştirilmiş ve Mentor Graphics Modelsim benzetim
programı kullanılarak “RTL” benzetimleri ile doğrulanmıştır.

Daha sonra, H.264 intra çerçeve kodlayıcı donanımı tasarlanmış ve

gerçekleştirilmiştir. Donanım intra tahmin, moda karar verme, dönüşüm-nicemleme ve
entropy kodlamasi modülleri entegre edilerek gerçekleştirilmiştir. Kodlayıcı
donanımının H.264 standardıyla tamamen uyumlu olduğu doğrulanmıştır. Kodlayıcı
saniyede 35 CIF (352x288) çerçevesini kodlayabilmektedir. Tasarım, Mentor Graphics
Modelsim benzetim programı kullanılarak “RTL” benzetimleri ile doğrulanmıştır. Daha
sonra, donanımın 71MHz hızla çalışması “ARM Versalite Platform” geliştirme
ortamında doğrulanmıştır. H.264 intra çerçeve kodlayıcı donanımı ile bir girdi çerçeve
için oluşturulan “bitstream” H.264 Joint Model (JM) şifre çözücü ile başarılı bir
biçimde çözülmüş ve şifresi çözülen çerçeve “YUV Player” programı kullanılarak
görsel anlamda doğrulanmıştır.

 vi

To My Mother and Father,
and to My Sister Esin…

 vii

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my supervisor, Assist. Prof. Dr.

Ilker Hamzaoglu, for his skills, enthusiasm, unconditional support, guidance and

patience during the process of this thesis. I appreciate very much for his suggestions,

detailed reviews and invaluable advices. I feel myself privileged as his student.

 I also want to thank Assist. Prof. Dr.Yucel Altunbasak, who played an important

role in initiating H.264 research project at Sabanci University; Assist. Prof. Dr. Hasan

Ates, for his excellent help with particular issues; and Assist. Prof. Dr. Ayhan Bozkurt,

who participiated in my thesis jury.

Thanks also my partners in H.264 research project, Ozgur Tasdizen, Mehmet

Guney, and Sinan Yalcin, for valuable discussions and feedback throughout the project.

Special thanks due to my family. This thesis is dedicated with love and gratitude

to my parents and my sister for their constant support and encouragement for going

through my tough periods with me.

I am indebted to Yasin Erdogan, whose part in my own success is so vast I can

not measure.

My warmest thanks go to Serkan Oktem for his friendship.

Finally, my acknowledgements go to Sabanci University for supporting our H.264

research project.

 viii

TABLE OF CONTENTS

ABSTRACT..iv

ÖZET ...v

ACKNOWLEDGEMENTS...vii

TABLE OF CONTENTS..viii

LIST OF FIGURES ..xi

LIST OF TABLES..xiii

ABBREVIATIONS ..xiv

CHAPTER 1 ..1

INTRODUCTION ...1

1.1 Motivation..1

1.2 Thesis Organization ...6

CHAPTER 2 ..7

HARDWARE ARCHITECURES FOR H.264 INTRA PREDICTION ALGORITHM7

2.1 H.264 Intra Prediction Algorithm Overview ...7

2.2 Proposed Hardware Architecture...18

2.2.1 Intra Prediction Hardware for Search & Mode Decision ...19

2.2.1.1 Proposed Hardware for 4x4 Luma Prediction Modes ...22

2.2.1.2 Proposed Hardware for 16x16 Luma Prediction Modes ...28

2.2.1.3 Proposed Hardware for 8x8 Chroma Prediction Modes ..38

2.2.1.4 Implementation Results ...42

2.2.2 Intra Prediction Hardware for Coder ..44

2.2.2.1 Proposed Hardware for 4x4 Luma Prediction Modes ...47

 ix

2.2.2.2 Proposed Hardware for 16x16 Luma Prediction Mode ...52

2.2.2.3 Proposed Hardware for 8x8 Chroma Prediction Modes ..54

2.2.2.4 Implementation Results ...56

CHAPTER 3 ..57

HARDWARE ARCHITECTURES FOR H.264 ENTROPY CODER...............................57

3.1 H.264 Context-based Adaptive Variable Length Coding (CAVLC).............................58

3.1.1 H.264 CAVLC Algorithm Overview..59

3.1.2 Proposed Hardware Architecture..63

3.1.2.1 VLC Counters and Reverse Zig-zag Ordering ..63

3.1.2.2 CAVLC Hardware for Generating Coeff_Token ..64

3.1.2.3 CAVLC Hardware for Encoding Level ...67

3.1.2.4 VLC Packer..69

3.1.3 Implementation Results ..70

3.2 H.264 Exponential-Golomb Variable Length Entropy Coding71

3.2.1 Exponential-Golomb Variable Length Entropy Coding Algorithm Overview71

3.2.1.1 Exponential-Golomb Codes...71

3.2.1.2 Sequence Syntax Elements ..73

3.2.1.2 Picture Syntax Elements ..74

3.2.1.3 Slice Syntax Elements ...74

3.2.1.4 Macroblock Syntax Elements ..75

3.2.2 Proposed Hardware Architecture..81

3.2.3 Implementation Results ..82

CHAPTER 4 ..83

TOP LEVEL H.264 INTRA FRAME CODER HARDWARE...83

4.1 Proposed Hardware Architecture...83

4.1.1 Search & Mode Decision Hardware ...85

4.1.2 Coder Hardware..92

 x

4.1.3 Implementation Results ..96

CHAPTER 5 ..98

CONCLUSIONS AND FUTURE WORK..98

5.1 Conclusions..98

5.2 Future Work...99

REFERENCES ..100

 xi

LIST OF FIGURES

Figure 1.1 H.264 Encoder Block Diagram .. 2
Figure 1.2 H.264 Intra Frame Coder Block Diagram .. 4
Figure 2.1 A 4x4 Luma Block and Neighboring Pixels... 8
Figure 2.2 4x4 Luma Prediction Modes... 9
Figure 2.3 Examples of Real Images for 4x4 Luma Prediction Modes 9
Figure 2.4 Prediction Equations for 4x4 Luma Prediction Modes... 12
Figure 2.5 16x16 Luma Prediction Modes... 13
Figure 2.6 Examples of Real Images for 16x16 Luma Prediction Modes 13
Figure 2.7 Prediction Equations for 16x16 Luma Prediction Modes..................................... 15
Figure 2.8 Prediction Equations for 8x8 Chroma Prediction Modes 18
Figure 2.9 Intra Prediction Hardware for Search & Mode Decision 20
Figure 2.10 Organized Prediction Equations for 4x4 Luma Prediction Modes 25
Figure 2.11 Datapath for 4x4 Luma Prediction Modes.. 26
Figure 2.12 Organized Prediction Equations for 16x16 Luma Plane Mode 36
Figure 2.13 Datapath for 16x16 Luma Prediction Modes.. 37
Figure 2.14 Organized Prediction Equations for 8x8 Luma Plane Mode 40
Figure 2.15 Intra Prediction Hardware for Coder .. 46
Figure 2.16 Organized Prediction Equations for 4x4 Luma Prediction Modes 50
Figure 2.17 Datapath for 4x4 Luma Prediction Modes.. 51
Figure 3.1 Slice Syntax .. 57
Figure 3.2 Coding Order of Blocks in a Macroblock .. 59
Figure 3.3 Zig-zag scan for a 4x4 luma block ... 60
Figure 3.4 Example of coding a 4x4 block by CAVLC... 62
Figure 3.5 CAVLC Block Diagram ... 63
Figure 3.6 Macroblocks in a CIF Frame (a) Luma, (b) Chroma Cb and Cr 66
Figure 3.7 Datapath for Coding Level Prefix and Level Suffix... 68
Figure 3.8 VLC Packer Datapath... 69
Figure 3.9 Current and neighboring 4x4 luma blocks.. 78
Figure 3.10 Block Diagram of Header Generation Hardware ... 81
Figure 4.1 H.264 Intra Frame Coder Block Diagram .. 83
Figure 4.2 H.264 Intra Frame Coder Block Diagram .. 84
Figure 4.3 Block Diagram of Search & Mode Decision Hardware 86

 xii

Figure 4.4 Schedule for 16x16 Luma Prediction Modes ... 87
Figure 4.5 Initial Schedule for 4x4 Luma Prediction Modes... 88
Figure 4.6 Final Schedule for 4x4 Luma Prediction Modes .. 89
Figure 4.7 Block Diagram of Coder Hardware.. 93
Figure 4.8 Coder Hardware Scheduling for 4x4 Intra Modes.. 94
Figure 4.9 Coder Hardware Scheduling for 16x16 Intra Modes.. 95
Figure 4.10 Visual Verification of H.264 Intra Frame Coder Hardware 97

 xiii

LIST OF TABLES

Table 2.1 Availability of 4x4 Luma Prediction Modes.. 12
Table 2.2 Availability of 16x16 Luma Prediction Modes.. 14
Table 2.3 Availability of 8x8 Chroma Prediction Modes .. 16
Table 2.4 Clock Cycles Required for Performing Available 4x4 Luma Prediction Modes... 26
Table 2.5 Clock Cycles Required for Performing Available 16x16 Luma Prediction Modes37
Table 2.6 Clock Cycles Required for Performing Available 8x8 Chroma Prediction Modes41
Table 2.7 Clock Cycles Required for Performing Available 16x16 Luma Prediction Modes42
Table 2.8 Clock Cycles Required for Performing Available 8x8 Chroma Prediction Modes43
Table 2.9 Clock Cycles Required for Performing Available 4x4 Luma Prediction Modes... 43
Table 2.10 Clock cycles required for performing the selected 4x4 Luma Prediction Modes 51
Table 2.11 Clock Cycles Required for Performing Selected 16x16 Luma Prediction Modes53
Table 2.12 Clock Cycles Required for Performing Selected 8x8 Chroma Prediction Modes55
Table 3.1 Macroblock Syntax Elements .. 58
Table 3.2 VLC Table for Coeff_Token ... 61
Table 3.3 Thresholds for determining whether to increment SuffixLength........................... 61
Table 3.4 Exp-Golomb codewords .. 72
Table 3.5 Sequence Syntax Elements .. 73
Table 3.6 Picture Syntax Elements .. 74
Table 3.7 Macroblock Syntax Elements .. 75
Table 3.8 Specification of CodedBlockPatternChroma... 76
Table 3.9 Macroblock types for I slices... 77
Table 3.10 Predictive coding of a 4x4 luma prediction mode ... 79
Table 3.11 Exp-Golomb codes for 8x8 chroma prediction modes .. 80
Table 3.12 Examples of calculating Coded_Block_Pattern for a MB................................... 80

 xiv

ABBREVIATIONS

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

CABAC Context-Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CIF Common Intermediate Format

CODEC Coder, Decoder Pair

CPU Central Processing Unit

DFF D Flip Flop

DSP Digital Signal Processor

DVD Digital Versatile Disc

FPGA Field Programmable Gate Array

HDL Hardware Description Language

ISDN Integrated Services Digital Network

ISO/IEC International Standards Organization, International Electrotechnical

Commission

ITU-T International Telecommunications Union, Telecommunications

Standardization Sector

JVT Joint Video Team

LCD Liquid Crystal Display

MB Macroblock

MPEG Motion Picture Experts Group

NAL Network Abstraction Layer

PSNR Peak Signal Noise Ratio

PVT Process Voltage Temperature

RAM Random Access Memory

 xv

QCIF Quadrature Common Intermediate Format

QP Quantization Parameter

SAD Sum of Absolute Difference

SATD Sum of Absolute Transformed Difference

SRAM Static Random Access Memory

UMC United Microelectronic Corporation

VCL Video Coding Layer

VGA Video Graphics Array

VLC Variable-Length Coding

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Video compression systems are used in many commercial products, from consumer

electronic devices such as digital camcorders, cellular phones to video teleconferencing

systems. These applications make the video compression hardware devices an inevitable

part of many commercial products. To improve the performance of the existing applications

and to enable the applicability of video compression to new real-time applications, recently,

a new international standard for video compression is developed. This new standard,

offering significantly better video compression efficiency than previous video compression

standards, is developed with the collaboration of ITU and ISO standardization

organizations. Hence it is called with two different names, H.264 and MPEG4 Part 10.

H.264 video coding standard has a much higher coding efficiency potential (capable

of saving up to %50 bit rate at the same level of video quality) than the previous standards.

Due to its high coding efficiency and due to its flexibility and robustness to different

communication environments, in the near future, H.264 is expected to be widely used in

many applications such as digital TV, DVD, video transmisson in wireless networks, and

video conferencing over the internet.

The video compression efficiency achieved in H.264 standard is not a result of any

single feature but rather a combination of a number of encoding tools. The top-level block

diagram of an H.264 Encoder is shown in Figure 1.1.

 2

Figure 1.1 H.264 Encoder Block Diagram

The H.264 standard includes a Video Coding Layer (VCL), which efficiently

represents the video content, and a Network Abstraction Layer (NAL), which formats the

VCL representation of the video and provides header information in a manner suitable for

transportation by particular transport layers or storage media [1].

As shown in Figure 1.1, an H.264 encoder has a forward path and a reconstruction

path. The forward path is used to encode a video frame by using intra and inter predictions

and to create the bit stream. The reconstruction path is used to decode the encoded frame

and to reconstruct the decoded frame. Since a decoder never gets original images, but rather

works on the decoded frames, reconstruction path in the encoder ensures that both encoder

and decoder use identical reference frames for intra and inter prediction. This avoids

possible encoder – decoder mismatches [1, 3, 4].

Forward path starts with partitioning the input frame into MBs. Each MB is encoded

in intra or inter mode depending on the mode decision. In both intra and inter modes, the

current MB is predicted from the reconstructed frame. Intra mode generates the predicted

MB based on spatial redundancy, whereas inter mode, generates the predicted MB based on

temporal redundancy. Mode decision compares the required amount of bits to encode a MB

and the quality of the decoded MB for both of these modes and chooses the mode with

better quality and bit-rate performance. In either case, intra or inter mode, the predicted MB

is subtracted from the current MB to generate the residual MB. Residual MB is transformed

using 4x4 and 2x2 integer transforms. Transformed residual data is quantized and quantized

transform coefficients are re-ordered in a zig-zag scan order. The reordered quantized

transform coefficients are entropy encoded. The entropy-encoded coefficients together with

Reference
Frame(s)
(F'n-1)

Inverse
Transform

Transform Quant

 Inverse
Quant

 Entropy Coder Current
Frame
(Fn)

Mode
Decision

 Motion
Estimation

Intra
Prediction Reconstructed

Frame
(F'n)

Deblocking
Filter

 NAL

 3

header information, such as MB prediction mode and quantization step size, form the

compressed bit stream. The compressed bit stream is passed to network abstraction layer

(NAL) for storage or transmission [1, 3, 4].

Reconstruction path begins with inverse quantization and inverse transform

operations. The quantized transform coefficients are inverse quantized and inverse

transformed to generate the reconstructed residual data. Since quantization is a lossy

process, inverse quantized and inverse transformed coefficients are not identical to the

original residual data. The reconstructed residual data are added to the predicted pixels in

order to create the reconstructed frame. A deblocking filter is applied to reduce the effects

of blocking artifacts in the reconstructed frame [1, 3, 4].

Since it is impossible to implement a real-time H.264 video coder using a state-of-

the-art embedded processor alone, in this thesis, we developed an efficient FPGA-based

H.264 intra frame coder hardware for real-time portable applications targeting level 2.0 of

baseline profile.

H.264 intra frame coder is a competitive alternative to JPEG2000 for still image

compression, in terms of both coding efficiency and encoder/decoder complexity [2, 11, 12,

13]. The rate-distortion performance of H.264 intra frame coder using CABAC and R-D

optimized mode decision is about the same as that of JPEG2000 with default optimized

settings. The use of CAVLC for entropy coding results in about 0.5 dB loss in coding

efficiency, and with low-complexity mode decision (R-D optimization turned off) there is

an additional loss which is less than 0.5 dB. Without R-D optimized mode decision, the

computational complexity of the H.264 encoder is similar to that of JPEG2000 encoder; but

the decoding complexity of H.264 is much lower than that of JPEG2000. Moreover, H.264

coding algorithm is easier to implement in hardware, due to its use of block-based

processing, which reduces the memory requirements and allows for a pipelined approach.

Another application area for H.264 intra frame coder is in motion picture production,

editing and archiving, where video frames are coded as I-frames only to allow for random

access to each individual picture. For such applications, H.264 is shown to be superior to

Motion-JPEG2000, especially at lower resolutions [2, 11, 12, 13].

The block diagram of the proposed H.264 intra frame coder hardware is shown in

Figure 1.2.

 4

Figure 1.2 H.264 Intra Frame Coder Block Diagram

The intra prediction algorithm used in H.264 reduces spatial redundancies by

exploiting the spatial correlation between adjacent blocks in a given picture. Each picture is

divided into 16×16 pixel MBs and each MB is composed of luma and chroma components.

Intra prediction module predicts the pixels in a MB using the pixels in the available

neighboring blocks. For the luma component of a MB, a 16x16 predicted luma block is

formed either by performing intra predictions for each 4x4 luma block in the MB or by

performing intra prediction for the 16x16 MB. There are nine prediction modes for each

4x4 luma block and four prediction modes for a 16x16 luma block. For the chroma

components of a MB, a predicted 8x8 chroma block is formed for each 8x8 chroma

component by performing intra prediction for the MB. There are four prediction modes for

each chroma component. Additional information for intra prediction algorithm and the

proposed hardware for intra prediction are given in Chapter 2.

Context Adaptive Variable Length Coding (CAVLC) algorithm encodes transformed

and quantized residual luminance and chrominance data. CAVLC uses multiple tables for a

syntax element. It adapts to the current context by selecting one of these tables for a given

syntax element based on the already transmitted syntax elements. Information other than

the residual data is coded using Exp-Golomb code words [3, 4, 5]. Additional information

Inverse
Transform

 Transform Quant

 Entropy Coder

Current Frame

Intra Prediction
for Coder

Reconstructed
Frame

Current Frame
Intra Prediction

for Search &
Mode Decision

 Mode
Decision

 NAL

 Inverse
Quant

 5

for entropy coding algorithm and the proposed hardware for entropy coding are given in

Chapter 3.

Transform algorithm is based on a 4x4 integer transform. The algorithm does not

include any floating point operations; it only uses integer addition and binary shift

operations. In this way, a possible drift between encoder and decoder is avoided. H.264 is

the first standard to attain exact equality of decoded video content from all decoders [3, 4,

5]. Detailed information about transform algorithm and the proposed hardware for

transform are given in [6].

The quantization algorithm uses a non-uniform quantizer. Quantization parameter can

take a value between 0-51. The quantization step size doubles for an increment of 6 in

quantization parameter. That means an increment of 1 in quantization parameter results in

12.2% increment in quantization step size. The quantization algorithm requires an integer

multiplication [8, 9, 10]. Detailed information about quantization algorithm and the

proposed hardware for quantization are given in [6].

The mode decision algorithm compares the 4x4 and 16x16 predictions and selects the

best luma prediction mode for the MB. 4x4 prediction modes are generally selected for

highly textured regions while 16x16 prediction modes are selected for flat regions. Each

8x8 chroma component of an intra coded MB is predicted from previously encoded and

reconstructed chroma samples above and/or to the left and both chroma components always

use the same prediction mode. The mode decision algorithm compares the 8x8 predictions

and selects the best chroma prediction mode for the MB. Mode decision algorithm

implemented in the proposed mode decision hardware is the same as the algorithm

implemented in the JM Software when there is no Rate-Distortion optimization [4].

Additional information for mode decision algorithm and the proposed hardware for mode

decision are given in Chapter 4.

 6

1.2 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 explains intra prediction hardware designed as part of H.264 intra frame

coder hardware. First, it introduces intra prediction algorithm used in H.264 / MPEG4 Part

10 video coding standard. Then it describes the designed hardware in detail and the

implementation results are given.

Chapter 3 explains entropy coding hardware designed as part of H.264 intra frame

coder hardware. First, it introduces entropy coding algorithm used in H.264 / MPEG4 Part

10 video coding standard. Then it describes the designed hardware in detail and the

implementation results are given.

Chapter 4 explains the top-level intra frame coder hardware. The modules used in the

intra frame coder hardware and their scheduling are explained.

Chapter 5 presents the conclusions and the future work.

 7

CHAPTER 2

HARDWARE ARCHITECURES FOR H.264 INTRA PREDICTION ALGORITHM

The video compression efficiency achieved in H.264 standard is not a result of any

single feature but rather a combination of a number of encoding tools. As it is shown in the

top-level block diagram of an H.264 encoder in Figure 1.1, one of these tools is the intra

prediction algorithm used in the baseline profile of H.264 standard [3, 4, 5]. Intra prediction

algorithm generates a prediction for a MB based on spatial redundancy. H.264 intra

prediction algorithm achieves better coding results than the intra prediction algorithms used

in the previous video compression standards. However, this coding gain comes with an

increase in encoding complexity which makes it is an exciting challenge to have a

real-time implementation of intra prediction for H.264 video coding.

2.1 H.264 Intra Prediction Algorithm Overview

Intra prediction algorithm predicts the pixels in a MB using the pixels in the available

neighboring blocks. For the luma component of a MB, a 16x16 predicted luma block is

formed by performing intra predictions for each 4x4 luma block in the MB and by

performing intra prediction for the 16x16 MB. There are nine prediction modes for each

4x4 luma block and four prediction modes for a 16x16 luma block. A mode decision

algorithm is then used to compare the 4x4 and 16x16 predictions and select the best luma

 8

prediction mode for the MB. 4x4 prediction modes are generally selected for highly

textured regions while 16x16 prediction modes are selected for flat regions.

There are nine 4x4 luma prediction modes designed in a directional manner. A 4x4

luma block consisting of the pixels a to p is shown in Figure 2.1. The pixels A to M belong

to the neighboring blocks and are assumed to be already encoded and reconstructed and are

therefore available in the encoder and decoder to generate a prediction for the current MB.

Each 4x4 luma prediction mode generates 16 predicted pixel values using some or all of the

neighboring pixels A to M as shown in Figure 2.2. The examples of each 4x4 luma

prediction mode for real images are given in Figure 2.3. The arrows indicate the direction

of prediction in each mode. The predicted pixels are calculated by a weighted average of

the neighboring pixels A-M for each mode except Vertical and Horizontal modes.

The prediction equations used in each 4x4 luma prediction mode are shown in Figure

2.4 where [y,x] denotes the position of the pixel in a 4x4 block (the top left, top right,

bottom left, and bottom right positions of a 4x4 block are denoted as [0, 0], [0, 3], [3, 0],

and [3, 3], respectively) and pred[y,x] is the prediction for the pixel in the position [y,x].

Figure 2.1 A 4x4 Luma Block and Neighboring Pixels

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels A-M are available. If pixels E, F,

G and H have not yet been encoded and reconstructed, the value of pixel D is copied to

these positions and they are marked as available for DC mode. The other prediction modes

can only be used if all of the required neighboring pixels are available [4, 5]. Available 4x4

luma prediction modes for a 4x4 luma block depending on the availability of the

neighboring 4x4 luma blocks are given in Table 2.1.

HGF EDCBAM
I
J
K
L

g he f
ca b d

li j k
m n o p

 9

Figure 2.2 4x4 Luma Prediction Modes

Figure 2.3 Examples of Real Images for 4x4 Luma Prediction Modes

 Horizontal Vertical

HG F E D C B A M
I
J
K
L

HGF E DCBAM
I
J
K
L

Mean
(A..D
I...L)

 DC

HGF E D C B AM
I
J
K
L

HG F E D C B A M

 Diagonal Down-Left

I
J
K
L

 Horizontal Down

I
J
K
L

HGF E DCBAM

 Diagonal Down-Right

I
J
K
L

HGF E D C B AM

 Vertical Left

I
J
K
L

HG F E D C B A M

 Horizontal Up

I
J
K
L

HGF E DCBAM

 Vertical Right

I
J
K
L

HGF E D C B AM

 10

pred[0, 0] = A pred[0, 0] = I
 pred[0, 1] = B pred[0, 1] = I

pred[0, 2] = C pred[0, 2] = I
 pred[0, 3] = D pred[0, 3] = I

pred[1, 0] = A pred[1, 0] = J
pred[1, 1] = B pred[1, 1] = J
pred[1, 2] = C pred[1, 2] = J
pred[1, 3] = D pred[1, 3] = J
pred[2, 0] = A pred[2, 0] = K
pred[2, 1] = B pred[2, 1] = K
pred[2, 2] = C pred[2, 2] = K
pred[2, 3] = D pred[2, 3] = K
pred[3, 0] = A pred[3, 0] = L
pred[3, 1] = B pred[3, 1] = L
pred[3, 2] = C pred[3, 2] = L
pred[3, 3] = D pred[3, 3] = L

(a) 4x4 Vertical Mode (b) 4x4 Horizontal Mode

pred[y,x] = (A + B + C + D + I + J + K + L + 4) >> 3
(If the left and the top neighboring pixels are available)

pred[y,x] = (I + J + K + L + 2) >> 2

(Else If only the left neighboring pixels are available)

pred[y,x] = (A + B + C + D + 2) >> 2
(Else If only the top neighboring pixels are available)

pred[y,x] = 128

(Else //If the left and the upper neighboring pixels are not available)

(c) 4x4 DC Mode

 11

pred[0, 0] = A + 2B + C + 2 >> 2 pred[0, 0] = A + 2M + I + 2 >> 2
pred[0, 1] = B + 2C + D + 2 >> 2 pred[0, 1] = M + 2A + B + 2 >> 2
pred[0, 2] = C + 2D + E + 2 >> 2 pred[0, 2] = A + 2B + C + 2 >> 2
pred[0, 3] = D + 2E + F + 2 >> 2 pred[0, 3] = B + 2C + D + 2 >> 2
pred[1, 0] = B + 2C + D + 2 >> 2 pred[1, 0] = M + 2I + J + 2 >> 2
pred[1, 1] = C + 2D + E + 2 >> 2 pred[1, 1] = A + 2M + I + 2 >> 2
pred[1, 2] = D + 2E + F + 2 >> 2 pred[1, 2] = M + 2A + B + 2 >> 2
pred[1, 3] = E + 2F + G + 2 >> 2 pred[1, 3] = A + 2B + C + 2 >> 2
pred[2, 0] = C + 2D + E + 2 >> 2 pred[2, 0] = I + 2J + K + 2 >> 2
pred[2, 1] = D + 2E + F + 2 >> 2 pred[2, 1] = M + 2I + J + 2 >> 2
pred[2, 2] = E + 2F + G + 2 >> 2 pred[2, 2] = A + 2M + I + 2 >> 2
pred[2, 3] = F + 2G + H + 2 >> 2 pred[2, 3] = M + 2A + B + 2 >> 2
pred[3, 0] = D + 2E + F + 2 >> 2 pred[3, 0] = J + 2K + L + 2 >> 2
pred[3, 1] = E + 2F + G + 2 >> 2 pred[3, 1] = I + 2J + K + 2 >> 2
pred[3, 2] = F + 2G + H + 2 >> 2 pred[3, 2] = M + 2I + J + 2 >> 2
pred[3, 3] = G + 3H + 2 >> 2 pred[3, 3] = A + 2M + I + 2 >> 2

(d) 4x4 Diagonal Down Left Mode (e) 4x4 Diagonal Down Right Mode

pred[0, 0] = M + A + 1 >> 1 pred[0, 0] = M + I + 1 >> 1
pred[0, 1] = A + B + 1 >> 1 pred[0, 1] = I + 2M + A + 2 >> 2
pred[0, 2] = B + C + 1 >> 1 pred[0, 2] = B + 2A + M + 2 >> 2
pred[0, 3] = C + D + 1 >> 1 pred[0, 3] = C + 2B + A + 2 >> 2
pred[1, 0] = I + 2M + A + 2 >> 2 pred[1, 0] = I + J + 1 >> 1
pred[1, 1] = M + 2A + B + 2 >> 2 pred[1, 1] = M + 2I + J + 2 >> 2
pred[1, 2] = A + 2B + C + 2 >> 2 pred[1, 2] = M + I + 1 >> 1
pred[1, 3] = B + 2C + D + 2 >> 2 pred[1, 3] = I + 2M + A + 2 >> 2
pred[2, 0] = M + 2I + J + 2 >> 2 pred[2, 0] = J + K + 1 >> 1
pred[2, 1] = M + A + 1 >> 1 pred[2, 1] = I + 2J + K + 2 >> 2
pred[2, 2] = A + B + 1 >> 1 pred[2, 2] = I + J + 1 >> 1
pred[2, 3] = B + C + 1 >> 1 pred[2, 3] = M + 2I + J + 2 >> 2
pred[3, 0] = I + 2J + K + 2 >> 2 pred[3, 0] = K + L + 1 >> 1
pred[3, 1] = I + 2M + A + 2 >> 2 pred[3, 1] = J + 2K + L + 2 >> 2
pred[3, 2] = M + 2A + B + 2 >> 2 pred[3, 2] = J + K + 1 >> 1
pred[3, 3] = A + 2B + C + 2 >> 2 pred[3, 3] = I + 2J + K + 2 >> 2

(f) 4x4 Vertical Right Mode (g) 4x4 Horizontal Down Mode

 12

pred[0, 0] = A + B + 1 >> 1 pred[0, 0] = I + J + 1 >> 1
pred[0, 1] = B + C + 1 >> 1 pred[0, 1] = I + 2J + K + 2 >> 2
pred[0, 2] = C + D + 1 >> 1 pred[0, 2] = J + K+ 1 >> 1
pred[0, 3] = D + E + 1 >> 1 pred[0, 3] = J + 2K + L + 2 >> 2
pred[1, 0] = A + 2B + C + 2 >> 2 pred[1, 0] = J + K+ 1 >> 1
pred[1, 1] = B + 2C + D + 2 >> 2 pred[1, 1] = J + 2K + L + 2 >> 2
pred[1, 2] = C + 2D + E + 2 >> 2 pred[1, 2] = K + L + 1 >> 1
pred[1, 3] = D + 2E + F + 2 >> 2 pred[1, 3] = K + 3L + 2 >> 2
pred[2, 0] = B + C + 1 >> 1 pred[2, 0] = K + L + 1 >> 1
pred[2, 1] = C + D + 1 >> 1 pred[2, 1] = K + 3L + 2 >> 2
pred[2, 2] = D + E + 1 >> 1 pred[2, 2] = L
pred[2, 3] = E + F + 1 >> 1 pred[2, 3] = L
pred[3, 0] = B + 2C + D + 2 >> 2 pred[3, 0] = L
pred[3, 1] = C + 2D + E + 2 >> 2 pred[3, 1] = L
pred[3, 2] = D + 2E + F + 2 >> 2 pred[3, 2] = L
pred[3, 3] = E + 2F + G + 2 >> 2 pred[3, 3] = L

(h) 4x4 Vertical Left Mode (i) 4x4 Horizontal Up Mode

Figure 2.4 Prediction Equations for 4x4 Luma Prediction Modes

Table 2.1 Availability of 4x4 Luma Prediction Modes

Availability of Neighboring
4x4 Luma Blocks

Available 4x4 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC, Horizontal Up
Top available, Left not available Vertical Right, DC, Vertical

Left, Diagonal Down-Left
Both available All Modes

There are four 16x16 luma prediction modes designed in a directional manner. Each

16x16 luma prediction mode generates 256 predicted pixel values using some or all of the

upper (H) and left-hand (V) neighboring pixels as shown in Figure 2.5. Vertical, Horizontal

and DC modes are similar to 4x4 luma prediction modes. Plane mode is an approximation

of bilinear transform with only integer arithmetic. The examples of each 16x16 luma

prediction mode for real images are given in Figure 2.6. The prediction equations used in

16x16 luma prediction modes are shown in Figure 2.7 where [y,x] denotes the position of

the pixel in a MB (the top left, top right, bottom left, and bottom right positions of a MB are

 13

denoted as [0,0], [0,15], [15,0], and [15,15], respectively), p represents the neighboring

pixel values and Clip1 is to clip the result into [0-255] range.

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels are available. The other

prediction modes can only be used if all of the required neighboring pixels are available

[2, 3]. Available 16x16 luma prediction modes for a MB depending on the availability of

the neighboring MBs are given in Table 2.2.

Figure 2.5 16x16 Luma Prediction Modes

Figure 2.6 Examples of Real Images for 16x16 Luma Prediction Modes

H

V

 Vertical

H

V

 Plane

H

V

Horizontal

H

V
Mean
(H+V)

 DC

 14

Table 2.2 Availability of 16x16 Luma Prediction Modes

Availability of Neighboring
16x16 Luma Blocks

Available 16x16 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC
Top available, Left not available Vertical, DC
Both available All Modes

pred[y, 0] = p[-1, 0] pred[0, x] = p[0, -1]
pred[y, 1] = p[-1, 1] pred[1, x] = p[1, -1]
pred[y, 2] = p[-1, 2] pred[2, x] = p[2, -1]
pred[y, 3] = p[-1, 3] pred[3, x] = p[3, -1]
pred[y, 4] = p[-1, 4] pred[4, x] = p[4, -1]
pred[y, 5] = p[-1, 5] pred[5, x] = p[5, -1]
pred[y, 6] = p[-1, 6] pred[6, x] = p[6, -1]
pred[y, 7] = p[-1, 7] pred[7, x] = p[7, -1]
pred[y, 8] = p[-1, 8] pred[8, x] = p[8, -1]
pred[y, 9] = p[-1, 9] pred[9, x] = p[9, -1]
pred[y, 10] = p[-1, 10] pred[10, x] = p[10, -1]
pred[y, 11] = p[-1, 11] pred[11, x] = p[11, -1]
pred[y, 12] = p[-1, 12] pred[12, x] = p[12, -1]
pred[y, 13] = p[-1, 13] pred[13, x] = p[13, -1]
pred[y, 14] = p[-1, 14] pred[14, x] = p[14, -1]
pred[y, 15] = p[-1, 15] pred[15, x] = p[15, -1]

(0 <= y < = 15) (0 <= x < = 15)

(a) 16x16 Vertical Mode (b) 16x16 Horizontal Mode

pred[y,x] = p[-1, x’] + p[y’, -1] + 16 >> 5

(x’ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
(y’ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

(If the left and the upper neighboring pixels are available)

pred[y,x] = p[y’, -1] + 8 >> 4

(y’ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

(Else If the left neighboring pixels are available)

 15

pred[y,x] = p[-1, x’] + 8 >> 4

(x’ = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

(Else If the top neighboring pixels are available)

pred[y,x] = 128

(Else //If the left and the upper neighboring pixels are not available)

(c) 16x16 DC Mode

pred[y,x] = Clip1 [((a + b * (x – 3) + c * (y – 3) + 16) >> 5]

a = 16 *(p[-1,15] + p[15,-1])
b = (5 * H + 32) >> 6
c = (5 * V + 32) >> 6

H = ∑ (x’+1)*(p[-1,8 + x’] + p[-1, 6- x’])

(x’ = 0, 1, 2, 3, 4, 5, 6, 7)

V = ∑ (y’+1)*(p[8 + y’,-1] + p[6- y’,-1])
(y’ = 0, 1, 2, 3, 4, 5, 6, 7)

(d) 16x16 Plane Mode

Figure 2.7 Prediction Equations for 16x16 Luma Prediction Modes

For the chroma components of a MB, a predicted 8x8 chroma block is formed for

each 8x8 chroma component by performing intra prediction for the MB. There are four 8x8

chroma prediction modes which are similar to 16x16 luma prediction modes. A mode

decision algorithm is used to compare the 8x8 predictions and select the best chroma

prediction mode for each chroma component of the MB. Both chroma components of a MB

always use the same prediction mode. The prediction equations used in 8x8 chroma

prediction modes are shown in Figure 2.8 where [y,x] denotes the position of the pixel in a

MB (the top left, top right, bottom left, and bottom right positions of a MB are denoted as

[0,0], [0,7], [7,0], and [7,7], respectively), p represents the neighboring pixel values and

Clip1 is to clip the result into [0-255] range.

 16

DC mode is always used regardless of the availability of the neighboring pixels.

However, it is adopted based on which neighboring pixels are available. The other

prediction modes can only be used if all of the required neighboring pixels are available

[4, 5]. Available 8x8 chroma prediction modes for a MB depending on the availability of

the neighboring MBs are given in Table 2.3.

Table 2.3 Availability of 8x8 Chroma Prediction Modes

Availability of Neighboring
8x8 Chroma Blocks

Available 8x8 Luma
Prediction Modes

None available DC
Left available, Top not available Horizontal, DC
Top available, Left not available Vertical, DC
Both available All Modes

pred[y, 0] = p[-1, 0] pred[0, x] = p[0, -1]
pred[y, 1] = p[-1, 1] pred[1, x] = p[1, -1]
pred[y, 2] = p[-1, 2] pred[2, x] = p[2, -1]
pred[y, 3] = p[-1, 3] pred[3, x] = p[3, -1]
pred[y, 4] = p[-1, 4] pred[4, x] = p[4, -1]
pred[y, 5] = p[-1, 5] pred[5, x] = p[5, -1]
pred[y, 6] = p[-1, 6] pred[6, x] = p[6, -1]
pred[y, 7] = p[-1, 7] pred[7, x] = p[7, -1]

 (0 <= y < = 7) (0 <= x < = 7)

(a) 8x8 Vertical Mode (b) 8x8 Horizontal Mode

pred[y, x] = (∑ p[x’, -1] + ∑ p[-1, y’] + 4) >> 3

(If p[x’, –1] with x’ = 0..3, and p[–1, y’] and y’ = 0..3 are available)

pred[y, x] = (∑ p[x’, -1] + 2) >> 2
(Else If p[x’, –1] with x’ = 0..3 are available and p[–1, y’] and y’ = 0..3 are not available)

pred[y, x] = (∑ p[-1, y’] + 2) >> 2

(Else If p[–1, y’] and y’ = 0..3 are available and p[x’, –1] with x’ = 0..3 are not available)

 17

pred[y, x] = 128
(Else //If p[x’, –1] with x’ = 0..3, and p[–1, y’] and y’ = 0..3 are not available)

(0 <= x < = 3)
(0 <= y < = 3)

(c-1) 8x8 DC Mode

pred[y, x] = (∑ p[x’, -1] + 2) >> 2
(If p[x’, –1] with x’ = 4..7 are available)

pred[y, x] = (∑ p[-1, y’] + 2) >> 2

(Else If p[–1, y’] and y’ = 0..3 are available)
pred[y, x] = 128

(Else)

(4 <= x < = 7)
(0 <= y < = 3)

(c-2) 8x8 DC Mode

pred[y, x] = (∑ p[-1, y’] + 2) >> 2
(If p[–1, y’] and y’ = 4..7 are available)

pred[y, x] = (∑ p[x’, -1] + 2) >> 2

(Else If p[x’, –1] with x’ = 0..3 are available)
pred[y, x] = 128

(Else)

(0 <= x < = 3)
(4 <= y < = 7)

(c-3) 8x8 DC Mode

pred[y, x] = (∑ p[x’, -1] + ∑ p[-1, y’] + 4) >> 3
(If p[x’, –1] with x’ = 4..7, and p[–1, y’] and y’ = 4..7 are available)

pred[y, x] = (∑ p[x’, -1] + 2) >> 2

(Else If p[x’, –1] with x’ = 4..7 are available and p[–1, y’] and y’ = 4..7 are not available)

pred[y, x] = (∑ p[-1, y’] + 2) >> 2
(Else If p[–1, y’] and y’ = 4..7 are available and p[x’, –1] with x’ = 4..7 are not available)

 18

pred[y, x] = 128
(Else //If p[x’, –1] with x’ = 4..7, and p[–1, y’] and y’ = 4..7 are not available)

(4 <= x < = 7)
(4 <= y < = 7)

(c-4) 8x8 DC Mode

pred[y,x] = Clip1 [((a + b * (x – 3) + c * (y – 3) + 16) >> 5]

a = 16 *(p[-1,7] + p[7,-1])
b = (5 * H + 32) >> 6
c = (5 * V + 32) >> 6

H = ∑ (x’+1)*(p[-1,4 + x’] + p[-1, 2- x’])

(x’ = 0, 1, 2, 3)

V = ∑ (y’+1)*(p[4 + y’,-1] + p[2- y’,-1])
(y’ = 0, 1, 2, 3)

(d) 8x8 Plane Mode

Figure 2.8 Prediction Equations for 8x8 Chroma Prediction Modes

2.2 Proposed Hardware Architecture

In the previous video coding standards, prediction part and coding part

(DCT/Q/IQ/IDCT/VLC) can be clearly separated. After prediction part finishes processing

a MB, coding part starts coding this MB and prediction part starts processing the next MB.

However, because of the intra prediction algorithm used in H.264 standard, after prediction

of a MB, the next MB can not be predicted before corresponding reconstructed pixels at the

output of the Transform/Quant/Inverse Quant/Inverse Transform are produced. The

situation is even worse for 4x4 luma prediction modes. Prediction and mode decision of a

4x4 block cannot be performed until the previous 4x4 block is reconstructed. Therefore, the

 19

prediction part must wait the coding part which makes the MB pipelining impossible and

the design of a real-time intra frame coder hardware very costly.

We, however, divided our proposed H.264 intra frame coder hardware into two main

parts; the search & mode decision part and coder part. The search & mode decision

hardware and the coder hardware work in a pipelined manner. After the first MB of the

input frame is loaded to the input register file, search & mode decision hardware starts to

work on determining the best mode for coding this MB. After search & mode decision

hardware determines the best mode for the first MB, coder hardware starts to code the first

MB using the selected best mode and search & mode decision hardware starts to work on

the second MB. The entire frame is processed MB by MB in this order.

This is achieved by performing intra prediction in the search & mode decision

hardware using the pixels in the current frame rather than the pixels in the reconstructed

frame. However, intra prediction in the coder hardware is performed using the pixels in the

reconstructed frame in order to be compliant with H.264 standard. Therefore, in this thesis,

two different low-cost hardware architectures are designed for H.264 intra prediction

algorithm, one for search & mode decision hardware and one for coder hardware. This

makes the MB pipelining and therefore the implementation of a low-cost H.264 intra frame

coder hardware possible at the expense of a small PSNR loss in the video quality.

2.2.1 Intra Prediction Hardware for Search & Mode Decision

The block diagram of the proposed intra prediction hardware architecture for the

search & mode decision part of the H.264 intra frame coder is shown in Figure 2.9. The

proposed hardware generates the predicted pixels using available 16x16 and 4x4 luma

prediction modes for luma and 8x8 chroma prediction modes for chroma components of a

MB with different configurations. In the proposed hardware, there are two parts operating

in parallel in order to perform intra prediction faster.

 20

Figure 2.9 Intra Prediction Hardware for Search & Mode Decision

The upper part is used for generating the predicted pixels for the luma component of a

MB using available 16x16 luma prediction modes and for generating the predicted pixels

for the chroma components of a MB using available 8x8 chroma prediction modes. The

size of register files that are used for the current MB and the prediction buffer is 384x8,

because they are used for storing both luma and chroma components of the current and

predicted MB respectively.

The lower part is used for generating the predicted pixels for each 4x4 block in the

luma component of a MB using available 4x4 luma prediction modes. The lower part is

more computationally demanding and it is the bottleneck in the intra prediction hardware

for search & mode decision. The size of the current MB register file is 256x8, because it is

used for storing only luma components of the current MB. The size of the prediction buffer

is 16x8 since it is used for storing the predicted pixels for a 4x4 luma block.

Two local neighboring buffers, local vertical register file and local horizontal register

file, are used to store the neighboring pixels in the previously coded and reconstructed

neighboring 4x4 luma blocks in the current MB. After a 4x4 luma block in the current MB

is coded and reconstructed, the neighboring pixels in this block are stored in the

corresponding local register files.

 Datapath for 4x4
Luma Prediction

Modes

 Local Neighboring Buffers

Controller for 4x4
Luma Prediction

Modes

Prediction
Buffer

2x(16x8)

Global Neighboring Buffers
(Luma)

Top Level
Controller
(4x4 Luma)

Current MacroBlock
Register (256x8)

Prediction
Buffer

(384x8)

Global Neighboring Buffers
(Luma, Chroma)

Datapath for 16x16
Luma Prediction

Modes

Datapath for 8x8
Chroma Prediction

Modes

Controller for 8x8
Chroma Prediction

Modes

Controller for 16x16
Luma Prediction Modes Top Level

Controller
(16x16

Luma and
8x8

Chroma)

Current
MacroBlock

Register (384x8)

 21

Local vertical register file is used to store the neighboring pixels d, h, l, and p in the

left-hand previously coded and reconstructed neighboring 4x4 luma blocks in the current

MB. Local horizontal register file is used to store the neighboring pixels m, n, o, and p in

the upper previously coded and reconstructed 4x4 luma blocks in the current MB. The

proposed hardware uses this data to determine the neighboring pixels in the left-hand and

upper previously coded neighboring 4x4 luma blocks in the current MB.

Six global neighboring buffers, three global vertical neighboring buffers and three

global horizontal neighboring buffers, are used to store the neighboring pixels in the

previously coded and reconstructed neighboring MBs of the current MB.

Global luma vertical register file is used to store the neighboring pixels d, h, l, and p

in the 4x4 luma blocks 5, 7, 13 and 15 of the previously coded MB. The proposed hardware

uses this data to determine the neighboring pixels in the left-hand previously coded

neighboring MB of the 4x4 luma blocks 0, 2, 8, and 10 in the current MB. Global Cb

vertical register file and global Cr vertical register file are used for the chroma Cb and

chroma Cr components of the MBs.

Global luma horizontal register file is used to store the neighboring pixels m, n, o,

and p in the luma blocks 10, 11, 14, and 15 of the previously coded MBs in the previously

coded MB row of the frame. The proposed hardware uses this data to determine the

neighboring pixels in the upper previously coded neighboring MB of the 4x4 luma blocks

0, 1, 4, and 5 in the current MB. Global Cb horizontal register file and global Cr horizontal

register file are used for the chroma Cb and chroma Cr components of the MBs.

Instead of using one large external SRAM, we have used 8 internal register files to

store the neighboring reconstructed pixels in order to reduce power consumption. The

power consumption is reduced by accessing a small register file for storing and reading a

reconstructed pixel instead of accessing a large external SRAM. In addition, we have

disabled the register files when they are not accessed in order to reduce power

consumption.

 22

2.2.1.1 Proposed Hardware for 4x4 Luma Prediction Modes

After a careful analysis of the equations used in 4x4 luma prediction modes, it is

observed that there are common parts in the equations and some of the equations are

identical. The intra prediction equations are organized for exploiting these observations to

reduce both the number of memory accesses and computation time required for generating

the predicted pixels. The organized prediction equations for 4x4 luma prediction modes are

shown in Figure 2.10. As it can be seen from the figure, (A + B), (B + C), (C + D), (D + E),

(E + F), (F + G), (G + H), (J + K), (I + J), (M + I) and (M + A) are common in two or more

equations, and some of the prediction equations (e.g. [(A + B) + (B + C) + 2] >> 2) are

identical.

Pred[0, 0] = Pred[1, 0] = Pred[2, 0] = Pred[3, 0] = A

Pred[0, 1] = Pred[1, 1] = Pred[2, 1] = Pred[3, 1] = B

Pred[0, 2] = Pred[1, 2] = Pred[2, 2] = Pred[3, 2] = C

Pred[0, 3] = Pred[1, 3] = Pred[2, 3] = Pred[3, 3] = D

(a) 4x4 Vertical Prediction Mode

Pred[0, 0] = Pred[0, 1] = Pred[0, 2] = Pred[0, 3] = I

Pred[1, 0] = Pred[1, 1] = Pred[1, 2] = Pred[1, 3] = J

Pred[2, 0] = Pred[2, 1] = Pred[2, 2] = Pred[2, 3] = K

Pred[3, 0] = Pred[3, 1] = Pred[3, 2] = Pred[3, 3] = L

(b) 4x4 Horizontal Prediction Mode

 23

pred[y,x] = [(A + B) + (C + D) + (I + J) + (K + L) + 4] >> 3
(If the left and the top neighboring pixels are available)

Pred[y, x] = [(I + J) + (K + L) + 2] >> 2

(Else If only the left neighboring pixels are available)

pred[y, x] = [(A + B) + (C + D) + 2] >> 2
(Else If only the top neighboring pixels are available)

pred[y,x] = 128

(Else //If the left and the top neighboring pixels are not available)

(c) 4x4 DC Prediction Mode

Pred[0, 0] = [(A + B) + (B + C) + 2] >> 2
Pred[0, 1] = Pred[1, 0] = [(C + D) + (B + C) + 2] >> 2
Pred[0, 2] = Pred[1, 1] = Pred[2, 0] = [(C + D) + (D + E) + 2] >> 2
Pred[0, 3] = Pred[1, 2] = Pred[2, 1] = [(E + F) + (D + E) + 2] >> 2
Pred[3, 0] = [(E + F) + (D + E) + 2] >> 2
Pred[1, 3] = Pred[2, 2] = Pred[3, 1] = [(E + F) + (F + G) + 2] >> 2
Pred[2, 3] = Pred[3, 2] = [(G + H) + (F + G) + 2] >> 2
Pred[3, 3] = [(G + H) + (H +H) + 2] >> 2

(d) 4x4 Diagonal Down-Left Mode

Pred[0, 2] = Pred[1, 3] = [(A + B) + (B + C) + 2] >> 2
Pred[0, 3] = [(C + D) + (B + C) + 2] >> 2
Pred[3, 0] = [(J + K) + (K+ L) + 2] >> 2
Pred[2, 0] = Pred[3, 1] = [(J + K) + (I + J) + 2] >> 2
Pred[1, 0] = Pred[2, 1] = Pred[3, 2] = [(M + I) + (I + J) + 2] >> 2
Pred[0, 0] = Pred[1, 1] = Pred[2, 2]
 = Pred[3, 3] = [(M + I) + (M + A) + 2] >> 2
Pred[0, 1] = Pred[1, 2] = Pred[2, 3] = [(A + B) + (M + A) + 2] >> 2

(e) 4x4 Diagonal Down-Right Mode

 24

Pred[3, 0] = [(I + J) + (J + K) + 2] >> 2
Pred[2, 0] = [(I + J) + (M + I) + 2] >> 2
Pred[1, 0] = Pred[3, 1] = [(M + A) + (M + I) + 2] >> 2
Pred[1, 1] = Pred[3, 2] = [(M + A) + (A + B) + 2] >> 2
Pred[1, 2] = Pred[3, 3] = [(B + C) + (A + B) + 2] >> 2
Pred[1, 3] = [(B + C) + (C + D) + 2] >> 2
Pred[0, 1] = Pred[2, 1] = [(A + B) + 1] >> 1
Pred[0, 3] = [(C + D) + 1] >> 1
Pred[0, 0] = Pred[2, 1] = [(M + A) + 1] >> 1
Pred[0, 2] = Pred[2, 3] = [(B + C) + 1] >> 1

(f) 4x4 Vertical Right Mode

Pred[3, 1] = [(K + L) + (J + K) + 2)] >> 2
Pred[2, 1] = Pred[3, 3] = [(I + J) + (J + K) + 2] >> 2
Pred[1, 1] = Pred[2, 3] = [(I + J) + (M + I) + 2] >> 2
Pred[0, 1] = Pred[1, 3] = [(M + A) + (M + I) + 2] >> 2
Pred[0, 2] = [(M + A) + (A + B) + 2] >> 2
Pred[0, 3] = [(B + C) + (A + B) + 2] >> 2
Pred[0, 0] = Pred[1, 2] = [(M + I) + 1] >> 1
Pred[1, 0] = Pred[2, 2] = [(I + J) + 1] >> 1
Pred[2, 0] = Pred[3, 2] = [(J + K) + 1] >> 1
Pred[3, 0] = [(K + L) + 1] >> 1

(g) 4x4 Horizontal Down Mode

Pred[1, 0] = [(A + B) + (B + C) + 2] >> 2
Pred[1, 1] = Pred[3, 0] = [(C + D) + (B + C) + 2] >> 2
Pred[1, 2] = Pred[3, 1] = [(C + D) + (D + E) + 2] >> 2
Pred[1, 3] = Pred[3, 2] = [(E + F) + (D + E) + 2] >> 2
Pred[3, 3] = [(E + F) + (F + G) + 2] >> 2
Pred[0, 0] = [(A + B) + 1] >> 1
Pred[0, 1] = Pred[2, 0] = [(B + C) + 1] >> 1
Pred[0, 2] = Pred[2, 1] = [(C + D) + 1] >> 1
Pred[0, 3] = Pred[2, 2] = [(D + E) + 1] >> 1
Pred[2, 3] = [(E + F) + 1] >> 1

(h) 4x4 Vertical Left Mode

 25

Pred[0, 1] = [(I + J) + (J + K) + 2] >> 2
Pred[0, 3] = Pred[1, 1] = [(J + K) + (K + L) + 2)] >> 2
Pred[1, 3] = Pred[2, 1] = [(L + L) + (K + L) + 2)] >> 2
Pred[1, 2] = Pred[2, 0] = [(K+ L) + 1] >> 1
Pred[0, 0] = [(I + J) + 1] >> 1
Pred[0, 2] = Pred[1, 0] = [(J + K) + 1] >> 1
Pred[2, 2] = Pred[2, 3] = Pred[3, 0] = Pred[3, 1]
 = Pred[3, 2] = Pred[3, 3] = L

(i) 4x4 Horizontal Up Mode

Figure 2.10 Organized Prediction Equations for 4x4 Luma Prediction Modes

The proposed hardware first calculates the results of the common parts in all the 4x4

luma prediction modes and stores them in temporary registers. It, then, calculates the results

of the prediction equations using the values stored in these temporary registers. If both the

left and top neighboring blocks of a 4x4 luma block are available, 12 common parts are

calculated in the preprocessing step and this takes 8 clock cycles. The neighboring buffers

are only accessed during this preprocessing. Therefore, they are disabled after the

preprocessing for reducing power consumption.

The proposed hardware calculates the results of the identical prediction equations

only once and stores them in temporary registers. It, then, determines the results of identical

prediction equations by reading the values stored in these temporary registers, instead of

calculating the same equations again.

The proposed datapath for generating predicted pixels for a 4x4 luma block using all

4x4 luma prediction modes is shown in Figure 2.11. Level0 (L0) registers are used to store

the results of the common parts in the equations of all the 4x4 luma prediction modes.

Level1 (L1) registers are used to store the results of the identical prediction equations used

in all the 4x4 luma prediction modes. If both the left and top neighboring blocks of a 4x4

luma block are available, it takes 165 clock cycles to generate the predicted pixels for that

4x4 block using available 4x4 luma prediction modes. Clock cycles required for

preprocessing and performing available 4x4 luma predictions based on the availability of

neighboring 4x4 luma blocks for a 4x4 luma block are given in Table 2.4.

 26

Figure 2.11 Datapath for 4x4 Luma Prediction Modes

Table 2.4 Clock Cycles Required for Performing Available 4x4 Luma Prediction Modes

Preprocessing & Available Modes Clock Cycles /
4x4 Luma Block

Preprocessing 8
Vertical 17
Horizontal 17
DC 19
Diagonal Down-Left Mode 18
Diagonal Down-Right Mode 18
Vertical Right 17
Horizontal Down 17
Vertical Left 17
Horizontal Up 17

(a) Top and Left Neighboring 4x4 Luma Blocks are available

Barrel Shifter0
shift0

Output Data0

 MUX0_1
 Sel0_1

 ADDER1

Output Data1

 MUX1_1

Sel1_1

 MUX0_0
 Sel0_0

Sel1_0 MUX1_0

 ADDER0

shift1

Barrel Shifter1

REG_L0_0 REG_L0_1 REG_L0_11

REG_L1_0 REG_L1_1 REG_L1_11

REG_L0_7 REG_L0_6

 27

Preprocessing & Available Modes Clock Cycles /
4x4 Luma Block

Preprocessing 8
Vertical 17
DC 18
Diagonal Down-Left Mode 18
Vertical Left 17

(b)Top Neighboring 4x4 Luma Block is available

Preprocessing & Available Modes Clock Cycles/4x4
Luma Block

Preprocessing 5
Horizontal 17
DC 18
Horizontal Up 18

(c) Left Neigboring 4x4 Luma Block is available

Preprocessing & Available Modes Clock Cycles/4x4
Luma Block

Preprocessing -
DC 17

(d) Top and Left Neighboring 4x4 Luma Blocks are not available

Since the order of the equations used in a 4x4 luma prediction mode is not important

for functional correctness, the equations are ordered to keep the inputs of the adders the

same for as many consecutive clock cycles as possible. This avoids unnecessary switching

activity and reduces the power consumption.

 28

2.2.1.2 Proposed Hardware for 16x16 Luma Prediction Modes

After a careful analysis of the equations used in 16x16 luma prediction modes, it is

observed that Vertical, Horizontal and DC mode equations can directly be implemented

using adders and shifters, however the equations used in Plane mode can be organized to

avoid using a multiplier and to reduce computation time required for generating the

predicted pixels. The organized prediction equations for Plane mode are shown in Figure

2.12. A similar organization for the Plane mode prediction equations is given in [7, 8].

However, our hardware design is different than their design and it is a more cost-effective

solution for portable applications.

a = (p[-1,15] + p[15,-1]) << 4, b = [(H << 2) + (H + 32)] >> 6

c = [(V << 2) + (V + 32)] >> 6

C0 = [a – (7 * b) - (7 * c) + 16]

pred[0, 0] = Clip1 [(C0) >> 5]
pred[0, 1] = Clip1 [(C0 + b) >> 5]
pred[0, 2] = Clip1 [(C0 + 2b) >> 5]
pred[0, 3] = Clip1 [(C0 + 3b) >> 5]

pred[1, 0] = Clip1 [(C0 + c) >> 5]
pred[1, 1] = Clip1 [((C0 + c) + b) >> 5]
pred[1, 2] = Clip1 [((C0 + c) + 2b) >> 5]
pred[1, 3] = Clip1 [((C0 + c) + 3b) >> 5]

pred[2, 0] = Clip1 [(C0 + 2c) >> 5]
pred[2, 1] = Clip1 [((C0 + 2c) + b) >> 5]
pred[2, 2] = Clip1 [((C0 + 2c) + 2b) >> 5]
pred[2, 3] = Clip1 [((C0 + 2c) + 3b) >> 5]

pred[3, 0] = Clip1 [(C0 + 3c)>> 5]
pred[3, 1] = Clip1 [((C0 + 3c) + b) >> 5]
pred[3, 2] = Clip1 [((C0 + 3c) + 2b) >> 5]
pred[3, 3] = Clip1 [((C0 + 3c) + 3b) >> 5]

 29

C1 = [a – (3 * b) - (7 * c) + 16] = C0 + 4b

pred[0, 4] = Clip1 [(C1) >> 5]
pred[0, 5] = Clip1 [(C1 + b) >> 5]
pred[0, 6] = Clip1 [(C1 + 2b) >> 5]
pred[0, 7] = Clip1 [(C1 + 3b) >> 5]

pred[1, 4] = Clip1 [(C1 + c) >> 5]
pred[1, 5] = Clip1 [((C1 + c) + b) >> 5]
pred[1, 6] = Clip1 [((C1 + c) + 2b) >> 5]
pred[1, 7] = Clip1 [((C1 + c) + 3b) >> 5]

pred[2, 4] = Clip1 [(C1 + 2c) >> 5]
pred[2, 5] = Clip1 [((C1 + 2c) + b) >> 5]
pred[2, 6] = Clip1 [((C1 + 2c) + 2b) >> 5]
pred[2, 7] = Clip1 [((C1 + 2c) + 3b) >> 5]

pred[3, 4] = Clip1 [(C1 + 3c) >> 5]
pred[3, 5] = Clip1 [((C1 + 3c) + b) >> 5]
pred[3, 6] = Clip1 [((C1 + 3c) + 2b) >> 5]
pred[3, 7] = Clip1 [((C1 + 3c) + 3b) >> 5]

C2 = [a – (7 * b) - (3 * c) + 16] = C0 + 4c

pred[4, 0] = Clip1 [(C2) >> 5]
pred[4, 1] = Clip1 [(C2 + b) >> 5]
pred[4, 2] = Clip1 [(C2 + 2b) >> 5]
pred[4, 3] = Clip1 [(C2 + 3b) >> 5]

pred[5, 0] = Clip1 [(C2 + c) >> 5]
pred[5, 1] = Clip1 [((C2 + c) + b) >> 5]
pred[5, 2] = Clip1 [((C2 + c) + 2b) >> 5]
pred[5, 3] = Clip1 [((C2 + c) + 3b) >> 5]

pred[6, 0] = Clip1 [(C2 + 2c) >> 5]
pred[6, 1] = Clip1 [((C2 + 2c) + b) >> 5]
pred[6, 2] = Clip1 [((C2 + 2c) + 2b) >> 5]
pred[6, 3] = Clip1 [((C2 + 2c) + 3b) >> 5]

pred[7, 0] = Clip1 [(C2 + 3c) >> 5]
pred[7, 1] = Clip1 [((C2 + 3c) + b) >> 5]
pred[7, 2] = Clip1 [((C2 + 3c) + 2b) >> 5]
pred[7, 3] = Clip1 [((C2 + 3c) + 3b) >> 5]

 30

C3 = [a – (3 * b) - (3 * c) + 16] = C0 + 4c + 4b

pred[4, 4] = Clip1 [(C3) >> 5]
pred[4, 5] = Clip1 [(C3 + b) >> 5]
pred[4, 6] = Clip1 [(C3 + 2b) >> 5]
pred[4, 7] = Clip1 [(C3 + 3b) >> 5]

pred[5, 4] = Clip1 [(C3 + c) >> 5]
pred[5, 5] = Clip1 [((C3 + c) + b) >> 5]
pred[5, 6] = Clip1 [((C3 + c) + 2b) >> 5]
pred[5, 7] = Clip1 [((C3 + c) + 3b) >> 5]

pred[6, 4] = Clip1 [(C3 + 2c)>> 5]
pred[6, 5] = Clip1 [((C3 + 2c) + b) >> 5]
pred[6, 6] = Clip1 [((C3 + 2c) + 2b) >> 5]
pred[6, 7] = Clip1 [((C3 + 2c) + 3b) >> 5]

pred[7, 4] = Clip1 [(C3 + 3c)>> 5]
pred[7, 5] = Clip1 [((C3 + 3c) + b) >> 5]
pred[7, 6] = Clip1 [((C3 + 3c) + 2b) >> 5]
pred[7, 7] = Clip1 [((C3 + 3c) + 3b) >> 5]

C4 = [a + (1 * b) - (7 * c) + 16] = C0 + 8b

pred[0, 8] = Clip1 [(C4) >> 5]
pred[0, 9] = Clip1 [(C4 + b) >> 5]
pred[0, 10] = Clip1 [(C4 + 2b) >> 5]
pred[0, 11] = Clip1 [(C4 + 3b) >> 5]

pred[1, 8] = Clip1 [(C4 + c) >> 5]
pred[1, 9] = Clip1 [((C4 + c) + b) >> 5]
pred[1, 10] = Clip1 [((C4 + c) + 2b) >> 5]
pred[1, 11] = Clip1 [((C4 + c) + 3b) >> 5]

pred[2, 8] = Clip1 [(C4 + 2c)>> 5]
pred[2, 9] = Clip1 [((C4 + 2c) + b) >> 5]
pred[2, 10] = Clip1 [((C4 + 2c) + 2b) >> 5]
pred[2, 11] = Clip1 [((C4 + 2c) + 3b) >> 5]

pred[3, 8] = Clip1 [(C4 + 3c)>> 5]
pred[3, 9] = Clip1 [((C4 + 3c) + b) >> 5]
pred[3, 10] = Clip1 [((C4 + 3c) + 2b) >> 5]
pred[3, 11] = Clip1 [((C4 + 3c) + 3b) >> 5]

 31

C5 = [a + (5 * b) - (7 * c) + 16] = C0 + 12b

pred[0, 12] = Clip1 [(C5)>> 5]
pred[0, 13] = Clip1 [(C5 + b)>> 5]
pred[0, 14] = Clip1 [(C5 + 2b)>> 5]
pred[0, 15] = Clip1 [(C5 + 3b)>> 5]

pred[1, 12] = Clip1 [(C5 + c)>> 5]
pred[1, 13] = Clip1 [((C5 + c) + b) >> 5]
pred[1, 10] = Clip1 [((C5 + c) + 2b) >> 5]
pred[1, 11] = Clip1 [((C5 + c) + 3b) >> 5]

pred[2, 12] = Clip1 [(C5 + 2c)>> 5]
pred[2, 13] = Clip1 [((C5 + 2c) + b) >> 5]
pred[2, 14] = Clip1 [((C5 + 2c) + 2b) >> 5]
pred[2, 15] = Clip1 [((C5 + 2c) + 3b) >> 5]

pred[3, 12] = Clip1 [(C5 + 3c)>> 5]
pred[3, 13] = Clip1 [((C5 + 3c) + b) >> 5]
pred[3, 14] = Clip1 [((C5 + 3c) + 2b) >> 5]
pred[3, 15] = Clip1 [((C5 + 3c) + 3b) >> 5]

C6 = [a + (1 * b) - (3 * c) + 16] = C0 + 8b + 4c

pred[4, 8] = Clip1 [(C6)>> 5]
pred[4, 9] = Clip1 [(C6 + b) >> 5]
pred[4, 10] = Clip1 [(C6 + 2b) >> 5]
pred[4, 11] = Clip1 [(C6 + 3b) >> 5]

pred[5, 8] = Clip1 [(C6 + c)>> 5]
pred[5, 9] = Clip1 [((C6 + c) + b) >> 5]
pred[5, 10] = Clip1 [((C6 + c) + 2b) >> 5]
pred[5, 11] = Clip1 [((C6 + c) + 3b) >> 5]

pred[6, 8] = Clip1 [(C6 + 2c)>> 5]
pred[6, 9] = Clip1 [((C6 + 2c) + b) >> 5]
pred[6, 10] = Clip1 [((C6 + 2c) + 2b) >> 5]
pred[6, 11] = Clip1 [((C6 + 2c) + 3b) >> 5]

pred[7, 8] = Clip1 [(C6 + 3c)>> 5]
pred[7, 9] = Clip1 [((C6 + 3c) + b) >> 5]
pred[7, 10] = Clip1 [((C6 + 3c) + 2b) >> 5]
pred[7, 11] = Clip1 [((C6 + 3c) + 3b) >> 5]

 32

C7 = [a + (5 * b) - (3 * c) + 16] = C0 + 12b + 4c

pred[4, 12] = Clip1 [(C7) >> 5]
pred[4, 13] = Clip1 [(C7 + b) >> 5]
pred[4, 14] = Clip1 [(C7 + 2b) >> 5]
pred[4, 15] = Clip1 [(C7 + 3b) >> 5]

pred[5, 12] = Clip1 [(C7 + c)>> 5]
pred[5, 13] = Clip1 [((C7 + c) + b) >> 5]
pred[5, 10] = Clip1 [((C7 + c) + 2b) >> 5]
pred[5, 11] = Clip1 [((C7 + c) + 3b) >> 5]

pred[6, 12] = Clip1 [(C7 + 2c) >> 5]
pred[6, 13] = Clip1 [((C7 + 2c) + b) >> 5]
pred[6, 14] = Clip1 [((C7 + 2c) + 2b) >> 5]
pred[6, 15] = Clip1 [((C7 + 2c) + 3b) >> 5]

pred[7, 12] = Clip1 [(C7 + 3c) >> 5]
pred[7, 13] = Clip1 [((C7 + 3c) + b) >> 5]
pred[7, 14] = Clip1 [((C7 + 3c) + 2b) >> 5]
pred[7, 15] = Clip1 [((C7 + 3c) + 3b) >> 5]

 C8 = [a – (7 * b) + (1 * c) + 16] = C0 + 8c

pred[8, 0] = Clip1 [(C8) >> 5]
pred[8, 1] = Clip1 [(C8 + b) >> 5]
pred[8, 2] = Clip1 [(C8 + 2b) >> 5]
pred[8, 3] = Clip1 [(C8 + 3b) >> 5]

pred[9, 0] = Clip1 [(C8 + c) >> 5]
pred[9, 1] = Clip1 [((C8 + c) + b) >> 5]
pred[9, 2] = Clip1 [((C8 + c) + 2b) >> 5]
pred[9, 3] = Clip1 [((C8 + c) + 3b) >> 5]

pred[10, 0] = Clip1 [(C8 + 2c) >> 5]
pred[10, 1] = Clip1 [((C8 + 2c) + b) >> 5]
pred[10, 2] = Clip1 [((C8 + 2c) + 2b) >> 5]
pred[10, 3] = Clip1 [((C8 + 2c) + 3b) >> 5]

pred[11, 0] = Clip1 [(C8 + 3c) >> 5]
pred[11, 1] = Clip1 [((C8 + 3c) + b) >> 5]
pred[11, 2] = Clip1 [((C8 + 3c) + 2b) >> 5]
pred[11, 3] = Clip1 [((C8 + 3c) + 3b) >> 5]

 33

C9 = [a – (3 * b) + (1 * c) + 16] = C0 + 4b + 8c

pred[8, 4] = Clip1 [(C9) >> 5]
pred[8, 5] = Clip1 [(C9 + b) >> 5]
pred[8, 6] = Clip1 [(C9 + 2b) >> 5]
pred[8, 7] = Clip1 [(C9 + 3b) >> 5]

pred[9, 4] = Clip1 [(C9 + c) >> 5]
pred[9, 5] = Clip1 [((C9 + c) + b) >> 5]
pred[9, 6] = Clip1 [((C9 + c) + 2b) >> 5]
pred[9, 7] = Clip1 [((C9 + c) + 3b) >> 5]

pred[10, 4] = Clip1 [(C9 + 2c) >> 5]
pred[10, 5] = Clip1 [((C9 + 2c) + b) >> 5]
pred[10, 6] = Clip1 [((C9 + 2c) + 2b) >> 5]
pred[10, 7] = Clip1 [((C9 + 2c) + 3b) >> 5]

pred[11, 4] = Clip1 [(C9 + 3c)>> 5]
pred[11, 5] = Clip1 [((C9 + 3c) + b) >> 5]
pred[11, 6] = Clip1 [((C9 + 3c) + 2b) >> 5]
pred[11, 7] = Clip1 [((C9 + 3c) + 3b) >> 5]

C10 = [a – (7 * b) + (5 * c) + 16] = C0 + 12c

pred[12, 0] = Clip1 [(C10) >> 5]
pred[12, 1] = Clip1 [(C10 + b) >> 5]
pred[12, 2] = Clip1 [(C10 + 2b) >> 5]
pred[12, 3] = Clip1 [(C10 + 3b) >> 5]

pred[13, 0] = Clip1 [(C10 + c) >> 5]
pred[13, 1] = Clip1 [((C10 + c) + b) >> 5]
pred[13, 2] = Clip1 [((C10 + c) + 2b) >> 5]
pred[13, 3] = Clip1 [((C10 + c) + 3b) >> 5]

pred[14, 0] = Clip1 [(C10 + 2c) >> 5]
pred[14, 1] = Clip1 [((C10 + 2c) + b) >> 5]
pred[14, 2] = Clip1 [((C10 + 2c) + 2b) >> 5]
pred[14, 3] = Clip1 [((C10 + 2c) + 3b) >> 5]

pred[15, 0] = Clip1 [(C10 + 3c) >> 5]
pred[15, 1] = Clip1 [((C10 + 3c) + b) >> 5]
pred[15, 2] = Clip1 [((C10 + 3c) + 2b) >> 5]
pred[15, 3] = Clip1 [((C10 + 3c) + 3b) >> 5]

 34

C11 = [a – (3 * b) + (5 * c) + 16] = C0 + 4b + 12c

pred[12, 4] = Clip1 [(C11) >> 5]
pred[12, 5] = Clip1 [(C11 + b) >> 5]
pred[12, 6] = Clip1 [(C11 + 2b) >> 5]
pred[12, 7] = Clip1 [(C11 + 3b) >> 5]

pred[13, 4] = Clip1 [(C11 + c) >> 5]
pred[13, 5] = Clip1 [((C11 + c) + b) >> 5]
pred[13, 6] = Clip1 [((C11 + c) + 2b) >> 5]
pred[13, 7] = Clip1 [((C11 + c) + 3b) >> 5]

pred[14, 4] = Clip1 [(C11 + 2c) >> 5]
pred[14, 5] = Clip1 [((C11 + 2c) + b) >> 5]
pred[14, 6] = Clip1 [((C11 + 2c) + 2b) >> 5]
pred[14, 7] = Clip1 [((C11 + 2c) + 3b) >> 5]

pred[15, 4] = Clip1 [(C11 + 3c)>> 5]
pred[15, 5] = Clip1 [((C11 + 3c) + b) >> 5]
pred[15, 6] = Clip1 [((C11 + 3c) + 2b) >> 5]
pred[15, 7] = Clip1 [((C11 + 3c) + 3b) >> 5]

C12 = [a + (1 * b) + (1 * c) + 16] = C0 + 8b + 8c

pred[8, 8] = Clip1 [(C12)>> 5]
pred[8, 9] = Clip1 [(C12 + b) >> 5]
pred[8, 10] = Clip1 [(C12 + 2b) >> 5]
pred[8, 11] = Clip1 [(C12 + 3b) >> 5]

pred[9, 8] = Clip1 [(C12 + c)>> 5]
pred[9, 9] = Clip1 [((C12 + c) + b) >> 5]
pred[9, 10] = Clip1 [((C12 + c) + 2b) >> 5]
pred[9, 11] = Clip1 [((C12 + c) + 3b) >> 5]

pred[10, 8] = Clip1 [(C12 + 2c)>> 5]
pred[10, 9] = Clip1 [((C12 + 2c) + b) >> 5]
pred[10, 10] = Clip1 [((C12 + 2c) + 2b) >> 5]
pred[10, 11] = Clip1 [((C12 + 2c) + 3b) >> 5]

pred[11, 8] = Clip1 [(C12 + 3c)>> 5]
pred[11, 9] = Clip1 [((C12 + 3c) + b) >> 5]
pred[11, 10] = Clip1 [((C12 + 3c) + 2b) >> 5]
pred[11, 11] = Clip1 [((C12 + 3c) + 3b) >> 5]

 35

C13 = [a + (5 * b) + (1 * c) + 16] = C0 + 12b + 8c

pred[8, 12] = Clip1 [(C13) >> 5]
pred[8, 13] = Clip1 [(C13 + b) >> 5]
pred[8, 14] = Clip1 [(C13 + 2b) >> 5]
pred[8, 15] = Clip1 [(C13 + 3b) >> 5]

pred[9, 12] = Clip1 [(C13 + c)>> 5]
pred[9, 13] = Clip1 [((C13 + c) + b) >> 5]
pred[9, 10] = Clip1 [((C13 + c) + 2b) >> 5]
pred[9, 11] = Clip1 [((C13 + c) + 3b) >> 5]

pred[10, 12] = Clip1 [(C13 + 2c) >> 5]
pred[10, 13] = Clip1 [((C13 + 2c) + b) >> 5]
pred[10, 14] = Clip1 [((C13 + 2c) + 2b) >> 5]
pred[10, 15] = Clip1 [((C13 + 2c) + 3b) >> 5]

pred[11, 12] = Clip1 [(C13 + 3c) >> 5]
pred[11, 13] = Clip1 [((C13 + 3c) + b) >> 5]
pred[11, 14] = Clip1 [((C13 + 3c) + 2b) >> 5]
pred[11, 15] = Clip1 [((C13 + 3c) + 3b) >> 5]

C14 = [a + (1 * b) + (5 * c) + 16] = C0 + 8b + 12c

pred[12, 8] = Clip1 [(C14)>> 5]
pred[12, 9] = Clip1 [(C14 + b) >> 5]
pred[12, 10] = Clip1 [(C14 + 2b) >> 5]
pred[12, 11] = Clip1 [(C14 + 3b) >> 5]

pred[13, 8] = Clip1 [(C14 + c)>> 5]
pred[13, 9] = Clip1 [((C14 + c) + b) >> 5]
pred[13, 10] = Clip1 [((C14 + c) + 2b) >> 5]
pred[13, 11] = Clip1 [((C14 + c) + 3b) >> 5]

pred[14, 8] = Clip1 [(C14 + 2c)>> 5]
pred[14, 9] = Clip1 [((C14 + 2c) + b) >> 5]
pred[14, 10] = Clip1 [((C14 + 2c) + 2b) >> 5]
pred[14, 11] = Clip1 [((C14 + 2c) + 3b) >> 5]

pred[15, 8] = Clip1 [(C14 + 3c)>> 5]
pred[15, 9] = Clip1 [((C14 + 3c) + b) >> 5]
pred[15, 10] = Clip1 [((C14 + 3c) + 2b) >> 5]
pred[15, 11] = Clip1 [((C14 + 3c) + 3b) >> 5]

 36

C15 = [a + (5 * b) + (5 * c) + 16] = C0 + 12b + 12c

pred[12, 12] = Clip1 [(C15) >> 5]
pred[12, 13] = Clip1 [(C15 + b) >> 5]
pred[12, 14] = Clip1 [(C15 + 2b) >> 5]
pred[12, 15] = Clip1 [(C15 + 3b) >> 5]

pred[13, 12] = Clip1 [(C15 + c)>> 5]
pred[13, 13] = Clip1 [((C15 + c) + b) >> 5]
pred[13, 10] = Clip1 [((C15 + c) + 2b) >> 5]
pred[13, 11] = Clip1 [((C15 + c) + 3b) >> 5]

pred[14, 12] = Clip1 [(C15 + 2c) >> 5]
pred[14, 13] = Clip1 [((C15 + 2c) + b) >> 5]
pred[14, 14] = Clip1 [((C15 + 2c) + 2b) >> 5]
pred[14, 15] = Clip1 [((C15 + 2c) + 3b) >> 5]

pred[15, 12] = Clip1 [(C15 + 3c) >> 5]
pred[15, 13] = Clip1 [((C15 + 3c) + b) >> 5]
pred[15, 14] = Clip1 [((C15 + 3c) + 2b) >> 5]
pred[15, 15] = Clip1 [((C15 + 3c) + 3b) >> 5]

Figure 2.12 Organized Prediction Equations for 16x16 Luma Plane Mode

The proposed hardware first calculates the common parts C0, (C0 + b), (C0 + 2b),

and (C0 + 3b) and stores them in temporary registers. It, then, generates the predicted pixels

in the first row by using the values stored in these temporary registers. The proposed

hardware, then, adds c to the values stored in the temporary registers and stores the

resulting values in the same temporary registers. It, then, generates the predicted pixels in

the second row by using the values stored in these temporary registers. The proposed

hardware repeats this process until all the predicted pixels for the current MB are generated.

The proposed datapath for generating predicted pixels for a 16x16 luma block using

all 16x16 luma prediction modes is shown in Figure 2.13. REG0 - REG7 registers are used

to store the results of the common parts in the equations. The neighboring reconstructed

pixels stored in the neighboring buffers are given as inputs to the datapath. If both the left

and top neighboring MBs of a 16x16 luma block are available, it takes 1127 clock cycles to

generate the predicted pixels for that 16x16 luma block using available 16x16 luma

 37

prediction modes. Clock cycles required for performing available 16x16 luma predictions

based on the availability of neighboring 16x16 luma blocks for a 16x16 luma block are

given in Table 2.5.

Plane mode is the most computationally demanding 16x16 luma prediction mode.

Therefore, using two parallel adders and shifters in the proposed datapath is especially

important for Plane mode. The predicted pixels for a 16x16 luma block are generated in

340 clock cycles using Plane mode.

Figure 2.13 Datapath for 16x16 Luma Prediction Modes

Table 2.5 Clock Cycles Required for Performing Available 16x16 Luma Prediction Modes

Available Modes Clock Cycles/MB
Vertical 257
Horizontal 257
DC 273
Plane Mode 340

(a) Top and Left Neighboring 16x16 Luma Blocks are available

 MUX0_0 MUX0_1

 Barrel Shifter0 shift0

Output Data0

Sel0_0 Sel0_1 Sel1_0

 ADD_SUB1

 MUX1_0 MUX1_1

 shift1

Sel1_1

REG0 REG1 REG2 REG3 REG4 REG5 REG6 REG7

 Clip1

 ADD_SUB0

 Output Data1

 Barrel Shifter1

 38

Available Modes Clock Cycles/MB
Vertical 257
DC 265

(b)Top Neighboring 16x16 Luma Block is available

Available Modes Clock Cycles/MB
Horizontal 257
DC 265

(c) Left Neighboring 16x16 Luma Block is available

Available Modes Clock Cycles/MB
DC 257

(d) Top and Left Neighboring 16x16 Luma Blocks are not available

2.2.1.3 Proposed Hardware for 8x8 Chroma Prediction Modes

Since the 8x8 chroma prediction modes are similar to 16x16 luma prediction modes,

the proposed hardware for 8x8 chroma prediction modes is also similar to the proposed

hardware for 16x16 luma prediction modes. If both the left and top neighboring MBs of an

8x8 chroma block are available, it takes 302 clock cycles to generate the predicted pixels

for that 8x8 chroma block using available 8x8 chroma prediction modes. Plane mode is also

the most computationally demanding 8x8 chroma prediction mode.

The organized prediction equations for Plane mode are shown in Figure 2.14. The

predicted pixels for an 8x8 chroma block are generated in 95 clock cycles using Plane

mode. Clock cycles required for preprocessing and performing available 8x8 chroma

predictions based on the availability of neighboring 8x8 chroma blocks for an 8x8 chroma

block are given in Table 2.6.

 39

a = (p[-1,15] + p[15,-1]) << 4, b = [(H << 2) + (H + 32)] >> 6
c = [(V << 2) + (V + 32)] >> 6

C0 = [a – (3 * b) - (3 * c) + 16]

pred[0, 0] = Clip1 [(C0) >> 5]
pred[0, 1] = Clip1 [(C0 + b) >> 5]
pred[0, 2] = Clip1 [(C0 + 2b) >> 5]
pred[0, 3] = Clip1 [(C0 + 3b) >> 5]

pred[1, 0] = Clip1 [(C0 + c) >> 5]
pred[1, 1] = Clip1 [((C0 + c) + b) >> 5]
pred[1, 2] = Clip1 [((C0 + c) + 2b) >> 5]
pred[1, 3] = Clip1 [((C0 + c) + 3b) >> 5]

pred[2, 0] = Clip1 [(C0 + 2c) >> 5]
pred[2, 1] = Clip1 [((C0 + 2c) + b) >> 5]
pred[2, 2] = Clip1 [((C0 + 2c) + 2b) >> 5]
pred[2, 3] = Clip1 [((C0 + 2c) + 3b) >> 5]

pred[3, 0] = Clip1 [(C0 + 3c)>> 5]
pred[3, 1] = Clip1 [((C0 + 3c) + b) >> 5]
pred[3, 2] = Clip1 [((C0 + 3c) + 2b) >> 5]
pred[3, 3] = Clip1 [((C0 + 3c) + 3b) >> 5]

 C1 = [a + (1 * b) - (3 * c) + 16] = C0 + 4b

pred[0, 4] = Clip1 [(C1) >> 5]
pred[0, 5] = Clip1 [(C1 + b) >> 5]
pred[0, 6] = Clip1 [(C1 + 2b) >> 5]
pred[0, 7] = Clip1 [(C1 + 3b) >> 5]
pred[1, 4] = Clip1 [(C1 + c) >> 5]
pred[1, 5] = Clip1 [((C1 + c) + b) >> 5]
pred[1, 6] = Clip1 [((C1 + c) + 2b) >> 5]
pred[1, 7] = Clip1 [((C1 + c) + 3b) >> 5]

pred[2, 4] = Clip1 [(C1 + 2c) >> 5]
pred[2, 5] = Clip1 [((C1 + 2c) + b) >> 5]
pred[2, 6] = Clip1 [((C1 + 2c) + 2b) >> 5]
pred[2, 7] = Clip1 [((C1 + 2c) + 3b) >> 5]

pred[3, 4] = Clip1 [(C1 + 3c) >> 5]
pred[3, 5] = Clip1 [((C1 + 3c) + b) >> 5]
pred[3, 6] = Clip1 [((C1 + 3c) + 2b) >> 5]
pred[3, 7] = Clip1 [((C1 + 3c) + 3b) >> 5]

 40

C2 = [a – (3 * b) + (1 * c) + 16] = C0 + 4c

pred[4, 0] = Clip1 [(C2) >> 5]
pred[4, 1] = Clip1 [(C2 + b) >> 5]
pred[4, 2] = Clip1 [(C2 + 2b) >> 5]
pred[4, 3] = Clip1 [(C2 + 3b) >> 5]

pred[5, 0] = Clip1 [(C2 + c) >> 5]
pred[5, 1] = Clip1 [((C2 + c) + b) >> 5]
pred[5, 2] = Clip1 [((C2 + c) + 2b) >> 5]
pred[5, 3] = Clip1 [((C2 + c) + 3b) >> 5]

pred[6, 0] = Clip1 [(C2 + 2c) >> 5]
pred[6, 1] = Clip1 [((C2 + 2c) + b) >> 5]
pred[6, 2] = Clip1 [((C2 + 2c) + 2b) >> 5]
pred[6, 3] = Clip1 [((C2 + 2c) + 3b) >> 5]

pred[7, 0] = Clip1 [(C2 + 3c) >> 5]
pred[7, 1] = Clip1 [((C2 + 3c) + b) >> 5]
pred[7, 2] = Clip1 [((C2 + 3c) + 2b) >> 5]
pred[7, 3] = Clip1 [((C2 + 3c) + 3b) >> 5]

C3 = [a + (1 * b) + (1 * c) + 16] = C0 + 4c + 4b

pred[4, 4] = Clip1 [(C3) >> 5]
pred[4, 5] = Clip1 [(C3 + b) >> 5]
pred[4, 6] = Clip1 [(C3 + 2b) >> 5]
pred[4, 7] = Clip1 [(C3 + 3b) >> 5]

pred[5, 4] = Clip1 [(C3 + c) >> 5]
pred[5, 5] = Clip1 [((C3 + c) + b) >> 5]
pred[5, 6] = Clip1 [((C3 + c) + 2b) >> 5]
pred[5, 7] = Clip1 [((C3 + c) + 3b) >> 5]

pred[6, 4] = Clip1 [(C3 + 2c)>> 5]
pred[6, 5] = Clip1 [((C3 + 2c) + b) >> 5]
pred[6, 6] = Clip1 [((C3 + 2c) + 2b) >> 5]
pred[6, 7] = Clip1 [((C3 + 2c) + 3b) >> 5]

pred[7, 4] = Clip1 [(C3 + 3c)>> 5]
pred[7, 5] = Clip1 [((C3 + 3c) + b) >> 5]
pred[7, 6] = Clip1 [((C3 + 3c) + 2b) >> 5]
pred[7, 7] = Clip1 [((C3 + 3c) + 3b) >> 5]

Figure 2.14 Organized Prediction Equations for 8x8 Luma Plane Mode

 41

Table 2.6 Clock Cycles Required for Performing Available 8x8 Chroma Prediction Modes

Available Modes Clock Cycles/MB
Vertical 65
Horizontal 65
DC 77
Plane Mode 95

(a) Top and Left Neighboring 8x8 Chroma Blocks are available

Available Modes Clock Cycles/MB
Vertical 77
DC 65

(b)Top Neighboring 8x8 Chroma Block is available

Available Modes Clock Cycles/MB
Horizontal 77
DC 65

(c)Left Neighboring 8x8 Chroma Block is available

Available Modes Clock Cycles/MB
DC 65

(d) Top and Left Neighboring 8x8 Chroma Blocks are not available

 42

2.2.1.4 Implementation Results

A high performance and low cost hardware architecture for real-time implementation

of intra prediction algorithm used in H.264 / MPEG4 Part 10 video coding standard is

designed. The hardware design is based on a novel organization of the intra prediction

equations. This hardware is designed to be used as part of a complete H.264 intra frame

coder for portable applications.

The proposed architecture is implemented in Verilog HDL. The implementation is

verified with RTL simulations using Mentor Graphics ModelSim SE. The Verilog RTL is

then synthesized to a 2V8000ff1152 Xilinx Virtex II FPGA with speed grade 5 using

Mentor Graphics Leonardo Spectrum. The resulting netlist is placed and routed to the same

FPGA using Xilinx ISE Series 7.1i.

Clock cycle requirements of available 16x16 luma prediction modes for luma

component of a MB depending on the availability of the neighboring 16x16 luma blocks

are given in Table 2.7.

Table 2.7 Clock Cycles Required for Performing Available 16x16 Luma Prediction Modes

Availability of Neighboring
16x16 Luma Blocks

Clock Cycles/MB

None available 257
Left available, Top not available 522
Top available, Left not available 522
Both available 1127

Clock cycle requirements of available 8x8 chroma prediction modes for chroma

components of a MB depending on the availability of the neighboring 8x8 chroma blocks

are given in Table 2.8.

 43

Table 2.8 Clock Cycles Required for Performing Available 8x8 Chroma Prediction Modes

Availability of Neighboring
8x8 Chroma Blocks

Clock Cycles/MB

None available 65
Left available, Top not available 142
Top available, Left not available 142
Both available 302

Clock cycle requirements of available 4x4 luma prediction modes for luma

component of a MB depending on the availability of the neighboring 16x16 luma blocks

are given in Table 2.9.

Table 2.9 Clock Cycles Required for Performing Available 4x4 Luma Prediction Modes

Availability of Neighboring
16x16 Luma Block

Clock Cycles/MB

None available 1910
Left available, Top not available 1980
Top available, Left not available 1797
Both available 2640

As it can be seen from Table 2.7, 2.8, and 2.9, generating the predicted pixels using

available 4x4 luma prediction modes for luma component of a MB is the most

computationally demanding part in the proposed hardware. In the worst case, regardless of

the availability of the neighboring pixels, generating the predicted pixels for a MB using

4x4 luma prediction modes is the bottleneck.

In a VGA frame (40x30 = 1200 MBs), there is only 1 MB (MB0) which has no

available neighboring MBs, there are 39 MBs (the first row of MBs except MB0) which

have only left-hand neighboring MBs available, there are 29 MBs (the first column of MBs

except MB0) which have only upper neighboring MBs available, and there are 1131 MBs

(remaining MBs) which have both left-hand and upper neighboring MBs available.

In addition to the number clock cycles given in Table 2.9, 16 clock cycles are

required for loading the neighboring reconstructed pixels to the corresponding neighboring

buffers for each 4x4 luma block. Therefore, generating the predicted pixels for a VGA

frame using 4x4 luma prediction modes takes 1910 + (1980 x 39) + (1797 x 29) + (2640 x

1131) + (16x16x1200) = 3424283 clock cycles.

 44

The FPGA implementation is verified to work at 90 MHz under worst-case PVT

conditions with post place and route simulations. Since, in the proposed hardware,

generating the predicted pixels for a MB using 4x4 luma prediction modes is the

bottleneck, the FPGA implementation can process a VGA frame in 3424283 clock cycles

per VGA frame x 11 ns clock cycle = 37.6 msec. Therefore, it can process 1000/37.6 = 27

VGA frames (640x480) per second.

The FPGA implementation including input and output register files and internal

RAMs uses the following FPGA resources; 2002 Function Generators, 1001 CLB Slices,

and 518 DFFs, i.e. %2.15 of Function Generators, %2.15 of CLB Slices, and %0.54 of

DFFs.

2.2.2 Intra Prediction Hardware for Coder

The block diagram of the proposed intra prediction hardware architecture for the

coder part of the H.264 intra frame coder is shown in Figure 2.15. The proposed hardware

generates the predicted pixels for luma component of a MB using either selected 16x16 or

4x4 luma prediction modes. It generates the predicted pixels for chroma components of a

MB using the selected 8x8 chroma prediction mode with different configurations. In the

proposed hardware, there are two parts operating in parallel in order to perform intra

prediction faster.

The upper part is used for generating the predicted pixels for the luma component of a

MB using the selected 16x16 luma prediction mode if 16x16 luma prediction is selected for

luma components of the MB by the mode decision hardware and for generating the

predicted pixels for the chroma components of a MB using the selected 8x8 chroma

prediction mode for the chroma components of the MB by the mode decision hardware.

The lower part is used for generating the predicted pixels for each 4x4 block in the

luma component of a MB using the selected 4x4 luma prediction modes for each 4x4 luma

block in a MB if 4x4 luma prediction is selected for the luma components of a MB by the

 45

mode decision hardware. The lower part is more computationally demanding and it is the

bottleneck in the proposed intra prediction hardware.

The size of register file that is used for the prediction buffer is 384x8, because they

are used for storing both luma and chroma components of the predicted MB.

Two local neighboring buffers, local vertical register file and local horizontal register

file, are used to store the neighboring pixels in the previously coded and reconstructed

neighboring 4x4 luma blocks in the predicted MB. After a 4x4 luma block in the current

MB is coded and reconstructed, the neighboring pixels in this block are stored in the

corresponding local register files.

Local vertical register file is used to store the neighboring pixels d, h, l, and p in the

left-hand previously coded and reconstructed neighboring 4x4 luma blocks in the predicted

MB. Local horizontal register file is used to store the neighboring pixels m, n, o, and p in

the upper previously coded and reconstructed 4x4 luma blocks in the predicted MB. The

proposed hardware uses this data to determine the neighboring pixels in the left-hand and

upper previously coded neighboring 4x4 luma blocks in the current MB.

Six global neighboring buffers, three global vertical neighboring buffers and three

global horizontal neighboring buffers, are used to store the neighboring pixels in the

previously coded and reconstructed neighboring MBs of the current MB.

Global luma vertical register file is used to store the neighboring pixels d, h, l, and p

in the 4x4 luma blocks 5, 7, 13 and 15 of the previously coded MB. The proposed hardware

uses this data to determine the neighboring pixels in the left-hand previously coded

neighboring MB of the 4x4 luma blocks 0, 2, 8, and 10 in the current MB. Global Cb

vertical register file and global Cr vertical register file are used for the chroma Cb and

chroma Cr components of the MBs.

Global luma horizontal register file is used to store the neighboring pixels m, n, o,

and p in the luma blocks 10, 11, 14, and 15 of the previously coded MBs in the previously

coded MB row of the frame. The proposed hardware uses this data to determine the

neighboring pixels in the upper previously coded neighboring MB of the 4x4 luma blocks

0, 1, 4, and 5 in the current MB. Global Cb horizontal register file and global Cr horizontal

register file are used for the chroma Cb and chroma Cr components of the MBs.

 46

Instead of using one large external SRAM, we have used 8 internal register files to

store the neighboring reconstructed pixels in order to reduce power consumption. The

power consumption is reduced by accessing a small register file for storing and reading a

reconstructed pixel instead of accessing a large external SRAM. In addition, we have

disabled the register files when they are not accessed in order to reduce power

consumption.

Figure 2.15 Intra Prediction Hardware for Coder

Inputs from Mode Decision Hardware

 Datapath for 4x4
Luma Prediction

Modes

Controller for 16x16
Luma Prediction

Modes

Datapath for 16x16
Luma Prediction

Modes

Datapath for 8x8
Chroma Prediction

Modes

Controller for 4x4
Luma Prediction

Modes

Top Level Mode
Controller

Output
MUX

Prediction
Buffer

(384x8)

Global Neighboring Buffers
(Luma, Chroma)

Reconstructed
Pixels

Local Neighboring Buffers
Reconstructed

Pixels

Controller for 8x8
Chroma Prediction

Modes

Read Address

Generation Hardware

 47

2.2.2.1 Proposed Hardware for 4x4 Luma Prediction Modes

After a careful analysis of the equations used in 4x4 luma prediction modes, it is

observed that there are common parts in the equations and some of the equations are

identical in each 4x4 luma prediction mode. The intra prediction equations are organized

for exploiting these observations to reduce both the number of memory accesses and

computation time required for generating the predicted pixels. The organized prediction

equations for 4x4 luma prediction modes are shown in Figure 2.16.

Pred[0, 0] = Pred[1, 0] = Pred[2, 0] = Pred[3, 0] = A

Pred[0, 1] = Pred[1, 1] = Pred[2, 1] = Pred[3, 1] = B

Pred[0, 2] = Pred[1, 2] = Pred[2, 2] = Pred[3, 2] = C

Pred[0, 3] = Pred[1, 3] = Pred[2, 3] = Pred[3, 3] = D

(a) 4x4 Vertical Prediction Mode

Pred[0, 0] = Pred[0, 1] = Pred[0, 2] = Pred[0, 3] = I

Pred[1, 0] = Pred[1, 1] = Pred[1, 2] = Pred[1, 3] = J

Pred[2, 0] = Pred[2, 1] = Pred[2, 2] = Pred[2, 3] = K

Pred[3, 0] = Pred[3, 1] = Pred[3, 2] = Pred[3, 3] = L

(b) 4x4 Horizontal Prediction Mode

 48

pred[y,x] = [(A + B) + (C + D) + (I + J) + (K + L) + 4] >> 3
(If the left and the top neighboring pixels are available)

Pred[y, x] = [(I + J) + (K + L) + 2] >> 2

(Else If only the left neighboring pixels are available)

pred[y, x] = [(A + B) + (C + D) + 2] >> 2
(Else If only the top neighboring pixels are available)

pred[y,x] = 128

(Else //If the left and the top neighboring pixels are not available)

(c) 4x4 DC Prediction Mode

Pred[0, 0] = [(A + B) + (B + C) + 2] >> 2
Pred[0, 1] = Pred[1, 0] = [(C + D) + (B + C) + 2] >> 2
Pred[0, 2] = Pred[1, 1] = Pred[2, 0] = [(C + D) + (D + E) + 2] >> 2
Pred[0, 3] = Pred[1, 2] = Pred[2, 1] = [(E + F) + (D + E) + 2] >> 2
Pred[3, 0] = [(E + F) + (D + E) + 2] >> 2
Pred[1, 3] = Pred[2, 2] = Pred[3, 1] = [(E + F) + (F + G) + 2] >> 2
Pred[2, 3] = Pred[3, 2] = [(G + H) + (F + G) + 2] >> 2
Pred[3, 3] = [(G + H) + (H +H) + 2] >> 2

(c) 4x4 Diagonal Down-Left Mode

Pred[0, 2] = Pred[1, 3] = [(A + B) + (B + C) + 2] >> 2
Pred[0, 3] = [(C + D) + (B + C) + 2] >> 2
Pred[3, 0] = [(J + K) + (K+ L) + 2] >> 2
Pred[2, 0] = Pred[3, 1] = [(J + K) + (I + J) + 2] >> 2
Pred[1, 0] = Pred[2, 1] = Pred[3, 2] = [(M + I) + (I + J) + 2] >> 2
Pred[0, 0] = Pred[1, 1] = Pred[2, 2]
 = Pred[3, 3] = [(M + I) + (M + A) + 2] >> 2
Pred[0, 1] = Pred[1, 2] = Pred[2, 3] = [(A + B) (M + A) + + 2] >> 2

(d) 4x4 Diagonal Down-Right Mode

 49

Pred[3, 0] = [(I + J) + (J + K) + 2] >> 2
Pred[2, 0] = [(I + J) + (M + I) + 2] >> 2
Pred[1, 0] = Pred[3, 1] = [(M + A) + (M + I) + 2] >> 2
Pred[1, 1] = Pred[3, 2] = [(M + A) + (A + B) + 2] >> 2
Pred[1, 2] = Pred[3, 3] = [(B + C) + (A + B) + 2] >> 2
Pred[1, 3] = [(B + C) + (C + D) + 2] >> 2
Pred[0, 2] = Pred[2, 3] = [(B + C) + 1] >> 1
Pred[0, 1] = Pred[2, 1] = [(A + B) + 1] >> 1
Pred[0, 3] = [(C + D) + 1] >> 1
Pred[0, 0] = Pred[2, 1] = [(M + A) + 1] >> 1

(f) 4x4 Vertical Right Mode

Pred[0, 0] = Pred[1, 2] = [(M + I) + 1] >> 1
Pred[1, 0] = Pred[2, 2] = [(I + J) + 1] >> 1
Pred[2, 0] = Pred[3, 2] = [(J + K) + 1] >> 1
Pred[3, 0] = [(K + L) + 1] >> 1
Pred[3, 1] = [(K + L) + (J + K) + 2)] >> 2
Pred[2, 1] = Pred[3, 3] = [(I + J) + (J + K) + 2] >> 2
Pred[1, 1] = Pred[2, 3] = [(I + J) + (M + I) + 2] >> 2
Pred[0, 1] = Pred[1, 3] = [(M + A) + (M + I) + 2] >> 2
Pred[0, 2] = [(M + A) + (A + B) + 2] >> 2
Pred[0, 3] = [(B + C) + (A + B) + 2] >> 2

(g) 4x4 Horizontal Down Mode

Pred[1, 0] = [(A + B) + (B + C) + 2] >> 2
Pred[1, 1] = Pred[3, 0] = [(C + D) + (B + C) + 2] >> 2
Pred[1, 2] = Pred[3, 1] = [(C + D) + (D + E) + 2] >> 2
Pred[1, 3] = Pred[3, 2] = [(E + F) + (D + E) + 2] >> 2
Pred[3, 3] = [(E + F) + (F + G) + 2] >> 2
Pred[2, 3] = [(E + F) + 1] >> 1
Pred[0, 0] = [(A + B) + 1] >> 1
Pred[0, 1] = Pred[2, 0] = [(B + C) + 1] >> 1
Pred[0, 2] = Pred[2, 1] = [(C + D) + 1] >> 1
Pred[0, 3] = Pred[2, 2] = [(D + E) + 1] >> 1

(h) 4x4 Vertical Left Mode

 50

Pred[0, 1] = [(I + J) + (J + K) + 2] >> 2
Pred[0, 3] = Pred[1, 1] = [(J + K) + (K + L) + 2)] >> 2
Pred[1, 3] = Pred[2, 1] = [(L + L) + (K + L) + 2)] >> 2
Pred[1, 2] = Pred[2, 0] = [1 + (K+ L)] >> 1
Pred[0, 0] = [1 + (I + J)] >> 1
Pred[0, 2] = Pred[1, 0] = [1 + (J + K)] >> 1
Pred[2, 2] = Pred[2, 3] = Pred[3, 0] = Pred[3, 1]
 = Pred[3, 2] = Pred[3, 3] = L

(i) 4x4 Horizontal Up Mode

Figure 2.16 Organized Prediction Equations for 4x4 Luma Prediction Modes

As it can be seen from the figure, (A + B), (B + C), (C + D), (D + E), (E + F), (F +

G), (G + H), (J + K), (I + J), (M + I) and (M + A) are common in two or more equations,

and some of the prediction equations (e.g. [(A + B) + (B + C) + 2] >> 2) are identical in

each 4x4 luma prediction mode.

The proposed hardware starts to work if 4x4 luma prediction is selected for the luma

component of a MB by the mode decision hardware. It first calculates the results of the

common parts in the selected 4x4 luma prediction mode for a 4x4 luma block and stores

them in temporary registers (i.e. performs preprocessing for the selected mode). It, then,

calculates the results of the prediction equations in the selected 4x4 luma prediction mode

for a 4x4 luma block using the values stored in these temporary registers. The neighboring

buffers are only accessed during the preprocessing. Therefore, they are disabled after the

preprocessing for reducing power consumption.

The proposed hardware calculates the results of the identical prediction equations in

the selected 4x4 luma prediction mode for a 4x4 luma block only once. It, then, writes the

predictions of the pixels specified by the identical prediction equations into the

corresponding prediction buffer entries. Thus, no extra temporary registers are required for

storing the results of the identical prediction equations in the selected 4x4 luma prediction

mode for a 4x4 luma block.

The proposed datapath for generating predicted pixels for a 4x4 luma block using the

selected 4x4 luma prediction modes for a 4x4 luma block is shown in Figure 2.17. REG0-

REG7 are used to store the results of the common parts in the equations of the selected 4x4

 51

luma prediction mode for a 4x4 luma block. Clock cycles required to perform each selected

4x4 luma prediction mode for a 4x4 luma block are given in Table 2.10. The clock cycles

given in Table 2.10 includes the preprocessing in each selected mode. If both the left and

top neighboring 4x4 luma blocks of a 4x4 luma block are available, it takes 24 clock cycles

in the worst case to generate the predicted pixels for that 4x4 block using a selected 4x4

luma prediction mode.

Figure 2.17 Datapath for 4x4 Luma Prediction Modes

Table 2.10 Clock cycles required for performing the selected 4x4 Luma Prediction Modes

Selected Mode Clock Cycles /
4x4 Luma Block

Vertical 17
Horizontal 17
DC 21
Diagonal Down-Left Mode 24
Diagonal Down-Right Mode 24
Vertical Right 23
Horizontal Down 23
Vertical Left 22
Horizontal Up 20

(a) Top and Left Neighboring 4x4 Luma Blocks are available

 MUX0_0

 Barrel Shifter0 shift0

Output Data0

Sel0_0 MUX0_1

Sel0_1

 ADDER1

 Sel1_0 MUX1_0

Output Data1

 MUX1_1 Sel1_1

REG0 REG1 REG2 REG3 REG4 REG5 REG6 REG7

 ADDER0

 shift1 Barrel Shifter1

 52

Selected Mode Clock Cycles /
4x4 Luma Block

Vertical 17
DC 21
Diagonal Down-Left Mode 24
Vertical Left 22

(b) Top Neighboring 4x4 Luma Block is available

Selected Mode Clock Cycles /
4x4 Luma Block

Horizontal 17
DC 21
Horizontal Up 20

(c) Left Neighboring 4x4 Luma Block is available

Selected Mode Clock Cycles /
4x4 Luma Block

DC 17

(d) Top and Left Neighboring 4x4 Luma Blocks are not available

Since the order of the equations used in a selected 4x4 luma prediction mode for a

4x4 luma block is not important for functional correctness, the equations are ordered to

keep the inputs of the adders the same for as many consecutive clock cycles as possible.

This avoids unnecessary switching activity and reduces the power consumption.

2.2.2.2 Proposed Hardware for 16x16 Luma Prediction Mode

The proposed hardware for 16x16 luma prediction modes for the coder part of the

H.264 intra frame coder is very similar to the one proposed in the section 2.2.1.2 for the

search & mode decision part of the H.264 intra frame coder. The proposed hardware uses

 53

the same datapath for 16x16 luma prediction modes given in 2.2.1.2. Control part is the

main difference between the proposed hardware architectures for 16x16 luma prediction

modes in the search & mode decision and the coder parts of the H.264 intra frame coder.

The proposed datapath for 16x16 luma prediction modes in the search & mode

decision part is used for generating predicted pixels for a 16x16 luma block using all

available 16x16 luma prediction modes. However, the proposed datapath for 16x16 luma

prediction modes in the coder part is used for generating predicted pixels for a 16x16 luma

block using only the selected 16x16 luma prediction mode if 16x16 luma prediction is

selected for luma component of a MB by the mode decision hardware.

The organized prediction equations for Plane mode for the proposed hardware are

same as the ones given in Figure 2.12.

Clock cycles required for generating the predicted pixels for a 16x16 luma block

using the selected 16x16 luma prediction mode for luma component of a MB based on the

availability of neighboring 16x16 luma blocks of that 16x16 luma block are given in Table

2.11.

Plane mode is the most computationally demanding 16x16 luma prediction mode.

Therefore, using two parallel adders and shifters in the proposed datapath is especially

important for Plane mode. The predicted pixels for a 16x16 luma block are generated in

340 clock cycles if Plane mode is selected for coding a 16x16 luma block.

Table 2.11 Clock Cycles Required for Performing Selected 16x16 Luma Prediction Modes

Selected Mode Clock Cycles/MB
Vertical 257
Horizontal 257
DC 273
Plane Mode 340

(a) Top and Left Neighboring 16x16 Luma Blocks are available

Selected Mode Clock Cycles/MB
Vertical 257
DC 265

(b)Top Neighboring 16x16 Luma Block is available

 54

Selected Mode Clock Cycles/MB
Horizontal 257
DC 265

(c) Left Neighboring 16x16 Luma Block is available

Selected Mode Clock Cycles/MB
DC 257

(d) Top and Left Neighboring 16x16 Luma Blocks are not available

2.2.2.3 Proposed Hardware for 8x8 Chroma Prediction Modes

The proposed hardware for 8x8 chroma prediction modes for the coder part of the

H.264 intra frame coder is very similar to the one proposed in the section 2.2.1.3 for the

search & mode decision part of the H.264 intra frame coder. The proposed hardware uses

the same datapath used for 8x8 chroma prediction modes in the search & mode decision

part of the intra frame coder. Control part is the main difference between the proposed

hardware architectures for 8x8 luma prediction modes in the search & mode decision and

the coder part the H.264 intra frame coder.

 The proposed datapath for 8x8 luma prediction modes in the search & mode decision

part is used for generating predicted pixels for a 8x8 chroma block using all available 8x8

chroma prediction modes. However, the proposed datapath for 8x8 chroma prediction

modes in the coder part is used for generating predicted pixels for an 8x8 chroma block

using only the selected 8x8 luma prediction mode.

The organized prediction equations for Plane mode for the proposed hardware are

same as the ones given in Figure 2.14.

Clock cycles required for generating the predicted pixels for an 8x8 chroma block

using the selected 8x8 chroma prediction mode for chroma components of a MB based on

the availability of neighboring 8x8 chroma blocks of that 8x8 chroma block are given in

Table 2.12.

 55

Plane mode is the most computationally demanding 8x8 chroma prediction mode.

Therefore, using two parallel adders and shifters in the proposed datapath is especially

important for Plane mode. The predicted pixels for an 8x8 chroma block are generated in

95 clock cycles if Plane mode is selected for coding an 8x8 chroma block.

Table 2.12 Clock Cycles Required for Performing Selected 8x8 Chroma Prediction Modes

Selected Mode Clock Cycles/MB
Vertical 65
Horizontal 65
DC 77
Plane Mode 95

(a) Top and Left Neighboring 8x8 Chroma Blocks are available

Selected Mode Clock Cycles/MB
Vertical 77
DC 65

(b)Top Neighboring 8x8 Chroma Block is available

Selected Mode Clock Cycles/MB
Horizontal 77
DC 65

(c) Left Neighboring 8x8 Chroma Block is available

Selected Mode Clock Cycles/MB
DC 65

(d) Top and Left Neighboring 8x8 Chroma Blocks are not available

 56

2.2.2.4 Implementation Results

A high performance and low cost hardware architecture for real-time implementation

of intra prediction algorithm used in H.264 / MPEG4 Part 10 video coding standard is

designed. The hardware design is based on a novel organization of the intra prediction

equations. This hardware is designed to be used as part of a complete H.264 intra frame

coder for portable applications. The proposed architecture is implemented in Verilog HDL.

The implementation is verified with RTL simulations using Mentor Graphics ModelSim

SE. The Verilog RTL is then synthesized to a 2V8000ff1152 Xilinx Virtex II FPGA with

speed grade 5 using Mentor Graphics Leonardo Spectrum. The resulting netlist is placed

and routed to the same FPGA using Xilinx ISE Series 7.1i.

Generating the pixel predictions using selected 4x4 luma prediction modes is the

most computationally demanding part in the proposed hardware. The proposed hardware

generates the predicted pixels of a MB in the worst case in 24x16 = 384, 340, and 95 clock

cycles using 4x4 luma, 16x16 luma, and 8x8 chroma predictions respectively.

The FPGA implementation for the proposed architecture including input and output

register files and internal RAMs uses the following FPGA resources; 3034 Function

Generators, 1517 CLB Slices, and 342 DFFs, i.e. %3.26 of Function Generators, %3.26 of

CLB Slices, and %0.35 of DFFs.

 57

CHAPTER 3

HARDWARE ARCHITECTURES FOR H.264 ENTROPY CODER

 H.264 intra frame coder (baseline profile) supports coded sequences containing I-

slices. I-slices contain intra-coded MBs in which each 16x16 or 4x4 luma block and each

8x8 chroma block is predicted from previously-coded blocks in the same slice. Figure 3.1

shows the syntax of a coded slice. The slice header defines the slice type and the coded

picture that the slice ‘belongs’ to and may contain instructions related to reference picture

management. The slice data consists of a series of coded MBs and/or an indication of

skipped MBs. Each MB contains several header elements and coded residual data [4].

Figure 3.1 Slice Syntax

Above the slice layer, syntax elements are encoded as fixed- or variable-length

binary codes. At the slice layer and below, elements are coded using either variable-length

Slice Header Slice Data

 MB MB MB

 MB_Header Coded Residual

 58

codes (VLCs) or context-adaptive arithmetic coding (CABAC) depending on the entropy

coding mode. For the baseline profile, entropy coding mode is set to 0 and residual block

data is coded using a context-adaptive variable length coding (CAVLC) scheme and all

other syntax elements are coded using fixed-length or Exponential-Golomb Variable

Length Codes. Macroblock syntax elements that should be encoded and transmitted in a

baseline profile H.264 intra frame coder are shown in Table 3.1.

Table 3.1 Macroblock Syntax Elements

Parameters Description
MB type Prediction method for each coded MB
Coded block pattern

Indicates which blocks within a MB contain coded
coefficients

Quantization parameter

Transmitted as a delta value from the previous value of QP

Residual data Coefficient data for each 4x4 or 2x2 block

3.1 H.264 Context-based Adaptive Variable Length Coding (CAVLC)

 The video compression efficiency achieved in H.264 standard is not a result of any

single feature but rather a combination of a number of encoding tools. As it is shown in the

top-level block diagram of an H.264 Encoder in Figure 1.1, one of these tools is the

Context Adaptive Variable Length Coding (CAVLC) algorithm used in the baseline profile

of H.264 standard [3, 4, 5].

CAVLC algorithm is used to encode transformed and quantized 4x4 residual

luminance and chrominance blocks. CAVLC algorithm uses multiple VLC tables for a

syntax element. It adapts to the current context by selecting one of the VLC tables for a

given syntax element based on the already transmitted syntax elements. This context-

adaptivity provides better entropy coding performance in comparison to an entropy coding

algorithm using a single VLC table. In addition, CAVLC algorithm improves the entropy

coding performance by using coding techniques such as run-level and trailing ones coding

 59

that are designed to take advantage of the characteristics of the 4x4 blocks of transformed

and quantized residual data [4, 5, 9]. H.264 CAVLC algorithm achieves better coding

results than the entropy coding algorithms used in the previous video compression

standards. This coding gain, however, comes with an increase in encoding complexity

which makes it an exciting challenge to have a real-time implementation of this algorithm.

3.1.1 H.264 CAVLC Algorithm Overview

CAVLC algorithm is used to encode transformed and quantized residual luminance

and chrominance blocks in a MB in the order shown in Figure 3.2. Block -1 is formed by

the DC coefficients of 4x4 luminance blocks only for the MBs that are coded in 16x16 Intra

Mode. Blocks 16 and 17 are formed by the DC coefficients of 4x4 chrominance blocks for

all the MBs. All the transformed and quantized 4x4 and 2x2 blocks for a MB are given as

inputs to CAVLC algorithm in the order shown in Figure 3.2.

Figure 3.2 Coding Order of Blocks in a Macroblock

-1

21 20

19 18

25 24

23 22

16 17(16x16 Intra)

15 14 11 10

13 12 9 8

7 6 3 2

5 4 1 0

Luma

Chroma
Cr

Chroma
Cb

 60

CAVLC algorithm processes each 4x4 block in zig-zag scan order as shown in Figure

3.3 and each 2x2 block in raster scan order. It encodes each block in the following five

steps [4, 5, 9].

Figure 3.3 Zig-zag scan for a 4x4 luma block

Step 1. It generates coeff_token, the variable length code that encodes both the

number of non-zero coefficients (TotalCoeff) and the number of trailing ±1 values

(TrailingOnes) in a block. Since the highest non-zero coefficients after the zig-zag scan are

often sequences of ±1, CAVLC algorithm encodes the number of high-frequency ±1

coefficients (TrailingOnes) in coeff_token. Since the number of non-zero coefficients in

neighbouring blocks is correlated, CAVLC algorithm generates coeff_token for a block

context adaptively. It uses one of the four different VLC tables for generating the

coeff_token for a block based on the number of non-zero coefficients in the neighboring

blocks as follows. It first calculates a parameter nC based on the number of non-zero

coefficients in the left-hand and upper previously coded blocks, nA and nB respectively. If

upper and left blocks nB and nA are both available, nC = round ((nA + nB) /2). If only the

upper is available, nC = nB; if only the left block is available, nC = nA; if neither is

available, nC = 0. As a special case, for 2x2 dc chroma blocks, nC is always set to -1. It,

then, selects the VLC table that will be used for generating the coeff_token based on the

value of nC as shown in Table 3.2.

 61

Table 3.2 VLC Table for Coeff_Token

nC VLC Table for coeff_token
0,1 Table 1
2,3 Table 2
4,5,6,7 Table 3
8 or above Table 4

Step 2. It encodes the sign of each TrailingOne with a single bit in reverse order

starting with the highest-frequency TrailingOne.

Step 3. It encodes the level (sign and magnitude) of each remaining non-zero

coefficient in the block in reverse order starting with the highest frequency coefficient and

working back towards the DC coefficient. The codeword for a level consists of a prefix and

a suffix. Since the magnitude of non-zero coefficients tends to be larger near the DC

coefficient and smaller towards the higher frequencies, CAVLC algorithm adapts the suffix

length for the level parameter depending on recently-coded level magnitudes. It sets the

suffix length for the first level to 0 (unless there are more than 10 nonezero coefficients and

less than 3 trailingOnes, in which case initialise to 1). It then increments the current suffix

length, if the magnitude of the current level is larger than a predefined threshold for this

suffix length. The thresholds are listed in Table 3.3. CAVLC algorithm generates the code

length and the codeword for the current level based on its suffix length. When the suffix

length for a level is 0, its codeword does not include a suffix. Otherwise, the codeword for

the level includes a suffix. The codeword for a level always includes a prefix, but the prefix

for a level is generated using different equations in the two cases; when the suffix length for

the level is 0 versus when the suffix length for the level is greater than 0 [9].

Table 3.3 Thresholds for determining whether to increment SuffixLength

Current SuffixLength Threshold to increment SuffixLength
0 0
1 3
2 6
3 12
4 24
5 48
6 N/A (highest SuffixLength)

 62

Step 4. It encodes the total number of zeros before the last non-zero coefficient

(Total_Zeros) using a VLC table.

Step 5. It encodes the number of zeros preceding each non-zero coefficient

(Run_Before) in reverse order starting with the highest-frequency coefficient. Since after

transformation and quantization, blocks typically contain mostly zeros, CAVLC algorithm

uses run-length coding to represent strings of zeros compactly.

Let us take Figure 3.4 as an example of coding a 4x4 block by CAVLC.

(a) Reverse zig-zag scan

Element Value Code
 Coeff_token TotalCoeffs = 5, 0000100
 TrailingOnes= 3 (use Table 1)

 TrailingOne sign (4) Positive 0
 TrailingOne sign (3) Negative 1
 TrailingOne sign (2) Negative 1
 Level (1) +1(use SuffixLength = 0) 1
 Level (0) +3(use SuffixLength = 1) 0010
 TotalZeros 3 111
 RunBefore(4) ZerosLeft = 3; RunBefore = 1 10
 RunBefore(3) ZerosLeft = 2; RunBefore = 0 1
 RunBefore(2) ZerosLeft = 2; RunBefore = 0 1
 RunBefore(1) ZerosLeft = 2; RunBefore = 1 01
 RunBefore(0) ZerosLeft = 1; RunBefore = 1 No code required

(b) CAVLC Coding

Figure 3.4 Example of coding a 4x4 block by CAVLC

 63

3.1.2 Proposed Hardware Architecture

The proposed hardware architecture for H.264 CAVLC algorithm is shown in

Figure 3.5. The proposed hardware performs context-adaptive variable length coding for a

macroblock, in the worst case, in 2880 clock cycles. The worst-case occurs for the

macroblocks that have no zero coefficients and trailing ±1 coefficients. Therefore, the

proposed hardware can process 30 VGA frames per second at 104 MHz. In the following

subsections, the hardware architecture will be explained in detail.

Figure 3.5 CAVLC Block Diagram

3.1.2.1 VLC Counters and Reverse Zig-zag Ordering

CAVLC hardware contains a number of counters and register files to store the

information for a block that will be encoded by variable length codes. Non-Zero

Coefficients counter is used to store the number of non-zero coefficients (TotalCoeff).

 MacroBlock

Reverse Zig-Zag
Address Generation

TrailingOne Counter

TotalZero Counter

Level Counter

TrailingOne
Regfile

Level Regfile

VLC Tables for
Coeff_Token

(I-IV)

Coeff_Token
Table Selection Unit

RunBefore
Regfile

VLC Table for
Total_Zeros

TrailingOnes
Sign_Flag

VLC Table for
Run_Before

Prefix-Suffix
Datapath

Prefix-Suffix
Control Unit

M
U
L
T
I
P
L
E
X
O
R

VLC
Packer

OUTPUT
REGISTER

FILE (96x32)

32

16 INPUT
REGISTER

FILE
(384x16)

Non-Zero Coefficient
Counter

 Bitstream

 Suffix
Length

Generator

 64

TrailingOnes counter is used to store the number of trailing ±1 values (TrailingOnes).

TotalZeros counter is used to store the total number of zeros before the last non-zero

coefficient (TotalZeros). Level counter is used to store the number of non-zero coefficients

other than the TrailingOnes. TrailingOnes register file is used to store the sign of each

TrailingOne. Level register file is used to store the level (sign and magnitude) of each non-

zero coefficient other than the TrailingOnes. RunBefores register file is used to store the

number of zeros preceding each non-zero coefficient.

CAVLC hardware begins the encoding for a 4x4 block by reading the coefficients

from the input buffer in reverse zig-zag order. In each cycle, it reads one coefficient from

the input buffer, and analyzes the coefficient and updates the information stored in the

related counter and register file. At the end of this process, the counters and register files

mentioned above contain all the information for the current block that will be encoded with

variable length codes.

Reverse zig-zag scanning enables us to determine the necessary information for

encoding a 4x4 block by reading and analyzing each coefficient only once. This reduces the

power consumption by reducing the switching activity on the input buffer address and data

signals.

It takes 16 cycles to read the coefficients and store the corresponding information in

the counters and register files for each 4x4 luminance block in the macroblocks that are not

coded in 16x16 Intra Mode. The same process takes 16 cycles for block -1 and 15 cycles

for the other 4x4 luminance blocks in the macroblocks that are coded in 16x16 Intra Mode.

Because DC coefficients in 4x4 luminance blocks in these macroblocks are coded in block -

1. The same process takes 4 cycles for 2x2 chrominance blocks 16 and 17, and 15 cycles

for the 4x4 chrominance blocks in all the macroblocks due to the same reason.

3.1.2.2 CAVLC Hardware for Generating Coeff_Token

CAVLC hardware generates coeff_token, the variable length code that encodes both

the number of non-zero coefficients (TotalCoeff) and the number of trailing ±1 values

 65

(TrailingOnes) in a block, by a VLC table lookup based on the values of Non-Zero

Coefficients and TrailingOnes counters. CAVLC hardware uses one of the four different

VLC tables for generating the coeff_token for a block based on the number of non-zero

coefficients in the neighboring blocks. Coeff_Token Table Selection Unit (CT_TSU)

shown in Figure 3.5 determines the VLC table that will be used for the current block as

follows.

CT_TSU first calculates the parameter nC based on the number of non-zero

coefficients in the left-hand and upper previously coded blocks, nA and nB respectively. It

uses three internal SRAMs and six internal register files to determine the number of non-

zero coefficients in the left-hand and upper previously coded neighboring blocks of a 4x4

block in a frame. The organization of the luminance and chrominance components of the

MBs in a CIF frame is shown in Figure 3.6. The blocks within a MB are organized and

numbered as shown in Figure 3.6.

CT_TSU uses three internal register files to store the number of non-zero coefficients

in each 4x4 block in a MB; one for luminance, one for chrominance Cr, and one for

chrominance Cb component. After CT_TSU processes a 4x4 block in the current MB, it

updates the number of non-zero coefficients entry for this block in the corresponding

register file. When it is later processing a new 4x4 block (cblk), if the neighboring 4x4

block (nblk) of cblk is in the same MB as cblk, CT_TSU deter-mines the number of non-

zero coefficients in nblk using the corresponding register file entry.

CT_TSU uses three internal register files to store the number of non-zero coefficients

in the blocks 5, 7, 13 and 15 of the previously coded MB; one for luminance, one for

chrominance Cr, and one for chrominance Cb component. It uses this data to deter-mine the

number of non-zero coefficients in the left-hand previously coded neighboring block of the

blocks 0, 2, 8 and 10 in the current MB.

CT_TSU uses three internal SRAMs to store the number of non-zero coefficients in

the blocks 10, 11, 14, and 15 of the MBs in the previously coded MB row of the frame; one

for luminance, one for chrominance Cr, and one for chrominance Cb component. It uses

this data to determine the number of non-zero coefficients in the upper previously coded

neighboring block of the blocks 0, 1, 4 and 5 in the current MB. We have disabled the

SRAMs when they are not accessed in order to reduce power consumption in CT_TSU.

 66

22

(b)

Figure 3.6 Macroblocks in a CIF Frame (a) Luma, (b) Chroma Cb and Cr

In addition, instead of using one large external SRAM, we have used three internal

SRAMs and six internal register files to store the number of non-zero coefficients in

previously coded blocks in order to further reduce power consumption in CT_TSU. This is

achieved in two ways. First, instead of accessing one large external SRAM, one internal

SRAM and two register files are used for a block. The other internal SRAMs and register

files are not accessed saving power. Second, instead of using complex address generation

logic for an external SRAM, much simpler address generation logic is used for the internal

 22

18

15 14 11 10

13 12 9 8

7 6 3 2

5 4 1 0

15 14 11 10

13 12 9 8

7 6 3 2

5 4 1 0

15 14 11 10

13 12 9 8

7 6 3 2

5 4 1 0

15 14 11 10

13 12 9 8

7 6 3 2

5 4 1 0

32
10

32
10

3
10

32
10

 18

 67

SRAMs and register files. The blocks in the same locations of different MBs write to and

read from the same SRAM and register file locations. So, if the left-hand and upper

previously coded neighboring blocks of a 4x4 block are available, the read addresses for the

number of non-zero coefficients in these blocks are generated by a table lookup based on its

macroblock and block number. Consequently, CT_TSU calculates the parameter nC for the

current block in just one cycle. It then selects the VLC table for the coeff_token based on

the value of nC as shown in Table 3.2. It then generates coeff_token for the current block

by a table lookup to the selected VLC table based on the values of Non-Zero Coefficients

and TrailingOnes counters.

3.1.2.3 CAVLC Hardware for Encoding Level

The codeword for a level consists of a prefix and a suffix. Suffix length generator

shown in Figure 3.5 determines the suffix length for the current level based on the

magnitude of previously coded levels. The prefix-suffix datapath and control unit shown in

Figure 3.7 generate the code length and the codeword for the current level based on the

suffix length provided by the suffix length generator. The prefix for a level is generated

using different equations when the suffix length for the level is 0 versus when the suffix

length for the level is greater than 0.

 68

 Figure 3.7 Datapath for Coding Level Prefix and Level Suffix

The equations used in both cases are given in the Joint Model (JM) Reference

Software Version 8.2 [9]. We have proposed the dual purpose prefix-suffix datapath shown

in Figure 3.7 to implement these equations. In each case, the prefix-suffix control unit

sends the appropriate control signals to the datapath. In the worst case, our suffix length

generator, prefix-suffix datapath and control unit take 6 cycles to generate the code length

and codeword for a level.

load0
Register 0

Register 1

load1
Register 2

load2
Register 3

load3
Register 4

load4

 MUX0_0 MUX0_1 MUX1_0 MUX1_1

 in0

 vlc

 in1 0 in2

vlc in3 0

 ADD_SUB0 add0 add1

NEGATE AND

 BarrelShifter1

Mux0
 Mux1

 Barrel Shifter0 shift0 shift1

sel0 sel1

Output Data1

 OR
 Register 2

 Register 1

 ADD_SUB1

 69

3.1.2.4 VLC Packer

Since CAVLC generates variable length codewords, consecutive codewords should

be packed into fixed size words before being written to output register file. The datapath

shown in Figure 3.8 is used to pack the variable length codewords into 32-bit words [10].

When a new codeword is sent to the VLC packer, the barrel shifter places this codeword

next to the end of the bitstream stored in the 32-bit lower register. If the length of the

resulting bitstream is larger than 31, the carry-out bit of the adder in the datapath is set to

one. This indicates that a 32-bit bitstream is packed into the upper register. Thus, VLC

packer outputs the content of the upper register, and it moves the content of the lower

register into the upper register. This process is repeated for each codeword.

Figure 3.8 VLC Packer Datapath

 Data Out

 BARREL SHIFTER

LOWER REG
(32-bit)

 MUX

 Sum

Carry

 Code length

Codeword

32

UPPER REG
(32-bit)

16-bit
ADDER

 70

3.1.3 Implementation Results

A high performance and low power hardware architecture for real-time

implementation of Context Adaptive Variable Length Coding algorithm used in H.264 /

MPEG4 Part 10 video coding standard is presented. This hardware is designed to be used

as part of a complete efficient H.264 intra frame coder hardware design. The proposed

architecture is implemented in Verilog HDL. The implementation is verified with RTL

simulations using Mentor Graphics ModelSim SE. The Verilog RTL is then synthesized to

a 2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using Mentor Graphics

Leonardo Spectrum. The resulting netlist is placed and routed to the same FPGA using

Xilinx ISE Series 7.1i.

The FPGA implementation including input and output register files as well is placed

and routed at 76 MHz under worst-case PVT conditions. Since, in the worst-case, it takes

2880 clock cycles to process a MB, the FPGA implementation can code 22 VGA frames

(640x480) per second. The FPGA implementation is verified to work in a Xilinx Virtex II

FPGA on an Arm Versatile Platform development board.

The FPGA implementation including input and output register files as well used the

following FPGA resources; 3946 Function Genera-tors, 1973 CLB Slices, 719 Dffs

/Latches, and 6 Block RAMs, i.e. 4.23% of Function Generators, 4.23% of CLB Slices,

0.75% of Dffs /Latches, and 3.57% of Block RAMs.

The FPGA implementation excluding input and output register files used the

following FPGA resources; 3849 Function Generators, 1925 CLB Slices, 719 Dffs

/Latches, and 6 Block RAMs, i.e. 4.13% of Function Generators, 4.13% of CLB Slices,

0.75% of Dffs /Latches, and 3.57% of Block RAMs.

The Verilog RTL is also synthesized to Virtual Silicon UMC 0.18µ standard-cell

library using Synopsys Design Compiler. The netlist excluding input and output register

files has an area of 32K gates. The netlist including input and output register files has an

area of 96K gates and it is verified to work at 233 MHz under worst-case PVT conditions

with post synthesis simulations. This 0.18µ ASIC implementation can code 67 VGA frames

(640x480) per second.

 71

A hardware architecture for H.264 CAVLC algorithm similar to our design is

presented in [7]. However, that architecture doesn’t have the low-power techniques we

have used in our design.

3.2 H.264 Exponential-Golomb Variable Length Entropy Coding

Some of the sequence, picture, slice and macroblock syntax elements are coded

using exponential-golomb entropy coding in a baseline profile H.264 intra frame coder.

3.2.1 Exponential-Golomb Variable Length Entropy Coding Algorithm Overview

Exponential-Golomb Variable Length Entropy Coding algorithm is designed to

produce short codewords for frequently occurring parameters and longer codewords for less

common parameters.

3.2.1.1 Exponential-Golomb Codes

Exponential Golomb (Exp-Golomb) codes are variable length codes with a regular

construction [4]. It is clear from examining the first few codewords in Table 3.4 that they

are constructed in a logical way:

[M zeros][1][INFO]

 72

INFO is an M-bit field carrying information. The first codeword has no leading zero

or trailing INFO. Codewords 1 and 2 have a single-bit INFO field, codewords 3–6 have a

two-bit INFO field and so on. The length of each Exp-Golomb codeword is (2M + 1) bits

and each codeword can be constructed by the encoder based on its index code_num:

M = floor(log2[code_num + 1])
INFO = code_num + 1 − 2M

Table 3.4 Exp-Golomb codewords

code_num codeword
0 1
1 010
2 011
3 00100
4 00101
5 00110
6 00111
7 0001000
8 0001001
… …

A codeword can be decoded as follows:

1. Read in M leading zeros followed by 1.
2. Read M-bit INFO field.
3. code_num = 2M+ INFO – 1
(For codeword 0, INFO and M are zero.)

A parameter k to be encoded is mapped to code_num in one of the following ways:

Mapping Type Description

ue(v): Unsigned direct mapping, used for macroblock type, reference frame index and

others. code_num = k.

se(v): Signed mapping, used for motion vector difference, delta QP and others. k is

mapped to code_num as follows:

 73

code_num = 2|k| (k ≤ 0)
code_num = 2|k|−1 (k> 0)

me(v): Mapped symbols, parameter k is mapped to code_num according to a table

specified in the H.264 standard [5].

3.2.1.2 Sequence Syntax Elements

The sequence syntax elements are coded using either exp-golomb variable length

entropy coding or fixed-length binary codes (u(n)) [5]. The sequence syntax elements and

their corresponding mapping types for a baseline H.264 intra frame coder are shown in

Table 3.5.

u(n): unsigned integer using n bits (fixed-length binary code mapping).

Table 3.5 Sequence Syntax Elements

 Syntax Element Mapping Type
profile_idc u(8)
constrained_set0_flag u(1)
constrained_set1_flag u(1)
constrained_set2_flag u(1)
reserved_zero u(5)
level_idc u(8)
seq_parameter_set_id ue(v)
log2_max_frame_num_minus4 ue(v)
pic_order_cnt_type ue(v)
log2_max_pic_order_cnt_lsb_minus4 ue(v)
num_ref_frames ue(v)
gaps_in_frame_num_value_allowed_flag u(1)
pic_width_in_mbs_minus1 ue(v)
pic_height_in_map_units_minus1 ue(v)
frame_mbs_only_flag u(1)
direct_8x8_inference_flag u(1)
frame_cropping_flag u(1)
vui_parameters_present_flag u(1)

 74

3.2.1.2 Picture Syntax Elements

The picture syntax elements are coded using either exp-golomb variable length

entropy coding or fixed-length binary codes [5]. The picture syntax elements and their

corresponding mapping types for a baseline H.264 intra frame coder are shown in Table

3.6.

Table 3.6 Picture Syntax Elements

 Syntax Element Mapping Type

pic_parameter_set_id ue(v)
seq_parameter_set_id ue(v)
entropy_coding_mode_flag u(1)
pic_order_present_flag u(1)
num_slice_groups_minus1 ue(v)
num_ref_idx_l0_active_minus1 ue(v)
num_ref_idx_l1_active_minus1 ue(v)
weighted_pred_flag u(1)
weighted_bipred_idc u(2)
pic_init_qp_minus26 se(v)
pic_init_qs_minus26 se(v)
chroma_qp_index_offset se(v)
deblocking_filter_control_present_flag u(1)
constrained_intra_pred_flag u(1)
redundant_pic_cnt_present_flag u(1)

3.2.1.3 Slice Syntax Elements

The slice syntax elements are coded using either exp-golomb variable length entropy

coding or fixed-length binary codes. The following slice syntax elements are coded for a

baseline H.264 intra frame coder. The corresponding mapping types are also indicated

below [5].

 75

first_mb_in_slice - ue(v) : specifies the address of the first Macroblock in the slice.

slice_type - ue(v) : specifies the coding type of the slice.

pic_parameter_set_id - ue(v) : specifies the picture parameter set in use.

frame_num - ue(v) : is used as a unique identifier for each short-term reference frame.

idr_pic_id - ue(v) : identifies an IDR picture.

pic_order_cnt_lsb - u(v) : specifies the picture order count

no_output_of_prior_pics_flag - u(1) : specifies how the previously-decoded pictures in

the decoded picture buffer are treated after decoding of an IDR picture.

long_term_reference_flag - u(1) : equals to 0 specifies that the IDR picture is marked as

“used for short-term reference”, and equals to 1 specifies that the current IDR picture is

marked “used for long-term reference”.

slice_qp_delta - se(v) : specifies the initial value of QPY to be used for all the macroblocks

in the slice until modified by the value of mb_qp_delta in the macroblock layer. The initial

QPY quantization parameter for the slice is computed as:

SliceQPY = 26 + pic_init_qp_minus26 + slice_qp_delta

3.2.1.4 Macroblock Syntax Elements

 The macroblock syntax elements are coded using either exp-golomb variable length

entropy coding or fixed-length binary codes. The macroblock syntax elements and their

corresponding mapping types for a baseline H.264 intra frame coder are shown in Table

3.7.

Table 3.7 Macroblock Syntax Elements

 Syntax Element Mapping Type
mb_type ue(v)
mb_pred u(n), ue(v)
Coded_Block_Pattern me(v)
mb_qp_delta se(v)

 76

mb_type - ue(v) :

Macroblock types for I-slices are listed in Table 3.9 [5].
I_4x4: MB is coded using Intra_4x4 prediction.

I_16x16_0_0_0, I_16x16_1_0_0, I_16x16_2_0_0, I_16x16_3_0_0, I_16x16_0_1_0,
I_16x16_1_1_0, I_16x16_2_1_0, I_16x16_3_1_0, I_16x16_0_2_0, I_16x16_1_2_0,
I_16x16_2_2_0, I_16x16_3_2_0, I_16x16_0_0_1, I_16x16_1_0_1, I_16x16_2_0_1,
I_16x16_3_0_1, I_16x16_0_1_1, I_16x16_1_1_1, I_16x16_2_1_1, I_16x16_3_1_1,
I_16x16_0_2_1, I_16x16_1_2_1, I_16x16_2_2_1, I_16x16_3_2_1: MB is coded using
Intra_16x16 prediction.

pred_mode specifies the Intra_16x16 prediction mode.

CPBL (CodedBlockPatternLuma) specifies whether for the luma component non-zero

AC transform coefficient levels are present. CodedBlockPatternLuma equal to 0 specifies

that there are no AC transform coefficient levels in the luma component of the MB.

CodedBlockPatternLuma equal to 15 specifies that there is at least one AC transform

coefficient level in the luma component of the MB, requiring scanning of AC transform

coefficient levels for all 4x4 blocks in the MB.

CBPC (CodedBlockPatternChroma) is explained in Table 3.8.

Table 3.8 Specification of CodedBlockPatternChroma

 CBPC Description
0 All chroma transform coefficient levels are equal to 0.
1

One or more chroma DC transform coefficient levels are non-zero.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero.
One or more chroma AC transform coefficient levels are non-zero.

 77

Table 3.9 Macroblock types for I slices

 mb_type name of mb_type mb_pred pred_mode CPBC CBPL
0 I_4x4 Intra_4x4 na na na

1 I_16x16_0_0_0 Intra_16x16 0 0 0

2 I_16x16_1_0_0 Intra_16x16 1 0 0

3 I_16x16_2_0_0 Intra_16x16 2 0 0

4 I_16x16_3_0_0 Intra_16x16 3 0 0

5 I_16x16_0_1_0 Intra_16x16 0 1 0

6 I_16x16_1_1_0 Intra_16x16 1 1 0

7 I_16x16_2_1_0 Intra_16x16 2 1 0

8 I_16x16_3_1_0 Intra_16x16 3 1 0

9 I_16x16_0_2_0 Intra_16x16 0 2 0

10 I_16x16_1_2_0 Intra_16x16 1 2 0

11 I_16x16_2_2_0 Intra_16x16 2 2 0

12 I_16x16_3_2_0 Intra_16x16 3 2 0

13 I_16x16_0_0_1 Intra_16x16 0 0 15

14 I_16x16_1_0_1 Intra_16x16 1 0 15

15 I_16x16_2_0_1 Intra_16x16 2 0 15

16 I_16x16_3_0_1 Intra_16x16 3 0 15

17 I_16x16_0_1_1 Intra_16x16 0 1 15

18 I_16x16_1_1_1 Intra_16x16 1 1 15

19 I_16x16_2_1_1 Intra_16x16 2 1 15

20 I_16x16_3_1_1 Intra_16x16 3 1 15

21 I_16x16_0_2_1 Intra_16x16 0 2 15

22 I_16x16_1_2_1 Intra_16x16 1 2 15

23 I_16x16_2_2_1 Intra_16x16 2 2 15

24 I_16x16_3_2_1 Intra_16x16 3 2 15

 78

mb_pred - u(n) :

The syntax element mb_pred specifies 4x4 luma prediction modes for a MB. The

choice of 4x4 luma prediction mode for each 4x4 luma block must be signaled to the

decoder and this could potentially require a large number of bits. However, 4x4 luma

prediction modes for neighboring 4x4 luma blocks are often correlated. For example, let A,

B and E be the left, upper and current 4x4 luma blocks respectively as shown in Figure 3.9.

If previously-encoded 4x4 luma blocks A and B are predicted using mode 1, it is probable

that the best mode for block E (current block) is also mode 1. To take advantage of this

correlation, predictive coding is used to signal 4x4 luma prediction modes [4].

Figure 3.9 Current and neighboring 4x4 luma blocks

For the current block E, the encoder and decoder calculate the most probable 4x4

prediction mode as the minimum of the prediction modes of A and B. If either of these

neighboring 4x4 luma blocks is not available (outside the current slice or not coded in 4x4

luma prediction mode), the corresponding value for the 4x4 luma prediction mode is set to

2.

The encoder sends a flag for each 4x4 luma block, prev_intra4x4_pred_mode. If the

flag is ‘1’, the most probable 4x4 luma prediction mode is used. If the flag is ‘0’, another

parameter rem_intra4x4_pred_mode is sent to indicate the mode. If the current 4x4 luma

prediction mode is smaller than the current most probable 4x4 luma prediction mode then

rem_intra4x4_pred_mode is set to current 4x4 luma prediction mode, otherwise

rem_intra4x4_pred _mode is set to current 4x4 luma prediction mode minus 1. In this way,

only eight values of rem_intra4x4_pred_mode are required (0 to 7) to signal the current 4x4

luma prediction mode (0 to 8).

B

E A

 79

prev_intra4x4_pred_mode_flag - u(1)

rem_intra4x4_pred_mode - u(3)

If prev_intra4x4_pred_mode_flag = 1, only this parameter is coded as mb_pred

(u(1)).

If prev_intra4x4_pred_mode_flag = 0, in addition to prev_intra4x4_pred_mode_flag,

another parameter rem_intra4x4_pred_mode is coded as mb_pred(u(4)).

As an example for predictive coding of 4x4 luma prediction mode for a 4x4 luma

block, assume that blocks A and B are predicted using 4x4 luma prediction modes 4 and 3

respectively and the 4x4 luma prediction mode for block E is not 3. Therefore, the most

probable 4x4 luma prediction mode for block E is 3 and prev_intra4x4_pred_mode_flag is

set to ‘0’. Depending on the value of current 4x4 luma prediction mode for block E, the

rem_intra4x4_pred_modes will be coded as shown in Table 3.10.

Table 3.10 Predictive coding of a 4x4 luma prediction mode
(most probable 4x4 luma prediction mode = 3 & prev_intra4x4_pred_mode_flag = 0)

 4x4 luma prediction mode rem_intra4x4_pred_mode
0 0
1 1
2 2
4 3
5 4
6 5
7 6
8 7

Predictive coding is not used for signaling 16x16 luma prediction modes.

mb_pred - ue(v) :

The syntax element mb_pred specifies 8x8 chroma prediction modes for a MB.

Predictive coding is not used for signaling 8x8 chroma prediction modes. Exp-Golomb

codes for 8x8 chroma prediction modes are given in Table 3.11.

 80

Table 3.11 Exp-Golomb codes for 8x8 chroma prediction modes

 Chroma Prediction Mode mb_pred Exp-Golomb Code
0 0 1
1 1 010
2 2 011
3 3 00100

Coded_Block_Pattern – me(v) :

Coded_Block_Pattern specifies which of the six 8x8 blocks - luma and chroma -

contain non-zero transform coefficient levels. If the MB is coded using 4x4 luma prediction

modes, coded_block_pattern should be present in the MB header. The assignment of

coded_block_pattern to code_num is given in the H.264 Standard [5].

Coded_Block_Pattern has a 6-bit binary representation. The four least significant bits

are for luma components of a MB and 2 most significant bits are for chroma components of

a MB and equal to CodedBlockPatternChroma which is explained in detail before. The

least significant bit of Coded_Block_Pattern indicates whether the 0th 8x8 luma block of a

MB is coded or not and the following bits of Coded_Block_Pattern indicate whether the 1st,

2nd and 3rd 8x8 luma blocks of a MB are coded or not. Several examples of calculating

Coded_Block_Pattern for a MB are shown in Table 3.12.

Table 3.12 Examples of calculating Coded_Block_Pattern for a MB

 Coded Block Pattern Coded 8x8 Blocks
47 (101111) Four 8x8 Luma Blocks + Chroma Dc + Chroma Ac

38 (100110) 1st and 2nd 8x8 luma blocks + Chroma Dc + Chroma Ac

15 (001111) Four 8x8 Luma Blocks

31 (011111) Four 8x8 Luma Blocks + Chroma Dc

 2 (100000) Chroma Dc + Chroma Ac

 81

mb_qp_delta - ue(v) :

Slice_qp_delta specifies the initial value of QPY to be used for all the macroblocks in

the slice until modified by the value of mb_qp_delta in the macroblock layer. Mb_qp_delta

is transmitted as a delta value from the previous value of QP and it can change the value of

QPY in the macroblock layer. The value of slice_qp_delta shall be limited such that QPY is

in the range of 0 to 51, inclusive.

3.2.2 Proposed Hardware Architecture

The block diagram of the proposed hardware architecture for header generation is

shown in Figure 3.10. The proposed hardware generates the headers for sequence, picture,

slice, and macroblock layer based on prediction and quantized transform coefficients.

Figure 3.10 Block Diagram of Header Generation Hardware

Coded Block Pattern Generator module shown in Figure 3.10 generates the following

MB syntax elements for each MB: CodedBlockPatternLuma, CodedBlockPatternChroma,

and Coded_Block_Pattern. The inputs to the Coded Block Pattern Generator are quantized

transform coefficients. Based on the information from the Coded Block Pattern Generator

and prediction modes for luma and chroma components of a MB, Macroblock Header

Coded Block Pattern
Generator

Quantized Transform
Coefficients

Macroblock Header
Generator

 Prediction Modes
(Intra 4x4 luma, Intra

8x8 luma, Intra
16x16 luma), Most

Probable Mode (Intra
4x4 luma)

Sequence, Picture,
and Slice Headers

Header
Generator Bitstream

 82

Generator module in Figure 3.10 calculates MB syntax elements and generates

corresponding entropy codes for a MB using Exp-Golomb or fixed-length binary codes

(MB header). Finally, Header Generator module concatenates sequence, picture and slice

headers that are stored in a register with the MB header of the first MB in the slice and

writes them to bitstream buffer. For the remaining MBs in the slice, Header Generator

module writes their MB header directly to the bitstream buffer.

3.2.3 Implementation Results

A hardware architecture for real-time implementation of header generation algorithm

used in H.264 / MPEG4 Part 10 video coding standard is presented. This hardware is

designed to be used as part of a complete efficient H.264 intra frame coder hardware

design. The proposed architecture is implemented in Verilog HDL. The implementation is

verified with RTL simulations using Mentor Graphics ModelSim SE. The Verilog RTL is

then synthesized to a 2V8000ff1157 Xilinx Virtex II FPGA with speed grade 5 using

Mentor Graphics Leonardo Spectrum. The resulting netlist is placed and routed to the same

FPGA using Xilinx ISE Series 7.1i.

The FPGA implementation is placed and routed at 76 MHz under worst-case PVT

conditions. The FPGA implementation is verified to work in a Xilinx Virtex II FPGA on an

Arm Versatile Platform development board.

The FPGA implementation used the following FPGA resources; 1812 Function

Genera-tors, 906 CLB Slices, 434 Dffs /Latches, i.e. 1.94% of Function Generators, 1.94%

of CLB Slices, and 0.45% of Dffs /Latches.

 83

CHAPTER 4

TOP LEVEL H.264 INTRA FRAME CODER HARDWARE

The top-level block diagram of the proposed H.264 intra frame coder is shown in

Figure 4.1.

Figure 4.1 H.264 Intra Frame Coder Block Diagram

4.1 Proposed Hardware Architecture

In the previous video coding standards, prediction part and coding part

(DCT/Q/IQ/IDCT/VLC) can be clearly separated. After prediction part finishes processing

a MB, coding part starts coding this MB and prediction part starts processing the next MB.

Inverse
Transform

 Transform Quant

 Entropy Coder

Current Frame

Intra Prediction
for Coder

Reconstructed
Frame

Current Frame
Intra Prediction

for Search &
Mode Decision

 Mode
Decision

 NAL

 Inverse
Quant

 84

However, because of the intra prediction algorithm used in H.264 standard, after prediction

of a MB, the next MB can not be predicted before corresponding reconstructed pixels at the

output of the Transform/Quant/Inverse Quant/Inverse Transform are produced. The

situation is even worse for 4x4 luma prediction modes. Prediction and mode decision of a

4x4 block cannot be performed until the previous 4x4 block is reconstructed. Therefore, the

prediction part must wait the coding part which makes the MB pipelining impossible and

the design of a real-time intra frame coder hardware very costly.

We, however, divided our proposed H.264 intra frame coder hardware into two main

parts; the search & mode decision part and coder part. As shown in Figure 4.2, the search &

mode decision hardware and the coder hardware work in a pipelined manner. After the first

MB of the input frame is loaded to the input register file, search & mode decision hardware

starts to work on determining the best mode for coding this MB. After search & mode

decision hardware determines the best mode for the first MB, coder hardware starts to code

the first MB using the selected best mode and search & mode decision hardware starts to

work on the second MB. The entire frame is processed MB by MB in this order.

This is achieved by performing intra prediction in the search & mode decision

hardware using the pixels in the current frame rather than the pixels in the reconstructed

frame. However, intra prediction in the coder hardware is performed using the pixels in the

reconstructed frame in order to be compliant with H.264 standard. This makes the MB

pipelining and therefore the implementation of a low-cost H.264 intra frame coder

hardware possible at the expense of a small PSNR loss in the video quality.

Figure 4.2 H.264 Intra Frame Coder Block Diagram

Input
Register File

Search &
Mode Decision

Hardware

Pipelining
Register File

Coder
Hardware

Output
Register File

 85

4.1.1 Search & Mode Decision Hardware

The proposed search & mode decision hardware is shown in Figure 4.3. The proposed

hardware includes Intra Prediction, Residue, Hadamard Transform and Mode Decision

modules.

In the proposed hardware, there are two parts operating in parallel in order to

complete the search & mode decision process faster. The upper part is used for finding the

best 16x16 luma prediction mode for the luma component of a MB and the best 8x8 chroma

prediction mode for the chroma components of a MB. The lower part is used for finding the

best 4x4 luma prediction mode for each 4x4 block in the luma component of a MB.

Top level scheduling for the upper part of the search & mode decision hardware for

16x16 luma predictions is shown in Figure 4.4. First, the neighboring buffers in the intra

prediction hardware are loaded with the corresponding neighboring pixels from the current

MB register. Then, the intra prediction hardware generates the pixel predictions for the

luma component of the current MB using the first available 16x16 luma mode and writes

the predicted pixels to the prediction buffer. The Residue hardware, then, calculates the

difference between the corresponding luma pixels in the current MB and the predicted MB.

As the residue data associated with the first pixel position in a MB is calculated, Hadamard

Transform module starts to calculate the Sum of Absolute Transformed Difference (SATD)

for that mode using the residue data. So, Residue and Hadamard Transform modules are

overlapped.

The overlapping between Residue and Hadamard Transform modules requires using

two register files between them. While Residue module is calculating residue data for the

next 4x4 luma block and writing the residue data to one of the register files, Hadamard

Transform is calculating the SATD for the current 4x4 block based on the current residue

data stored in the other register file.

 86

Figure 4.3 Block Diagram of Search & Mode Decision Hardware

Hadamard transform for SATD calculations of 16x16 luma prediction modes requires

storing DC coefficients in a register, because Hadamard transform has to be applied to

these coefficients again. The multiplexer before the Hadamard Transform module in Figure

4.3 selects between DC coefficients and coefficients from the residue block.

After Hadamard Transform module finishes calculating SATD for an available 16x16

luma prediction mode of a MB, it decides whether it is the mode with lowest cost or not.

After each available 16x16 luma prediction mode for a MB is searched, the prediction

mode with the lowest cost and its cost information are sent to the Top Level Mode Decision

hardware by the upper part of the search & mode decision hardware.

When the upper part of the search & mode decision hardware finishes with available

16x16 luma modes of a MB for luma samples, it starts to work with 8x8 chroma modes of

the same MB for chroma samples. Top level scheduling for chroma samples is similar to

that of luma samples.

The latencies of the modules in the upper part of the search & mode decision

hardware are given in Table 4.1.

Current
MacroBlock

Register (384x8)

Intra Predictor
(16x16 Luma & 8x8

Chroma)

Intra Predictor
 (4x4 Luma)

Residue
(4x4 Luma)

Residue
(16x16 Luma &

8x8 Chroma)

Prediction Buffer
(384x8)

Prediction Buffers
2 x (16x8)

Current MacroBlock
Register (256x8)

Mode Decision
(4x4 Luma)

Mode Decision
(16x16 Luma &

8x8 Chroma)

Hadamard
Transform

(16x16 Luma &
8x8 Chroma)

Hadamard
Transform

(4x4 Luma)

Top Level
Mode Decision

DC Registers
(16x11)

Register File
(16x9)

M
U
X

Register Files
2 x (16x9)

 87

Table 4.1 Latencies of the Modules in the Upper Part of the Search & Mode Decision

Hardware

Module Latency
Neighbor Loader 256 clock cycles
Hadamard Transform 288 clock cycles
Residue Module 256 clock cycles
Intra Prediction – Mode0 257 clock cycles
Intra Prediction – Mode1 257 clock cycles
Intra Prediction – Mode2 273 clock cycles
Intra Prediction – Mode3 340 clock cycles

In the worst case, when all 16x16 prediction modes are available, intra search for a

MB takes 256*4 (Neighbor Loader) + 1127 (Intra Prediction) + 288*4 (Hadamard

Transform) + 1*4 (Top Level Mode Decision) = 3307 clock cycles.

Figure 4.4 Schedule for 16x16 Luma Prediction Modes

Neighbor Loader MacroBlock0
Mode2

Hadamard
Transform

 Residue

Neighbor Loader MacroBlock1
Mode1

 Residue

Hadamard
Transform

Neighbor Loader MacroBlock2
Mode1

Hadamard
Transform

 Residue

Start_mb_search

 Top Level
ModeDecision

MacroBlock1
Mode2

Hadamard
Transform

 Residue Top Level

ModeDecision

MacroBlock2
Mode2

Hadamard
Transform

 Residue Top Level

ModeDecision

Neighbor Loader MacroBlock3
Mode1

Hadamard
Transform

 Residue

 88

The lower part of the search & mode decision hardware is designed for finding the

best 4x4 luma prediction mode for each 4x4 luma block in a MB. Top level scheduling for

the lower part of the search and mode decision hardware is shown in Figure 4.6. Initially,

we adapted the top level scheduling shown in Figure 4.5. However, this initial schedule

could not achieve 30 fps CIF coding performance. We, therefore, improved the top level

scheduling for the lower part of the search & mode decision hardware using pipelining.

Figure 4.5 Initial Schedule for 4x4 Luma Prediction Modes

 Start_mb_search

Block0
Mode2

Neighbor
Loader

Residue Hadamard

Block1
Mode1

Residue Hadamard

Block1
Mode2

Residue Hadamard

Block1
Mode8

Neighbor
Loader

Residue Hadamard

Block2
Mode0

Residue Hadamard

Block2
Mode2

Residue Hadamard

Block2
Mode3

Residue Hadamard

Block2
Mode7

Residue Hadamard

Block3
Mode0

Residue Hadamard

Neighbor
Loader

Block3
Mode1

Residue Hadamard

Block3
Mode2

Residue Hadamard

Block3
Mode3

Residue Hadamard

Block3
Mode4

Residue Hadamard

Block3
Mode5

Residue Hadamard

Block3
Mode6

Residue Hadamard

Block3
Mode7

Residue Hadamard

Block3
Mode8

Residue Hadamard

Block4
Mode0

Neighbor
Loader

 89

Figure 4.6 Final Schedule for 4x4 Luma Prediction Modes

Before intra prediction hardware for the first available mode of a 4x4 luma block

starts, the corresponding entries of the neighboring buffers for that 4x4 block in the

prediction hardware are loaded with the neighboring pixels from the current MB register

file. After generating pixel predictions of a 4x4 luma block using an available 4x4 luma

prediction mode, the difference (residue) between the current 4x4 luma block and the

predicted 4x4 luma block is calculated by Residue module. When the Residue module

finishes the calculation of residue data for a 4x4 luma block for the current available 4x4

luma prediction mode, Hadamard Transform module starts to calculate SATD for that

mode using the residue data. After Hadamard Transform finishes to calculate SATD for a

4x4 luma prediction mode, mode decision hardware for 4x4 luma blocks determines

whether this prediction mode is the mode with lowest cost or not.

Intra prediction module is overlapped with Residue and Hadamard Transform

modules. As the Residue and Hadamard Transform modules are working on the current

available 4x4 luma prediction mode for a 4x4 luma block, intra prediction module starts to

generate the prediction for the next available 4x4 luma prediction mode for the same 4x4

Block0
Mode2

Neighbor
Loader

Residue Hadamard

Block1
Mode1

Residue Hadamard

Block1
Mode2

Residue Hadamard

Block1
Mode8

Neighbor
Loader

Residue Hadamard

Block2
Mode0

Residue Hadamard

Block2
Mode2

Residue Hadamard

Block2
Mode3

Residue Hadamard

Block2
Mode7

Neighbor
Loader

Residue Hadamard

Block3
Mode0

Residue Hadamard

Block3
Mode1

Residue Hadamard

Block3
Mode3

Residue Hadamard

Block3
Mode4

Residue Hadamard

Block3
Mode5

Residue Hadamard

Block3
Mode6

Residue Hadamard

Block3
Mode7

Residue Hadamard

Block3
Mode8

Neighbor
Loader

Residue Hadamard

Block4
Mode1

Residue Hadamard

Block4
Mode2

 Start_mb_search

 90

luma block if the current available 4x4 prediction mode is not the last available mode for

the current 4x4 luma block.

 If the current available 4x4 prediction mode is the last available 4x4 luma prediction

mode for the current 4x4 luma block, Neighbor Loader module starts to load the

corresponding neighboring pixels for the next 4x4 luma block from the current MB register

file as the Residue module is working on the current 4x4 luma block. The Residue module

is again followed by Hadamard Transform module. After Neighbor Loader finishes loading

the neighboring pixels of the next 4x4 luma block, intra prediction module starts to

generate the prediction for the first available 4x4 luma prediction mode for the next 4x4

luma block. All the 4x4 luma blocks in a MB are processed in this order.

 The overlapping between Intra Prediction and Residue modules requires using two

prediction buffers. While Intra Prediction module is generating the prediction for the next

available 4x4 luma prediction mode and writing the results into one of the prediction

buffers, Residue module is reading the predicted pixels for the current 4x4 luma prediction

mode from the other prediction buffer for residue data calculation.

After intra prediction for all 4x4 blocks in a MB is finished, most probable mode

calculation module determines the number of selected modes which are not the most

probable mode for each 4x4 block in a MB and uses this information to calculate the cost of

using intra 4x4 prediction for a MB (for each 4x4 block, Cost4x4 = SATD + 4λR, where

R=0 when selected mode is the most probable mode and R=1 otherwise). Most probable

mode calculation module has vertical and horizontal buffers that are used for storing the

most probable mode information of the 4x4 blocks in the MB boundaries. Vertical buffer is

used for storing most probable mode information for the blocks 5, 7, 13 and 15 in the left-

hand previously coded MB. Horizontal buffer is used for storing most probable mode

information for the blocks 10, 11, 14, and 15 in the upper previously coded MBs in the

previously coded MB row of the frame.

Finally, Top Level Mode Decision module in Figure 4.3 uses the results produced by

the individual mode decision modules of the lower and upper parts of search & mode

decision hardware to determine the prediction modes with lowest cost for a MB (one mode

for luma samples and one mode for chroma samples) and sends this information to the

coder hardware. In order to complete the SATD operations faster, a high speed Hadamard

 91

transform implementation is taken from [15] and integrated into our design. The proposed

hardware finishes SATD operations of a 4x4 block in 18 clock cycles.

The latencies of the modules in the lower part of the search & mode decision

hardware are given in Table 4.2.

Table 4.2 Latencies of the Modules in the Lower Part of the Search & Mode Decision
Hardware

Module Latency
Neighbor Loader 16 clock cycles
Hadamard Transform 18 clock cycles
Residue 18 clock cycles
Intra Prediction – Preprocessing 8 clock cycles
Intra Prediction – Mode0 17 clock cycles
Intra Prediction – Mode1 17 clock cycles
Intra Prediction – Mode2 19 clock cycles
Intra Prediction – Mode3 18 clock cycles
Intra Prediction – Mode4 18 clock cycles
Intra Prediction – Mode5 17 clock cycles
Intra Prediction – Mode6 17 clock cycles
Intra Prediction – Mode7 17 clock cycles
Intra Prediction – Mode8 17 clock cycles

For the schedule shown in Figure 4.5, after the prediction for each mode is generated,

it takes 16 clock cycles for the Residue module to generate the residue block for that mode

(loading neighbors is overlapped). After the residue block is generated, the Hadamard

Transform module is started and it takes 18 clock cycles to finish the transform process. 4

extra cycles are required after the Hadamard Transform module before starting intra

prediction for the next available mode of the same 4x4 block. So, in the worst case when all

4x4 modes are available, it takes 165 (Intra Prediction) + 16*9 (Residue) + 16*9

(Hadamard Transform) + 4*9 = 507 clock cycles for performing intra search for a 4x4 luma

block. After intra search for all 4x4 luma blocks in a MB is done, total cost for the selected

modes for each 4x4 luma block in a MB is calculated in 18 clock cycles. Most probable

mode calculation for 4x4 blocks in a MB is, then, started and this calculation takes 36 clock

cycles. Finally, cost comparison between 16x16 and 4x4 intra search is initiated and it takes

9 clock cycles. Therefore, intra search for a MB takes (16*507) + 18 + 36 + 9 = 8175 clock

cycles when the initial schedule is used. Since 30 fps CIF coding cannot be achieved using

this schedule, we used the schedule shown in Figure 4.6.

 92

 For the schedule in Figure 4.6, after the prediction for each mode is generated

(hadamard transform is overlapped), it takes 16 cycles for the Residue module to generate

the residue block for that mode (loading neighbors is overlapped). 1 extra cycle is required

after the Hadamard Transform module before starting intra prediction for the next available

mode of the same 4x4 block. So, in the worst case when all 4x4 modes are available, it

takes 165 (Intra Prediction) + 16*9 (Residue) + 1*9 = 318 clock cycles for performing intra

search for a 4x4 luma block. After intra search for all 4x4 luma blocks in a MB is done,

total cost for the selected modes for each 4x4 luma block in a MB is calculated in 18 clock

cycles. Most probable mode calculation for 4x4 blocks in a MB is, then, started and this

calculation takes 36 clock cycles. Finally, cost comparison between 16x16 and 4x4 intra

search is initiated and it takes 9 clock cycles. Therefore, intra search for a MB takes

(16*318) + 18 + 36 + 9 = 5151 clock cycles when the final schedule is used.

4.1.2 Coder Hardware

The coder hardware is mostly taken from [15]. As shown in Figure 4.7, it includes

Intra Prediction, Residue, Transform, Quant, Inverse Transform, Inverse Quant, Hadamard

Transform, Reconstruction, and Entropy Coder modules.

After the search & mode decision hardware determines the best modes for luma and

chroma components of a MB, the MB is loaded to the current MB register file in the coder

hardware. As soon as this loading operation finishes, intra prediction hardware generates

the predicted MB using the selected best mode. Then, the Residue module creates the

residual data by taking the difference between the current MB and the predicted MB and it

loads the residual data to the input register file of the Transform-Quant hardware.

Reconstruction module adds the results of Inverse Transform module which is stored in a

16x16 register file and the corresponding intra predicted data from the predicted MB

register and clips the result to the [0-255] range. The results obtained from the

reconstruction process are loaded to the neighboring pixel buffers in the intra prediction

hardware and the reconstructed MB register file.

 93

Figure 4.7 Block Diagram of Coder Hardware

Current
MacroBlock

Register
(384x8)

Intra Predictor

Residue

Reconstructed
MacroBlock

Register
(384x8)

Residue
MacroBlock

Register
(384x9)

Reconstruction

Prediction
Buffer (384x8)

Register
File

(16x16)

Register File
(384x16)

CAVLC

Register File
(96x32)

Exp-Golomb
VLC

Register File
(106x32)

Bitstream

 Transform Quant

Inverse
Transform

HT

IHT

Inverse
Quant

 94

The scheduling of the Coder Hardware for a MB that will be coded with 4x4 luma

prediction modes is shown in Figure 4.8 [15]. In the worst case, it takes 2676 clock cycles

to code a MB that will be coded with 4x4 luma prediction modes. First, intra prediction

hardware generates all pixel predictions for a MB based on the selected mode information

for each 4x4 luma block and writes these results to the predicted MB register file. Then, the

Residue block subtracts the predicted MB from the current MB. When the residual data for

the first 4x4 luma block is available, Transform-Quant module starts to generate the

quantized transform coefficients and loads these coefficients to the input register file of

CAVLC hardware. After the quantized transform coefficients of the first 4x4 block are

loaded, CAVLC and inverse Transform – Quant modules start to work. The bitstream

generated by CAVLC module is stored in the output register file of CAVLC hardware.

After Transform – Quant module finishes inverse quant and inverse transform operations

for the first 4x4 block, reconstruction block starts to work. After the first 4x4 block of a

MB is coded and reconstructed, the coder hardware starts to work on the second 4x4 block.

In this way, all 4x4 blocks in a MB are coded and reconstructed.

Figure 4.8 Coder Hardware Scheduling for 4x4 Intra Modes

 Modules

Residue

Intra Prediction

TQIQIT

Entropy
Coder

 Time (cycles)

Reconstruction

TQ IQIT TQ IQIT

24

42

86

142

160 202 246 302 320

1st Block

2nd Block

 266 446 0

 95

The scheduling of the Coder Hardware for a MB that will be coded with a 16x16

luma prediction mode is shown in Figure 4.9 [15]. In the worst case, it takes 3680 clock

cycles to code a MB that will be coded with a 16x16 luma prediction mode. Hadamard

Transform has to be applied to DC coefficients after 4x4 integer transforms. Therefore,

inverse quant, inverse transform, CAVLC and reconstruction operations for the MB can

only start after the Hadamard transform finishes.

Figure 4.9 Coder Hardware Scheduling for 16x16 Intra Modes

1st Block

2nd

16th Block

TQIQIT

Entropy
Coder

 Modules

Time (cycles)

0

Residue

Reconstruction

TQ TQ TQ IQIT IQIT

920 24

42
48

86

75

130 746

HT

 800 860

384

402 1160 880

Intra
Prediction

980

 96

4.1.3 Implementation Results

The proposed architecture is implemented in Verilog HDL. The implementation is

verified with RTL simulations using Mentor Graphics ModelSim SE. The Verilog RTL is

then synthesized to a 2V8000ff1152 Xilinx Virtex II FPGA with speed grade 5 using

Mentor Graphics Leonardo Spectrum. The resulting netlist is placed and routed to the same

FPGA using Xilinx ISE Series 7.1i. The FPGA implementation is verified to work at 71

MHz on a Xilinx Virtex II FPGA on an ARM Versatile Platform development board.

The H.264 intra frame coder hardware is verified to be compliant with H.264

standard. As shown in Figure 4.10, the bitstream generated by the H.264 intra frame coder

hardware for an input frame is successfully decoded by H.264 Joint Model (JM) reference

software decoder and the decoded frame is displayed using a YUV Player tool for visual

verification.

The proposed H.264 intra frame coder hardware includes a search & mode decision

hardware and a coder hardware that work in a pipelined manner. Since, in the worst case,

the search & mode decision hardware takes 5151 clock cycles for a MB and the coder

hardware takes 3680 clock cycles for a MB, the intra frame coder hardware takes 5151

clock cycles for a MB. Therefore, the FPGA implementation can process a CIF frame in

396 MB * 5151 clock cycles per MB * 14 ns clock cycle = 28.5 msec. Therefore, it can

process 1000/28.5 = 35 CIF (352x288) frames per second.

The FPGA implementation including input, output and internal RAMs and register

files uses the following FPGA resources; 19589 Function Generators, 9795 CLB Slices,

3698 Dffs/Latches, and 1 Block Multiplier, i.e. %21.02 of Function Generators, %21.02 of

CLB Slices, %3.83 of Dffs/Latches, and %0.6 of Block Multipliers.

 97

(a) Input Frame

(b) Encoded and Decoded Frame

Figure 4.10 Visual Verification of H.264 Intra Frame Coder Hardware

 98

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we developed an efficient FPGA-based H.264 intra frame coder

Hardware for portable applications targeting level 2.0 of baseline profile. We first designed

a high performance and low cost hardware architecture for real-time implementation of

entropy coding algorithms, context adaptive variable length coding and exp-golomb coding,

used in H.264 video coding standard. The hardware is implemented in Verilog HDL and

verified with RTL simulations using Mentor Graphics Modelsim. We then designed a high

performance and low cost hardware architecture for real-time implementation of intra

prediction algorithm used in H.264 video coding standard. This hardware is also

implemented in Verilog HDL and verified with RTL simulations using Mentor Graphics

Modelsim. We then designed and implemented the top-level H.264 intra frame coder

hardware. The hardware is implemented by integrating intra prediction, mode decision,

transform-quant and entropy coding modules. The H.264 intra frame coder hardware is

verified to be compliant with H.264 standard and it can code 35 CIF (352x288) frames per

second. The hardware is first verified with RTL simulations using Mentor Graphics

Modelsim. It is then verified to work at 71 MHz on a Xilinx Virtex II FPGA on an ARM

Versatile Platform development board.

 99

5.2 Future Work

The FPGA-based H.264 intra frame coder implementation can be modified as an

ASIC implementation and prototypes can be fabricated.

The power consumption of the H.264 intra frame coder hardware can be analyzed.

Based on this analysis, low-power techniques such as clock gating and glitch reduction can

be used to reduce its power consumption.

The H.264 intra frame coder hardware can be used to investigate the rate-distortion

performance of the current intra frame search and mode decision algorithm and to develop

better intra frame search and mode decision algorithms.

A complete H.264 video encoder hardware can be implemented by integrating motion

estimation, motion compensation, de-blocking filter, intra vs. inter mode decision and rate

control modules to the H.264 intra frame coder hardware.

 100

REFERENCES

[1] R. Schäfer, T. Wiegand and H. Schwarz, “The Emerging H.264/AVC Standard”,

EBU Technical Review, January 2003.

[2] Personal Communication with Hasan Ateş.

[3] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra “Overview of the

H.264/AVC Video Coding Standard”, IEEE Trans. on Circuits and Systems for

Video Technology vol. 13, no. 7, pp. 560–576, July 2003.

[4] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.

[5] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft ITU-T.

Recommendation and Final Draft International Standard of Joint Video

Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003.

[6] O.Tasdizen, I. Hamzaoglu, “A High Performance And Low Cost Hardware

Architecture for H.264 Transform And Quantization Algorithms", 13th European

Signal Processing Conference, September 2005.

[7] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen,

“Hardware Architecture Design for H.264/AVC Intra Frame Coder,” Proc. of IEEE

ISCAS, pp. 269-272, April 2004.

[8] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-Gee Chen,

“Analysis, Fast Algorithm, and VLSI Architecture Design for H.264/AVC Intra

Frame Coder,” IEEE Transactions on Circuits and Systems for Video Technology,

Vol. 15, No. 3, March 2005.

[9] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Joint Model (JM)

Reference Software Version 8.2, http://bs.hhi.de/suehring/.

[10] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards:

Algorithms and Architectures, Kluwer Academic Publishers, 2nd Edition, 1997.

 101

[11] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC Fidelity Range

Extensions: Tools, Profiles, Performance and Application Areas,” in Proc. IEEE

Int. Conf. Image Processing, vol. 1, pp. 593-596, Genova, Italy, Sept. 2005.

[12] D. Marpe, V. George, H. L. Cycon, and K. U. Barthel, “Performance Evaluation of

Motion-JPEG2000 in Comparison with H.264/AVC Operated in Intra Coding

Mode, ” in Proc. SPIE, vol. 5266, pp. 129-137, Feb. 2004.

[13] G. Bjontegaard, “Calculation of Average PSNR Differences Between RD-Curves,”

document VCEG-M33, Austin, USA, 2001.

[14] E. Sahin, I. Hamzaoglu, “A High Performance and Low Power Hardware

Architecture for H.264 CAVLC Algorithm", 13th European Signal Processing

Conference, September 2005.

[15] O. Tasdizen, “H.264 Intra Frame Coder System Design”, MS Thesis, Sabanci

University, August 2005.

