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Abstract

With advances in computer technology and software engineering, systems

are constantly becoming larger and more complex. Straightforward testing

methods are insufficient to cope with the complexity and maintaining quality

of service demands the use of more structured testing methods.

Checking sequences are testing mechanisms based on finite state behavior

models that can offer guarantees about a system under test, under certain

assumptions. However, their complexities are high, and to make their imple-

mentation feasible methods of their construction need to be refined.

We have studied several methods of checking sequence construction in the

presence of distinguishing sequences, developed fully formed algorithms from

loose specifications, then implemented and compared their performances.

We have also proposed several improvements that will allow generation of

shorter checking sequences. We are confident that these developments will

be instrumental in making the use of checking sequences feasible in a larger

scope.
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Mehmet Cihan Yalçın
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Özet

Bilgisayar teknolojisi ve yazılım mühendislig̃indeki ilerlemelerle, sistem-

ler gitgide daha büyüyor ve karmaşıklaşıyor. Sıradan test metodları bu

karmaşıklıkla başetmekte yetersiz kalıyor ve hizmet kalitesini korumak için

daha düzenli test metodları gerekiyor.

Kontrol dizileri, sonlu durumlu davranış modellerine dayanan ve belli

koşullar altında test edilen sistem hakkında garantiler verebilen yapılardır.

Ancak, karmaşıklıkları yüksektir ve kullanılmalarını uygulanabilir kılmak için

üretim metodları geliştirilmelidir.

Biz, ayırıcı serilerin varlıg̃ında kontrol serisi üretiminde kullanılabilecek

kimi metodları inceledik, esnek spesifikasyonlardan net algoritmalar üreterek

bunları uyguladık ve metodların performanslarını karşılaştırdık. Ek olarak,

daha kısa kontrol serilerinin üretimine olanak sag̃layacak, çeşitli gelişmeler

öneriyoruz. Bu gelişmelerin, kontrol serilerinin kullanılabileceg̃i çerveçenin

gelişmesini sag̃lamada yararlı olacag̃ına inanıyoruz.

v



Acknowledgements

I wish to express my gratitude to,
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1 Introduction

With advances in computer technology and software engineering, systems

are constantly becoming larger and more complex. Same protocols are being

implemented in many different applications, by different vendors. As tasks

and interactions become more and more intensive, however, they are also

getting more unreliable. Therefore testing of systems and verification of

protocols continuously gain importance.

The systems that are being dealt with are enormous, therefore exhaustive

testing is trivially out of question. Mainstream testing procedures can cover

only a small fraction of cases, and even with expert guidance toward bound-

ary conditions and known possible errors, are therefore inadequate, and let

many bugs slip into releases. Software is costly to maintain in any case, and

in it is used to control some sort of critical application, the risks involved

increase the operation costs even more. Demand for system reliability ne-

cessitates reliable testing methods that can, at least to some extent, offer

guarantees.

Finite state machines are widely used to model system behavior in many

areas, including circuits, software, and communication protocols. The de-

mand for formally structured test generation motivates their study and de-

vising of methods of testing that rely on their properties. Examining aspects

of model behavior can ensure reliability of protocols, and the models can be

used in order to devise methods to check the reliability of various implemen-

tations.

There is a wide literature on testing based on finite state machines dating

back to 50s. Moore’s study [7] of machine identification problem, which is

1



determining the state diagram of a given unknown machine according to

its I/O behavior, introduced the framework for testing problems. As an

additional problem Moore outlined conformance testing,

Conformance testing problem introduced by him was answered by Hennie[3],

who showed that if a distinguishing sequence1 exists for the machine, a check-

ing sequence2, that is a sequence that answers the conformance testing prob-

lem, polynomial in its length and size of the machine is possible, and a

checking sequence of exponential length can be constructed even if no dis-

tinguishing sequence can be found. Studies in 60s and 70s were motivated

mainly by automata theory, theoretical bounds were shown and machine

identification problem was still a point of interest. Afterwards the field was

not very active until 90s, when it was resurrected due to its applications in

testing communication protocols[6]. At this point, refinements on the meth-

ods gained importance, for formal testing methods are invariably of high

complexity, and efficient implementation is key to their feasability.

Testing of hardware and software is an extensive field, and we are fo-

cusing on a very specific portion of it. The problem we are interested in is

conformance testing, which can be stated as, given a specification finite state

machine and a “black box” implementation for which we can only observe the

input/output behavior, determining if it conforms to the specification. We

are interested in testing the control portion of systems which we can model as

ordinary finite state machines. Moreover, we are only interested in a specific

1A sequence that allows the initial state of the FSM to be identified according to the

output whenever it is applied.
2A sequence that answers the conformance testing problem for the automaton when it

is applied to FSM under certain constraints.

2



way of conformance testing which is based on state identification through

distinguishing sequences. Accurately, we are interested in improvements on

D-method that had first been proposed by Hennie[3].

We will outline several concepts and define the structures we will be us-

ing in the next section. In section three, we will deal with several checking

sequence generation methods we will be studying. We will outline the im-

provements and new methods we have proposed in section four. In section

five, we will examine our experiment results, comparing the methods in prac-

tice.

3



2 Preliminaries

2.1 Finite State Machines

As we have discussed above, the models we are working on are to be mod-

eled as finite state machines. Specifically, we are interested in deterministic,

completely specified, minimal Mealy Machines, which we will define in the

following.

2.1.1 Mealy Machine Definition

A Mealy Machine M is defined by a 6-tuple (S, s1, Σ, Λ, δ, λ) where S is a

finite set of states, s1 ∈ S is a specific start state, Σ is a finite set that is the

input alphabet, Λ is a finite set that is the output alphabet, δ : S × Σ → S

is the next state function and λ : S × Σ → Λ is the output function.

2.1.2 Determinism and Complete Specification

Machine M is deterministic if and only if δ and λ are functions rather than

relations. In other words, there exists no more than one value for any given

input. Machine M is completely specified if and only if δ and λ are total,

that is there exists exactly one value for any given input.

Behavior models, by their nature, are deterministic, however, they may

not be completely specified, and in practice they almost always are not.

However, we can convert them to complete specifications by imposing some

sort of behavior model, such as digesting unspecified input silently or failing

in a predetermined manner and including this behavior in our specification

models. The former corresponds to adding δ(si, x) = si and λ(si, x) = ε

4



(where ε stands for null element, that is no output being produced) to each

function whereever they are not specified for given si, x pair. The latter

consists of addition of an error state se to S and adding transitions to the

machine leading to the error state for every unspecified input.

2.1.3 Transition Definition

A transition τ is defined by a 3-tuple (si, sj, x/y) where si ∈ S is a start

state, sj ∈ S is a end state, x ∈ Σ is an input and y ∈ Λ is an output.

Given a machine M , a transition τ = (si, sj, x/y) belongs to M if and only

if δ(si, x) = sj and λ(si, x) = y.

2.1.4 Extension of Function Definitions to Sequences

Let us extend the definitions of δ and λ to handle input sequences such that

where x̄ = x1x2 . . . xn−1xn

• δ(si, x̄) = δ(δ(. . . δ(δ(si, x1), x2) . . . , xn−1), xn)

• λ(si, x̄) = λ(si, x1)λ(δ(si, x1), x2) . . . λ(δ(si, x1x2 . . . xn−1), xn)

We will use this barred notation (x̄, D̄ etc.) to denote sequences of

symbols throughout the thesis.

2.1.5 Reachability, State Equivalence and Minimality

A Mealy Machine M is minimal if there exists no Mealy Machine M ′ such

that M ′ produces the same output to every input as M and M ′ has fewer

states than M .
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A state sj is reachable from a state si if and only if there exists an input

sequence x̄ ∈ Σ∗ such that δ(si, x̄) = sj .

An input sequence x̄ ∈ Σ∗ distinguishes two states si and sj of M if

λ(si, x̄) 6= λ(sj, x̄). Two states si and sj are equivalent if and only if for all

input sequences x̄ ∈ Σ∗ λ(si, x̄) = λ(sj, x̄), that is to say there are no input

sequences that distinguish them.

Two machines M1 and M2 are equivalent if their start states are equiva-

lent. A machine is minimal if and only if there exists no equivalent machine

with a fewer number of states. Consequently, machine M is minimal if and

only if all of its states are reachable from the initial state and no two states

are equivalent.

2.2 Checking Sequences

2.2.1 Unique Input-Output Sequences

Given FSM M and a state si, a unique input-output sequence is an input

sequence Ūi that distinguishes si from all other states in S. Formally:

For M = (S, s1, Σ, Λ, δ, λ), si ∈ S, ∀sj ∈ S, λ(si, Ūi) = λ(sj, Ūi) ⇔ si = sj

Consider FSM M0 given in figure 1.

• λ(s1, ab) = 01

• λ(s2, ab) = 10

• λ(s3, ab) = 10

• λ(s4, ab) = 00

6



• λ(s5, ab) = 00

Therefore Ū1 = ab is a UIO sequence for state s1 in M0.

2.2.2 Distinguishing Sequences

Given an FSM M , a distinguishing sequence is an input sequence D̄ that

distinguishes all states in the machine. In other words, a distinguishing

sequence is an input sequence that produces a unique output when applied

to each state, differentiating them. Formally:

For M = (S, s1, Σ, Λ, δ, λ), ∀si, sj ∈ S, λ(si, D̄) = λ(sj , D̄) ⇔ si = sj

Consider FSM M0 given in figure 1.

• λ(s1, abb) = 010

• λ(s2, abb) = 100

• λ(s3, abb) = 101

• λ(s4, abb) = 000

• λ(s5, abb) = 001

Therefore D̄ = abb is a distinguishing sequence for FSM M0.

2.2.3 Distinguishing Machines and Checking Sequences

An input sequence x̄ ∈ Σ∗ is said to distinguish two machines M1 and M2 if

and only if λ(sM1

1 , x̄) 6= λ(sM2

1 , x̄).

7



An input sequence C̄ ∈ Σ∗ is a checking sequence for M if and only if x̄

distinguishes between M and all elements of a class of machines Φ(M) that

are not equivalent to M , that is to say,

For M = (SM , sM
1 , ΣM , ΛM , δM , λM), ∀M ′ ∈ Φ(M), λM (sM

1 , C̄) = λM ′

(sM ′

1 , C̄) ⇔

M ≡ M ′

2.3 Directed Graphs

A directed graph (digraph) G is define by a tuple (V, E) where V is a set of

vertices and E is a set of directed edges such that E ⊂ V × V × L, where L

is a set of labels.

2.3.1 Edges, Indegree and Outdegree

Like transitions from the previous chapter, edges can be represented by 3-

tuples (vi, vj, l) where the edge leaves vi, enters vj (i.e. vi and vj are the

tail and head of the edge respectively) and has label l. For a vertex v ∈ V ,

indegreeE(v) denotes the number of edges entering v and outdegreeE(v)

denotes the number of edges leaving v.

2.3.2 Graph Representation of FSMs

Given an FSM M , it can be represented by a digraph in which each state si ∈

S is represented by a vertex vi ∈ V and each transition τ = (si, sj, x/y) by an

edge e = (vi, vj, x/y) ∈ E. Moreover, we can represent transition sequences

rather than single transitions using edges, such that e = (vi, vj , x̄/ȳ) where

sj = δ(si, x̄) and ȳ = λ(si, x̄).

8
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Figure 1: The FSM M0

2.3.3 Walks and Tours on Graphs

A walk on a directed graph is a sequence of edges W̄ = e1, e2, . . . , er where

the head of each edge is the same as the tail of the next. Where W̄ =

(n1, n2, x1/y1), (n2, n3, x2/y2), . . . , (nr−1, nr, xr−1/yr−1), n1 is called the initial

node, nr is called the final node, and the sequence T̄ = (x1/y1), (x2/y2), . . . , (xr−1/yr−1) =

(x̄/ȳ) is called the label of the walk W̄ . Given these, the walk W̄ can be rep-

resented by the tuple (n1, nr, T̄ ), and T̄ is said to be a transfer sequence from

n1 to nr.

A tour is a walk whose initial and final nodes are the same.

2.3.4 Reachability and Strong Connectivity

A node vj is reachable from a node ni if and only if there exists a walk from

vi to vj .

A directed graph is strongly connected if and only if for any ordered pair

(vi, vj) of vertices, there exists a walk from vi to vj , that is to say every node

is reachable from every node.

9



2.3.5 Euler Tours

An Euler Path is a path that contains each edge on the graph exactly once.

Similarly, an Euler Tour is a tour that contains each edge on the graph

exactly once. If such a cycle exists on a graph, that graph is called Eulerian.

A directed graph is Eulerian if and only if it is connected and symmetric,

that is to say its every vertex has equal indegree and outdegree.

Construction of an Euler Tour on a connected, symmetric graph is simple:

• Find any cycle on the graph, removing every edge that is used

• If there are any remaining edges,

– Pick a node on the cycle that has been found with nonzero inde-

gree, find a cycle starting on it, removing the used edges

– Insert the new cycle within the old cycle, between an edge entering

and exiting the picked node

– Repeat, until there are no unused edges

We are interested in Euler Tours because they are easy to construct,

and we can use them to solve another problem we want to deal with, Rural

Chinese Postman Path problem that we will explain below.

2.3.6 Rural Chinese Postman Tours

A Postman Path is a path that contains all edges of a graph. A Rural Post-

man Path is a path that contains a specific subset of the edges of the graph.

A Rural Chinese Postman Path is a Rural Postman Path with minimum cost.

A Rural Chinese Postman Tour is a RCPP that is also a tour.

10



The methods we are going to study use RCPT construction as the final

step of their operation. Aho[1] proposes a method using flow networks to

solve the problem, and the same approach is adopted in several later papers.

The solution consists of building a symmetric, connected augmentation of

the graph induced by the edges that have to be included in the rural tour

using any edge in the graph, then finding an Euler Tour on the augmented

graph.

Instead of using flow networks, we have formulated the construction of

the symmetric augmentation as an integer programming problem defined as:

• Minimize
∑

∀(si,sj ,l)∈E cijlxijl

• Subject to
∑

∀(si,sj ,l)∈E,∀sk∈V xikl − xkjl =
∑

∀(si,sj ,l)∈E′,∀sk∈V nkjl − nkil

Where E ′ ⊂ E is the set of edges that have to be included in the rural

path, cijl are costs of including the edge (si, sj, l) once in the solution, nijl

stands for the number of times the edge (si, sj , l) has to be included, where

xijl are the variables to be optimized, which correspond to addition of edges.

The formulation idea starts with a graph that contains the required edges

and computes the degrees of each node. Then it aims to set the indegree-

outdegree sums of all nodes to zero by adding edges from the overall graph,

while aiming to minimize the cost. The xijl values stand for the number of

times the edge (si, sj, l) will be added to the graph to make it symmetric.

The augmented graph is symmetric, however it may be disconnected. If

this is the case, we reformulate the problem, adding a constraint:

• Subject to
∑

∀(si,sj ,l)∈V,si∈V1,sj /∈V1
xijl + xjil ≥ 1

11



Where V1 is a component of the augmented graph that is disconnected

from the rest of it. This constraint essentially mean that there will be at

least one edge traversing the cut between V1 and V − V1, ensuring that the

two components will be connected3. Then the optimization problem needs

to be solved from scratch, and again checked for connectivity.

We do not add the connection conditions all at once, because there are

exponentially many cuts on a graph, and we can in practice come up with a

connected augmentation without resorting to listing all of them in our prob-

lem formulation. However, this formulation still has an exponential worst

case complexity, as there is no formal guarantee that we will not have to add

constraints for exponentially many cuts.

We could, as a compromise, resort to keeping the current augmentation

as it is at any stage and formulate the optimization problem on it, resulting

in a polynomial worst case complexity. However, this scheme would not yield

an optimal solution to the RCPT problem.

Once we have defined a solution to the RCPT problem as such, we can

generalize it to RCPP, which we are going to use. The exact specification of

our formulation is as follows, where Eimp is the set of edges that are to be

included in the RP, G[Eimp] is the graph induced by it, G′ = (V ′, E ′) is the

overall graph whose edges will be used in the augmentation, s1 ∈ V ′ is the

start state of G′ and U ′ ⊂ V ′ is the set of possible final nodes for the RCPP

we are looking for.

• Minimal symmetricity augmentation of G[Eimp] in G′:

3Note that, given that the graph is symmetric, connectivity trivially implies strong

connectivity.
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– Add vertex σ to V ′ and edges e = (v, σ, ε, ε), ∀v ∈ U ′, all with

cost zero.

– Add edge (σ, s1, ε, ε) to Eimp

– ∀v ∈ V ′, create constraints

Σe entering v,∀e∈E′X[e]−Σe leaving v,∀e∈E′X[e] = Σe leaving v,∀e∈Eimp
1−

Σe entering v,∀e∈Eimp
1

– Solve the system so as to minimize the sum Σ∀e∈E′X[e] × cost[e]

– Let Enew = Eimp, ∀e ∈ E ′ add edge e to Enew X[e] times. With

this set let Gσ = G[Enew]

– Remove the edge entering and the edge leaving σ from Enew.

– Return Ḡ = G[Enew].

• If the result of the minimal symmetric augmentation part is connected,

the RCPP is an Euler Path on Ḡ. Otherwise Gσ as defined above is

disconnected, and we add connectivity constraints.

• Adding connectivity constraints:

– Maintain the symmetricity constraints from before

– Find the connected component of Gσ that contains s1. Let this

subgraph be G1 = (V1, E1)

– Create equation Σe from v to u,v∈V1,u/∈V1,∀e∈E′X[e] > 0

– Solve the system so as to minimize the sum Σ∀e∈E′X[e] × cost[e]

– Construct Enew with the new X[e] values

– If Gσ is still not connected repeat the procedure

13



Figure 2: Conformance Testing Problem

– Otherwise remove the edge entering and the edge leaving σ from

Eimp and return Ḡ = G[Eimp]

• Once Ḡ is symmetric and connected, the RCPP is an Euler Path on Ḡ.

2.4 Recognizing States and Verifying Transitions

Our goal in conformance testing, as outlined in figure 2, is ensuring that a

given black box system, of which we can only observe the input/output be-

havior, is equivalent to a given model specification. Both the implementation

and specification are represented as Finite State Machines and our aim is to

recognize every state of the specification in the implementation, then verify

that every transition is between the correct ordered pairs of transitions and

has the correct output.

Recognition of a state in our models depend upon the existence of a

distinguishing sequence D̄ for a model specification M with n states, and

the assumption that any system under test I is deterministic, has the same

input alphabet as M , does not change during operation, and has at most

14



n states. Therefore, if we observe n different responses to D̄ from I, D̄

is a distinguishing sequence for I. Once we observe this, we can use D̄

to determine the structure of I, and check if it is equivalent to the model

specification M .

Below we use P̄ to denote a walk and Q̄ to denote the label of P̄ .

2.4.1 D-recognition

A node ni of P̄ is d-recognized in Q̄ as state s of M if ni is the initial node

of a subpath of P̄ whose label is input/output sequence D̄/λ(s, D̄).

We can extend this definition in two ways. First, we can do so in order to

handle prefix DSs, that is to say, a prefix of the DS that has a unique output

for some state s is enough to d-recognize the state s:

Let D̄′ be a prefix of D̄ such that s ∈ S, ∀sj ∈ S, λ(s, D̄′) = λ(sj, D̄
′) ⇔

s = sj. A node ni of P̄ is d-recognized in Q̄ as state s of M if ni is the initial

node of a subpath of P̄ whose label is input/output sequence D̄′/λ(s, D̄′).

We can also extend the definition to handle any transfer sequences that

are appended to any such prefix:

Let D̄′ be a prefix of D̄ such that s ∈ S, ∀sj ∈ S, λ(s, D̄′) = λ(sj, D̄
′) ⇔

s = sj. Let B̄ be an arbitrary transfer sequence. A node ni of P̄ is d-

recognized in Q̄ as state s of M if ni is the initial node of a subpath of P̄

whose label is input/output sequence D̄′B̄/λ(s, D̄′B̄).

2.4.2 T-recognition

Another assumption that is made during black box testing is that the struc-

ture of the system under test remains the same. Therefore once we recognize
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to which state a given sequence takes the system when applied at a recog-

nized state, we can conclude that it will take the system to that state on

every occasion.

Suppose that (nq, ni, T̄ ) and (nj , nk, T̄ ) are subpaths of P̄ and D̄′, λ(s, D̄′)

is a prefix of T̄ (where D̄′ is defined as above, hence nq and nj are d-recognized

in Q̄ as state s of M). Suppose also that ni is d-recognized in Q̄ as state s′

of M . Then state nk is t-recognized in Q̄ as s′.

Once we have t-recognized nodes in this manner, we can extend the def-

inition to use these nodes to recognize other nodes as well.

Suppose that (nq, ni, Ā) and (nj , nk, Ā) are subpaths of P̄ where Ā is

an arbitrary sequence, and nq and nj are recognized in Q̄ as state s of M .

Suppose also that ni is recognized in Q̄ as state s′ of M . Then state nk is

t-recognized in Q̄ as s′.

Then we can establish the relation between the graph and the correspond-

ing FSM using the recognition information.

If node ni of P̄ is either d-recognized or t-recognized in Q̄ as state s then

ni is recognized in Q̄ as state s.

2.4.3 Edge Verification

Finally, we can use the recognized states to verify transitions.

A transition t = (si, sj, x/y) is said to be verified in P̄ if there is a subpath

(ni, ni+1, xi/yi) of P̄ such that ni is recognized as si, ni+1 is recognized as

sj, xi = x and yi = y. This verification can be accomplished by a subpath

P̄ ′ = xD̄j/yλ(s, D̄j) of P̄ where initial node of P̄ ′ is recognized as si. The

subpath P̄ ′ is called the transition test for transition t.
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v1 v2 v3ab/01 abb/100

(a) v1 is d-recognized as s1 and v2 is d-recognized as s2 by the

corresponding distinguishing sequence prefixes

v4 v5ab/01

(b) v4 is d-recognized as s1 and v5 is t-recognized as s2 using the

information from the fragment above

v6 v7 v8 v9ab/01 a/0 abb/100

(c) v6 is d-recognized as s1, v7 is t-recognized as s2, v8 is d-

recognized as s2, and hence the endpoints of the transition labeled

a/0 is recognized as s2, which means transition (s2, s2, a/0) of M is

verified

Figure 3: D-recognition, T-recognition and Edge Verification on M0
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2.4.4 Checking Sequences Implementing Edge Verification

Let P̄ be a walk from G representing M that starts at v1 and Q̄ = label(P̄ ).

If every edge (vi, vj , x/y) of G is verified in Q̄, then the input portion of Q̄ is

a checking sequence of M.

In every method we are dealing with, checking sequence generation is

based on this result.

2.4.5 α-Sequences

α-sequences are constructs that serve the dual purpose of verifying the states

of a system under test and recognizing the ending point of distinguishing

sequences so that at any point in the generated sequence the point a DS

takes the system to can be t-recognized.

To serve their purpose they should, considered together, contain distin-

guishing sequences initiating from each state, and recognize the endpoint for

all of these distinguishing sequences.

• Select subsets Vk ⊂ V , a set which corresponds to the set of states of

machine M , where
⋃q

k=1 Vk = V

• Where Vk = {vk
1 , . . . , v

k
mk

} where sf(i,k) is the state of M represented

by vk
i

• Let δ(sf(i,k),T̄f (i,k) = sf(i+1,k), ∀k, ∀i < mk

• Define αk = T̄f(1, k) . . . T̄f (mk, k)T̄f(w, k) where 1 ≤ w ≤ mk

• Define α-set A = {αk, ∀k}

18



A construction scheme for an α-set with minimal total length is as follows:

• Let VD = V

• Build a set of edges ED = {(si, δ(si, T̄i), T̄i/λ(si, T̄i)), ∀si ∈ VD}

• Let GD = (VD, ED)

• For each node of GD with indegree zero

– Do a DFS starting at that state until the traversed path reaches

a node that has been visited on current search

– Add the next edge to the path and let the label of this walk be

an α-sequence

– Mark all visited nodes to show that no new DFS need to start on

any of them

• If there are any unmarked nodes remaining, pick an arbitrary node

and repeat the above steps. Note that for all the paths that remain

are cycles and the final edge added to the path will be the edge with

which the path started

2.4.6 α′-Sequences

α′-sequences are a refinement to α-sequences, which serve the same purpose.

The difference is, the sequences within the set utilize t-recognition using

information from each other, hence they need not end with a T-sequence

from wihtin themselves.
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s1 s2

s3

s4

s5

T̄1 = ab/01 T̄2 = abb/100

T̄3 = abb/101

T̄4 = abb/000

T̄5 = abb/001

Figure 4: Graph of T-sequences that are to be used in construction of α-

sequences

• Select subsets Vk ⊂ V , a set which corresponds to the set of states of

machine M , where
⋃q

k=1 Vk = V

• Where Vk = {vk
1 , . . . , v

k
mk

} where sf(i,k) is the state of M represented

by vk
i

• Let δ(sf(i,k),T̄f (i,k) = sf(i+1,k), ∀k, ∀i < mk

• Define α′
k = T̄f(1, k) . . . T̄f (mk, k)T̄f(w, j) where 1 ≤ w ≤ mk and

1 ≤ j ≤ q

• Define α′-set A = {α′
k, ∀k}

A construction scheme for an α′-set with minimal total length is as follows:

• Let VD = V

• Build a set of edges ED = {(si, δ(si, T̄i), T̄i/λ(si, T̄i)), ∀si ∈ VD}
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s1 s2 s4 s4 ?
T̄1 T̄2 T̄4 T̄4

(a) Distinguishing sequences can be added for D-recognition until

a node within the sequence is D-recognized again

s1 s2 s4 s4 s4
T̄1 T̄2 T̄4 T̄4

(b) The endpoint of the overall sequence is then T-recognized for

the same sequence has been verified before

s3 s2 s4 s4 s4
T̄3 T̄2 T̄4 T̄4

(c) Unused T-sequences should be included in additional α-

sequences

s5 s2 s4 s4 s4
T̄5 T̄2 T̄4 T̄4

(d) Each T-sequence should be included in at least one α-sequence

for α set to be complete

Figure 5: Construction of α-sequences for FSM M0
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• Let GD = (VD, ED)

• For each node of GD with indegree zero

– Do a DFS starting at that state until the traversed path reaches

a marked node

– Add the next edge to the path and let the label of this walk be

an α′-sequence

– Mark all visited nodes to show that they have been visited

• If there are any unmarked nodes remaining, pick an arbitrary node

and repeat the above steps. Note that for all the paths that remain

are cycles and the final edge added to the path will be the edge with

which the path started

2.4.7 Special Sequences on M0

The input sequence abb is a distinguishing sequence for machine M0. More-

over, its prefix ab is sufficient to distinguish state s1. Also,

We choose to use empty transfer sequences, therefore:

• T-sequences:

– T̄1 = ab/01, endpoint s2

– T̄2 = abb/100, endpoint s4

– T̄3 = abb/101, endpoint s2

– T̄4 = abb/000, endpoint s4
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s1 s2 s4 s4 s4
T̄1 T̄2 T̄4 T̄4

(a) α′-sequences utilize D-recognition and T-recognition in the same

manner as α-sequences

s3 s2 s4
T̄3 T̄2

(b) Additionally, T-recognition can be used between α′ elements to

recognize endpoints, eliminating the need to always repeat a tran-

sition within the sequence

s5 s2 s4
T̄5 T̄2

(c) As before, each T-sequence should be included in at least one

α-sequence for α set to be complete

Figure 6: Construction of α′-sequences for FSM M0
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– T̄5 = abb/001, endpoint s2

• α-sequences:

– α′
1 = T̄1T̄2T̄4T̄4, endpoint s4

– α′
2 = T̄3T̄2T̄4T̄4, endpoint s4

– α′
3 = T̄5T̄2T̄4T̄4, endpoint s4

• α′-sequences:

– α′
1 = T̄1T̄2T̄4T̄4, endpoint s4

– α′
2 = T̄3T̄2, endpoint s4

– α′
3 = T̄5T̄2, endpoint s4

• Some UIO sequences:

– Ū2 = aa/11, endpoint s2

– Ū3 = aa/10, endpoint s5
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3 Existing Approaches

The approaches to checking sequence generation we will deal with have the

same general structure. They all construct a specialized graph, and solve a

RCPP problem on it to construct a checking sequence. The point they differ

in is the construction of the graph and selection of the edges that will be

mandatory in the rural path.

In all the methods, let:

• M = (S, s1, Σ, Λ, δ, λ) be the specification FSM

• D̄ be a distinguishing sequence for M

• D̄′
i be the shortest prefix of the distinguishing sequence D̄ of the spec-

ification FSM M for the state si ∈ S such that, ∀sj ∈ S, λ(si, D̄
′) =

λ(sj, D̄
′) ⇔ si = sj

• ti = δ(si, D̄
′
i)

• B̄i an arbitrary (possibly empty) transfer sequence

• T̄i = D̄′
iB̄i be the sequence to be used to identify state si during the

tests

• fi = δ(si, T̄i)

• li = λ(si, T̄i)
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3.1 Using RCPP for Integrating Test Segments

The series of improvements we are dealing with begin with a method that

constructs necessary test segments, build a graph using these and some con-

necting components as edges, and solving a RCPT problem on the graph

[10].

3.1.1 Test Segments

As explained in part 2.5.4, to generate a checking sequence, we need to verify

every edge of the given specification in the system under test. To serve this

purpose,

• Transition tests P̄ ′ = xD̄j/yλ(s, D̄j) are constructed for every transi-

tion t = (si, sj, x/y).

• α sequences are constructed for state recognition and to facilitate the

use of T̄ -sequences for recognition of their endpoints.

And these test segments are used in construction of a graph that will be

traversed in order to extract a combination of all these segments, to even-

tually generate a checking sequence. Exact construction of the graph is as

follows.

3.1.2 Construction of the Augmented Graph

The checking sequence construction method first constructs a digraph G′ by

augmenting G = (V, E) representing a model FSM M where:
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• U ′ = {s′i|∀si ∈ V } representing the set of recognized versions of the

states in V

• V ′ = V ∪ U ′ is the set of vertices for the augmented graph G′

• EC = {(s′i, f
′
j, x/yli)|∀(si, sj, x/y) ∈ E} transition test segments

• Eα = {(si, δ(si, input(αk))
′, αk)} where initial(αk) = si representing

the α edges, which are used to enable the T-recognition of final nodes

of T-sequences

• ET = {(si, f
′
i ; li))|∀si ∈ V } representing T̄is, which are used to D-

recognize state si and move the system to the recognized state f ′
i

• Eε = {(s′i, si, ε/ε)} representing moving from the recognized version of

a state to its unrecognized version. These might be used to transfer

the machine from one state to another

• E ′′ ⊂ {(s′i, s
′
j , x/y)|∀(si, sj, x/y) ∈ E} a minimum spanning tree in U ′,

to be used as transfer sequences, taking the machine to proper state

for transition tests and alpha sequences

• Create E ′ = EC ∪ ET ∪ Eε ∪ Eα′ ∪ E ′′

• G′ = (V ′, E ′) is the augmented graph to be used in construction of the

checking sequence

• Eimp = EC ∪ Eα′ are the edges that have to be included in the rural

path on G′
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s2 s1

s3

s4

s5

s′2 s′1

s′3

s′4

s′5

b/0

b/1

b/0

b/0

a/0

a/0

b/0

a/1

a/1 a/0

b/0T̄1

a/0T̄4

α3

b/0T̄3

a/0T̄5

b/1
T̄2

a/
1T̄4

α 2

b/0T̄1

a/1T̄2

b/0T̄4

a/0T̄3
α

1

T1

T2

T3

T4

T5

ε/εε/ε

ε/ε

ε/ε

ε/ε

b/0

a/1

b/0

b/0

Figure 7: Augmented graph for M0 constructed according to Ural, Wu and

Zhang ’97

A graph constructed according to this formulation for FSM M0 is given

in figure 7.

Once G′ is thus constructed, an RCPP over the noted edges that starts at

the vertex corresponding to the initial state of the specification automaton

and ends in a recognized state can be found. The label of such a path is a

checking sequence for the automaton.

Such a path is:

(v1, v
′

2, T̄1), (v
′

2, v
′

4, a/0T̄2), (v
′

4, v
′

2, a/1T̄5), (v
′

2, v
′

2, b/0T̄1), (v
′

2, v
′

1, b/0)

(v′

1, v
′

4, α1), (v
′

4, v
′

2, b/0T̄3), (v
′

2, v
′

1, b/0), (v′

1, v
′

2, a/0T̄3), (v
′

2, v
′

1, b/0),

(v′

1, v
′

4, b/0), (v′

4, v
′

3, b/0), (v′

3, v
′

4, α2), (v
′

4, v
′

3, b/0), (v′

3, v
′

4, a/1T̄4),

(v′

4, v
′

3, b/0), (v′

3, v
′

4, b/1T̄2), (v
′

4, v
′

5, a/0), (v′

5, v
′

4, α3), (v
′

4, v
′

5, a/0),

(v′

5, v
′

4, a/0T̄4), (v
′

4, v
′

5, a/0), (v′

5, v
′

2, b/0T̄1), (v
′

2, v
′

1, b/0), (v′

1, v
′

4, b/0T̄4)

whose label is a checking sequence of length 86.
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3.2 Optimizations on Test Segments

Some later revisions[5][4] to the scheme presented above introduced several

refinements. These are essentially modifications on construction of test seg-

ments, however, the structure of the augmented graph is significantly altered.

3.2.1 Test Segments

The focus of the refinement is the α sequences. The scheme proposed not

only shortens their length, but also utilized them in transition verification.

• α-sequences are replaced by α′ sequences as described in section 2.5.6.

Moreover, α′ sequences are used for transition verification as well, re-

placing distinguishing sequences where viable.

• Transition tests are not represented by single edges, but are divided

into transition and identification parts instead. A transition edge takes

the machine to an unidentified state, which in turn is identified by

either a distinguishing sequencs or an α′ sequence.

These test segments are again used in construction of a graph that will

be traversed in order to extract a combination of all these segments, to even-

tually generate a checking sequence. Exact construction of the graph is as

follows.

3.2.2 Construction of the Augmented Graph

The checking sequence construction method first constructs a digraph G′ by

augmenting G = (V, E) representing a model FSM M where:
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• U ′ = {s′i|∀si ∈ V } representing the set of recognized versions of the

states in V

• V ′ = V ∪ U ′ is the set of vertices for the augmented graph G′

• EC = {(s′i, sj, x/y)|∀(si, sj , x/y) ∈ E} representing edges in V , so that

the transitions to be verified start at recognized versions of the states

they belong

• Eα′ representing the α′ edges, which are used to D-recognize state si

and move the system to the recognized state f ′
j as well as enable the

T-recognition of final nodes of T-sequences

• ET = {(si, f
′
i ; li))|∀si ∈ V } representing T̄is, which are used to D-

recognize state si and move the system to the recognized state f ′
i

• E ′′ ⊂ {(s′i, s
′
j, x/y)|∀(si, sj, x/y) ∈ E} such that G′′ = (V ′, E ′′) does

not have a tour, and G′ = (V ′, E ′) is strongly connected

• Create E ′ = EC ∪ ET ∪ Eα′ ∪ E ′′

• G′ = (V ′, E ′) is the augmented graph to be used in construction of the

checking sequence

• Eimp = EC ∪ Eα′ are the edges that have to be included in the rural

path on G′

A graph constructed according to this formulation for FSM M0 is given

in figure 8. The nodes in V and U ′ are at the bottom, and at the top

respectively. The dashed lines are the edges in ET , and the dotted lines are

the edges in E ′′. The edges in Eα′ ∪ EC are given in bold solid lines.
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v1 v2 v3 v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

T̄1

T̄2T̄3

T̄4 T̄5

a/0b/0

a/1

b/0 a/1b/1 a/0b/0 a/0 b/0

ᾱ′
1

ᾱ′
2

ᾱ′
3

b/0b/0 a/0 b/0
b/1

Figure 8: G′ = (V ′, E ′) for M0, constructed according to Ural and Hierons

’06

Once G′ is thus constructed, a RCPP over the noted edges that starts at

the vertex corresponding to the initial state of the specification automaton

and ends in a recognized state can be found. The label of such a path is a

checking sequence for the automaton.

It is proposed in the paper that a tour concatenated with a T-sequence

should be found. This is a sufficient condition, but a tour is not necessary.

A path that ends in a recognized state is sufficient.

A path over G′ containing all edges in EC ∪ Eα′ is:

(v1, v
′

4, α
′

1), (v
′

4, v5, a/0), (v5, v
′

4, α
′

3), (v
′

4, v3, b/0), (v3, v
′

4, α
′

2)

(v′

4, v
′

5, a/0), (v′

5, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v1, b/0),

(v1, v
′

2, T̄1), (v
′

2, v2, a/1), (v2, v
′

4, T̄2), (v
′

4, v
′

3, b/0), (v′

3, v4, a/1),

(v4, v
′

4, T̄4), (v
′

4, v
′

3, b/0), (v′

3, v2, b/1), (v2, v
′

4, T̄2), (v
′

4, v
′

5, a/0),

(v′

5, v
′

1, b/0), (v′

1, v3, a/0), (v3, v
′

2, T̄2), (v
′

2, v1, b/0), (v1, v
′

2, T̄
′
2),
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(v′

2, v
′

1, b/0), (v′

1, v4, b/0), (v4, v
′

4, T̄4)

whose label is a checking sequence of length 63.

3.3 Overlap Elimination

Ural and Zhang[9] proposes a method to take advantage of overlaps in test

segments and generate α′ sequences to be constructed dynamically.

3.3.1 D-overlapping

Let,

• P̄1 and P̄2 be two walks of G

• P̄1 = R̄1R̄ and P̄2 = R̄R̄2 for some walks R̄1, R̄ and R̄2

P̄1 and P̄2 are said to overlap by R̄.

If additionally P̄2 has a distinguishing sequence for its initial state as a

prefix, this overlap is called a D-overlap. Then P̄1 and P̄2 can be combined

into a new walk P̄12 = R̄1R̄R̄2. If P̄1 and P̄2 are test segments, the two

segments can be replaced by P̄12, effectively shortening the overall length by

length of R̄.

3.3.2 Test Segments

The test segments are not very different from what was given in part 3.1.1.

However, the way they are used to build the augmented graph and combined

to facilitete overlapping cause the results be more like what we have seen in

part 3.2.
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• Transition tests in the form of P̄ ′ = xD̄j/yλ(s, D̄j) are created for every

transition in the specification.

• α′ sequences are replaced by structures named α-elements, which are

essentially tests that recognize the endpoints of T-sequences, for every

state. Their combination in a manner resembling the formation of α′

sequences is a part of overlap elimination process.

However, unlike other methods we have dealt with, these segments are

not connected in generic versions of recognized nodes. Instead each test

segment is between nodes that are particular to that test. These nodes are

then connected by edges that denote D-overlappings between test segments.

Exact construction of the augmented graph is as follows:

3.3.3 Construction of the Augmented Graph

• PC = {(si, fj; x/ylj)|∀(si, δ(si, x); x/y) ∈ E}, transition test segments

• Pα = {(si, ffi
; lilfi

)|∀si ∈ V }, α elements

• V ′ = {s′iτ |∀τ = (si, sj ; Iτ/Oτ ) ∈ Pα∪PC}, initial nodes of test segments

• V ′′ = {s′′jτ |∀τ = (si, sj; Iτ/Oτ) ∈ Pα ∪PC}, final nodes of test segments

• V ∗ = V ∪ V ′ ∪ V ′′ ∪ {s∗1}, the set of vertices for augmented graph G∗

• E0 = {(s∗1, s
′
1τ ; ε) with cost 0, ∀τ = (s1, sj; Iτ/Oτ) ∈ Pα∪PC s.t D is a prefix of Iτ},

the set of starting edges

• Eα = {(s′iτ , s
′′
jτ ; Iτ/Oτ) with cost |Iτ |, ∀τ = (si, sj; Iτ/Oτ ) ∈ Pα}, the

set of α-edges
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• EC = {(s′iτ , s
′′
jτ ; Iτ/Oτ) with cost |Iτ |, ∀τ = (si, sj; Iτ/Oτ) ∈ PC}, the

set of transition test edges

• E ′ = {(si, s
′
iτ ; ε) with cost 0, ∀τ = (si, sj; Iτ/Oτ ) ∈ Pα ∪PC}, the set of

edges that move the system to initial states of test segments from the

connecting part of the augmented graph

• E ′′ = {(s′′jτ , sj; ε) with cost 0, ∀τ = (si, sj ; Iτ/Oτ ) ∈ Pα ∪ PC}, the set

of edges that move the system from final states of test segments to

connecting part of the augmented graph

• ED = {(s′′jτ , s
′
kµ; ε)} with cost −|R|, ∀τ = (si, sj; Iτ/Oτ), µ = (sk, sr; Iµ/Oµ) ∈

Pα∪PC s.t. τ D−overlaps µ by some R}, the set of edges representing

D-overlaps from final to initial states of test segments

• E∗ = E ∪ E0 ∪ Eα ∪ EC ∪ E ′ ∪ E ′′ ∪ ED

• G∗ = (V ∗, E∗) is the augmented graph that will be used to create a

checking sequence

• Eimp = EC ∪Eα is the set of edges that have to be included in the rural

path on G∗

The scheme yields very good results when there is a large amount of

D-overlaps, which typically happens when distinguishing sequence is com-

posed of a single input character, but otherwise yields very similar results

as the method using optimized test segments otherwise[4]. If distinguishing

sequence is not composed of a single character, D-overlaps only happen when

the second test segment in question is an α-element, therefore this is to be

expected.
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Figure 9: Augmented graph for M0 constructed according to Ural and Zhang
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A graph constructed using this scheme for M0 is given in figure 9.

Once G∗ is thus constructed, an RCPP over the noted edges that starts at

the vertex v∗
1 and ends within V ′′ can be found. The label of such a path then

can be processed to find a checking sequence for the automaton. Essentially,

each negative cost edge (D-overlap edge) with cost −c implies that the next c

characters should be deleted from the label to generate a checking sequence.

A checking sequence equivalent to that generated by part 3.2 can be

found for FSM M0, with length 63. However, the optimization problem is

inflated due to the size of the augmented graph and the corresponding walk

contains over three times as many edges. As noted above, this scheme does

not offer any advantages when the distinguishing sequence does not allow

many D-overlaps.

3.4 Initial Idea for Redundant Transition Test Elimi-

nation

The methods we have considered so far all construct transition tests for every

transition. However, that may not be necessary in every case, as some tran-

sitions may be verified in some other part of the checking sequence implicitly.

A paper by Chen, Hierons, Ural and Yenigun[2] aims to identify some such

transitions and exempt from explicit testing.

The basic idea is that, within α′ sequences, test segments in the form

of P̄ ′ = xD̄j/yλ(s, D̄j) exist, where x/y is the last transition of some T-

sequence, and the distinguishing sequence is the following T-sequence used

in the construction of α′ sequence. If the initial node in the path can be

recognized, the transition can be verified at that point. In this case, this is
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accomplished by T-recognition, therefore, every transition on the T-sequence

whose last transition is to be exempted from tests needs to have been verified.

In the following, we will define a set of edges L ⊂ E that need not be

subjected to transition tests to be verified given some α′ set A.

3.4.1 Identifying Redundant Transition Tests

Let Ri = ei1ei2 . . . eih be the sequence of edges corresponding to application

of T̄i at state si. If ∀r, 1 ≤ r < h, eir is verified in Q̄, eil is verified in Q̄.

Therefore we can pick edges that can be verified as a result of this con-

dition and exempt them from transition tests. However, if exemption of

an edge e depends on verification of another edge e′ when exemption of e′

depends on e, we cannot exclude both edges from transition tests.

Also note that two paths Ri and Rj , corresponding to application of T̄i

at state si and T̄j at state sj respectively, may end with the same transition

e. Transition e can be excluded from the transition tests if the conditions

imposed by either one is satisfied. Therefore a straightforward dependency

graph as proposed in the paper is not effective in accurately representing the

relationships between transition tests.

The following construction gives an accurate representation of the depen-

dencies:

Let:

• VE = {six|∀(si, sj, x/y) ∈ E} be a set of states representing the transi-

tions of FSM M

• VS = {sk|∀Rk} be a set of states representing last edges on all paths

Ri
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Figure 10: Full Dependency Graph of M0 for Basic Redundant Transition

Test Elimination

• VD = VE ∪ VS be the set of states for the dependency graph

• ER = {(sik
j
xk

j
, sk, ε/ε)|∀tkn, 1 ≤ j < n} be the set representing the de-

pendencies of an edge to edges before it

• Let EA = {(sk, siknxk
n
, ε/ε)|∀tk such that tk is the last edge on some Ri}

be the set representing exemption of a transition test given that depen-

dencies of node sk are satisfied

• ED = ER ∪ EA

• Remove nodes from VS until GD is acyclic, while aiming to maximize

cardinality of L

• L = {(s′i, sj, x/y)|∀(sk, six, ε/ε) ∈ ED}

Once GD is constructed, all cycles on it have to be removed, through

removal of nodes in VS, which corresponds to refraining from using the cor-
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responding R̄i edge for exemption. Any acyclic subgraph of GD thus con-

structed gives us a valid set L of transitions that can be excluded from tests.

After cycle removal, all nodes in VD with an incoming edge can be included

in L. Therefore the cycle removal algorithm should aim to maximize the

number of VD elements with incoming transitions.

The maximal acyclic subgraph problem itself is NP-complete, so we do

not aim for the best result in all cases. Also note that a maximal acyclic

subgraph does not necessarily constitute as the best solution to this prob-

lem, as our main interest is preserving the maximum amount of VE edges

with incoming transitions. However, this construction yields a rather simple

dependency graph, therefore we can make a good selection of transition tests

to be eliminated with a simple cycle removal scheme.

The dependency graph constructed according to this formulation for FSM

M0 is given in figure 10. The graph is acyclic, therefore transitions (s1, s4, b/0)

and (s3, s2, b/1) can be exempted from transition tests.

3.4.2 Checking Sequence Construction

The checking sequence construction method first constructs a digraph G′ by

augmenting G = (V, E) representing a model FSM M where:

• U ′ = {s′i|∀si ∈ V } representing the set of recognized versions of the

states in V

• V ′ = V ∪ U ′ is the set of vertices for the augmented graph G′

• EC = {(s′i, sj, x/y)|∀(si, sj , x/y) ∈ E} representing edges in V , so that

the transitions to be verified start at recognized versions of the states
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they belong

• Eα′ representing the α′ edges, which are used to D-recognize state si

and move the system to the recognized state f ′
j as well as enable the

T-recognition of final nodes of T-sequences

• ET = {(si, f
′
i ; li))|∀si ∈ V } representing T̄is, which are used to D-

recognize state si and move the system to the recognized state f ′
i

• E ′′ ⊂ {(s′i, s
′
j, x/y)|∀(si, sj, x/y) ∈ E} such that G′′ = (V ′, E ′′) does

not have a tour, and G′ = (V ′, E ′) is strongly connected

• Pick a subset L′ ⊂ L such that after setting E ′ = E ′−(s′i, s
′
j , x/y)|(s′i, sj, x/y) ∈ L,

a valid RCPP on G′ can still be found4

• Set the set of connecting transition candidates E ′′ = E ′′−(s′i, s
′
j , x/y)|(s′i, sj , x/y) ∈ L′

• Set the set of necessary transitions tests E ′
C = EC − L′

• Create E ′ = EC ∪ ET ∪ Eα′ ∪ E ′′

• G′ = (V ′, E ′) is the augmented graph to be used in construction of the

checking sequence

• Eimp = E ′
C ∪ Eα′ are the edges that have to be included in the rural

path on G′

A graph constructed according to this formulation for FSM M0 is given

in figure 11. The nodes in V and U ′ are at the bottom, and at the top

respectively. The dashed lines are the edges in ET , and the dotted lines are

4A sufficient condition is maintaining strong connectivity, but it is not always necessary.
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Figure 11: G′ = (V ′, E ′) for M0, constructed according to Chen, Hierons,

Ural and Yenigun ’05

the edges in E ′′. The edges in Eα′ ∪ E ′
C are given in bold solid lines. The

rest of the solid lines are the edges in L.

Once G′ is thus constructed, a RCPP over the noted edges that starts at

the vertex corresponding to the initial state of the specification automaton

and ends in a recognized state can be found. The label of such a path is a

checking sequence for the automaton.

Again, it is proposed in the paper that a tour concatenated with a T-

sequence should be found. This is a sufficient condition, but a tour is not

necessary. As before, a path that ends in a recognized state is sufficient.

A path over G′ containing all edges in E ′
C ∪ Eα′ is:

(v1, v
′

4, α
′

1), (v
′

4, v5, a/0), (v5, v
′

4, α
′

3), (v
′

4, v3, b/0), (v3, v
′

4, α
′

2)

(v′

4, v
′

5, a/0), (v′

5, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v1, b/0),

(v1, v
′

2, T̄1), (v
′

2, v1, b/0), (v1, v
′

2, T̄2), (v
′

2, v2, a/1), (v2, v
′

4, T̄2),
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(v′

4, v
′

3, b/0), (v′

3, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v
′

1, b/0),

(v′

1, v3, a/0), (v3, v
′

2, T̄3)

whose label is a checking sequence of length 53.
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4 Proposed Improvements

All methods propose sufficient conditions for checking sequence generation.

However, their conditions can be relaxed even more. What we propose is a

new way to recognize states through a sequence.

4.1 Expanding the Dependency Graph

The dependency graph scheme given by Chen, Hierons, Ural and Yenigun[2]

does not precisely represent the actual dependencies between the transitions

that can be saved. If a there is more than one way to save a given tran-

sition, the dependencies in the two cases are not related, and satisfaction

of either set of dependencies would allow us to exempt the given transition

from explicit testing. However, in a straightforward representation includ-

ing only the transitions and dependencies between them, there is no way to

distinguish these separate sets of dependencies. As a result, that construc-

tion gives a sufficient condition, however, the condition is not necessary and

a more accurate representation results in a salection that can exempt more

transitions from explicit testing.

Consider the FSM M1 given in figure 12, which has a distinguishing se-

quence of aa.

• D̄1 = (s1, s2, a/0)(s2, s3, a/0)

• D̄2 = (s2, s3, a/0)(s3, s2, a/1)

• D̄3 = (s3, s2, a/1)(s2, s3, a/0)
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Figure 12: The FSM M1
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Figure 13: Dependency graph for M1
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Figure 14: Expanded dependency graph for M1

The resulting dependency graph according to the method proposed in

the paper is shown in figure 13. Exemption of the transition (s2, s3, a/0)

using D̄1 depends on verification of the transition (s1, s2, a/0). Likewise,

(s3, s2, a/1) using D̄2 depends on verification of the transition (s2, s3, a/0).

The problem part is that the transition (s2, s3, a/0) can also be exampted

using D̄3, if (s3, s2, a/1) is verified. When there is no distinction between the

two dependency conditions, cycle removal on the dependency graph allows

exemption of either (s2, s3, a/0) or (s3, s2, a/1), not both.

The accurate representation5 given in figure 14 on the other hand, allows

both transitions to be saved. Transition (s2, s3, a/0) is verified on D̄1 depend-

ing on transition (s1, s2, a/0) as represented by node d1, and (s3, s2, a/1) is

verified on D̄2 as represented by node d2 depending on transition (s2, s3, a/0).

Of course the problem in general is more complicated than shown in this

example, where each way of saving a transition depended on one other tran-

sition only. Normally, each way of saving a transition depends on a set of

transitions, all of which have to be satisfied for exempting the transition in

5Note that the directions for dependencies are reversed in our construction. This is

merely a design choice and is equivalent to the inverse construction.
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Figure 15: Average Number of Exempted Transition Tests

question from testing. However, satisfaction of all conditions in any single

way of saving the transition is sufficient. Therefore there is a complicated

and-or relationship between dependencies. Proper handling of this relation-

ship merely improves the performance of the basic redundant transition test

elimination scheme given in part 3.4. However, it is essential for the gener-

alized transition test elimination scheme that we will discuss in part 4.3.

To show the practical gain of using an expanded dependency graph, we

have included both ways of constructing dependency graphs in our exper-

iments. The experiments were conducted on four seperate batches of ran-

domly generated FSMs, batch 1 with 5 states, 2 input and output symbols

each, batch 2 with 10 states, 3 input and output symbols each, batch 3 with

15 states, 4 input and output symbols each and batch 4 with 20 states, 5

input and output symbols each6. The average number of transitions that

6The experiment setup is given in more detail in part 5.1.
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were exempted from explicit testing are given in figure 15.

4.2 R-recognition

The idea in this new way of state recognition is going backwards, where

t-recognition consider going forward.

Suppose that:

• (nq, ni, R̄) and (nj , nk, R̄) are subpaths of P̄

• ni and nk are d or t-recognized in Q̄ as state s of M

• nq is recognized in Q̄ as state s′ of M

• R̄ is a nonconverging path, in other words is unique among sequences

ending at state s. That is to say, for R̄ = x̄/ȳ, ∀s′′ ∈ S, λ(s′, x̄) =

λ(s′′, x̄) ∧ δ(s′, x̄) = δ(s′′, x̄) = s ⇔ s′ = s′′.

• All transitions whose input labels are in the sequence R̄ are verified

Then nj is r-recognized in Q̄ as s′.

R-recognition is equivalent to D and T-recognition for the purposes of

transition verification. That is to say we can update our definition of state

verification to use R-recognition as well as D and T-recognition.

The proof of this is fairly straightforward:

• Due to the assumption that the system under test has no more states

than the specification FSM, and the existence of alpha sequences within

the test sequence, we know that the states are verified in the system

under test.
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• Due to the assumption that the system under test is deterministic and

it does not change, and the constraint that all transitions with their

input labels in R̄ are verified, all paths with the input portion of R̄ are

verified in the system under test.

• For R̄ is nonconverging in the specification FSM, and all paths with

the input portion of R̄ are verified in the system under test, R̄ is also

nonconverging in the system under test.

• For the endpoint of R̄ is recognized as state s, R̄ is unique among

the paths with its input label in the system under test that end at

state s, its starting state in the implementation is the state of the

implementation that corresponds to state s′.

4.3 Generalized Redundant Transition Test Elimina-

tion

We can then identify edges that are verified through R-recognition within

the α′ sequences and exempt them from the transition tests. This idea is

similar to the test exemption proposed in section 3.4 and the construction is

very similar. The only difference being additional candidates for exemption

and a complex dependency relationship between those.

This generalization has been proposed first by Tekle, Ural, Yalcin and

Yenigun[8]. There are three minor divergences here from the paper, one is

relaxation of nonconverging edges condition to nonconverging paths that are

enough to facilitate R-recognition, the expanded dependency graph that can
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s1 s4x1/y1 x2/y2 x3/y3

(a) A D-sequence has its endpoints d-recognized

s1 s2 s4x1/y1 x2/y2 x3/y3

(b) We can t-recognize nodes in the forward direction

given that the involved transitions -(s1, s2, x1/y1) in

this example- are verified

s1 s3 s4x1/y1 x2/y2 x3/y3

(c) We can r-recognize nodes in the backward direction

given that the related transitions (all transitions with

input x3 in this example) are verified and the label

is unique among all labels of paths that end at the

endpoint -that is to say (si, s4, x3/y3) ⇒ si = s3

s1 s2 s3 s4x1/y1 x2/y2 x3/y3

(d) We can verify an edge whose endpoints we recog-

nize in this manner -(s2, s3, x2/y2) in this example-,

hence avoid testing it elsewhere

Figure 16: Transition verification over D-sequences through use of R-

recognition
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be used to choose transitions to be exempted in practice, and as in other

methods, replacement of a RCPT with an RCPP.

In the following, we will define a set of edges L ⊂ E that need not be

subjected to transition tests to be verified given some α′ set A.

4.3.1 Identifying Redundant Transition Tests

Let Ri = ei1ei2 . . . eih be the sequence of edges corresponding to application

of T̄i at state si. Let eil = (vil , vjl
, xil/yil) be an edge in Ri. If

• ∀r, 1 ≤ r < l, eir is verified in Q̄

• eil+1
eil+2

. . . eih is a nonconverging path

• ∀r, l < r ≤ h, ∀v ∈ V all edges (v, v′, x/y) such that x = xir are verified

in Q̄

eil is verified in Q̄.

Therefore we can pick edges that can be verified as a result of this con-

dition and exempt them from transition tests. However, if exemption of an

edge e depends on verification of another edge e′ when exemption of e′ de-

pends on e, we cannot exclude both edges from transition tests. Note also

that edges in a given Ri are dependent on each other, therefore at most one

edge can be saved per state.

Also note that two paths Ri and Rj , corresponding to application of T̄i

at state si and T̄j at state sj respectively, may contain the same transition

e. Transition e can be excluded from the transition tests if the conditions

imposed by either one is satisfied. Therefore a straightforward dependency
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graph as proposed in the paper is not effective in accurately representing the

relationships between transition tests.

The following construction gives an accurate representation of the depen-

dencies:

Let:

• VE = {six|∀(si, sj, x/y) ∈ E} be a set of states representing the transi-

tions of FSM M

• VS = {sk
n|∀ek

n} be a set of states representing edges on all paths Ri =

• VD = VE ∪ VS be the set of states for the dependency graph

• ER = {(sik
j
xk

j
, sk, ε/ε)|∀tkn, 1 ≤ j < n} be the set representing the de-

pendencies of an edge to edges before it

• Let E ′
R = {(sik

j
x, sk, ε/ε)|∀tkn, ∀x, n < j ≤ l} where l is the length of

DSk be the set representing the dependencies of an edge to edge labels

after it

• Let EA = {(sk
n, siknxk

n
, ε/ε)|∀tkn such that tkn+1 . . . tkl } is a nonconverging path}

be the set representing exemption of a transition test given that depen-

dencies of node sk
n are satisfied

• ED = ER ∪ E ′
R ∪ EA

• Remove nodes from VS until GD is acyclic, while aiming to maximize

cardinality of L

• L = {(s′i, sj, x/y)|∀(sk, six, ε/ε) ∈ ED}
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Figure 17: Full Dependency Graph of M0 for Generalized Redundant Tran-

sition Test Elimination

Once GD is constructed, all cycles on it have to be removed, through

removal of nodes in VS, which corresponds to refraining from using the cor-

responding R̄i edge for exemption. Any acyclic subgraph of GD thus con-

structed gives us a valid set L of transitions that can be excluded from tests.

After cycle removal, all nodes in VD with an incoming edge can be included

in L. Therefore the cycle removal algorithm should aim to maximize the

number of VD elements with incoming transitions.

The maximal acyclic subgraph problem itself is NP-complete, so we do not

aim for the best result in all cases. Also note that a maximal acyclic subgraph

does not necessarily constitute as the best solution to this problem, as our

main interest is preserving the maximum amount of VE edges with incoming

transitions. Moreover, this construction yields a very complex dependency

graph, making a good selection of transition tests to be eliminated a difficult

problem.
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The dependency graph constructed according to this formulation for FSM

M0 is given in figure 17. An acyclic subgraph that can be constructed through

removals from VD is given in figure 4.3.1. The resulting graph is acyclic,

therefore transitions (s1, s3, a/0), (s1, s4, b/0), (s3, s4, a/1) and (s5, s4, a/0)

can be exempted from transition tests.

4.3.2 Checking Sequence Construction

The checking sequence construction method first constructs a digraph G′ by

augmenting G = (V, E) representing a model FSM M where:

• U ′ = {s′i|∀si ∈ V } representing the set of recognized versions of the

states in V

• V ′ = V ∪ U ′ is the set of vertices for the augmented graph G′

• EC = {(s′i, sj, x/y)|∀(si, sj , x/y) ∈ E} representing edges in V , so that

the transitions to be verified start at recognized versions of the states

they belong

• Eα′ representing the α′ edges, which are used to D-recognize state si

and move the system to the recognized state f ′
j as well as enable the

T-recognition of final nodes of T-sequences

• ET = {(si, f
′
i ; li))|∀si ∈ V } representing T̄is, which are used to D-

recognize state si and move the system to the recognized state f ′
i

• E ′′ ⊂ {(s′i, s
′
j, x/y)|∀(si, sj, x/y) ∈ E} such that G′′ = (V ′, E ′′) does

not have a tour, and G′ = (V ′, E ′) is strongly connected
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1a 2a 3a 4a 5a 1b 2b 3b 4b 5b

1.1
3.1

5.1

5.34.33.32.31.2

(a) Dependency Graph of M0 After Removal of 2-node Cycles

1a 2a 3a 4a 5a 1b 2b 3b 4b 5b

1.1
3.1

5.1

4.3

(b) Dependency Graph of M0 After Cycle Removal

Figure 18: Dependency Graph for Generalized Redundant Transition Test

Elimination
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v1 v2 v3 v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

T̄1

T̄2T̄3

T̄4 T̄5

a/0
b/0

a/1

b/0 a/1b/1 a/0b/0 a/0 b/0

ᾱ′
1

ᾱ′
2

ᾱ′
3

b/0 a/0 b/0
b/1

Figure 19: G′ = (V ′, E ′) for M0, constructed according to Tekle, Ural, Yalcin,

Yenigun ’05

• Pick a subset L′ ⊂ L such that after setting E ′ = E ′−(s′i, s
′
j , x/y)|(s′i, sj, x/y) ∈ L,

a valid RCPP on G′ can still be found7

• Set the set of connecting transition candidates E ′′ = E ′′−(s′i, s
′
j , x/y)|(s′i, sj , x/y) ∈ L′

• Set the set of necessary transitions tests E ′
C = EC − L′

• Create E ′ = EC ∪ ET ∪ Eα′ ∪ E ′′

• G′ = (V ′, E ′) is the augmented graph to be used in construction of the

checking sequence

• Eimp = E ′
C ∪ Eα′ are the edges that have to be included in the rural

path on G′

A graph constructed accordingly for FSM M0 is given in figure 19. The

nodes in V and U ′ are at the bottom, and at the top respectively. The

7A sufficient condition is maintaining strong connectivity, but it is not always necessary.
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dashed lines are the edges in ET , and the dotted lines are the edges in E ′′.

The edges in Eα′ ∪ EC are given in solid lines. The bold solid lines are the

edges in Eα′ ∪E ′
C , and the remaining solid lines are the edges in L. Once G′

is thus constructed, a RCPP over the noted edges that starts at the vertex

corresponding to the initial state of the specification automaton and ends

in a recognized state can be found. The label of such a path is a checking

sequence for the automaton.

Again, it is proposed in the paper that a tour concatenated with a Tse-

quence should be found. This is a sufficient condition, but a tour is not

necessary. As before, a path that ends in a recognized state is sufficient.

A path over G′ containing all edges in E ′
C ∪ Eα′ is:

(v1, v
′

4, α
′

1), (v
′

4, v5, a/0), (v5, α
′

3), (v
′

4, v3, b/0), (v3, v
′

4, α
′

2)

(v′

4, v
′

5, a/0), (v′

5, v1, b/0), (v1, v
′

2, T̄1), (v
′

2, v2, a/1), (v2, v
′

4, T̄2),

(v′

4, v
′

3, b/0), (v′

3, v2, b/1), (v2, v
′

4, T̄2), (v
′

4, v
′

3, b/0), (v′

3, v
′

2, b/1)

(v′

2, v1, b/0), (v1, v
′

2, T̄1)

whose label is a checking sequence of length 43.

4.4 Introducing UIOs

UIO sequences, described in 2.3.1, can be used to generate checking se-

quences in the absence of distinguishing sequences, however if distinguishing

sequences exist, there are methods that can yield much shorter checking se-

quences. But UIO sequences can be incorporated into these methods as well,
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replacing distinguishing sequences where applicable to shorten the length of

the overall sequence[11].

4.4.1 Test Segments

The test segments are the same as 3.2.1, save the case in which they can be

tested using UIO sequences. For transitions that can be tested using UIO

sequences, we represent the option to do so in the graph using additional

nodes.

A UIO sequence can be used for transition tests if all input symbols in

it are verified. Therefore edges whose input symbols occur in active UIO

sequences cannot be tested using UIO sequences in order to avoid cyclic

dependencies. Consequently, a set of symbols S has to be selected, which

will denote the input symbols that can be verified using UIO sequences, but

may not occur within them.

The optimal selection of the set S is important for the efficiency of the

proposed method, however, it is not a simple problem. We are using a

simulated annealing method that aims to maximize the number of transitions

that can be verified for our implementations, but the algorithm is yet to be

finalized.

4.4.2 Choosing UIOs to Use

There is no trivial way of choosing the set of symbols S. One way that we

propose that this can be done is by some sort of simulated annealing. The

procedure is as follows:

• Set S = Σ
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• Begin loop: ∀x ∈ S let Sx = S − {x}

– Let Ui denote the set of UIO sequences of state si that contain

input symbols from S only. Let l be the length of the shortest

UIO in Ui.

– Let Ux
i be the set of UIO sequences of state si that contain input

symbols from Sx only. Let lx be the length of the shortest UIO in

Ux
i .

– Let Ti denote the set of transitions whose tail is state si and input

symbols not in S. Let n be the cardinality of Ti.

– Let T x
i denote the set of transitions whose tail is state si and input

symbols not in Sx. Let nx be the cardinality of T x
i .

• If n × l < nx × lx, ∀x ∈ S, current S is a local minimum, and is our

final selection

• Otherwise, set S = Sx for the x value that yields the minimum nx × lx

and reiterate the loop

Once the set S is chosen, construction of the augmented graph is a

straightforward process, a lot like the methods we have considered so far.

The only addition is the nodes added to handle transitions that can be veri-

fied using UIO sequences.

4.4.3 Checking Sequence Construction

The checking sequence construction method first constructs a digraph G′ by

augmenting G = (V, E) representing a model FSM M where:
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• S a set of input symbols, which stand for the input symbols of the

transitions that may be tested using UIO sequences

• U ′ = {s′i|∀si ∈ V } representing the set of recognized versions of the

states in V

• V U = {sU
i |∀si ∈ V } is the set of vertices that can be recognized through

use of UIO sequences

• V ′ = V ∪ U ′ ∪ V U is the set of vertices for the augmented graph G′

• EC = {(s′i, sj, x/y)|∀(si, sj, x/y) ∈ E, x /∈ S} representing edges in V ,

edges that have to be tested using distinguishing sequences

• EU
C = {(s′i, s

U
j , x/y)|∀(si, sj , x/y) ∈ E, x ∈ S} representing edges in V ,

edges that may be tested using UIO sequences

• EU
ε = {(sU

i , si, x/y)|∀si ∈ V } enabling the transitions that can be

verified using UIO sequences to be verified by distinguishing sequences,

if doing so would yield a shorter checking sequence

• Eα′ representing the α′ edges, which are used to D-recognize state si

and move the system to the recognized state f ′
j as well as enable the

T-recognition of final nodes of T-sequences

• ET = {(si, f
′
i , li))|∀si ∈ V } representing T̄is, which are used to D-

recognize state si and move the system to the recognized state f ′
i

• EU
T = {(si, δ(si, UIOk

i ), λ(si, UIOk
i ))|∀si ∈ V, UIOk

i s. t. UIOk
i is a UIO for state si and does

set of UIO sequences that can be used for state recognition
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• E ′′ ⊂ {(s′i, s
′
j, x/y)|∀(si, sj, x/y) ∈ E} such that G′′ = (V ′, E ′′) does

not have a tour, and G′ = (V ′, E ′) is strongly connected

• Create E ′ = EC ∪ ET ∪ Eα′ ∪ E ′′

• G′ = (V ′, E ′) is the augmented graph to be used in construction of the

checking sequence

• Eimp = EC ∪ EU
C ∪ Eα′ are the edges that have to be included in the

rural path on G′

A graph constructed accordingly for FSM M0 is given in figure 20, nodes

from VU that are unused are removed. Once G′ is thus constructed, a RCPP

over the noted edges that starts at the vertex corresponding to the initial

state of the specification automaton and ends in a recognized state can be

found. The label of such a path is a checking sequence for the automaton.

A path over G′ containing all edges in EC ∪ EU
C ∪ Eα′ is:

(v1, v
′

4, α
′

1), (v
′

4, v5, a/0), (v5, v
′

4, α
′

3), (v
′

4, v
U
3 , b/0), (vU

3 , v′

5, Ū3)

(v′

5, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v1, b/0), (v1, v
′

2, T̄1),

(v′

2, v1, b/0), (v1, v
′

2, T̄2), (v
′

2, v2, a/1), (v2, v
′

4, T̄2), (v
′

4, v
′

3, b/0),

(v′

3, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

3, b/0), (v′

3, v
U
2 , b/1), (vU

2 , v′

2, Ū2)

(v′

2, v
′

1, b/0), (v′

1, v4, b/0), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v
′

1, b/0)

(v′

1, v3, a/0), (v3, v
′

4, α
′

2)

whose label is a checking sequence of length 59, which is an improvement

of 4 over what could be generated without using UIO sequences.
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v1 v2

vU
2

v3

vU
3

v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

T̄1

T̄2T̄3

T̄4 T̄5

a/0b/0

a/1

b/0 a/1

b/1

a/0

b/0

a/0 b/0

ᾱ′
1

ᾱ′
2

ᾱ′
3

b/0 a/0b/0
b/0

b/1

ε/εε/ε

Ū2

Ū3

Figure 20: G′ = (V ′, E ′) for M0 implementing UIO sequences.

4.4.4 Further Improvements

We can also incorporate UIO sequences in a redundant transition elimination

scheme. If all transitions with a given input label are verified, then that input

label is enabled to be used within UIO sequences. Again, cyclic dependencies

need to be avoided, therefore the selection of input characters that can be

verified using UIO sequences need to be integrated to the dependency graph

of transition verifications somehow, and this is an open problem.

However, an example integration of UIO sequences and redundant tran-

sition elimination on M0 is given in figure 21. This construction reduces the

length of resulting checking sequence by a further 3. The path, which has a

label of length 50, is as follows:

(v1, v
′

4, α
′

1), (v
′

4, v5, a/0), (v5, v
′

4, α
′

3), (v
′

4, v
U
3 , b/0), (vU

3 , v′

5, Ū3)
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v1 v2

vU
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v3

vU
3

v4 v5

v′
1 v′

2 v′
3 v′

4 v′
5

T̄1

T̄2T̄3

T̄4 T̄5

a/0
b/0

a/1

b/0 a/1

b/1

a/0

b/0

a/0 b/0

ᾱ′
1

ᾱ′
2

ᾱ′
3

b/0 a/0b/0
b/0

b/1

ε/εε/ε

Ū2

Ū3

Figure 21: G′ = (V ′, E ′) for M0. Implementing both redundant transition

test elimination and UIO sequences.

(v′

5, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v1, b/0), (v1, v
′

2, T̄1),

(v′

2, v1, b/0), (v1, v
′

2, T̄2), (v
′

2, v2, a/1), (v2, v
′

4, T̄2), (v
′

4, v
′

3, b/0),

(v′

3, v4, a/1), (v4, v
′

4, T̄4), (v
′

4, v
′

5, a/0), (v′

5, v
′

1, b/0), (v′

1, v3, a/0),

(v3, v
′

2, α
′

2)

It is possible to integrate use of UIOs with generalized redundant tran-

sition test elimination as well, however, M0 is an inadequate example to

demonstrate any improvement.
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5 Experiments

5.1 Experiment Setup

Our implementation of the methods presented is done on Java, and uses

the optimization tool AMPL to solve the integer programming problem for

symmetricity augmentation.

We worked on randomly generated, strongly connected, completely spec-

ified, deterministic FSMs that have distinguishing sequences. We used full-

length, preset DSs, that is to say we did not replace DS with a prefix when

possible as was the case in the examples so far.

The data sets we worked on consisted of FSMs with 5 states, 2 input

and 2 output symbols, 10 states, 3 input and 3 output symbols, 15 states,

4 input and 4 output symbols and 20 states, 5 input and 5 output symbols

respectively, each set containing 15 FSMs. The sets are labeled batch 1, 2, 3

and 4 respectively in the graph given in figure 22. The tool can handle FSMs

with greater complexity, however our FSM generator could not produce FSMs

with greater number of states that satisfied the conditions.

In each case, we followed the steps outlined in the specifications, and ex-

tracted labels of the rural paths that were extracted after the augmentation.

Our focus is the lengths of resulting checking sequences. A full layout of all

results can be observed in table 1. A comparison of average lengths is given

in figure 22.
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(a) 5 States, 2 I/O (b) 10 States, 3 I/O

(c) 15 States, 4 I/O (d) 20 States, 5 I/O

Table 1: Checking Sequence Length for Each FSM Used in the Experiment
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Figure 22: Average Checking Sequence Lengths
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5.2 Experiment Results

The basic case[10] is included in the experiments for comparison purposes,

and it was not expected for it to perform as well as the other methods.

Optimization of the test segments[4] provides a noticable improvement over

the basic case. The remaining methods improve upon this one, therefore

they behave the same in the worst case.

Overlap elimination[9] invariably performs the best among all methods

whenever distinguishing sequence is composed of a single input character, but

otherwise performs exactly the same as the previous method. Considering

the facts that the complexity in practical applications will be high, and the

optimization problem that needs to be solved is far greater than that in the

other methods due to the complexity of the augmented graph, this method

does not seem to be promising.

Redundant transition test elimination[2], on the other hand performs well

and scales complexity better than previous methods, reliably providing about

10% reduction in checking sequence length over the method using optimized

test segments. Building upon this method seems reasonable, considering that

it does not increase the complexity of the optimization problem.

Generalized redundant transition test elimination[8] performs well, yield-

ing the shortest checking sequences in 5 and 20 state FSM batches, and would

perform better in cases where distinguishing sequences are long in compari-

son to the number of states of the FSM. Theorethically it should never have

performed worse than basic redundant transition test elimination, due to the

fact that any choice the latter can make is viable for the former. Handling

the complex dependency graph that is formed during the operation of gener-
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alized case is far more difficult in comparison to the simple one generated in

the basic case, and hence there is still room for improvement in the selection

of transitions to be exempted. With corrections to that part of the algo-

rithm we use, we expect to significantly surpass the efficiency of the basic

case. Even in its current state, the method is performing adequately, and we

expect it to allow more savings as DS length increases, therefore work better

with on larger FSMs.
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6 Conclusion

Finite state systems have, since early days of computer science, been a useful

tool of representing systems in a variety of fields, and study of their properties

have proved useful for testing and verification of real life systems.

When applicable, it is often desirable to use checking sequences to test

systems. Although they do not pinpoint the error, which is the more complex

problem of fault identification, which extends into the domain of reverse

engineering, a checking sequences guarantee detection of errors on systems

of up to the size of specification, and even when such a guarantee cannot be

attained, provide a structured way of building meaningful test cases.

We have provided outlines of several methods used in construction of

checking sequences that are detailed enough to convert into implementa-

tions. In addition, we compared their efficiency using our implementations

according to the given specifications, and compared their performances and

also outlined possible methods of improvement for the methods in hand.

Checking sequence construction methods we currently have deal with suf-

ficient conditions and we do not know how close these are to necessary con-

ditions. However, the amount of redundancy we observe in them show that

there is yet room for improvement. More methods for state recognition, tran-

sition verification and better ways to combine them, as we have been working

to build, can increase the feasability of checking sequences and allow them

to be used in a broader scope.
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Duale, and Mariusz A. Fecko, editors, TestCom, volume 3964 of Lecture

Notes in Computer Science, pages 259–273. Springer, 2006.

70


