

A REVISED MULTIPLE ANT COLONY SYSTEM FOR
VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

by

DUYGU TAŞKIRAN

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of

the requirements for the degree of
Master of Science

Sabancı University
August 2006

A REVISED MULTIPLE ANT COLONY SYSTEM FOR
VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

APPROVED BY:

Assistant Prof. Dr. Bülent Çatay …………………………
(Thesis Supervisor)

Assistant Prof. Dr. Hüsnü Yenigün ………………..……

Assistant Prof. Dr. Kemal Kılıç …..……………………

Assistant Prof. Dr. Kerem Bülbül.…..………………….

Associate Prof. Dr. Erhan Budak.…..…………………..

 DATE OF APPROVAL:

© Duygu Taşkıran 2006

All Rights Reserved

 IV

A REVISED MULTIPLE ANT COLONY SYSTEM FOR

VEHICLE ROUTING PROBLEMS WITH TIME WINDOWS

Duygu TAŞKIRAN

IE, MS Thesis, 2006

Thesis Supervisor: Assistant Prof. Dr. Bülent ÇATAY

Keywords: Ant colony system, vehicle routing problem with time windows

ABSTRACT

In this thesis, a Revised Multiple Ant Colony System (RMACS) approach is

applied to the Vehicle Routing Problem with Time Windows (VRPTW). Our primary

objective is to minimize the number of vehicles and the secondary objective is to

minimize the total travel distance. Two artificial ant colonies, where one minimizes

the number of vehicles and the other the total travel time, cooperate with each other

through pheromone update to optimize the corresponding objectives. The developed

approach is coded in C++ and tested on the well-known 56 benchmark instances of

Solomon (1987). These instances are composed of six different problem types, each

containing 8-12 100-node problems. Although the best solutions could not be

improved, in many instances the number of the vehicles is the same with the best

results or 1-2 near to them. However, the travel distance %30 far from the best

benchmark solutions in some of the problem instances.

 V

ZAMAN KISITLI ARAÇ ROTALAMA PROBLEMİNE FARKLI BİR

KARINCA KOLONİSİ SİSTEMİ YAKLAŞIMI

Duygu TAŞKIRAN

IE, Yüksek Lisans Tezi, 2006

Tez Danışmanı: Yrd. Doç. Dr. Bülent ÇATAY

Anahtar Kelimeler: Karınca kolonisi sistemi, zaman kısıtlı araç rotalama problemi

ÖZET

Bu çalışma, Zaman Kısıtlı Araç Rotalama Problemini Karınca Kolonisi

optimizasyonuna dayalı bir yaklaşımla çözmeyi amaçlamaktadır. Problemdeki birinci

amacımız araç sayısını, ikinci amacımız ise toplam katedilen yolu minimize etmektir.

Bu minimizasyon problemini çözmek üzere biri araç sayısını, diğeri ise toplam

katedilen yolu minimize etmeye odaklı iki karınca kolonisi feromen seviyeleri

vasıtasıyla haberleşerek bir yardımlaşma anlayışı içerisinde çalışırlar. Algoritma C++

programında kodlanmış olup, Solomon’un (1987) 56 problem örneği üzerinde test

edilmiştir. Herbiri 8-12 100 noktalı problem içeren bu problem örnekleri 6 değişik

problem setine karşılık gelmektedir. Bu çalışma sonucunda araç sayısında

literatürdeki en iyi sonuçlara karşın bir geliştirme sağlanamamış olmasına karşın, en

iyi sonuçlara maksimum 2 araç sayısı uzaklıkta sonuçlar bulunmuştur. Fakat

katedilen yol miktarı bazı problem örneklerinde literatürdeki en iyi sonuçlardan %30

daha uzak sonuçlar vermektedir.

 VI

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor Assistant Prof Dr. Bülent Çatay for his

encouragement, motivation and considerable time he spent from beginning to end of

my thesis.

I thank to graduate committee members of my thesis, Assistant Prof. Dr.

Kemal Kılıç, Assistant Prof. Dr. Kerem Bülbül, Assistant Prof. Dr. Erhan Budak and

Assistant Prof. Dr. Hüsnü Yenigün for their worthwhile suggestions and remarks.

 VII

TABLE OF CONTENTS

 Page

Abstract IV

Özet V

1. Introduction 1

2. Literature Review 3

3. Ant Colony System 7

4. RMACS for VRPTW 10

4.1 ACS-TIME and ACS-VEI Colonies 12

5. Solution Constructive Procedure 15

6. Numerical Results 17

7. Conclusions 20

Bibliography 21

Appendix A 23

Description of the RMACS 23

Appendix B 27

Detailed solutions comparison (10 ants case) 27

Appendix C 28

Average of the 5 runs of RMACS vs best known (30 ants case) 28

 VIII

LIST OF FIGURES

 Page

3.1. The ACO heuristics developed by Dorigo Caro (1999) 9

4.1. The MACS-VRPTW procedure 10

4.2. The MACS-VRPTW algorithm 11

4.3 The ACS-TIME procedure 12

4.4. The ACS-VEI procedure 13

4.5 The new_active_ant procedure used by ACS-VEI and ACS-TIME 14

 IX

LIST OF TABLES

 Page

6.1. Detailed solutions comparison (30 ants case) 18

6.2. Average of the best solutions computed by RMACS and MACS 19

 1

1. INTRODUCTION

The Ant System, introduced by Colorni et al. (1991), and Dorigo et al. (1992)

with an application on the Traveling Salesman Problem (TSP), is a recent

metaheuristic for hard combinatorial optimization problems. Many Ant System

algorithms, proven to be very efficient, have been proposed to solve different types of

combinatorial optimization problems such as symmetric and asymmetric traveling

salesman problems (TSP/ATSP, Dorigo and Gambardella, 1997, Stützle, 1998,

Stützle and Dorigo, 1999), the sequential ordering problem (SOP, Gambardella and

Dorigo, 1997), the quadratic assignment problem (QAP, Gambardella, Taillard and

Dorigo, 1999, Taillard and Gambardella, 1997), the bi-quadratic assignment problem

and the p-median problem (Taillard, 1998).

The idea of imitating the behaviour of real ant colonies for solving hard

combinatorial optimization problems led to the development of the ant colony

algorithms. Real ants communicate with each other via an aromatic essence called

‘pheromone’ in their search of food, where the quantity of pheromone depends on the

quality of the food source. This will consequently make all ants choose the paths

leading to rich and nearby food sources as the pheromone trails on these paths will

grow faster.

In the Ant System the artificial ants search the solution space to solve

combinatorial optimization problems instead of real ants searching their environment

to find rich and nearby food sources. These artificial ants cooperate with each other

by building solutions in parallel using an indirect form of communication, the

pheromone updates. They construct solutions iteratively by adding a new node to the

existing partial solution using both the information gained from past and a greedy

heuristic called visibility. In this system, the objective function matches with the

quality of the food source and an adaptive memory matches with the pheromone

trails.

 2

This paper presents a Revised Multiple Ant Colony System (RMACS)

application to the Vehicle Routing Problems with Time Windows which is based on

Multiple Ant Colony System (MACS) (Gambardella, Taillard, and Agazzi, 1999)

approach inspired by the foraging behavior of real colonies of ants.

VRPTW is defined as the problem of minimizing time and costs in case a fleet

of vehicles has to distribute goods from a depot to a set of customers. The problem

studied in this paper is a hierarchical multi-objective problem; the first objective is to

minimize the number of tours (or vehicles) and the second is to minimize the total

travel time where the objective of minimization of the number of tours takes

precedence over the minimization of the total travel time. The objectives of the

VRPTW can be antagonistic in case the problem constraints are very tight. The idea

to adapt ACS for these multiple objectives is to define two ACS colonies, each

dedicated to the optimization of a different objective function, and cooperates by

exchanging information through pheromone updating.

 3

2. LITERATURE REVIEW

Capacitated Vehicle Routing Problem (CVRP) is the most basic version of the

vehicle routing problems. In the CVRP, n customers, each asking for a quantity qi of

goods, must be served from a unique depot with the limited number of vehicles (v)

with capacity Q, and with the objective of achieving the minimum total travel time.

From a graph theoretical point of view the CVRP may be stated as follows: Let

G = (C,L) be a complete graph with node set C = (co, c1, c2,..., cn) and arc set L = (ci,

cj): ci, cj ∈C, i ≠j, where co is the depot and the other nodes are the customers to be

served. Each node is associated with a fixed quantity qi of goods to be delivered

where qo = 0 for the depot, and tij represents the travel time between ci and cj for each

arc (ci, cj). A solution to the CVRP is a set of tours where each customer is visited

exactly once, and each tour starts and ends at the depot. The vehicle has to

periodically return to the depot for reloading since the vehicle capacity is limited.

VRPTW is an important extension of the CVRP. In addition to the CVRP

characteristics, this problem includes a time window [bi, ei] both for the depot and for

each customer ci (i = 0,..., n). So the additional constraints to CVRP are that the

service beginning time at each node ci (i = 1,..., n) must be greater than or equal to bi,

and the arrival time at each node ci must be lower than or equal to ei. Whenever the

vehicle reaches the customer before bi, it has to wait until bi to start the service.

A number of exact and heuristic methods have been proposed for the VRPTW.

When the solution space is restricted by narrow time windows so that less

combinations of customers are possible to define feasible tours, exact methods are

proven to be more efficient.

Dynamic Programming, Lagrangean Relaxation Based Methods and Column

Generation principles are used in solving the VRPTW in the context of exact

algorithms. Kolen et al. (1987) used branch and bound; Jörnsten et al. (1986),

Madsen et al. (1988) and Halse (1992) proposed variable splitting followed by

 4

Lagrangean decomposition, Fisher et al. (1997) adopted K-tree approach followed

by Lagrangean Relaxation, and Desrochers et al. (1992) utilized the column

generation approach for solving the VRPTW for the first time.

 The method of Kohl et al. (1997), which was proven to be one of the most

efficient methods among the exact methods, succeeded in solving a number of 100

customer instances by relaxing the constraints that ensure that each customer must be

visited exactly once and adding a penalty term to the objective function. The model is

decomposed into one sub-problem for each vehicle which is a shortest path problem

with time window and capacity constraints.

The studies on the heuristic methods for solving the VRPTW are much more

than the exact methods since the problem is NP-hard. These algorithms can be

grouped as construction algorithms, improvement algorithms, and metaheuristics.

Baker and Schaffer (1986) are the first ones proposing the first sequential

construction algorithm which is based on the savings heuristic. Solomon (1987)

proposed Time Oriented Nearest Neighbourhood Heuristic, Time Oriented Sweep

Heuristic (1987), and Giant Tour Heuristics (1987). Antes and Derigs (1995) also

proposed a construction algorithm based on Solomon’s heuristic.

In the improvement algorithms, generally an exchange intra or inter route

neighbourhood is searched to find a better solution. Croes (1958) introduced k opt

approach for single vehicle routes. Christofides and Beasley (1984) proposed the k -

node interchange for the first time to take time windows into account. Potvin and

Rousseau (1995) presented two variants of 2-Opt and Or-Opt, and Schulze and Fahle

(1999) proposed shift-sequence algorithm.

Metaheuristic algorithms such as simulated annealing (SA), tabu search (TS),

genetic algorithm (GA), and ant colony algorithm (ACO) have been used to solve the

VRPTW in order to escape local optima and enlarge the search.

Chiang and Russell (1996) proposed three different SA methods. Tan et al.

(2001) proposed an SA heuristic, defining a new cooling schedule. Finally, Li and

 5

Lim (2003) proposed an algorithm that finds an initial solution using Solomon’s

insertion heuristic and then starts local search from initial solution using tabu-

embedded simulated annealing approach.

Garcia et al. (1994) applied TS to solve VRPTW for the first time, by

generating an initial solution using Solomon’s insertion heuristic and searching the

neighborhood using 2-opt and Or-opt. Garcia et al. (1994) also parallelized the TS

using partitioning strategy. Thangiah et al. (1994) proposed TS combining TS with

SA to accept or reject a solution. Potvin et al. (1995) proposed an approach similar to

Garcia et al. (1994) based on the local search method of Potvin and Rousseau (1995).

Gendreau, Hertz and Laporte (1994) used complex iteration schemes that involve a

partial re-optimization of the target route to solve the VRPTW.

Badeau et al. (1997) performed TS by generating a series of initial solutions,

decomposing them into groups of routes and penalizing exchanges that are frequently

performed. De Backer and Furnon (1997) used the savings heuristic to generate the

initial solution and searched the neighbourhood using 2-opt and Or-opt. Schulze and

Fahle (1999) proposed a parallel TS heuristic where initial solutions are generated

using the savings heuristic and the neighborhood is searched using route elimination

and Or-opt.

Thangiah et al. (1991) applied the GA to VRPTW for the first time, where GA

is proposed to find good clusters of customer. Thangiah et al. (1995) generated initial

population by clustering the customers randomly into groups and applying the

cheapest insertion heuristic for each group. Afterwards, 2-point crossover is used.

Potvin and Bengio (1996) performed GA on chromosomes of feasible solutions.

Parents are randomly selected and two types of crossover are applied to these parents.

The reduction of routes is obtained by two mutation operators, and the routes are

further improved by applying Or-Opt. Homberger and Gehring (1999), making a

difference by the role of mutation in their algorithm, generated initial population

using a modified savings heuristic and a precedence relationship among the genes in a

chromosome. Tan et al. (2001), differing by the way of determining the customers in

 6

different routes, proposed a GA approach in which the genetic operators are applied

directly to solutions, represented as integer strings.

Rochat and Taillard (1995) used a probabilistic local search method based on

intensifying the solution, which is in some ways similar to the SA approach. Kilby et

al. (1999) used a memory-based metaheuristic, Guided Local Search (GLS), in which

the cost function is modified by adding a penalty term, and improving the solution by

applying 2-opt exchanges. In Potvin and Robillard (1999), a competitive neural

network is used to cluster the customers. A combination of a competitive neural

network and a GA is described. A weight vector is defined for every vehicle and all

weight vectors are placed randomly close to the depot initially. Then, customers are

selected.

Braysy et al. (2000) described a two-step evolutionary algorithm based on the

hybridization of a GA consisting of several local searches and route construction

heuristics inspired form the studies of Solomon (1987). Tan et al. (2001) proposed an

artificial intelligence heuristic which can be interpreted as the hybrid combination of

SA and TS.

Bullnheimer et al. (1998) applied the AS to the VRP with one central depot and

identical vehicles for the first time, and Bullnheimer et al. (1999) improved this initial

algorithm by the random proportional rule and the phremone update structure (1999).

Bell and McMullen (2003) differed from Bullnheimer (1999) in the approach of

selecting the next customer and pheromone update structure.

Doerner et al. (2001) proposed the savings based ant system approach (SbAS)

which differs from Bullnheimer et al. (1999) with the use of savings function in

calculating the visibility.

Gambardella et al. (1999) presented Multiple Ant Colony System for Vehicle

Routing Problem with Time Windows (MACS-VRPTW). This approach is the main

inspiration of this study and it will be explained in detail in the next chapter.

 7

3. ANT COLONY SYSTEM

The original ACS (Gambardella and Dorigo, 1996, Dorigo and Gambardella,

1997a, 1997b) was applied to the TSP. In ACS, a number of artificial ants search for

good quality solutions to the discrete optimization problems. A solution is described

in terms of paths through the states of the problem in accordance with the constraints

of the problem. Each ant is assigned to an initial state based on problem criteria and it

has to build a solution with a complete tour. Artificial ants find solutions in parallel

processes using an incremental constructive mechanism, starting from the initial state

and moving to feasible neighbour states. In this search, moves are made by applying a

stochastic search policy and choosing the ways of exploitation and exploration

probabilistically, guided by ants’ memory, problem constraints, pheromone trail

accumulated by all the ants from the beginning of the search process and problem-

specific heuristic information named as visibility which measures the attractiveness of

the next node to be selected.

The closeness ηij is defined as the inverse of the arc length in some of the ant

colony system formulations; however it is possible to develop new formulations. The

pheromone trail τij, which is simply the information collected by the ants while they

are building solutions, is updated by using the pheromone update functions. Thus, it is

dynamic throughout the problem’s runtime. Therefore, the management of the

pheromone trails gains big importance for constructing better solutions.

Pheromone trails are used for the exploration and exploitation mechanisms.

When ant k is located at node i, it chooses the next node j probabilistically in the set

of feasible nodes Ni
k. In exploitation with probability q0, a node with the highest

τij.[ηij]
β,

j

єNi

k is chosen, and in exploration with probability (1-q0), the node j is

chosen with the probability function below:

 8

The amount of the pheromone deposited depends on the goodness of the

solution. The pheromone evaporation mechanism prevents the ants to stick to the

same part of the search space whereas extra pheromone is deposited on the arcs used

by the shortest path by daemon action process. By the strong communication among

the ants, it becomes possible to achieve high quality solutions.

In ACS, pheromone trail is updated both locally and globally. In local update,

every time an ant moves from node i to node j, the phremone level on this arc is

decreased in order to decrease the attractiveness of this arc, so giving more chance to

other not visited nodes to diversify the solution. However, global update takes place

after the completion of the solutions and it aims to intensify the search in the best

solution neighbourhood. Either the ars on all/some of the constructed solutions or

only the arcs on the best solution may be globally updated. Gambardella and Dorigo

(1995), Gambardella and Dorigo (1996), Dorigo and Gambardella (1997) have shown

that the update of the arcs in only the best solution works better than the update of

arcs in all of the solutions.

In the local update, the amount of phremone on arc (i,j) is decreased according

to the following formula:

τij = (1-ρ) τij + ρ τ0

τ0 is the initial value of the pheromone trails and it is taken as τ0 = 1/(n.Jω
h
)

where Jω
h is the length of the initial solution generated by the nearest neighbourhood

heuristic and n is the number of the nodes. Here, p is a parameter affecting the

amount of pheromone evaporation.

In the global update, the amount of pheromone on arc (i,j) is updated according

to the below formula:

τij = (1- ρ) τij + ρ / Jω
gb

Jω
gb is the length of the shortest path generated since the beginning of the

computation.

 9

The solutions are improved by local search after each ant builds a complete

solution. And the process starts from the beginning until a termination condition is

met.

procedure ACO heuristics()

 While (termination condition not met)
 schedule activities
 ants generation and activity();
 pheromone evaporation();
 daemon actions();
 end schedule activities
 end while
 end procedure

procedure ants generation and activity()

 While (available resources)
 new active ant();
 end while
end procedure

procedure new active ant();
 initialize ant();
 M=update ant memory ();
 While (current memory ?complete solution)
 A=read local ant routing table();
 P=compute transition probabilities;
 next state =apply decision policy;
 move to next state(next state);
 if (local pheromone update)
 deposit pheromone on the visited arc();
 update ant routing table();
 end if
 M=update internal state();
 end while
 if (global pheromone update)
 foreach visited arc do
 deposit pheromone on the visited arc();
 update ant routing table();
 end foreach
 end if
 die();
end procedure

Figure 3.1 The ACO heuristics developed by Dorigo Caro (1999)

 10

4. RMACS for VRPTW

Taking the ACS as a starting point, MACS-VRPTW has been proposed to solve

a VRPTW where both the number of vehicles and the travel time have to be

minimized, and the minimization of the number of vehicles takes precedence over the

travel time minimization. This dual objective minimization is achieved by using two

artificial ant colonies based on ACS. Figure 4.1 illustrates the basic principles of

MACS-VRPTW.

Figure 4.1 The MACS-VRPTW procedure

 11

/* MACS-VRPTW: Multiple Ant Colony System for Vehicle Routing Problems with

Time Windows */
Procedure MACS-VRPTW()

1. /* Initialization */
 /* ω

gb
 is the best feasible solution: lowest number of vehicles and shortest travel time

 #active_vehicles(ω)computes the number of active vehicles in the feasible

solution ω */

 ωgb
feasible initial solution with unlimited number of

vehicles produced with a nearest neighbor heuristic

2. /* Main loop */
Repeat

 v ← #active_vehicles(ωgb
)

 Activate ACS-VEI(v - 1)

 Activate ACS-TIME(v)

 While ACS-VEI and ACS-TIME are active

 Wait an improved solution ω from ACS-VEI or ACS-

TIME

 ωgb
 ← ω

 if #active_vehicles(ω
gb
) < v then

 kill ACS-TIME and ACS-VEI

 End While

until a stopping criterion is met

Figure 4.2 The MACS-VRPTW algorithm

The first colony, ACS-VEI, tries to diminish the number of vehicles used, while

the second colony, ACS-TIME, optimizes the feasible solutions found by ACS-VEI.

Although both colonies use independent pheromone trails, they collaborate by sharing

the variable ωgb. The solution reached by the nearest neighbourhood heuristic at the

start of the algorithm is saved in ωgb, then this solution is improved by the

cooperative work of the two colonies.

When ACS-VEI is called, it works with one vehicle less than the number of

vehicles used in ωgb and tries to find a feasible solution. During its search, it finds

infeasible solutions with the new_active_ant procedure, which will be explained later

and it stores the solution with the highest number of visited customers in ωACS-VEI. So

in ACS-VEI the current best solution is generally the infeasible solution with the

maximum number of visited customers. ACS-TIME is called then and it tries to

optimize the total travel time by using as many vehicles as used in ωgb while running

the new_active_ant algorithm. Whenever an improved solution comes from either of

the colonies, both ωgb and the pheromone values are updated globally. Whenever the

 12

improved solution contains fewer vehicles than the vehicles used in ωgb, both ACS-

TIME and ACS-VEI colonies are killed and the process continues with the two new

colonies working with the reduced number of vehicles.

4.1 ACS-TIME and ACS-VEI Colonies

The working principles of ACS-VEI and ACS-TIME colonies are described in

Figure 4.3 and Figure 4.4.

/* ACS-TIME: Travel time minimization. */
Procedure ACS-TIME(v)

/* Parameter v is the smallest number of vehicles for which a feasible solution has been

computed */

1. /* Initialization */
 initialize pheromone and data structures using v

2. /* Cycle */
 Repeat

 for each ant k

 /* construct a solution ωk
 */

 new_active_ant(k, local_search=TRUE, 0)

 end for each

 /* update the best solution if it is improved */

 If there exists a k : ωk
 is feasible and Jω

k
 < J ω

gb
 then

 send ω
k
 to MACS-VRPTW

 /* perform global updating according to below equation */

 τij = (1- ρ) τij + ρ / Jω
gb

 until a stopping criterion is met

Figure 4.3 The ACS-TIME procedure

 13

/* ACS-VEI: Number of vehicles minimization. */

Procedure ACS-VEI(s)

/* Parameter s is set to v-1, that is, one vehicle less than the smallest number of vehicles for

which a feasible solution has been computed

#visited_customers(ω) computes the number of customers that have been visited in

solution */

1. /* Initialization */
 initialize pheromone and data structures using s

 ω
ACS-VEI

 : initial solution with s vehicles produced with a nearest

neighbor heuristic. /* ωACS-VEI
 is not necessarily feasible */

2. /* Cycle */
 Repeat

 for each ant k

 /* construct a solution ω
k
 */

 new_active_ant(k,local_search=FALSE,IN)

 for every customer j ∉ ωk
 : INj ← INj + 1

 end for each

 /* update the best solution if it is improved */
 If for any k:

 #visited_customers(ωk
)> #visited_customers(ωACS-VEI) then

 ω
ACS-VEI

 ← ω
k

 for every j: INj ← 0 /* reset IN */

 if ω
ACS-VEI

 is feasible then

 send ω
ACS-VEI to MACS-VRPTW

/* perform global updating according to below equation using both ω
ACS-VEI

and ω
gb

 */

τij = (1- ρ) τij + ρ / Jω
ACS-VEI for every (i, j) ∈ωACS-VEI

τij = (1- ρ) τij + ρ / Jω
gb for every (i, j) ∈ ωgb

 until a stopping criterion is met

Figure 4.4 The ACS-VEI procedure

INj stores the number of time a node is not inserted in a solution and it makes

possible to favor the nodes which are less frequently inserted in the solutions. ACS-

VEI and ACS-TIME use the same new_active_ant constructive procedure that is

presented in details in Figure 4.5.

 14

/* new_active_ant: constructive procedure for ant k used by ACS-VEI and ACS-TIME */
Procedure new_active_ant(k, local_search, IN)

1. /* Initialization*/

 put ant k in a randomly selected depot i

 ω
k
 ← ι

 current_timek ← 0 , loadk ← 0

2. /* This is the step in which ant k builds its tour. Tour is stored in ωk
 */

 Loop

 /* Starting from node i compute the set Ni
k
 of feasible nodes (i.e., all the nodes j still to

be visited and such that current_timek and loadk are compatible with time windows [bj,ej] and

delivery quantity qj of customer j)

 for every j ∈ Ni
k
 compute the attractiveness ηij as follows: */

 delivery_timej ← max(current_timek + tij, bj)

 delta_timeij ← delivery_timej - current_timek

 distanceij ← delta_timeij *(ej - current_timek)

 distanceij ← max(1.0, (distanceij - INj))

 ηij ← 1.0/ distanceij
 Choose probabilistically the next node j using ηij in

exploitation and exploration mechanisms

 ω
k
 ← ω

k
 + j

 current_timek ← delivery_timej

 loadk ← loadk + qj

 If j is a depot then current_timek ← 0, loadk ← 0

 τij = (1- ρ) τij + ρ τ0

 /* Local pheromone updating */

 i ← j /* New node for ant k */

 Until

 Ni
k
 = {} /* no more feasible nodes are available */

3. /* In this step path ω
k
 is extended by tentatively inserting non visited customers */

 ω
k
 ← insertion_procedure(ω

k)
4. /* In this step feasible paths are optimized by a local search procedure.

 The parameter local_search is TRUE in ACS-TIME and it is FALSE in ACS-VEI*/

 if local_search = TRUE and ω
k
 is feasible then

 ω
k
← local_search_procedure(ω

k
)

Figure 4.5 The new_active_ant procedure used by ACS-VEI and ACS-TIME

At the end of the constructive phase, some nodes may not have been visited

making the solution incomplete, afterwards the solution is tentatively completed by

performing further insertions. Lastly, ACS-TIME implements a local search

procedure to decrease the total travel time.

 15

5. SOLUTION CONSTRUCTIVE PROCEDURE

The general methodology of the MACS-VRPTW is applied in our algorithm.

However, our algorithm differs in some aspects. First of all, a nearest list array is

defined at the beginning of the problem and that list is used during the

implementation of the whole code. In the nearest neighbourhood heuristic, which is

used to find an initial feasible solution, the first point in the nearest list array is

selected to be visited next, among the feasible nodes if its reachtime is between the

ready time and due date otherwise a point with the minimum due date is selected to

be visited.

After an initial solution is found, the MACS procedure takes place, which calls

ACS-VEI and ACS-TIME followingly. In the ACS-VEI, the solution is computed for

v-1 vehicles, where v is the number of vehicles in global feasible solution. Here, we

take out the vehicle with the maximum capacity available and apply insertion for the

nodes not visited before starting the new_active_ant algorithm. The insertion

algorithm attempts to place an unvisited point to the first suitable place on the nearest

list array, which matches with the time constraints of the nodes on the route and the

vehicle capacity constraint.

Another difference of our algorithm lies in the calculation of the attractiveness

function. In the new_active_ant algorithm, the vehicles search for the customers at

which they will not wait or they will wait at minimum. Although, this is a reasonable

logic, in many of the problem instances, the vehicles have to return to the depot with

available capacity, but no feasible point to visit remained. It can be observed in the

problem instances where the number of vehicles is large and small number of

customers are visited in each route. At these cases, the insertion algorithms do not

work either, so improving the solution becomes very difficult.

 In order to find a solution for these cases, we defined two more rules on

finding the attractiveness of the customers. The first rule is the remaining capacity

rule, in which if a vehicle’s remaining load is equal to a feasible customer’s demand,

then this customer’s attractiveness becomes 1. This rule slightly decreases the

remaining loads on the vehicles when they are returning to the depot.

 16

Second and the more important rule is the accessibility rule. We define another

constant, accessibility and set its value to 0.98. For every turn, if rule 1 explained

above is not applicable, a random number between 0 – 1 is generated. If this number

is less than the accessibility constant, normal attractiveness finding procedure

(explained in the detailed description of the algorithm in Appendix A) is applied.

Otherwise, the distance is initialized as the time between the delivery time and due

date. We made an insertion point in that route, searching a nearest point with a

(minimum euclidean distance between two points + serviceTime) delay. So our

insertion procedure tries to insert the points just before or after the points which are

very close. To insert a point to a completed route, we have to take the service time

into account.

In Appendix A the detailed description of the algorithm is attached.

 17

6. NUMERICAL RESULTS

Our algorithm has been tested on a classical set of 56 benchmark problems of

Solomon (1987) which consists of six different problem types: C1, C2, R1, R2, RC1,

RC2. Each data set contains eight to twelve 100-node problems. C type problems

have clustered customers whose time windows were generated based on a known

solution. R type problems have customers location generated uniformly randomly

over a square. RC type problems have a combination of randomly placed and

clustered customers. Type 1 problems have narrow time windows and small vehicle

capacity, whereas type 2 problems have large time windows and large vehicle

capacity. Therefore, the solutions of type 2 problems have very few routes and

significantly more customers per route.

The algorithm coded in C++ run 5 times for each problem data set and the

average of the solutions of 5 runs are listed in Appendix C. By applying several runs

to different problems, the following parameters are selected to be used in the

experiments: m=30 ants, q0=0.9, β=2 and ρ=0.1.

 18

Table 6.1 Detailed solutions comparison (30 ants case)

The results achieved by setting the parameters to m=10 ants, q0=0.9, β=1 and

ρ=0.1 are listed in Appendix B. Although increasing the number of ants from 10 to 30

increased the computational time from 15 minutes to approximately 40 minutes for

each problem instance, the travel distance improved a lot (additionally in R102 the

number of vehicles decreased to 18 from 20). Increasing the number of ants or the

number of runs furthermore do not improve the solutions almost at all, however the

computational time increases exponentially. Therefore, the parameters are chosen as:

m=30 ants, q0=0.9, β=2 and ρ=0.1.

In Table 6.1, we observe that the RMACS for VRPTW provides competitive

results for C1 and C2 type problems, since it gives the same number of vehicles

(except c203) with the best benchmark solutions. The approach also gives at most 2

more vehicles compared with the best benchmarks in the other problem sets.

RMACS Best Best Known RMACS Best Best Known

TD NV TD NV TD NV TD NV

c101 852,95 10 828,94 10 c201 591,56 3 591,56 3

c102 1024,76 10 828,94 10 c202 768,34 3 591,56 3

c103 1022,12 10 828,06 10 c203 743,32 4 591,17 3

c104 1069,51 10 824,78 10 c204 802,65 3 590,6 3

c105 852,95 10 828,94 10 c205 612,93 3 588,88 3

c106 945,98 10 828,94 10 c206 643,23 3 588,49 3

c107 858,82 10 828,94 10 c207 644,84 3 588,29 3

c108 968,66 10 828,94 10 c208 623,57 3 588,32 3

c109 1052,74 10 828,94 10

Average 949,47 10,00 828,31 10,00 Average 678,80 3,13 589,86 3,00

r101 1994,48 20 1645,79 19 r201 1643,43 4 1252,37 4

r102 1774,27 18 1486,12 17 r202 1535,68 4 1191,7 3

r103 1496,77 14 1292,68 13 r203 1228,52 3 939,54 3

r104 1216,70 11 1007,24 9 r204 1033,20 3 825,52 2

r105 1690,22 15 1377,11 14 r205 1235,67 3 994,42 3

r106 1519,77 14 1251,98 12 r206 1162,32 3 906,14 3

r107 1385,89 12 1104,66 10 r207 1120,92 3 893,33 2

r108 1191,65 10 960,88 9 r208 923,64 3 726,75 2

r109 1479,67 12 1194,73 11 r209 1186,41 3 909,16 3

r110 1425,40 12 1118,59 10 r210 1147,54 3 939,34 3

r111 1434,20 12 1096,72 10 r211 1148,94 3 892,71 2

r112 1165,11 10 982,14 9

Average 1481,18 13,33 1209,89 11,92 Average 1215,12 3,18 951,91 2,73

rc101 1972,47 15 1696,94 14 rc201 1766,41 4 1406,91 4

rc102 1730,73 14 1554,75 12 rc202 1706,52 4 1367,09 3

rc103 1623,52 12 1261,67 11 rc203 1374,14 3 1049,62 3

rc104 1418,41 11 1135,48 10 rc204 987,50 3 798,41 3

rc105 1890,82 15 1629,44 13 rc205 1677,18 4 1297,19 4

rc106 1692,36 13 1424,73 11 rc206 1479,02 4 1146,32 3

rc107 1567,16 12 1230,48 11 rc207 1380,51 3 1061,14 3

rc108 1380,73 11 1139,82 10 rc208 1045,72 3 828,14 3

Average 1659,53 12,88 1384,16 11,50 1427,13 3,50 1119,35 3,25

 19

However, the total travel time is in some instances %30 larger than the best

benchmarks. Note also that the RMACS for VRPTW gets these results in

approximately 40 minutes of computational time for each problem instance.

Table 6.2 Average of the best solutions computed by RMACS and MACS

VEI DIST VEI DIST VEI DIST

RMACS 13,3 1481,2 10,0 949,5 12,9 1659,5

MACS 12,0 1217,1 10,0 828,4 11,6 1382,4

VEI DIST VEI DIST VEI DIST

RMACS 3,2 1215,1 3,1 678,8 3,5 1427,1

MACS 2,7 967,8 3,0 589,9 3,3 1129,2

R2 C2 RC2

R1 C1 RC1

 20

7. CONCLUSIONS

A RMACS approach for VRPTW is proposed is this study. The problem has

two objectives: the minimization of the number of vehicles which is the primary

objective, and the minimization of the total travel time. Two artificial ant colonies,

one minimizing the number of vehicles and the other the total travel time, cooperate

with each other through pheromone update to optimize these objectives.

The algorithm differs from the MACS of Gambardella (1999) by the usage of

the nearest list array, application of the insertion algorithm at the beginning of the

ACS-VEI, and the calculation of the attractiveness function. The change in the

attractiveness function makes it possible to make insertions after the ACS-VEI is

completed.

The algorithm is tested on the well-known problems of Solomon (1987) and the

results are compared with the best benchmarks and the MACS of Gambardella

(1999). The RMACS algorithm finds the same number of vehicles as the best

solutions or 1-2 near to them, and the travel distance is in some of the problem

instances %30 larger than the best solutions.

Future work may focus on the attractiveness function and the pheromone update

structure. Since both functions have a significant importance on the results, the

improvements to these functions may improve he results considerably. Computational

time is not the main concern of this study; however the algorithm may be run on

parallel computers to improve the computational time. The RMACS algorithm may

also be applied to other types of VRPs with modifications.

 21

Bibliography

1. Gambardella, L.M., Taillard, E., Agazzi, G., “MACS-VRPTW: A multiple ant
colony system for vehicle routing problems with time windows,” Technical
Report, IDSIA, Lugano, Switzerland, 1999.

2. Bullnheimer, B., Hartl, R.F., Strauss, C., “Applying ant system to the vehicle

routing problem,” Presented at the 2nd International Conference on

Metaheuristics, Sophia, France, July 21-24, 1997.

3. Chiang, W., Russell, R. “Simulated annealing metaheuristics for the vehicle

routing problem with time windows,” Annals of Operations Research, (63), pp.3-
27,1996.

4. Clarke, G., Wright W., “Scheduling of vehicles from a central depot to a number

of delivery points,” Operations Research , (12), pp.568-581, 1964

5. Dorigo, M., Maniezzo, V. Colorni, A., “The ant system: Optimization by a colony

of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics-

Part B, vol.26, pp.29-41, 1996.

6. Gambardella, L.M., Dorigo, M., “HAS-SOP: Hybrid Ant System for the

Sequential Ordering Problem, Technical Report IDSIA 11-97, IDSIA, Lugano,
Switzerland, 1997.

7. Bullnheimer, B., Hartl, R.F., Strauss, C., “A new ranked based version of the ant

system,” Working Paper, Vienna University of Economics and Business
Administration, Austria, 1997.

8. Kohl, N., “Exact methods for time constrained routing and scheduling problems,”

Phd. Thesis, Department of Mathematical Modeling, Technical University of
Denmark, 1995.

9. N., Madsen O., “An optimization algorithm for the vehicle routing problem with

time windows based on Lagrangean Relaxation,” Operations Research, (45),
pp.395-406, 1997.

10. Kolen, A., Rinnooy A., Trienekens, H., “Vehicle routing with time windows,”

Operations Research , (35), pp.266-273, 1987

11. Larsen, J., “Parallelization of the vehicle routing problem with time Windows,”

PhD. Thesis, Technical University of Denmark, Lyngby, 1999.

12. Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V., “A new

algorithm for a Dynamic Vehicle Routing Problem based on Ant Colony
System,” ODYSSEUS 2003: Second International Workshop on Freight

Transportation and Logistic s, Palermo, Italy, 27- 30 May 2003.

 22

13. Potvin, J., Kervahut, T., Garcia, B.L., Rousseau, J.M., “The vehicle routing
problem with time windows; part I: tabu search,” INFORMS Journal on
Computing, (8), pp.158-164, 1995.

14. Potvin,J., Bengio, S., “The vehicle routing problem with time windows-part II:

genetic search,” INFORMS Journal on Computing , (8), pp.165-172, 1996.

15. Rochat, Y., Taillard, E.D., “Probabilistic Diversification and intensification in

local search for vehicle routing,” Journal of Heuristics, (1), pp.147-167, 1995.

16. Savelsbergh, M.W.P., “Local search for routing problems with time windows,”

Annals of Operations Research, (4), pp.285-305, 1985.

17. Stützle, T., Hoos, H H.., “Improving the Ant System: A Detailed Report on the

MAX-MIN Ant System,” Technical Report AIDA-96-12 - Revised version,
Darmstadt University of Technology, Computer Science Department, Intellectics
Group., 1996.

18. Stützle , T., Hoos, H.H., “MAX-MIN ant s ystem and local search for

combinatorial optimization problems ,” Meta -Heuristics: Advances and Trends

in Local Search Paradigms for Optimization, Kluwer Academic Publishers, pp.
313-329, Boston, 1999.

19. http://web.cba.neu.edu/~msolomon/problems.htm, July, 2004.

20. Deitel, H.M., Deitel, P.J., C++, How to Program, Prentice Hall, New Jersey,

2001.

21. Gendreau, Hertz, Laporte, “A tabu search heuristic for the vehicle routing

problem”, Management Science, (40), pp.1276-1290, 1994.

 23

Appendix A

 Description of the RMACS

Main Procedure

For every problem in a specific problem set

Step 1: While there exist an unvisited point, create a vehicle and load it with
 the maximum capacity, and set that vehicle to be in depot

Step 2: For every unvisited point (from the nearest to farthest)
 Calculate the reaching time from the depot to this point
 Check if this reaching time is bw that point's ready time and due date
 If it is in that interval, send this vehicle to that point

else
Send the vehicle to the unvisited point with the minimum due date
Update that vehicle's condition (load and route conditions)
If there is/are unvisited point(s), firstly search for the points which are
unvisited and when the vehicle gets there, current time will be in ready
time due date interval

 If there exist such a point/s then, go to the nearest one of them
else

 Send the vehicle to the point at which our vehicle will wait minimumly
 Update that vehicle's condition(load and route conditions)

If there is not enough capacity or there does not exist a feasible point
 Send that vehicle to depot and check its total route

After there isn’t any point left set this solution as global&best solution

For 10 times, call MACS_VRPTW function

Step 3: MACS_VRPTW Function

For 5 times
 Calculate the toZero value
 Call ACS_VEI function

Call ACS_TIME function
If the global solution found is improved, update it

 Step 4: ACS_TIME Function

 Calculate the toZero value
 Initialize the pheromone levels according to that toZero value

For 100 times
 For the number of ant times
 Reset all points (Make all points unvisited)

 24

 Call NEW_ACTIVE_ANT function and get a solution
 Calculate the visited points in this solution

If the global solution is improved, update it
After the ants find their solutions, make the global pheromone update

 ACS_VEI Function

 Step 5: Calculate the toZero value
 Calculate the load of the vehicles at the time they are returning to the

 depot in global solution
 Find the vehicle least used and exclude it from global solution

Store this new solution as oneVehicleLessSolution.
Mark the visited customers in that oneVehicleLessSolution
Count the number of visited customers

Step 6: For the unvisited customers, find the nearest point's location in the
 route and try to insert the unvisited point near that found point
 else
 Try to insert that unvisited node to the start and end points of all routes
 If there is an successfull insertion, start the loop from the beginning

 After insertion procedure is finished, recalculate the unvisited points
If there is not an unvisited point, update the global solution

 Re-create a oneVehicleLessSolution with the same procedure
Calculate the toZero value according of the oneVehicleLessSolution
Initialize all pheromone levels with this toZero value.

Step 7: For 100 times
 For number of ant times
 Reset all points (Make all points unvisited)
 Call NEW_ACTIVE_ANT function and get a solution
 Calculate the visited points in this solution

Increment the insertion of the unvisited points

Step 8: For every solution coming from NEW_ACTIVE_ANT
 Compare it with the oneVehicleLessSolution
 If it is improved, update the solution
 Reset insertion values of all the points to zero

If this solution visits all customers, update global solution
If it is better just for travel distance and feasible, update the
minimumTravelDistanceSolution ignoring the vehicle number

 Update pheromones (with oneVehicleLessSolution&global solution)

 25

 NEW_ACTIVE_ANT Function

Step 9: Reset all points to unvisited state

 While there are unvisited nodes, create a vehicle, load it to capacity
 Make this vehicle to be in depot

 Step 10: While there available points such that this vehicle can go
 Find attractiveness' of all points according to these rules :
 If demand of a point is equal to remaining load on that vehicle
 Than attractiveness of this point is 1
 else

 Create a random number between 0 – 1
 If this number is less than the availability constant

 delivery_time=max(current_time + travel_time, ready_time)
 delta_time = delivery_time - current_time
 distance = delta_time * (due_date - current_time)
 distance = max(1.0, (distance - Insertion))
 attractiveness = 1.0/ distance
 else

 deliveryTime = Max(reachTime, readyTime)
 distance = dueDate - deliveryTime
 distance=Max((mindistance bw two points+serviceTime),distance)
 attractiveness=(distance bw two points + serviceTime) / distance

 Step 11: Find the probabilities of all points from the previous point

 Create a random number between 0 - 1
 If the number is less than 0.9, make the next point as more attracted
 else
 Create a random number between 0 – 1
 Make the next point the one having the nearest random probability
 Make vehicle to go to that point and the state of that point as visited
 Update that vehicle's conditions (load, route)

 Step 12: At the end of a vehicle's route, check the feasibility of the route
 After a solution is completed, find the used vehicle number

 Step 13: If this vehicle number is more than oneVehicleLessSolution

 Exclude these routes from that solution
 Re-Calculate unvisited point number

 If it is not zero
 For the unvisited customers from the nearest to farthest
 Search all points in oneVehicleLessSolution’s vehicle routes
 If the nearest point is not depot
 Try to insert to the before and after the nearest point
 else
 Try to insert that unvisited to the start and end points of routes
 If there is a successfull insertion, start the loop from the beginning
 Recalculate the unvisited points

 26

Step 14: If it is zero (a feasible solution) and the NEW_ACTIVE_ANT
 function is called from ACS_TIME function

 Start 3 - opt local search
 For 100 times
 Create three random numbers acting as vehicle ID
 Create a random number acting as a point's order in a route
 Interchange those three points checking the validity
 If these routes are valid and travel distance is smaller
 Update the global solution

 27

Appendix B

 Detailed solutions comparison (10 ants case)

RMACS Best Best Known RMACS Best Best Known

TD NV TD NV TD NV TD NV

c101 852,95 10 828,94 10 c201 591,56 3 591,56 3

c102 1300,07 10 828,94 10 c202 908,34 3 591,56 3

c103 1282,12 10 828,06 10 c203 1171,91 4 591,17 3

c104 1221,69 10 824,78 10 c204 986,35 3 590,6 3

c105 934,36 10 828,94 10 c205 621,11 3 588,88 3

c106 954,76 10 828,94 10 c206 662,59 3 588,49 3

c107 858,82 10 828,94 10 c207 663,19 3 588,29 3

c108 968,66 10 828,94 10 c208 644,95 3 588,32 3

c109 1054,06 10 828,94 10

Average 1046,68 10,00 828,31 10,00 Average 781,25 3,13 589,86 3,00

r101 1994,48 20 1645,79 19 r201 1932,91 4 1252,37 4

r102 1811,49 20 1486,12 17 r202 1635,68 4 1191,7 3

r103 1496,77 14 1292,68 13 r203 1532,01 3 939,54 3

r104 1222,95 11 1007,24 9 r204 1133,20 3 825,52 2

r105 1697,43 15 1377,11 14 r205 1535,20 3 994,42 3

r106 1542,18 14 1251,98 12 r206 1362,32 3 906,14 3

r107 1385,89 12 1104,66 10 r207 1300,92 3 893,33 2

r108 1191,65 10 960,88 9 r208 1104,87 3 726,75 2

r109 1534,04 12 1194,73 11 r209 1426,41 3 909,16 3

r110 1434,27 12 1118,59 10 r210 1585,42 3 939,34 3

r111 1435,07 12 1096,72 10 r211 1231,99 3 892,71 2

r112 1165,11 10 982,14 9

Average 1492,61 13,50 1209,89 11,92 Average 1434,63 3,18 951,91 2,73

rc101 1972,47 15 1696,94 14 rc201 2066,41 4 1406,91 4

rc102 1730,73 14 1554,75 12 rc202 1906,52 4 1367,09 3

rc103 1623,52 12 1261,67 11 rc203 1588,31 3 1049,62 3

rc104 1418,41 11 1135,48 10 rc204 1183,02 3 798,41 3

rc105 1890,82 15 1629,44 13 rc205 2067,18 4 1297,19 4

rc106 1692,36 13 1424,73 11 rc206 1679,02 4 1146,32 3

rc107 1567,16 12 1230,48 11 rc207 1655,00 3 1061,14 3

rc108 1380,73 11 1139,82 10 rc208 1321,99 3 828,14 3

Average 1659,53 12,88 1384,16 11,50 1683,43 3,50 1119,35 3,25

 28

Appendix C

 Average of the 5 runs of RMACS vs best known (30 ants case)

RMACS Averages Best Known RMACS Averages Best Known

TD NV TD NV TD NV TD NV

c101 852,95 10 828,94 10 c201 591,56 3 591,56 3

c102 1154,32 10 828,94 10 c202 786,43 3 591,56 3

c103 1033,45 10 828,06 10 c203 755,98 4 591,17 3

c104 1099,72 10 824,78 10 c204 802,65 3 590,6 3

c105 852,95 10 828,94 10 c205 612,93 3 588,88 3

c106 1021,09 10 828,94 10 c206 643,23 3 588,49 3

c107 858,82 10 828,94 10 c207 655,78 3 588,29 3

c108 998,12 10 828,94 10 c208 648,76 3 588,32 3

c109 1087,32 10 828,94 10

Average 995,42 10,00 828,38 10,00 Average 687,16 3,13 589,86 3,00

r101 1999,98 20 1645,79 19 r201 1689,72 4 1252,37 4

r102 1823,32 18 1486,12 17 r202 1610,92 4 1191,7 3

r103 1522,65 14 1292,68 13 r203 1278,13 3 939,54 3

r104 1236,76 11 1007,24 9 r204 1112,23 3 825,52 2

r105 1698,24 15 1377,11 14 r205 1301,34 3 994,42 3

r106 1534,32 14 1251,98 12 r206 1178,32 3 906,14 3

r107 1389,11 12 1104,66 10 r207 1160,97 3 893,33 2

r108 1205,45 10 960,88 9 r208 946,54 3 726,75 2

r109 1498,34 12 1194,73 11 r209 1201,56 3 909,16 3

r110 1430,12 12 1118,59 10 r210 1238,17 3 939,34 3

r111 1466,57 12 1096,72 10 r211 1272,13 3 892,71 2

r112 1198,23 10 982,14 9

Average 1500,26 13,35 1209,89 11,92 Average 1271,82 3,18 951,91 2,73

rc101 1986,32 15 1696,94 14 rc201 1801,29 4 1406,91 4

rc102 1745,72 14 1554,75 12 rc202 1765,91 4 1367,09 3

rc103 1640,52 12 1261,67 11 rc203 1402,74 3 1049,62 3

rc104 1446,48 11 1135,48 10 rc204 1000,18 3 798,41 3

rc105 1902,23 15 1629,44 13 rc205 1698,10 4 1297,19 4

rc106 1702,43 13 1424,73 11 rc206 1498,24 4 1146,32 3

rc107 1587,35 12 1230,48 11 rc207 1397,42 3 1061,14 3

rc108 1400,12 11 1139,82 10 rc208 1075,46 3 828,14 3

Average 1676,40 12,88 1384,16 11,50 1454,92 3,50 1119,35 3,25

