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ABSTRACT 

 
 
In this thesis, a Revised Multiple Ant Colony System (RMACS) approach is 

applied to the Vehicle Routing Problem with Time Windows (VRPTW). Our primary 

objective is to minimize the number of vehicles and the secondary objective is to 

minimize the total travel distance. Two artificial ant colonies, where one minimizes 

the number of vehicles and the other the total travel time, cooperate with each other 

through pheromone update to optimize the corresponding objectives. The developed 

approach is coded in C++ and tested on the well-known 56 benchmark instances of 

Solomon (1987). These instances are composed of six different problem types, each 

containing 8-12 100-node problems. Although the best solutions could not be 

improved, in many instances the number of the vehicles is the same with the best 

results or 1-2 near to them. However, the travel distance %30 far from the best 

benchmark solutions in some of the problem instances. 
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ZAMAN KISITLI ARAÇ ROTALAMA PROBLEMİNE FARKLI BİR 

KARINCA KOLONİSİ SİSTEMİ YAKLAŞIMI 
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Tez Danışmanı: Yrd. Doç. Dr. Bülent ÇATAY 
 
 

Anahtar Kelimeler: Karınca kolonisi sistemi, zaman kısıtlı araç rotalama problemi  
 

 

ÖZET 

 

Bu çalışma, Zaman Kısıtlı Araç Rotalama Problemini Karınca Kolonisi 

optimizasyonuna dayalı bir yaklaşımla çözmeyi amaçlamaktadır. Problemdeki birinci 

amacımız araç sayısını, ikinci amacımız ise toplam katedilen yolu minimize etmektir. 

Bu minimizasyon problemini çözmek üzere biri araç sayısını, diğeri ise toplam 

katedilen yolu minimize etmeye odaklı iki karınca kolonisi feromen seviyeleri 

vasıtasıyla haberleşerek bir yardımlaşma anlayışı içerisinde çalışırlar. Algoritma C++ 

programında kodlanmış olup, Solomon’un (1987) 56 problem örneği üzerinde test 

edilmiştir. Herbiri 8-12 100 noktalı problem içeren bu problem örnekleri 6 değişik 

problem setine karşılık gelmektedir. Bu çalışma sonucunda araç sayısında 

literatürdeki en iyi sonuçlara karşın bir geliştirme sağlanamamış olmasına karşın, en 

iyi sonuçlara maksimum 2 araç sayısı uzaklıkta sonuçlar bulunmuştur. Fakat 

katedilen yol miktarı bazı problem örneklerinde literatürdeki en iyi sonuçlardan %30 

daha uzak sonuçlar vermektedir. 

 

 

 

 

 



 VI 

 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my thesis advisor Assistant Prof Dr. Bülent Çatay for his 

encouragement, motivation and considerable time he spent from beginning to end of 

my thesis. 

 

I thank to graduate committee members of my thesis, Assistant Prof. Dr. 

Kemal Kılıç, Assistant Prof. Dr. Kerem Bülbül, Assistant Prof. Dr. Erhan Budak and 

Assistant Prof. Dr. Hüsnü Yenigün for their worthwhile suggestions and remarks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 VII 

 

 

 

TABLE OF CONTENTS 

           

                                                                                                                  Page 

Abstract          IV 

Özet           V 

1. Introduction          1 

2. Literature Review         3 

3. Ant Colony System         7 

4. RMACS for VRPTW        10 

4.1 ACS-TIME and ACS-VEI Colonies     12 

5. Solution Constructive Procedure       15 

6. Numerical Results         17 

7. Conclusions          20 

Bibliography          21 

Appendix A          23 

Description of the RMACS       23 

Appendix B          27 

Detailed solutions comparison (10 ants case)     27 

Appendix C          28 

Average of the 5 runs of RMACS vs best known (30 ants case)   28 
 

 

 

   

 

 

 

 

 

 

 



 VIII 

 

 

 

LIST OF FIGURES 

                                                                                                                              

                                                                                                                             Page 

 
 

3.1. The ACO heuristics developed by Dorigo Caro (1999)     9 

4.1. The MACS-VRPTW procedure       10 

4.2. The MACS-VRPTW algorithm       11 

4.3  The ACS-TIME procedure       12 

4.4. The ACS-VEI procedure        13 

4.5  The new_active_ant procedure used by ACS-VEI and ACS-TIME  14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IX 

 

 

 

 

LIST OF TABLES 

                                                                                                                               

 

                                                                                                                             Page 

 

6.1. Detailed solutions comparison (30 ants case)      18 

6.2. Average of the best solutions computed by RMACS and MACS  19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1

 
1. INTRODUCTION 

 
 
The Ant System,  introduced by Colorni et al. (1991), and  Dorigo et al. (1992) 

with an application on the Traveling Salesman Problem (TSP), is a recent 

metaheuristic for hard combinatorial optimization problems. Many Ant System 

algorithms, proven to be very efficient, have been proposed to solve different types of 

combinatorial optimization problems such as symmetric and asymmetric traveling 

salesman problems (TSP/ATSP, Dorigo and Gambardella, 1997, Stützle, 1998, 

Stützle and Dorigo, 1999), the sequential ordering problem (SOP, Gambardella and 

Dorigo, 1997), the quadratic assignment problem (QAP, Gambardella, Taillard and 

Dorigo, 1999, Taillard and Gambardella, 1997), the bi-quadratic assignment problem 

and the p-median problem (Taillard, 1998).  

 

The idea of imitating the behaviour of real ant colonies for solving hard 

combinatorial optimization problems led to the development of the ant colony 

algorithms. Real ants communicate with each other via an aromatic essence called 

‘pheromone’ in their search of food, where the quantity of pheromone depends on the 

quality of the food source. This will consequently make all ants choose the paths 

leading to rich and nearby food sources as the pheromone trails on these paths will 

grow faster.  

 

In the Ant System the artificial ants search the solution space to solve 

combinatorial optimization problems instead of real ants searching their environment 

to find rich and nearby food sources. These artificial ants cooperate with each other 

by building solutions in parallel using an indirect form of communication, the 

pheromone updates. They construct solutions iteratively by adding a new node to the 

existing partial solution using both the information gained from past and a greedy 

heuristic called visibility. In this system, the objective function matches with the 

quality of the food source and an adaptive memory matches with the pheromone 

trails.  
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This paper presents a Revised Multiple Ant Colony System (RMACS) 

application to the Vehicle Routing Problems with Time Windows which is based on 

Multiple Ant Colony System (MACS) (Gambardella, Taillard, and Agazzi, 1999) 

approach inspired by the foraging behavior of real colonies of ants. 

 

VRPTW is defined as the problem of minimizing time and costs in case a fleet 

of vehicles has to distribute goods from a depot to a set of customers. The problem 

studied in this paper is a hierarchical multi-objective problem; the first objective is to 

minimize the number of tours (or vehicles) and the second is to minimize the total 

travel time where the objective of minimization of the number of tours takes 

precedence over the minimization of the total travel time. The objectives of the 

VRPTW can be antagonistic in case the problem constraints are very tight. The idea 

to adapt ACS for these multiple objectives is to define two ACS colonies, each 

dedicated to the optimization of a different objective function, and cooperates by 

exchanging information through pheromone updating.  
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2. LITERATURE REVIEW 
 
 
Capacitated Vehicle Routing Problem (CVRP) is the most basic version of the 

vehicle routing problems. In the CVRP, n customers, each asking for a quantity qi of 

goods, must be served from a unique depot with the limited number of vehicles (v) 

with capacity Q, and with the objective of achieving the minimum total travel time.  

 

From a graph theoretical point of view the CVRP may be stated as follows: Let 

G = (C,L) be a complete graph with node set C = (co, c1, c2,..., cn) and arc set L = (ci, 

cj): ci, cj ∈C, i ≠j, where co is the depot and the other nodes are the customers to be 

served. Each node is associated with a fixed quantity qi of goods to be delivered 

where qo = 0 for the depot, and tij represents the travel time between ci and cj for each 

arc (ci, cj). A solution to the CVRP is a set of tours where each customer is visited 

exactly once, and each tour starts and ends at the depot. The vehicle has to 

periodically return to the depot for reloading since the vehicle capacity is limited. 

 

VRPTW is an important extension of the CVRP.  In addition to the CVRP 

characteristics, this problem includes a time window [bi, ei] both for the depot and for 

each customer ci (i = 0,..., n). So the additional constraints to CVRP are that the 

service beginning time at each node ci (i = 1,..., n) must be greater than or equal to bi, 

and the arrival time at each node ci must be lower than or equal to ei. Whenever the 

vehicle reaches the customer before bi, it has to wait until bi to start the service. 

 

A number of exact and heuristic methods have been proposed for the VRPTW.  

When the solution space is restricted by narrow time windows so that less 

combinations of customers are possible to define feasible tours, exact methods are 

proven to be more efficient. 

 

Dynamic Programming, Lagrangean Relaxation Based Methods and Column 

Generation principles are used in solving the VRPTW in the context of exact 

algorithms. Kolen et al. (1987) used branch and bound; Jörnsten et al. (1986), 

Madsen et al. (1988) and Halse (1992) proposed variable splitting followed by 
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Lagrangean decomposition,  Fisher et al. (1997) adopted K-tree approach followed 

by Lagrangean Relaxation, and Desrochers et al. (1992) utilized the column 

generation approach for solving the VRPTW for the first time. 

 

 The method of Kohl et al. (1997), which was proven to be one of the most 

efficient methods among the exact methods, succeeded in solving a number of 100 

customer instances by relaxing the constraints that ensure that each customer must be 

visited exactly once and adding a penalty term to the objective function. The model is 

decomposed into one sub-problem for each vehicle which is a shortest path problem 

with time window and capacity constraints. 

 

The studies on the heuristic methods for solving the VRPTW are much more 

than the exact methods since the problem is NP-hard.  These algorithms can be 

grouped as construction algorithms, improvement algorithms, and metaheuristics. 

Baker and Schaffer (1986) are the first ones proposing the first sequential 

construction algorithm which is based on the savings heuristic. Solomon (1987) 

proposed Time Oriented Nearest Neighbourhood Heuristic, Time Oriented Sweep 

Heuristic (1987), and Giant Tour Heuristics (1987). Antes and Derigs (1995) also 

proposed a construction algorithm based on Solomon’s heuristic.  

 

In the improvement algorithms, generally an exchange intra or inter route 

neighbourhood is searched to find a better solution. Croes (1958) introduced k opt 

approach for single vehicle routes. Christofides and Beasley (1984) proposed the k -

node interchange for the first time to take time windows into account. Potvin and 

Rousseau (1995) presented two variants of 2-Opt and Or-Opt, and Schulze and Fahle 

(1999) proposed shift-sequence algorithm. 

 

Metaheuristic algorithms such as simulated annealing (SA), tabu search (TS), 

genetic algorithm (GA), and ant colony algorithm (ACO) have been used to solve the 

VRPTW in order to escape local optima and enlarge the search. 

 

Chiang and Russell (1996) proposed three different SA methods. Tan et al. 

(2001) proposed an SA heuristic, defining a new cooling schedule. Finally, Li and 



 5

Lim (2003) proposed an algorithm that finds an initial solution using Solomon’s 

insertion heuristic and then starts local search from initial solution using tabu-

embedded simulated annealing approach. 

 

Garcia et al. (1994) applied TS to solve VRPTW for the first time, by 

generating an initial solution using Solomon’s insertion heuristic and searching the 

neighborhood using 2-opt and Or-opt. Garcia et al. (1994) also parallelized the TS 

using partitioning strategy. Thangiah et al. (1994) proposed TS combining TS with 

SA to accept or reject a solution. Potvin et al. (1995) proposed an approach similar to 

Garcia et al. (1994) based on the local search method of Potvin and Rousseau (1995). 

Gendreau, Hertz and Laporte (1994) used complex iteration schemes that involve a 

partial re-optimization of the target route to solve the VRPTW. 

 

Badeau et al. (1997) performed TS by generating a series of initial solutions, 

decomposing them into groups of routes and penalizing exchanges that are frequently 

performed. De Backer and Furnon (1997) used the savings heuristic to generate the 

initial solution and searched the neighbourhood using 2-opt and Or-opt. Schulze and 

Fahle (1999) proposed a parallel TS heuristic where initial solutions are generated 

using the savings heuristic and the neighborhood is searched using route elimination 

and Or-opt.  

 

Thangiah et al. (1991) applied the GA to VRPTW for the first time, where GA 

is proposed to find good clusters of customer. Thangiah et al. (1995) generated initial 

population by clustering the customers randomly into groups and applying the 

cheapest insertion heuristic for each group. Afterwards, 2-point crossover is used. 

Potvin and Bengio (1996) performed GA on chromosomes of feasible solutions. 

Parents are randomly selected and two types of crossover are applied to these parents. 

The reduction of routes is obtained by two mutation operators, and the routes are 

further improved by applying Or-Opt. Homberger and Gehring (1999), making a 

difference by the role of mutation in their algorithm, generated initial population 

using a modified savings heuristic and a precedence relationship among the genes in a 

chromosome. Tan et al. (2001), differing by the way of determining the customers in 
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different routes, proposed a GA approach in which the genetic operators are applied 

directly to solutions, represented as integer strings.   

 

Rochat and Taillard (1995) used a probabilistic local search method based on 

intensifying the solution, which is in some ways similar to the SA approach.  Kilby et 

al. (1999) used a memory-based metaheuristic, Guided Local Search (GLS), in which 

the cost function is modified by adding a penalty term, and improving the solution by 

applying 2-opt exchanges. In Potvin and Robillard (1999), a competitive neural 

network is used to cluster the customers. A combination of a competitive neural 

network and a GA is described. A weight vector is defined for every vehicle and all 

weight vectors are placed randomly close to the depot initially. Then, customers are 

selected.  

 

Braysy et al. (2000) described a two-step evolutionary algorithm based on the 

hybridization of a GA consisting of several local searches and route construction 

heuristics inspired form the studies of Solomon (1987).  Tan et al. (2001) proposed an 

artificial intelligence heuristic which can be interpreted as the hybrid combination of 

SA and TS.  

 

Bullnheimer et al. (1998) applied the AS to the VRP with one central depot and 

identical vehicles for the first time, and Bullnheimer et al. (1999) improved this initial 

algorithm by the random proportional rule and the phremone update structure (1999). 

Bell and McMullen (2003) differed from Bullnheimer (1999) in the approach of 

selecting the next customer and pheromone update structure. 

 

Doerner et al. (2001) proposed the savings based ant system approach (SbAS) 

which differs from Bullnheimer et al. (1999) with the use of savings function in 

calculating the visibility. 

 

Gambardella et al. (1999) presented Multiple Ant Colony System for Vehicle 

Routing Problem with Time Windows (MACS-VRPTW). This approach is the main 

inspiration of this study and it will be explained in detail in the next chapter. 
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3. ANT COLONY SYSTEM 

 

The original ACS (Gambardella and Dorigo, 1996, Dorigo and Gambardella, 

1997a, 1997b) was applied to the TSP. In ACS, a number of artificial ants search for 

good quality solutions to the discrete optimization problems. A solution is described 

in terms of paths through the states of the problem in accordance with the constraints 

of the problem. Each ant is assigned to an initial state based on problem criteria and it 

has to build a solution with a complete tour. Artificial ants find solutions in parallel 

processes using an incremental constructive mechanism, starting from the initial state 

and moving to feasible neighbour states. In this search, moves are made by applying a 

stochastic search policy and choosing the ways of exploitation and exploration 

probabilistically, guided by ants’ memory, problem constraints, pheromone trail 

accumulated by all the ants from the beginning of the search process and problem-

specific heuristic information named as visibility which measures the attractiveness of 

the next node to be selected.  

 

The closeness ηij is defined as the inverse of the arc length in some of the ant 

colony system formulations; however it is possible to develop new formulations. The 

pheromone trail τij, which is simply the information collected by the ants while they 

are building solutions, is updated by using the pheromone update functions. Thus, it is 

dynamic throughout the problem’s runtime. Therefore, the management of the 

pheromone trails gains big importance for constructing better solutions.  

 

Pheromone trails are used for the exploration and exploitation mechanisms.  

When ant k is located at node i, it chooses the next node j probabilistically in the set 

of feasible nodes Ni
k. In exploitation with probability q0, a node with the highest 

τij.[ηij]
β, 

j
 
єNi

k is chosen, and in exploration with probability (1-q0), the node j is 

chosen with the probability function below: 
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The amount of the pheromone deposited depends on the goodness of the 

solution. The pheromone evaporation mechanism prevents the ants to stick to the 

same part of the search space whereas extra pheromone is deposited on the arcs used 

by the shortest path by daemon action process. By the strong communication among 

the ants, it becomes possible to achieve high quality solutions. 

 

In ACS, pheromone trail is updated both locally and globally. In local update, 

every time an ant moves from node i to node j, the phremone level on this arc is 

decreased in order to decrease the attractiveness of this arc, so giving more chance to 

other not visited nodes to diversify the solution.  However, global update takes place 

after the completion of the solutions and it aims to intensify the search in the best 

solution neighbourhood.  Either the ars on all/some of the constructed solutions or 

only the arcs on the best solution may be globally updated. Gambardella and Dorigo 

(1995), Gambardella and Dorigo (1996), Dorigo and Gambardella (1997) have shown 

that the update of the arcs in only the best solution works better than the update of 

arcs in all of the solutions.  

 

In the local update, the amount of phremone on arc (i,j) is decreased according 

to the following formula:  

τij = (1-ρ) τij +  ρ τ0 

τ0 is the initial value of the pheromone trails and it is taken as τ0 = 1/(n.Jω
h
) 

where Jω
h is the length of the initial solution generated by the nearest neighbourhood 

heuristic and n is the number of the nodes. Here, p is a parameter affecting the 

amount of pheromone evaporation.  

 

In the global update, the amount of pheromone on arc (i,j) is updated according 

to the below formula: 

τij = (1- ρ) τij +  ρ / Jω
gb 

Jω
gb  is the length of the shortest path generated since the beginning of the 

computation. 
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The solutions are improved by local search after each ant builds a complete 

solution. And the process starts from the beginning until a termination condition is 

met.  

 

procedure ACO heuristics() 

        While (termination condition not met) 
              schedule activities 
                  ants generation and activity(); 
                  pheromone evaporation(); 
                  daemon actions(); 
             end schedule activities 
        end while 
  end procedure 
 
procedure ants generation and activity() 

        While (available resources) 
               new active ant(); 
       end while 
end procedure 
 
procedure new active ant(); 
          initialize ant(); 
          M=update ant memory (); 
          While (current memory ?complete solution ) 
                A=read local ant routing table(); 
                P=compute transition probabilities; 
                next state =apply decision policy; 
                move to next state(next state); 
               if (local pheromone update) 
                    deposit pheromone on the visited arc(); 
                    update ant routing table(); 
               end if 
              M=update internal state(); 
         end while 
        if (global pheromone update) 
              foreach visited arc do 
                   deposit pheromone on the visited arc(); 
                   update ant routing table(); 
             end foreach 
       end if 
       die(); 
end procedure 
 

Figure 3.1 The ACO heuristics developed by Dorigo Caro (1999) 
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4. RMACS for VRPTW  
 

Taking the ACS as a starting point, MACS-VRPTW has been proposed to solve 

a VRPTW where both the number of vehicles and the travel time have to be 

minimized, and the minimization of the number of vehicles takes precedence over the 

travel time minimization. This dual objective minimization is achieved by using two 

artificial ant colonies based on ACS. Figure 4.1 illustrates the basic principles of 

MACS-VRPTW. 

 

 

 

Figure 4.1 The MACS-VRPTW procedure 
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/* MACS-VRPTW: Multiple Ant Colony System for Vehicle Routing Problems with 

Time Windows */ 
Procedure MACS-VRPTW() 

1. /* Initialization */ 
        /*  ω

gb
  is the best feasible solution: lowest number of vehicles and shortest travel time 

    #active_vehicles(ω)computes the number of active vehicles in the feasible 

solution ω */ 

         ωgb 
feasible initial solution with unlimited number of 

vehicles produced with a nearest neighbor heuristic 

2. /* Main loop */ 
Repeat 

     v ← #active_vehicles(ωgb
 ) 

     Activate ACS-VEI(v - 1) 

     Activate ACS-TIME(v) 

     While ACS-VEI and ACS-TIME are active 

          Wait an improved solution ω from ACS-VEI or ACS-

TIME 

                        ωgb
  ←  ω 

          if #active_vehicles(ω
gb
) < v then 

               kill ACS-TIME and ACS-VEI 

      End While 

until a stopping criterion is met 

 

 

Figure 4.2 The MACS-VRPTW algorithm 
 

 

The first colony, ACS-VEI, tries to diminish the number of vehicles used, while 

the second colony, ACS-TIME, optimizes the feasible solutions found by ACS-VEI. 

Although both colonies use independent pheromone trails, they collaborate by sharing 

the variable ωgb. The solution reached by the nearest neighbourhood heuristic at the 

start of the algorithm is saved in ωgb, then this solution is improved by the 

cooperative work of the two colonies. 

 

When ACS-VEI is called, it works with one vehicle less than the number of 

vehicles used in ωgb and tries to find a feasible solution. During its search, it finds 

infeasible solutions with the new_active_ant procedure, which will be explained later 

and it stores the solution with the highest number of visited customers in ωACS-VEI. So 

in ACS-VEI the current best solution is generally the infeasible solution with the 

maximum number of visited customers.  ACS-TIME is called then and it tries to 

optimize the total travel time by using as many vehicles as used in ωgb while running 

the new_active_ant algorithm. Whenever an improved solution comes from either of 

the colonies, both  ωgb and the pheromone values are updated globally. Whenever the 
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improved solution contains fewer vehicles than the vehicles used in ωgb, both ACS-

TIME and ACS-VEI colonies are killed and the process continues with the two new 

colonies working with the reduced number of vehicles.  

 

4.1 ACS-TIME and ACS-VEI Colonies 
 
The working principles of ACS-VEI and ACS-TIME colonies are described in 

Figure 4.3 and Figure 4.4. 

 
 

/* ACS-TIME: Travel time minimization. */ 
Procedure ACS-TIME(v) 

/* Parameter v is the smallest number of vehicles for which a feasible solution has been 

computed */ 

1. /* Initialization */ 
   initialize pheromone and data structures using v 

2. /* Cycle */ 
    Repeat 

         for each ant k 

                    /* construct a solution ωk
 */ 

           new_active_ant(k, local_search=TRUE, 0) 

         end for each 

                        /* update the best solution if it is improved */ 

         If there exists a k : ωk
  is feasible and Jω

k
 < J ω

gb
 then 

                send ω
k
  to MACS-VRPTW 

                   /* perform global updating according to below equation */ 

                 τij = (1- ρ) τij +  ρ / Jω
gb  

         until a stopping criterion is met 
 

Figure 4.3 The ACS-TIME procedure 
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/* ACS-VEI: Number of vehicles minimization. */ 

 
Procedure ACS-VEI(s) 

/* Parameter s is set to v-1, that is, one vehicle less than the smallest number of vehicles for 

which a feasible solution has been computed 

#visited_customers(ω) computes the number of customers that have been visited in 

solution  */ 

1. /* Initialization */ 
  initialize pheromone and data structures using s 

   ω
ACS-VEI

 : initial solution with s vehicles produced with a nearest 

neighbor heuristic. /* ωACS-VEI
 is not necessarily feasible */ 

2. /* Cycle */ 
    Repeat 

         for each ant k 

                            /* construct a solution ω
k
 */ 

            new_active_ant(k,local_search=FALSE,IN) 

                            for every customer j ∉ ωk
 : INj ← INj + 1 

         end for each 

                  /* update the best solution if it is improved */ 
       If for any k:  

     #visited_customers(ωk
)> #visited_customers(ωACS-VEI) then 

             ω
ACS-VEI

 ← ω
k
 

               for every  j: INj ← 0 /* reset IN */ 

      if ω
ACS-VEI

 is feasible then 

        send ω
ACS-VEI to MACS-VRPTW 

/* perform global updating according to below equation using both ω
ACS-VEI

and ω
gb

 */ 

τij = (1- ρ) τij +  ρ / Jω
ACS-VEI      for every (i, j) ∈ωACS-VEI 

 

τij = (1- ρ) τij +  ρ / Jω
gb             for   every (i, j) ∈ ωgb 

 

 

    until a stopping criterion is met 

 

Figure 4.4 The ACS-VEI procedure 
 

 

INj stores the number of time a node is not inserted in a solution and it makes 

possible to favor the nodes which are less frequently inserted in the solutions. ACS-

VEI and ACS-TIME use the same new_active_ant constructive procedure that is 

presented in details in Figure 4.5. 
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/* new_active_ant: constructive procedure for ant k used by ACS-VEI and ACS-TIME */ 
Procedure new_active_ant(k, local_search, IN) 

1. /* Initialization*/ 

        put ant k in a randomly selected depot i  

               ω
k
 ← ι  

       current_timek ← 0 , loadk ← 0 

2. /* This is the step in which ant k builds its tour. Tour is stored in ωk
  */ 

   Loop 

              /* Starting from node i compute the set Ni
k
 of feasible nodes (i.e., all the nodes j still to 

be visited and such that current_timek and loadk are compatible with time windows [bj,ej] and 

delivery quantity qj of customer j) 

                for every j ∈  Ni
k
 compute the attractiveness ηij as follows: */ 

            delivery_timej ← max(current_timek + tij, bj) 

            delta_timeij ← delivery_timej - current_timek 

            distanceij ← delta_timeij *( ej - current_timek) 

            distanceij ← max(1.0, (distanceij - INj)) 

                             ηij ← 1.0/ distanceij 
     Choose probabilistically the next node j using ηij in 

exploitation and    exploration mechanisms 

         ω 
k
 ←   ω

k
 + j    

    current_timek ← delivery_timej 

    loadk ← loadk + qj 

 If j is a depot then current_timek ← 0, loadk ← 0 

 τij = (1- ρ) τij +  ρ τ0 

  /* Local pheromone updating */ 

 i ← j /* New node for ant k */ 

 Until 

 Ni
k
 = {} /* no more feasible nodes are available */ 

3. /* In this step path ω
k
  is extended by tentatively inserting non visited customers */ 

     ω
k
 ← insertion_procedure(ω

k) 
4. /* In this step feasible paths are optimized by a local search procedure. 

          The parameter local_search is TRUE in ACS-TIME and it is FALSE in ACS-VEI*/ 

    if local_search = TRUE and ω
k
 is feasible then 

        ω
k  
← local_search_procedure(ω

k
) 

 

Figure 4.5  The new_active_ant  procedure used by ACS-VEI and ACS-TIME 
 

 

At the end of the constructive phase, some nodes may not have been visited 

making the solution incomplete, afterwards the solution is tentatively completed by 

performing further insertions. Lastly, ACS-TIME implements a local search 

procedure to decrease the total travel time. 
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5. SOLUTION CONSTRUCTIVE PROCEDURE 
 

The general methodology of the MACS-VRPTW is applied in our algorithm. 

However, our algorithm differs in some aspects. First of all, a nearest list array is 

defined at the beginning of the problem and that list is used during the 

implementation of the whole code. In the nearest neighbourhood heuristic, which is 

used to find an initial feasible solution, the first point in the nearest list array is 

selected to be visited  next, among the feasible nodes if its reachtime is between the 

ready time and due date otherwise a point with the minimum due date is selected to 

be visited. 

 

After an initial solution is found, the MACS procedure takes place, which calls 

ACS-VEI and ACS-TIME followingly. In the ACS-VEI, the solution is computed for 

v-1 vehicles, where v is the number of vehicles in global feasible solution. Here, we 

take out the vehicle with the maximum capacity available and apply insertion for the 

nodes not visited before starting the new_active_ant algorithm. The insertion 

algorithm attempts to place an unvisited point to the first suitable place on the nearest 

list array, which matches with the time constraints of the nodes on the route and the 

vehicle capacity constraint. 

 
Another difference of our algorithm lies in the calculation of the attractiveness 

function. In the new_active_ant  algorithm, the vehicles search for the customers at 

which they will not wait or they will wait at minimum. Although, this is a reasonable 

logic, in many of the problem instances, the vehicles have to return to the depot with 

available capacity, but no feasible point to visit remained. It can be observed in the 

problem instances where the number of vehicles is large and small number of 

customers are visited in each route. At these cases, the insertion algorithms do not 

work either, so improving the solution becomes very difficult.  

 

          In order to find a solution for these cases, we defined two more rules on 

finding the attractiveness of the customers. The first rule is the remaining capacity 

rule, in which if a vehicle’s remaining load is equal to a feasible customer’s demand, 

then this customer’s attractiveness becomes 1. This rule slightly decreases the 

remaining loads on the vehicles when they are returning to the depot. 



 16 

 

Second and the more important rule is the accessibility rule. We define another 

constant, accessibility and set its value to 0.98. For every turn, if rule 1 explained 

above is not applicable, a random number between 0 – 1 is generated. If this number 

is less than the accessibility constant, normal attractiveness finding procedure 

(explained in the detailed description of the algorithm in Appendix A) is applied. 

Otherwise, the distance is initialized as the time between the delivery time and due 

date. We made an insertion point in that route, searching a nearest point with a 

(minimum euclidean distance between two points + serviceTime) delay. So our 

insertion procedure tries to insert the points just before or after the points which are 

very close. To insert a point to a completed route, we have to take the service time 

into account. 

 

In Appendix A the detailed description of the algorithm is attached. 
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6. NUMERICAL RESULTS 
 
 
 
 
Our algorithm has been tested on a classical set of 56 benchmark problems of 

Solomon (1987) which consists of six different problem types: C1, C2, R1, R2, RC1, 

RC2. Each data set contains eight to twelve 100-node problems. C type problems 

have clustered customers whose time windows were generated based on a known 

solution. R type problems have customers location generated uniformly randomly 

over a square. RC type problems have a combination of randomly placed and 

clustered customers. Type 1 problems have narrow time windows and small vehicle 

capacity, whereas type 2 problems have large time windows and large vehicle 

capacity. Therefore, the solutions of type 2 problems have very few routes and 

significantly more customers per route. 

 

The algorithm coded in C++ run 5 times for each problem data set and the 

average of the solutions of 5 runs are listed in Appendix C. By applying several runs 

to different problems, the following parameters are selected to be used in the 

experiments: m=30 ants, q0=0.9, β=2 and  ρ=0.1.  
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Table 6.1 Detailed solutions comparison (30 ants case) 

 

 

The results achieved by setting the parameters to m=10 ants, q0=0.9, β=1 and  

ρ=0.1 are listed in Appendix B. Although increasing the number of ants from 10 to 30 

increased the computational time from 15 minutes to approximately 40 minutes for 

each problem instance, the travel distance improved a lot (additionally in R102 the 

number of vehicles decreased to 18 from 20). Increasing the number of ants or the 

number of runs furthermore do not improve the solutions almost at all, however the 

computational time increases exponentially. Therefore, the parameters are chosen as: 

m=30 ants, q0=0.9, β=2 and  ρ=0.1. 

 

In Table 6.1, we observe that the RMACS for VRPTW provides competitive 

results for C1 and C2 type problems, since it gives the same number of vehicles 

(except c203) with the best benchmark solutions. The approach also gives at most 2 

more vehicles compared with the best benchmarks in the other problem sets. 

RMACS Best Best Known RMACS Best Best Known

TD NV TD NV TD NV TD NV

c101 852,95 10 828,94 10 c201 591,56 3 591,56 3

c102 1024,76 10 828,94 10 c202 768,34 3 591,56 3

c103 1022,12 10 828,06 10 c203 743,32 4 591,17 3

c104 1069,51 10 824,78 10 c204 802,65 3 590,6 3

c105 852,95 10 828,94 10 c205 612,93 3 588,88 3

c106 945,98 10 828,94 10 c206 643,23 3 588,49 3

c107 858,82 10 828,94 10 c207 644,84 3 588,29 3

c108 968,66 10 828,94 10 c208 623,57 3 588,32 3

c109 1052,74 10 828,94 10

Average 949,47 10,00 828,31 10,00 Average 678,80 3,13 589,86 3,00

r101 1994,48 20 1645,79 19 r201 1643,43 4 1252,37 4

r102 1774,27 18 1486,12 17 r202 1535,68 4 1191,7 3

r103 1496,77 14 1292,68 13 r203 1228,52 3 939,54 3

r104 1216,70 11 1007,24 9 r204 1033,20 3 825,52 2

r105 1690,22 15 1377,11 14 r205 1235,67 3 994,42 3

r106 1519,77 14 1251,98 12 r206 1162,32 3 906,14 3

r107 1385,89 12 1104,66 10 r207 1120,92 3 893,33 2

r108 1191,65 10 960,88 9 r208 923,64 3 726,75 2

r109 1479,67 12 1194,73 11 r209 1186,41 3 909,16 3

r110 1425,40 12 1118,59 10 r210 1147,54 3 939,34 3

r111 1434,20 12 1096,72 10 r211 1148,94 3 892,71 2

r112 1165,11 10 982,14 9

Average 1481,18 13,33 1209,89 11,92 Average 1215,12 3,18 951,91 2,73

rc101 1972,47 15 1696,94 14 rc201 1766,41 4 1406,91 4

rc102 1730,73 14 1554,75 12 rc202 1706,52 4 1367,09 3

rc103 1623,52 12 1261,67 11 rc203 1374,14 3 1049,62 3

rc104 1418,41 11 1135,48 10 rc204 987,50 3 798,41 3

rc105 1890,82 15 1629,44 13 rc205 1677,18 4 1297,19 4

rc106 1692,36 13 1424,73 11 rc206 1479,02 4 1146,32 3

rc107 1567,16 12 1230,48 11 rc207 1380,51 3 1061,14 3

rc108 1380,73 11 1139,82 10 rc208 1045,72 3 828,14 3

Average 1659,53 12,88 1384,16 11,50 1427,13 3,50 1119,35 3,25
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However, the total travel time is in some instances %30 larger than the best 

benchmarks. Note also that the RMACS for VRPTW gets these results in 

approximately 40 minutes of computational time for each problem instance.  

 

Table 6.2 Average of the best solutions computed by RMACS and MACS 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

VEI DIST VEI DIST VEI DIST

RMACS 13,3 1481,2 10,0 949,5 12,9 1659,5

MACS 12,0 1217,1 10,0 828,4 11,6 1382,4

VEI DIST VEI DIST VEI DIST

RMACS 3,2 1215,1 3,1 678,8 3,5 1427,1

MACS 2,7 967,8 3,0 589,9 3,3 1129,2

R2 C2 RC2

R1 C1 RC1
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7. CONCLUSIONS 
 

 
A RMACS approach for VRPTW is proposed is this study. The problem has 

two objectives: the minimization of the number of vehicles which is the primary 

objective, and the minimization of the total travel time. Two artificial ant colonies, 

one minimizing the number of vehicles and the other the total travel time, cooperate 

with each other through pheromone update to optimize these objectives.  

 

The algorithm differs from the MACS of Gambardella (1999) by the usage of 

the nearest list array, application of the insertion algorithm at the beginning of the 

ACS-VEI, and the calculation of the attractiveness function. The change in the 

attractiveness function makes it possible to make insertions after the ACS-VEI is 

completed. 

 

The algorithm is tested on the well-known problems of Solomon (1987) and the 

results are compared with the best benchmarks and the MACS of Gambardella 

(1999). The RMACS algorithm finds the same number of vehicles as the best 

solutions or 1-2 near to them, and the travel distance is in some of the problem 

instances %30 larger than the best solutions. 

 

Future work may focus on the attractiveness function and the pheromone update 

structure. Since both functions have a significant importance on the results, the 

improvements to these functions may improve he results considerably. Computational 

time is not the main concern of this study; however the algorithm may be run on 

parallel computers to improve the computational time. The RMACS algorithm may 

also be applied to other types of VRPs with modifications. 
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Appendix A 

 
 

 Description of the RMACS 
 

 
Main Procedure 

 
 

For every problem in a specific problem set  
 
Step 1: While there exist an unvisited point, create a vehicle and load it with    
              the maximum capacity, and set that vehicle to be in depot 
   
Step 2:  For every unvisited point (from the nearest to farthest) 
   Calculate the reaching time from the depot to this point 
  Check if this reaching time is bw that point's ready time and due date 
  If it is in that interval, send this vehicle to that point 

else 
Send the vehicle to the unvisited point with the minimum due date 
Update that vehicle's condition (load and route conditions) 
If there is/are unvisited point(s), firstly search for the points which are 
unvisited and when the vehicle gets there, current time will be in ready 
time due date interval 

  If there exist such a point/s then, go to the nearest one of them 
else 

  Send the vehicle to the point at which our vehicle will wait minimumly 
  Update that vehicle's condition(load and route conditions) 

If there is not enough capacity or there does not exist a feasible point  
  Send that vehicle to depot and check its total route 

After there isn’t any point left set this solution as global&best solution 
 

For 10 times, call MACS_VRPTW function 
 

Step 3:  MACS_VRPTW Function 
 

For 5 times 
  Calculate the toZero value 
  Call ACS_VEI function 

Call ACS_TIME function 
If the global solution found is improved, update it 

 
  Step 4:  ACS_TIME Function 
 
  Calculate the toZero value  
    Initialize the pheromone levels according to that toZero value 

For 100 times 
  For the number of ant times  
  Reset all points ( Make all points unvisited ) 
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  Call NEW_ACTIVE_ANT function and get a solution 
  Calculate the visited points in this solution 

If the global solution is improved, update it 
After the ants find their solutions, make the global pheromone update  

 
 
           ACS_VEI Function 
 
          Step 5:  Calculate the toZero value 
                        Calculate the load of the vehicles at the time they are returning to the      

  depot in global solution 
  Find the vehicle least used and exclude it from global solution 

Store this new solution as oneVehicleLessSolution. 
Mark the visited customers in that oneVehicleLessSolution 
Count the number of visited customers 
 

Step 6:  For the unvisited customers, find the nearest point's location in the  
              route and try to insert the unvisited point near that found point 
  else 
               Try to insert that unvisited node to the start and end points of all routes 
   If there is an successfull insertion, start the loop from the beginning  

    After insertion procedure is finished, recalculate the unvisited points 
If there is not an unvisited point, update the global solution 

  Re-create a oneVehicleLessSolution with the same procedure  
Calculate the toZero value according of the oneVehicleLessSolution  
Initialize all pheromone levels with this toZero value. 

 
Step 7:  For 100 times 
  For number of ant times  
  Reset all points ( Make all points unvisited ) 
  Call NEW_ACTIVE_ANT function and get a solution 
  Calculate the visited points in this solution 

Increment the insertion of the unvisited points 
 
Step 8:  For every solution coming from NEW_ACTIVE_ANT 
  Compare it with the oneVehicleLessSolution 
  If it is improved, update the solution 
  Reset insertion values of all the points to zero 

If this solution visits all customers, update global solution 
If it is better just for travel distance and feasible, update the 
minimumTravelDistanceSolution ignoring the vehicle number 

  Update pheromones (with oneVehicleLessSolution&global solution) 
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 NEW_ACTIVE_ANT Function 

 
Step 9:   Reset all points to unvisited state 

  While there are unvisited nodes, create a vehicle, load it to capacity 
               Make this vehicle to be in depot 
 
 Step 10:  While there available points such that this vehicle can go 
                Find attractiveness' of all points according to these rules : 
     If demand of a point is equal to remaining load on that vehicle 
     Than attractiveness of this point is 1 
                else 

     Create a random number between 0 – 1 
     If this number is less than the availability constant 

                  delivery_time=max(current_time + travel_time, ready_time) 
           delta_time = delivery_time - current_time 
            distance = delta_time * ( due_date - current_time ) 
            distance = max(1.0, (distance - Insertion)) 
          attractiveness = 1.0/ distance  
     else 

     deliveryTime = Max( reachTime, readyTime) 
     distance = dueDate - deliveryTime 
     distance=Max((mindistance bw two points+serviceTime ),distance )  
     attractiveness=(distance bw two points + serviceTime ) / distance 
 
 Step 11:  Find the probabilities of all points from the previous point   

                            Create a random number between 0 - 1 
      If the number is less than 0.9, make the next point as more attracted 
      else 
      Create a random number between 0 – 1 
      Make the next point the one having the nearest random probability 
      Make vehicle to go to that point and the state of that point as visited 
      Update that vehicle's conditions ( load, route )  
 
  Step 12: At the end of a vehicle's route, check the feasibility of the route 
                 After a solution is completed, find the used vehicle number 
 
  Step 13: If this vehicle number is more than oneVehicleLessSolution 

                           Exclude these routes from that solution 
   Re-Calculate unvisited point number 

                           If it is not zero 
                 For the unvisited customers from the nearest to farthest 
     Search all points in oneVehicleLessSolution’s vehicle routes 
     If the nearest point is not depot 
     Try to insert to the before and after the nearest point 
                 else 
     Try to insert that unvisited to the start and end points of routes 
     If there is a successfull insertion, start the loop from the beginning                
                  Recalculate the unvisited points 
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Step 14:    If it is zero (a feasible solution) and the NEW_ACTIVE_ANT      
   function is called from ACS_TIME function 

                  Start 3 - opt local search 
                For 100 times 
     Create three random numbers acting as vehicle ID 
                Create a random number acting as a point's order in a route 
                  Interchange those three points checking the validity  
     If these routes are valid and travel distance is smaller 
     Update the global solution 
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Appendix B 

 
 

 Detailed solutions comparison (10 ants case) 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RMACS Best Best Known RMACS Best Best Known

TD NV TD NV TD NV TD NV

c101 852,95 10 828,94 10 c201 591,56 3 591,56 3

c102 1300,07 10 828,94 10 c202 908,34 3 591,56 3

c103 1282,12 10 828,06 10 c203 1171,91 4 591,17 3

c104 1221,69 10 824,78 10 c204 986,35 3 590,6 3

c105 934,36 10 828,94 10 c205 621,11 3 588,88 3

c106 954,76 10 828,94 10 c206 662,59 3 588,49 3

c107 858,82 10 828,94 10 c207 663,19 3 588,29 3

c108 968,66 10 828,94 10 c208 644,95 3 588,32 3

c109 1054,06 10 828,94 10

Average 1046,68 10,00 828,31 10,00 Average 781,25 3,13 589,86 3,00

r101 1994,48 20 1645,79 19 r201 1932,91 4 1252,37 4

r102 1811,49 20 1486,12 17 r202 1635,68 4 1191,7 3

r103 1496,77 14 1292,68 13 r203 1532,01 3 939,54 3

r104 1222,95 11 1007,24 9 r204 1133,20 3 825,52 2

r105 1697,43 15 1377,11 14 r205 1535,20 3 994,42 3

r106 1542,18 14 1251,98 12 r206 1362,32 3 906,14 3

r107 1385,89 12 1104,66 10 r207 1300,92 3 893,33 2

r108 1191,65 10 960,88 9 r208 1104,87 3 726,75 2

r109 1534,04 12 1194,73 11 r209 1426,41 3 909,16 3

r110 1434,27 12 1118,59 10 r210 1585,42 3 939,34 3

r111 1435,07 12 1096,72 10 r211 1231,99 3 892,71 2

r112 1165,11 10 982,14 9

Average 1492,61 13,50 1209,89 11,92 Average 1434,63 3,18 951,91 2,73

rc101 1972,47 15 1696,94 14 rc201 2066,41 4 1406,91 4

rc102 1730,73 14 1554,75 12 rc202 1906,52 4 1367,09 3

rc103 1623,52 12 1261,67 11 rc203 1588,31 3 1049,62 3

rc104 1418,41 11 1135,48 10 rc204 1183,02 3 798,41 3

rc105 1890,82 15 1629,44 13 rc205 2067,18 4 1297,19 4

rc106 1692,36 13 1424,73 11 rc206 1679,02 4 1146,32 3

rc107 1567,16 12 1230,48 11 rc207 1655,00 3 1061,14 3

rc108 1380,73 11 1139,82 10 rc208 1321,99 3 828,14 3

Average 1659,53 12,88 1384,16 11,50 1683,43 3,50 1119,35 3,25
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Appendix C 
 
 

 Average of the 5 runs of RMACS vs best known (30 ants case) 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RMACS Averages Best Known RMACS Averages Best Known

TD NV TD NV TD NV TD NV

c101 852,95 10 828,94 10 c201 591,56 3 591,56 3

c102 1154,32 10 828,94 10 c202 786,43 3 591,56 3

c103 1033,45 10 828,06 10 c203 755,98 4 591,17 3

c104 1099,72 10 824,78 10 c204 802,65 3 590,6 3

c105 852,95 10 828,94 10 c205 612,93 3 588,88 3

c106 1021,09 10 828,94 10 c206 643,23 3 588,49 3

c107 858,82 10 828,94 10 c207 655,78 3 588,29 3

c108 998,12 10 828,94 10 c208 648,76 3 588,32 3

c109 1087,32 10 828,94 10

Average 995,42 10,00 828,38 10,00 Average 687,16 3,13 589,86 3,00

r101 1999,98 20 1645,79 19 r201 1689,72 4 1252,37 4

r102 1823,32 18 1486,12 17 r202 1610,92 4 1191,7 3

r103 1522,65 14 1292,68 13 r203 1278,13 3 939,54 3

r104 1236,76 11 1007,24 9 r204 1112,23 3 825,52 2

r105 1698,24 15 1377,11 14 r205 1301,34 3 994,42 3

r106 1534,32 14 1251,98 12 r206 1178,32 3 906,14 3

r107 1389,11 12 1104,66 10 r207 1160,97 3 893,33 2

r108 1205,45 10 960,88 9 r208 946,54 3 726,75 2

r109 1498,34 12 1194,73 11 r209 1201,56 3 909,16 3

r110 1430,12 12 1118,59 10 r210 1238,17 3 939,34 3

r111 1466,57 12 1096,72 10 r211 1272,13 3 892,71 2

r112 1198,23 10 982,14 9

Average 1500,26 13,35 1209,89 11,92 Average 1271,82 3,18 951,91 2,73

rc101 1986,32 15 1696,94 14 rc201 1801,29 4 1406,91 4

rc102 1745,72 14 1554,75 12 rc202 1765,91 4 1367,09 3

rc103 1640,52 12 1261,67 11 rc203 1402,74 3 1049,62 3

rc104 1446,48 11 1135,48 10 rc204 1000,18 3 798,41 3

rc105 1902,23 15 1629,44 13 rc205 1698,10 4 1297,19 4

rc106 1702,43 13 1424,73 11 rc206 1498,24 4 1146,32 3

rc107 1587,35 12 1230,48 11 rc207 1397,42 3 1061,14 3

rc108 1400,12 11 1139,82 10 rc208 1075,46 3 828,14 3

Average 1676,40 12,88 1384,16 11,50 1454,92 3,50 1119,35 3,25


