
 

 

 

 

COMPUTER AIDED PUZZLE ASSEMBLY BASED ON SHAPE AND TEXTURE 

INFORMATION 

 

 

 

 

by 

MAHMUT ŞAMİL SAĞIROĞLU 

 

 

 

 

Submitted to the Graduate School of Engineering and Natural Sciences  
in partial fulfillment of  

the requirements for the degree of  
Doctorate of Philosophy 

 

Sabancı University 

June 2006 



 

 

 

 

COMPUTER AIDED PUZZLE ASSEMBLY BASED ON SHAPE AND TEXTURE 

INFORMATION 

 

 

 

 

 

APPROVED BY 

 

 

  Prof. Dr. Aytül ERÇİL  ……………………….. 

  (Thesis Supervisor) 

 

  Prof. Dr. Lale AKARUN  ……………………….. 

 

 

  Doç. Dr. Uğur SEZERMAN  ……………………….. 

 

 

  Yard. Doç. Dr. Hakan ERDOĞAN ……………………….. 

 

 

  Yard. Doç. Dr. Selim BALCISOY ……………………….. 

 

 

 

DATE OF APPROVAL:  …………………… 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Mahmut Şamil Sağıroğlu 2006 

 

All Rights Reserved 

 

 

 

 

 

 

 



COMPUTER AIDED PUZZLE ASSEMBLY BASED ON SHAPE AND TEXTURE 

INFORMATION 

 

 

Mahmut Şamil SAĞIROĞLU 

 

EECS, PhD Thesis, 2006 

 

Thesis Supervisor: Prof. Dr. Aytül ERÇİL 

 

 

Keywords: Puzzle assembly, reconstruction of the artifacts in archaeology, 

expanding images, Fourier based image registration 

 

Abstract 

Puzzle assembly’s importance lies into application in many areas such as 
restoration and reconstruction of archeological findings, the repairing of broken objects, 
solving of the jigsaw type puzzles, molecular docking problem, etc. Puzzle pieces 
usually include not only geometrical shape information but also visual information of 
texture, color, continuity of lines, and so on. Moreover, textural information is mainly 
used to assembly pieces in some cases, such as classic jigsaw puzzles.  

This research presents a new approach in that pictorial assembly, in contrast to 
previous curve matching methods, uses texture information as well as geometric shape. 
The assembly in this study is performed using textural features and geometrical 
constraints. First, the texture of a band outside the border of pieces is predicted by 
inpainting and texture synthesis methods. The feature values are derived by these 
original and predicted images of pieces. A combination of the feature and confidence 
values is used to generate an affinity measure of corresponding pieces. Two new 
algorithms using Fourier based image registration techniques are developed to optimize 
the affinity. The algorithms for inpainting, affinity and Fourier based assembly are 
explained with experimental results on real and artificial data.  

The main contributions of this research are: 
• The development of a performance measure that indicates the level of success of 

assembly of pieces based on textural features and geometrical shape. 
• Solution of the assembly problem by using of the Fourier based methods. 
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Anahtar Kelimeler: Dizilim problemi, kırık arkeolojik parçaların geri çatılması, 

imge genişletme, Fourier tabanlı imge çakıştırma 

Özet 

Arkeolojik parçaların birleştirilmesi ve onarılması, kırık nesnelerin tamiri, 
parçalanmış dokümanların yeniden oluşturulması ve hatta moleküler kenetlenmenin 
çözümlenmesi genel olarak dizilim problemine dayanmaktadır. Görüntü işlemede 
dizilim; geometri ve doku olarak birbiriyle ilişkili parçaların birleşerek en iyi bütünü 
ortaya çıkarması olarak tanımlanmaktadır. Bugüne kadar dizilim problemi üzerinde 
yapılan çalışmalar sadece geometrik şekil bilgisine dayalı olarak ele alınmış, parçacıklar 
üzerindeki görsel bilgi kullanılmamıştır.  

Bu bildiride daha önceki eğri uyumlama yöntemlerine dayalı geometrik 
yaklaşımlardan farklı olarak hem resim hem geometri bilgisinin kullanıldığı bir çalışma 
sunulmaktadır. İlk aşamada parçaların etrafındaki bir bantta doku öngörüsü 
yapılmaktadır. Öngörülen bu dokudan elde edilen özniteliklerden bir uyum ölçüsü 
bulunmakta ve parçaların birbirlerine birleştirilmeleri Fourier tabanlı imge çakıştırma 
yöntemleri kullanılarak çözülmektedir. Geliştirilen yöntemler yapay ve gerçek datalar 
üzerinde sınanarak performansları incelenmiştir. Bu çalışmanın ana katkıları şu şekilde 
özetlenebilir: 

• Doku ve şekil bilgisine dayalı olarak dizilimin başarımını sayısal olarak 
ortaya koyan bir performans ölçütü geliştirilmesi 

• Dizilim probleminin Fourier metodları kullanılarak çözülmesi 
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Chapter 1 

1 INTRODUCTION 

The aim of this research is to develop a method for the automated assembly of 

broken objects that have surface texture from their pieces. The task of reassembling has 

great importance in the fields of anthropology, failure analysis, forensics, art restoration, 

bioinformatics [1] and reconstructive surgery. It is also used frequently in archaeology. 

The fact that performing reconstruction of archaeological objects from fragments 

manually is very time consuming motivates automatic techniques for the reassembly of 

fragments. In general, reconstruction of objects can be regarded as a puzzle-solving, 

which is known as a subtitle of the matching problem. It contains many problems 

endemic to pattern recognition, computer vision, feature extraction, boundary matching 

and optimization fields. 

Previous works on assembly problem have focused mainly on the geometrical 

properties of puzzle pieces represented by their boundary curves. As the fractions of 

boundaries are adjacent and thus similar, a pairwise affinity measure is computed by 

partial curve matching. Some approaches especially related to standard toy-store jigsaw 

puzzle solver use feature based matching methods. The fragment assembly problem is 

similar to that of automatic assembly of jigsaw puzzles, which has been addressed 

before. However, the problem of jigsaw puzzle solving is a reduced and restricted 

version of the general assembly problem. Its computerized solution was first introduced 

by Freeman [2], who successfully solved a 9-piece jigsaw puzzle. Other works 

[3][4][5][6] also use feature based matching approaches. These methods are relatively 

fast so that they manage to assemble the pieces, even if they are numerous. The main 

drawback of this approach is that they cannot provide detailed matching of boundaries 

and overlapping regions. Moreover, the general assembly problem does not satisfy the 

assumptions for standard jigsaw puzzle. Researches involving classical jigsaw puzzle 

ignore texture or color information to the attack assembly problem. There are a few 
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pictorial approaches, which use only the color values of pixel on boundary contour. 

However, this is not practical for real applications. 

More general partial curve matching algorithms that solve the global 2D and 3D 

assembly problems based on geometrical properties were presented in [7][8][9]. The 

problem of 3D curves is addressed by [10]. The accuracy of matching technique 

depends on the perfect extraction of the trace of a curve and the computation of 

curvature and torsion. It is potentially a non-robust process and only tested on artificial 

data. Another study [11] matches 2D and 3D break curves by combining a coarse-scale 

representation of curves and refine iteratively via a fine-scale elastic matching. Afore 

mentioned research that achieved global assembly of pieces based on curve matching 

did not attempt to combine the geometrical methods with textural information. 

There is great scientific interest in the archaeological community in reconstructing 

objects from fragments. In archeological sites, we may encounter a large number of 

irregular fragments resulting from one or several broken objects. The reconstruction of 

the original objects is a tedious and laborious task. The artifacts are free-form, 

multiscale individually and, with respect to one another, they are geometrically and 

photometrically highly complex and highly variable, and huge in number. An automatic 

tool that assists archeologists in reconstructing monuments or smaller fragments is 

being designed. Such a tool is designed in order to avoid unnecessary manual 

experimentation with fragile and often heavy fragments, and to reduce time required for 

assembly. Currently, the Digital Michelangelo team is tackling the problem of 

assembling the Forma Urbis Romae [12]. It is a marble map of ancient Rome that has 

more than a thousand fragments. Their investigation is based on broken surface border 

curves, possibly texture patterns, and additional features of the fragments. The 

University of Athens has developed Virtual Archaeologist system [13], relying on the 

broken surface morphology to determine correct matches between fragments. This 

method detects candidate fractured faces, matches fragments one by one and assembles 

fragments into complete or partially complete entities. The Shape Lab in Brown 

University [14][15][16] presents an approach to automatic estimation of mathematical 

models of axially symmetric pots made on a wheel. This technique is based on matching 

break curves, estimated axis and profile curves, a number of features of groups of break-

curves. Finally, the assembly problem is solved by maximum likelihood performance-

based search. Fornasier and Toniolo have developed a pattern matching algorithm for 

comparison of digital images by discrete Circular Harmonic expansions based on 
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sampling theory [17]. The assumption for this method is that the photographs of the 

original puzzle exist. At the Technical University of Vienna, a fully automated approach 

to pottery reconstruction based on the fragments profile is given [18]. In the study in the 

University of Vienna, a color specification technique [18] is proposed. The method 

using the colorimetric information assumes that the final object is known a priori and 

fragments are categorized in the beginning. In this field, an approach for assembly of 

pieces by using of textural and pictorial information of fragments also does not exist, 

even if the last research is related to color. 

Neglecting the continuity of color and texture for adjacent fragments is a waste of 

valuable information for many cases. Humans use all-important information to decrease 

the possibilities for matching pieces. Automatic systems also have to use all pictorial 

features to attack the assembly problem. Actually, the pictorial information on a 

fragment consists of various components, and different specifications of surface image 

of pieces are dominant according to implementation field. In classical jigsaw puzzles, 

the essentials of assembly depend on the alignments of object edges (e.g. picture of a 

house), the similarity of colors (e.g. cloud drawing) and continuity of textural properties 

(e.g. grass of a garden) for the adjacent pieces. In the archeological field, the pictorial 

features may include highly directional marble veining, the pattern of surface incisions, 

paintings on the outer and inner surfaces, carvings and horizontal circles due to finger 

smoothing while the pot is spinning on the wheel. The texture-based approaches have to 

consider all these situations to match images of adjacent pieces. To solve the problem of 

continuity of texture between neighboring fragments, two main straightforward methods 

can be used. First one is to calculate a common discriminator from whole image on each 

pieces and test the affinities between possible pairs whether they share same segment of 

complete puzzle image or not. This is not so realistic. Because the pieces usually 

include more than one different texture segments, a common descriptor cannot represent 

the image of pieces. Moreover, some specifications, especially on the archeological 

findings such as continuity of marble veining and incisions, become unusable although 

they are significant pictorial properties. The second method is using of pixel values at 

regular intervals on the borderline of the pieces. Then, the matching pairs are 

formulated by this color characteristic along the contour of pieces. The border of the 

fragments is often eroded and may not be suitable to exact matching so that this 

approach is also not applicable. Furthermore, using pointwise relations on contour 

reduces effectiveness of matching pieces based on pictorial information when the puzzle 
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image has large regions covered by complex textural patterns, such as complex marble 

structures. Our proposed approach overcomes all mentioned textural problems by the 

use of completely different algorithm from previous methods. We design a texture 

prediction algorithm, which generates possible image outside the border of pieces. As 

we consider the completed puzzle, the predicted region outside of a piece overlaps the 

interior regions of others. Hence, the features of predicted texture outside a piece are 

correlated with original pictorial specifications of possible neighbor pairs. Also, a 

confidence measure depending on texture patterns is defined. Then, we reached an 

affinity measure of corresponding pieces that utilizes all kinds of image information, 

such as continuity of edges, textural patterns, and color similarities. 

If we attempt to solve puzzles by computers, we need the following conditions: 

Continuity of colors: Color continuity is an important factor on the solution of 

puzzle problems. If asked which combination below is the right solution of the puzzle, 

the second case seems to be more appropriate for most observers. Usually, the colors are 

not homogenous, so right color spaces, noise filters; shadow eliminators should be used 

to work with real images [19]. 

 
Figure 1.1 : The color continuity 

Continuity of edges: The eyes want to see continuous lines, like a derivative 

operator. The problem here is usually that the broken real object pieces have occluded 

parts at the boundary zone [19]. 

 
Figure 1.2 : The continuity of edges 
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Continuity of textural information: The two stripes below have the same color, but 

one is horizontal textured and the other is vertical. It is clear that the human vision also 

tracks the continuity of the textural information like the color. Therefore, characterizing 

a texture with numerical metrics is needed and as in the edge case, the changes at the 

boundary affect our success to label the pieces as continuous [19]. 

 
Figure 1.3 : The continuity of textures 

Object memory: Just to see is not enough, we conceptually add some meaning to 

the objects; the biological similarity analysis is not 1 or 0 function but a most probable 

searcher. Below you see two pieces; it cannot be claimed to contain any cues on how 

these pieces should be associated. In this case, the only decision taker is our memory, 

which favors the first combination by remembering past experiences. It is probably the 

most important and difficult factor, if we would like to computerize biological vision 

systems [19]. 

 
Figure 1.4 : The object memory 

Boundary matching and generalization of the problem: The boundary is another 

dimension for our feature space: the pieces of various sized, occluded and missing parts 

together increase the complexity exponentially [19].  
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Figure 1.5 : The boundary features 

Generally, the reconstruction of arbitrary objects from their fragments can be 

regarded as a puzzle, taking into account the following considerations: 

Parts (fragments) have arbitrary shapes: General assembly problem differs from 

the standard toy-store jigsaw puzzle problem. The toy puzzles obey certain rules that 

make the problem more tractable that it would otherwise be. Standard rules include: (1) 

the puzzle has a rectangular outside border; (2) pieces form overall rectangular grid do 

that each interior pieces interlock with their primary neighbors by tabs, consists of an 

“indent” on one piece mating with an “outdent” on its neighbor; (4) each piece has no 

neighbors except its primary neighbors, that is, the cutting lines between pieces meet 

only at +, - junctions rather than a mix of +,-,T and Y junctions.  

 
Figure 1.6 : The puzzle pieces may have arbitrary shapes. (An archaeological 

fragment from Forma Urbis Romea) 

The shape and the number of final objects are unknown:  In some works including 

standard jigsaw puzzles, it is assumed that the final shape of the puzzle is known. For 

especially archaeological problems, this assumption is not realistic. The pieces shall be 

assembled without the a priori knowledge of final shape. But there are some 

archeological researches that first estimate the final shape from fragments and than 
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reconstruct this shape from these fragments. But this assumption is also fails if 

fragments that belong to more than one broken objects exist in our initial set. 

 
Figure 1.7 : The assembled form of the pieces may also have an arbitrary shape. 

Some fragments may be missing and surfaces are probably flawed and eroded: 

The erosion of fragments is another important fact for which textural approaches are 

more suitable than geometrical methods. The borders of a fragment may disappear or 

erode in a real assembly application except artificially cutted toy-store jigsaw puzzles. 

In archeology, Erosion, impact damages or undesired events cause fragments to vanish 

or to deteriorate, such as the Forma Urbis Romae. A piece of a broken object (e.g. a 

broken marble) most probably may not exist. This reality increases the necessity of 

pictorial information to solve the reconstruction of all types of puzzles, because the 

geometrical approaches relying on exact matching of break curves are not applicable to 

assemble pieces if the border of fragments disappears. The texture methods can manage 

to estimate possible adjacent fragments, even if there is a gap caused by erosion 

between two neighbor pieces. Unfortunately, when the borders vanish the image from 

the surface of the fragments may also be removed. This situation is only possible in 

archeological findings. 
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Figure 1.8 : The pieces may be missing and probably eroded. 

No strict assemblage rules exist: In general puzzle problem, the pieces can make 

any transformation in 2D or 3D. In some cases, the pieces have a limited number of 

transformations. For example, the pieces in a jigsaw puzzle can be transferred from one 

point to another in a grid. 

 
Figure 1.9 : The jigsaw puzzles are assembled with the strict rules. 

The pieces may belong to more than one broken or torn objects: In archaeological 

sites, the fragments usually belong to more than one object. In these cases, the solution 

method has to consider this situation. 
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Figure 1.10 : The pieces belong to two different objects. 

The main contribution of current research is to use the textural information in the 

solution of puzzles. Previous works omit this information source and use only the shape 

in the assembly. The above conditions, continuity of textural structure, the continuity of 

edges and boundary matching are satisfied and considered in the research. The object 

memory that is the highest-level application is not used. There is not any assumption 

that reduces the solutions complexity. The only assumption is that all pieces are 

acquired in a consistent and meaningful scale. This assumption is reasonable in a puzzle 

assembly problem because we can ideally acquire the pieces as we have all pieces 

initially. 

 

1.1 Outline of the Thesis 

 

Our proposed approach is to define a performance measure that represents the 

appropriateness of the assembly based on textural features and geometrical shape. Then, 

the best transformations of pieces that maximize harmony of textures of fragments shall 

be found while the geometrical constraints are being satisfied. Initially, we acquire and 

preprocess the images of pieces. The color information has to be obtained accurately in 

addition to other geometrical methods depending only on the border curve. After the 

collection of visual data, the first step to expose the affinity of fragments is an image 

prediction algorithm applied to each piece separately. We define a sufficiently large 

region that includes the original fragment. This region consists of two parts. The central 

part is the original fragment on which we know all pictorial information. The second 

part between the original fragment and the border of the predefined region is the 
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expanding domain. The prediction algorithm automatically fills in this expanding region 

with information diffusing from the central part.  

 

                 
Figure 1.11 : (left) The original piece with dashed line limiting the expansion 

band, (right) the expanded piece with white line representing the border of the original 
piece. 

The main idea to expand the fragment outwards is that the correlation between the 

features of the predicted region and the right neighbor is significantly higher than the 

alternative pairings. We use the mixture of inpainting and the texture synthesis methods 

for prediction. Image inpainting is the process of filling in missing data in a designated 

partition of image or video from the surrounding area, and texture synthesis creates a 

new image with the same seed texture but of different shape to a sample region. While 

expanding the fragment image, we introduce the confidence of expansion as a new 

parameter in prediction phase of assembly problem. This parameter represents the 

reliability of expanded values and will be used by later processes. The confidence 

depends on the structure of texture such as the continuity of edges, the roughness of 

texture and the distance to the border of original fragment.  

Then, we derive the feature values of both the original fragment and the expanded 

region. The proposed approach does not bound the number of features nor it restrict the 

type of image features. Any textural feature believed to improve the success of 

assembly can be easily inserted to the process. The next step is to determine the 

similarity or cost function between two textural regions. There is no restriction on the 

distance function to be implemented by our method. The final goal of the proposed 

approach is to expose an affinity measure of corresponding pieces by the combination 

of the feature and confidence values. The harmony of pieces and the achievement of the 

assembly become better while optimizing this affinity measure. Actually, the assembly 

of fragments is to find the right transformations of pieces. Initially, each fragment has a 

random position in the space. To improve the assembly, we have to able to sense 
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whether any arrangement of pieces becomes better or worse. We use total affinity to be 

able to decide. The total affinity is defined as the sum of affinity measures of all points 

in the space. In addition to total affinity, two new functions are defined in this approach. 

The functions calculate the updated confidence and color values when two or more 

pieces are merged and a unique fragment is generated.  

Although, the puzzle assembly problem can be stated as the optimization of the 

above cost function, the optimization problem is too computationally costly. We will 

therefore use the FFT shift theory to find a solution that will maximize the correlation 

between the predicted parts of a piece and other pieces. Two new assembly algorithms 

using the FFT based approach are introduced in this research. The first one is the semi-

automated algorithm. This is developed for the interactive usage. The second one is a 

fully-automated assembly method. The last study on the assembly problem is to test the 

developed methods in 3D.  

The rest of this thesis is organized as follows. Previous research is introduced in 

Chapter 2. Chapter 3 presents image inpainting and texture synthesis methods in 

literature and our implementations of these algorithms to predict expanding regions of 

the pieces. Subsequently, we try to find the best transformation of pieces that maximizes 

the harmony of textures of fragments by using an FFT-based algorithm. Finally, the 

developed methods for the 2D pieces are applied to 3D problems in the Chapter 5. 
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Chapter 2 

2 LITERATURE SURVEY 

2.1 Introduction 

 

The task of reassembling has great importance in the fields of anthropology, 

failure analysis, forensics, art restoration and reconstructive surgery [20], and 

particularly in archaeology. The automated assembly of broken objects or puzzle 

problem was examined in many areas in the literature. The researchers have worked on 

the assembly problem to overcome the restoration and reconstruction of archeological 

findings, repairing of broken objects, solving standard jigsaw puzzles, molecular 

docking problem and the medical puzzle problem. Each work has only taken into 

account the considerations relevant to its application. So, the solutions are dependent on 

the assumptions of a particular application. For example, both the floor plan design of 

VLSI circuit design [6] and the archaeological fragment assembly [8] can be considered 

as a puzzle problem. But the main assumptions are completely different. In VLSI design 

problem, the fragments have regular shape and there is no textural and boundary 

relation between each pieces. Actually, the problem is equivalent to a placement 

problem. However, the adjacent pieces have strong textural and geometrical relations in 

an archaeological problem.  

According to this point of view, it may be useful to study the previous works by 

classifying the research. All research can be categorized into three groups. The first 

group involves studies which aim to solve the standard puzzles; the second group of 

research involves studies that propose to develop a curve matching method. That is, by 

using boundary curves, global matching of pieces indicates the solution of puzzle; the 

last group consists of works in the field of archaeology. The fact that performing 

manual reconstruction of archaeological objects from fragments is very time consuming 

motivates automatic techniques for reassembly of fragments. 
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(a)     (b)   

                                 
(c)     (d)   

Figure 2.1 : (a) Placement problem (b) Solution of the placement (c) Textural 
pieces with non-standard shape. (d) Solution of ceramic puzzle with 4 pieces 

Another classification criterion involves whether in a study uses textural 

information. Previous works on the assembly problem have focused mainly on 

geometrical properties of the pieces. Even there are a few works using pictorial 

information, the texture-based approaches are not improved.  

In general, the reconstruction of objects can be regarded as a puzzle-solving 

problem, which contains many problems endemic to pattern recognition, computer 

vision, feature extraction, boundary matching, and optimization fields. 

 

2.2 Literature about Approaches for Solving of non Archaeological Puzzles 

 

The problem of jigsaw puzzle solving is a reduced and restricted version of the 

general assembly problem. Its computerized solution was first introduced by Freeman 

[2], who successfully solved a 9-piece jigsaw puzzle. In this work, the piece boundary is 

broken into sub-boundaries. The task in [21] is to find one-to-one correspondence 

between each of these sub-boundaries and a sub-boundary from another fragment. This 

is reasonable if the sharp corners in standard jigsaw puzzles delimit the matching 

boundaries. However, as Freeman [2] explains, this is not applicable when the problem 

is generalized. 
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A set of puzzle works [6][22][23][24] is defining the puzzle problem as a 

placement of pieces. For these approaches, there is no unsolved problem for the scope 

of computer vision, computer graphics or geometrics. So, probable solution methods in 

such puzzles are completely different from the concept of this study. 

In [25], the method consists of feature extraction, local matching and global 

solution. The local matching makes use of new boundary and color matching operation 

to compute local matching scores between every pair of partial boundaries. Three 

algorithms are tested to find the global solution. These algorithms are called assignment 

problem based approach, the traveling salesman problem and assignment problem based 

approach, and the traveling salesman problem and K-best based approach. While 

extracting boundary information, heuristics are derived from the shape of standard 

puzzle pieces. 

In [4], a system called automatic puzzle solver (APS), derives a new set of 

features based on the shape and color characteristics of puzzle pieces. A combination of 

shape dependent features and color cues is used to match the puzzle pieces. Matching is 

performed using a modified iterative labeling procedure in order to reconstruct the 

original picture represented by the jigsaw puzzle. As in [25], corner detection is used in 

the algorithm to separate the individual sides of each puzzle piece. The assembly 

method is not briefly examined. 

In [26], a method is proposed for solving the rectangular jigsaw puzzle assembly 

problem. The puzzle is only painted in black and white. It is assumed as a binary image. 

The assembly of the puzzle is performed only using information of the pixel value on 

the borderline of the pieces. The proposed method utilizes a genetic algorithm to search 

for the optimum piece arrangement, because a genetic algorithm has the ability to find 

the global solution in the large optimization space. This method is tested on only an 

artificial puzzle set, and the boundary information is not used because the puzzle pieces 

are assumed rectangle. The pixel color values are directly used to generate fitness 

function. This usage without any feature extraction is not proper in real 

implementations. 

In the thesis [27], they work on extracting the boundary points around the edge of 

the piece into an ordered list known as chain code; identifying straight edges in the 

boundary so they can be ignored when matching occurs; finding the internal angle 

around each boundary point; comparing the angles and colors of each boundary point to 

other similarly rendered pieces to try and find a match. The color information near the 
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boundary is also directly used in this study. The assembly algorithm does not handle the 

ambiguities and is also tested on only standard and small sets of jigsaw puzzle pieces. 

In another and interesting paper [5], it is first stuck to the document reconstruction 

problem where the pieces are strips. Later, the ideas generalize to jigsaw and the other 

shapes. To judge the fit between two strips, they run them through a fitness function to 

compute a score. They coded pieces so that the score indicates the degree of mismatch. 

Thus, the higher the score, the worse the match is between the pieces. The ideal 

matching function would evaluate to zero for any two strips that were supposed to be 

adjacent and to infinity for all other pairs.  

The principle at work is coherence. In this context, coherence says that any given 

column of pixels in an image is going to be a lot like the columns immediately to its left 

and right. After all, if the images were random noise (that is, just black and white dots 

with no features), then matching up strips would be hopeless because statistically no 

pairs of strips would be any better that other pair. 

To reconstruct the image, it uses an assembly algorithm. It replaces the idea of a 

strip’s side with the color values running around the perimeter of one side of the piece. 

This approach is to look for edges that are the same color, within some threshold. If an 

edge is a single color (or almost a single color) then it does not take part in the matching 

process. But if not, it influences the scoring, sorting and clustering processes. 

In [28], Hopfield neural networks are used to perform the matching of outer 

contours of the puzzle pieces. The dominant points extracted from the boundary of 

pieces are defined. Then, all jigsaw puzzle pieces are described using attributed 

relational graph representation. A number of unary vertex attributes and binary edge 

attributes such as curvature values at break points, curve-wise distance between break 

points, angle between two adjacent dominant points, etc. are extracted to be represented 

in attributed relational graph structure. After applying the developed method, the global 

solution of puzzle is not examined and defined as another research. The texture 

information is not used in the research. 

One of the latest papers [3], proposed to solve standard jigsaw puzzles works with 

the larger set of puzzle pieces as many as 200. As in the work of Wolfson et al. [21], 

algorithm in [3] first assembles the border pieces using a heuristic for the Traveling 

Salesman Problem. They depart from other works in how we place the interior pieces. 

Because they do not assume that pieces have well-defined sides, they require a more 

global matching technique. At all times, they maintain an optimized planar embedding 
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of the current partial solution. They fit a piece into a pocket not by independent pairwise 

fitting with top and side neighbors as in [21], but by fitting it into the embedded partial 

solution, thus allowing for any number of neighbors around the pocket. They reported 

that  

“Wolfson et al. [21] rejected global embedding because of the possibility 

of accumulated errors, but we found to the contrary that global embedding gave 

more accurate results than pairwise matching, enabling a greedy placement 

algorithm—without any backtracking or branch-and-bound—to solve the jigsaw 

puzzles. (For more complicated puzzles, we could easily add backtracking or 

branch-and-bound.)” 

They define fiducial points (specifically the centers of ellipses fit to the indents 

and outdents) to find the best translation and rotation of a piece to match a pocket. The 

fiducial points approach, however, worked quite well and is significantly faster, because 

it does not need to test all subcurve or substring starting points. Another advantage of 

fiducial points is that they are more robust to scanning noise than some of the other 

techniques.  

They fill pockets in highest confidence first order position an eligible pocket if it 

has at least two primary neighbors that have already been placed. Initially, when only 

the border pieces have been placed, there are four eligible pockets; later there may be 

quite a few eligible pockets. At each step they fill the eligible pocket that has the highest 

ratio of the score of best fitting piece to the second best fitting piece. This order turned 

out to be more reliable than the best-first order. After fitting a piece, they reoptimize the 

global embedding of all pieces. They do this by minimizing the squares of the distances 

between corresponding points on neighboring pieces, for all neighboring pieces at once. 

Global optimization distributes the matching inconsistencies throughout the partial 

solution, and in experiments outperformed a smoothing procedure that moved one piece 

at a time. This work also contributes to the standard jigsaw puzzle solution. The main 

contribution in the study is that the numbers of the pieces in the puzzle used in 

experiments are quite high with respect to the other studies. The textural information is 

also not considered in the study. 

In [29], jigsaw puzzle pieces are represented by their medial axis from which 

certain features are detected. The most significant is the isthmus or neck, which of the 

isthmus is then used when comparing puzzle pieces and only male/female pairings 
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whose widths are very close to the same are considered, thus greatly reducing the search 

space.  

The jigsaw puzzle problem is also addressed briefly in [30], a paper which is 

mainly concerned with creating a canonical representation of shape for object 

recognition. This representation is based on shape concavities and is invariant to affine 

and planar transforms and robust against occlusion. However, its precision is limited 

and most of these features are not currently needed for puzzle solving because a 

properly scaled, un-occluded image of each piece can always be obtained.  

In [31], the boundary curve of each piece is divided into four subcurves 

corresponding to the four sides of the puzzle piece and these curves are later used in the 

matching procedure. This division is based on finding four, so called breakpoints on the 

boundary curve of each piece. Each curve is sampled at equal arc-length and 

represented by the sequences of coordinates at its sample points. Pieces having an 

almost straight section between adjacent corners are identified as frame pieces. Then a 

local curve matching procedure is applied. For each pair of two different puzzle piece 

boundary subcurves, the subcurves are matched using a matching algorithm like in [21]. 

Also, as mentioned before, the common boundary of jigsaw puzzle pieces tend to be 

delimited by sharp corner and feature interlocking curves, which greatly reduce as the 

number of possible matching configurations. However, none of these specific 

constraints generally apply to puzzles that consist of fractured natural materials and thus 

cannot be used for general assembly problem.  

In [9], points on a curve are extracted at regular intervals of distance from the 

central critical point. Using polar coordinates, these points are represented only by their 

angle term. This low cost representation for curves that allows sequences of similar 

features to be found quickly is another method called feature-based matching algorithm. 

A best first technique is used in which the puzzle is assembled using the best local 

pairwise match at each step. However, this method does not work for a puzzle with 

larger set, where the introduction of ambiguous matches will almost always result in an 

incorrect configuration.  
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2.3 Curve and Surface Matching Techniques 

 

Curve matching methods based on an elastic model has been presented in [32]. 

These techniques, provide highly accurate matching at a very fine scale, but they cost 

computationally too much to be used directly. As mention before, [11][33][34] papers 

that also deal with puzzles composed of natural materials present curve matching using 

an elastic model somewhat similar to [32].  

In the paper [35], they present an outline-based recognition method, which relies 

on finding the optimal correspondence between 2D outline (or curves) by comparing 

their intrinsic properties, namely length and curvature. The basic premise of approach is 

that the goodness of the optimal correspondence can be expressed as the sum of the 

goodness of matching subsequences. Then, the problem of finding the optimal 

correspondence is applied to an efficient dynamic-programming algorithm as an energy 

minimization. They also introduce the notion of an alignment curve to ensure a 

symmetric treatment of the two curves being matched.  

In [36], the algorithm proposes to solve the (partial) surface matching and the 

(partial) volume-matching problem, either with volume overlap or with volume 

complementary. First, they associate with each point of the two sets a footprint. This 

value should be invariant under rotations and translations, and should be “descriptive,” 

in the sense that points of the two sets whose local neighborhoods admit a good match 

should have similar footprints, whereas points whose local neighborhoods do not fit 

well together should have significantly differing footprints. Next, they define a scoring 

function that measures the “goodness” of a specific rotation (of one set relative to the 

other), and is invariant of the relative translation. In an ideal setting, this function has a 

global maximum at the correct rotation and does not have any other local maxima. This 

enables to advance from any rotation toward the correct rotation, by invoking the 

scoring function iteratively, and by deciding locally in which direction to advance. 

Finally, they compute the best translation associated with the final rotation. The various 

applications of algorithm mainly differ in the definition and computation of the 

footprints. Needless to say, the choice of footprints is a crucial factor that influences the 

success of this method. The main contribution of this study is the new observation that 

the density of votes in translation space can be used for computing the correct relative 

rotation of a model and an image. 
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The paper [8] approaches the problem of 2D and 3D puzzle solving by matching 

the geometric features of puzzle pieces three at a time reconstruction. First, they define 

an affinity measure for a pair of pieces in two stages, one based on a coarse-scale 

representation of curves and one based on fine-scale elastic curve matching method. 

Second, triples arising from generic junctions are formed from this rank-ordered list of 

pairs. The idea is that generic breaks in puzzles only produce T and Y junctions, thus 

motivating to merge three pieces at a time in this process. The puzzle is solved by a 

recursive grouping of triples using a best first search strategy, with backtracking in the 

case of overlapping pieces. Initially, the complete list of contour of pieces enters to 

search algorithm. If there are more than two pieces in the list, all local triple groups are 

generated by using local shape analysis algorithm. Then, all local triple groups are 

ordered such that the most likely local triple will be checked first. Each local group will 

be tested to see if it can construct a global solution. If it cannot, it backtracks. They also 

generalize aspects of this approach to matching of 3D pieces. The main difficulty in 

generalizing the curve matching process to space curves is that it requires the robust 

computation of curvature and torsion, involving up to second and third order 

derivatives, respectively.  

In [7], two algorithms to find the longest common subcurve of two 2D curves are 

presented. These algorithms are based on the conversion of the curves into shape 

signature strings and the application of string matching techniques to find long 

matching substrings. Then direct curve matching is applied to the corresponding 

‘candidate’ subcurves to find the longest matching subcurve. Here, all possible 

combinations of sub-boundaries, which have a complexity equivalent to the number of 

samples along each contour, are considered. This complexity is reduced in one approach 

by converting each contour into a sequence of feature strings based on a polygon 

approximation and using geometric hashing to compare sub-sequences. The main 

drawback of the method is that they cannot provide global information such as region 

overlap and they are not enough to distinguish between several close ambiguous 

matchings. Thus, the search space for large puzzle sets becomes larger. 

In the work [10], 3D surface piece objects are represented by their boundary 

curves. These closed curves are parameterized by their curvature and torsion scalars, 

which are calculated from the discrete 3D boundary curve data and quadratically added 

to form a circular string of a single value. For each pair of the representation, a 

similarity matrix with elements defined as the Euclidian distance between the creature 
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vectors is constructed. The matrix elements, which are less than a noise threshold, are 

considered as matching points. By processing of the similarity matrix, all matching 

fragments are determined. Among sequences of such matching points the longest 

sequence of matching fragments will be determined in the noise tolerant manner. 

Considering the start and end information of the fragments the longest non-overlapping 

sequence of fragments is determined. Then, the algorithm joins the matching portions 

and removes the parts of the joints. So, a single piece is obtained from two fragments. 

These operations continue until one piece is left. But, in many of those real world 

problems a perfect match between two subjects is not possible. Environmental aging 

effects, imperfections in digitization environment, the accumulation of systematic errors 

in numerical operations all contribute to this imperfection. Therefore, fault tolerant 

partial matching is required.  

A multi-scale technique is used in a series of studies [11][33][34], where the 

contours are first re-sampled at a very coarse scale, so that an exhaustive search is 

manageable. From those, only the best matches are kept and matched again at 

recursively finer scales. These methods are able to handle our more general type of 

puzzle. The detailed examination of these studies will be reported below. The semi-

automated search using pairwise information are suggested and performed in this 

technique. 

In paper [11], an algorithm for reassembling one or more unknown objects that 

have been broken or torn into a large number N of irregular fragments is described. The 

algorithm works by comparing the curvature-encoded fragment outlines, using a 

modified dynamic programming sequence-matching algorithm. By comparing the 

outlines at progressively increasing scales of resolution, they manage to reduce the cost 

of the search form O(N2L2) (where L is the mean number of samples per fragment) to 

about O(N2L); which, in principle, allows the method to be used for problems of 

practical size (N=103 to 105 fragments, L=103 to 104 samples).  

Their experimental results demonstrate the possibility of automatically identifying 

adjacent fragments by matching the shapes of their outlines. Those results also validate 

the basic premise of the multi-scale matching method, namely that the false candidates 

are quickly eliminated, as they are re-tested with increasing resolution. Their methods 

depend on the randomness of the fracture lines, and therefore work best for granulated 

material like unglazed ceramics, stone, stucco, etc. 
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In spite of the large estimated speedup provided by the multi-scale method, the 

algorithm is still somewhat too expensive for practical use. Further speedup will require 

improving the algorithm itself. In particular, by using geometric hashing techniques, it 

would be possible to reduce O(N2) term something closer to O(N log N). 

The study [34] describes a method to measure the average amount of information 

contained in the shape of a fracture line of a given length. This parameter tells us how 

many false matches we can expect to find for that fracture among a set of fragments. In 

particular, the numbers that are obtained for ceramic fragments indicate that fragment 

outline comparison should give useful results even for large instances. Their fragment 

matching algorithms are specialized for objects with a smooth and locally flat surface, 

such as tiles, tablets, large vases, frescoes, etc. The algorithms’ input consists of the 

digitized fragment contours or outlines, modeled as a set of plane curves. They assume 

that two fragments, adjacent in the original object were separated by an ideal fracture 

line of zero thickness.  

Before they apply the tools of information theory to this problem, they turn each 

curve into a signal real function of some real parameter t. A well-known rotation-

invariant representation of a curve is the graph of its curvature k(t) as a function of its 

arc-length t measured from an arbitrary reference point.  

In [33], an approach based on information extracted from fragment outlines that is 

used to compute the mismatch between pairs of pieces of contour is represented. They 

use the technique of dynamic programming. In order to asymptotically reduce the cost 

of matching, they use multiple scale techniques after filtering and resampling the 

fragment outlines at several different scales. They look for initial matchings at the 

coarsest possible scale. They then repeatedly select the most promising pairs, and re-

match them at the next finer scale of detail. In the end, they are left with a small set of 

fragment pairs that are most likely to be adjacent in the original object. 

They assume that the fragmented objects have a well-defined smooth surface. 

This surface is divided into two or more parts, the ideal fragments that are separated by 

ideal fracture lines, irregular curves with zero width. Two fragments are said to be 

adjacent if they share a fracture line. The fractures also split the original outline of the 

surface into one or more borderlines.  

The fracture lines can be viewed as a graph G drawn over the object’s surface, 

which they call the fracture network. (Figure 2.2) The point where three or more lines 
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(fracture or boundary) meet is called ideal corner. The boundary of an ideal fragment is 

an ideal contour. It is the concatenation of one or more fracture and borderlines. 

 
(a)            (b) 

Figure 2.2 : (a) The ideal fracture network and (b) observed outlines 

In [37], two different approaches are used for fragment matching. One is curve 

matching, the other is to compare whole surfaces or volumes depending on the nature of 

the broken objects. A unified method that combines curve-matching techniques with a 

surface matching algorithm to estimate the positioning and respective matching error for 

joining of 3D fragmented objects. It is reported that combining both aspects of fragment 

matching, essentially eliminates most of the ambiguities present in each one of the 

matching problem categories and helps provide more accurate results with low 

computational cost.  

First, the fragment meshes are segmented into crude sides and the potentially 

fractured ones are detected, marked accordingly and stored. At a second stage, 

potentially fractured sides are processed in pairs, in order to define the geometric 

transformation that joins the two surfaces in an optimal way. The fractured facet 

boundary information guides the search for complementary matching between the two 

fragments but is not sufficient to determine a correct match alone. Therefore, it is used 

to constrain a local search using the surface similarity criterion. Then, a curve-

constrained matching is performed. Finally, a global optimization scheme is employed 

to arrange the fragment collection in a set of reconstructed objects, based on the 

pairwise matching errors, and the corresponding geometrical transformations are 

applied hierarchically to arrange the fragments to the correct pose.  
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2.4 Literature about Approaches for Solving of Archaeological Puzzle 

 

In the studies [14][15][16][38][39], we find many contributions on axially 

symmetric pot assembly. In archaeological sites, the findings are mostly the pots made 

on a wheel. Thus, the reconstruction of the pots from the hundreds of sherds found at an 

excavation site is one of the most important and unsolved problems. An approach is 

presented to the automatic estimation of mathematical models of such pots from 3D 

measurements of sherds. A Bayesian approach is formulated beginning with a 

description of the complete set of geometric parameters that determine the distribution 

of the sherd measurement data. The matching of fragments and aligning them 

geometrically into configurations is based on matching break-curves (curves on a pot 

surface separating fragments), the estimated axis and profile curve pairs for individual 

fragments and configurations of fragments, and a number of features of groups of break-

curves. Pot assembly is a bottom-up maximum likelihood performance-based search. 

Experiments are illustrated on pots, which were broken for the purpose, and on sherds 

from an archaeological dig located in Petra, Jordan. The performance measure can also 

be an aposteriori probability, and many other types of information can be included, e.g., 

pot wall thickness, surface color, patterns on the surface, etc. This can also be viewed as 

the problem of learning a geometric object from an unorganized set of free-form 

fragments of the object and of clutter, or as a problem of perceptual grouping.  

In this paper, a Bayesian approach has been outlined for the estimation of 

mathematical representations for pots based on sherds found at archaeology sites. The 

key algorithms for implementing the approach have been developed, and experimental 

results from these algorithms to real sherd 3D data have been presented and discussed. 

 
(a)           (b)            (c) 

Figure 2.3 : (a)A sample axially symmetric pot (b) A correctly assembled pot and 
(c) its profile 
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The framework discussed in this paper is for estimating arbitrary a priori unknown 

axially symmetric pot models. Hence, it is unsupervised pot geometry learning from 

sherd data. If, instead, we know a priori that the pot sherds present are not arbitrary but 

rather that each belongs to one of a group of 10 known pot shapes, the problem is 

computationally much easier because the sherd alignment problem is then more of a pot 

shape-recognition problem and less of a shape-estimation problem. 

The framework presented can accommodate additional geometric and pattern 

information, which should result in doing the pot estimation faster, or with fewer 

sherds, or estimating models for more complex objects. 

A complete system which automatically estimates complete mathematical models 

for 3D ceramic pots given 3D measurements of their fragments is described in the thesis 

of Andrew Willis [40] as below. This approach is defined as solutions of four problems:  

1. An algorithm for accurately estimating the surface geometry of an individual 

sherd  

2. An algorithm for accurately aligning assemblies of sherds, called configurations  

3. A Bayesian performance measure for sherd configurations 

4. A performance-driven search algorithm 

Estimation of the outer surface geometry is implemented as maximum likelihood 

estimation of the axially symmetric surface parameters given the measured sherd data. 

Sherd configurations are aligned along break-point segments, which lie on the boundary 

of the sherd's outer surface. An algorithm is proposed for accurately aligning 

configurations of N sherds given a hypothesized set of correspondences between the 

sherd break-point segments. This is also implemented as maximum likelihood 

estimation where the estimated parameters are the N-1 sherd alignment transformations, 

the matched break-point segment parameters, and the global configuration surface 

parameters. A common Bayesian framework provides a performance measure for sherd 

configurations which is the log of the probability of the measured sherd data given the 

computed configuration maximum likelihood estimation, referred to as the 

configuration cost. The search mechanism is of the nature of a uniform cost search. The 

assembly process starts with a fast clustering scheme, which approximates the 

maximum likelihood estimation solution for all sherd pairs. More accurate maximum 

likelihood estimation values based on all parameters are computed when sherd pairs are 

merged with other sherd configurations. Merging takes place in order of constant 

probability starting at the most probable configuration. 
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Figure 2.4 : A result from the Willis’s thesis represents a correctly assembled pot 

of 13 sherds where only the 10 matched sherds shown were available. 

One of the latest works about the archaeological assembly problem is presented in 

[17]. An accurate matching algorithm for the comparison of digital images implemented 

by discrete Circular Harmonic expansions based on sampling theory is proposed. The 

algorithm and its performance for reassembling fragmented digital images are tested on 

the art fresco of the Italian Renaissance, destroyed by bombing during the Second 

World War. The main assumption in their study is that there exists fairly good quality of 

black and white photographs of the original surface of the archaeological site from 1900 

and 1920, because the available pieces from the fresco demonstrate the lack of 

continuous fragments and makes it extremely improbable that any reconstruction will be 

successful using methods based on the outline shape of the pieces. The accuracy and the 

robustness of the proposed procedure are achieved by exploiting the independent 

(orthogonal) information given by the Circular Short Time Fourier Transform (CSTFT) 

at different angular and radial frequencies. The CSTFT is here implemented by discrete 

scalar product of the digital image with respect to location shifted and sampled 

compactly supported Circular Harmonic (CH) functions, selected among those affected 

by minimal aliasing. The computational efficiency of the algorithm is given by the 

combined use of the correlation implemented by fast Fourier transforms for the 

location/position detection, and of a tricky implicit and fast computation of the mutual 

angle by exploiting self-steerability properties of CH functions. It is reported that “up to 

90% of the fragments are detected in the first 20 best positions the algorithm returns out 

of more than 7 millions possible. The implementation of combined redundant 
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computations and registration methods improves further this ratio, realizing in most of 

the cases an almost completely automatic detection of the fragments”[17]. 

 
Figure 2.5 : The picture is taken from the study [17]. It is shown that a fragment is 
detected and overlapped the corresponding part of the old gray fresco photo dated 

to 1920. 

Another fragment assembly problem attempting to overcome the limitations of 

many previous techniques has been worked in thesis [41]. Like most previous ones [32], 

their technique consists of two distinct stages. These are to calculate local pairwise 

affinity and to search for a globally optimal arrangement of fragments. To compute 

pairwise affinity, they first address the problem of specifying matching sub-boundaries. 

They rely on corners to define one end of the sub-boundary instead of using the 

fragment corners to partition the boundary into matching sub-boundaries. To find the 

other end, they use a novel normalized energy in elastic curve-matching [32] function in 

order to determine how far along the sub-boundaries similarity exists. This defines a 

finite number of adjacency candidates, which is dependent on the number of corners on 

the respective fragments. These adjacency candidates can then be evaluated by standard 

curve-matching techniques. Then, they employ a multi scale technique similar to the 

one described in [11][33][34]. 
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To find a globally optimal arrangement of fragments, they use a best-first strategy, 

but instead of only using local pairwise information, they also evaluate matches based 

on their resulting contribution to the global confidence. At each step in process, they 

first use the fragment triplet representation to generate list of possible choices for the 

selection and arrangement of the next fragment. Since backtracking is expensive, they 

consider multiple solutions simultaneously, maintaining a list of possible arrangements 

of fragments at each stage. This allows errors to occur without causing the failure of the 

search. 

Another chapter in [41] introduces some techniques regarding the use of color 

information from a fragments image to enhance the pairwise relations. The usage of the 

textural information is not sufficiently studied in the puzzle problem (especially in the 

archeological field), as we introduced in the first chapter. Thus, this is an important 

work in archeological fragment reassembly. The main idea is that a new type of curve 

matching alignment based on elastic curve matching technique is applied to solve 

fragment assembly, but instead of trying to minimize the elastic energy between two 

curves, optimization of the continuation of intensity and texture across a fracture is 

used. 

Another paper [42] related to archeological fragment assembly presents 

techniques regarding the classification and reconstruction of ceramics based on the 

profile, which is the cross-section of the fragment in the direction of the rotational axis 

of symmetry, and can be represented by a closed curve in the plane. This paper 

compares and combines several methods for the interpolation and approximation of a 

closed curve by B-splines in the plane. The closed curve, representing the profile, is 

divided into several parts for which the most accurate method is selected. All the 

interpolation and approximation methods are compared on the provided data with 

respect to the achieved precision and complexity of the curve description. The main 

contribution of this work is to be able to demonstrate which combination of these 

methods gives the best representation of the reconstructed profile from the data under 

the smallest possible error and the simplest possible spline representation. Similar 

methods are used in other studies [18][43][44].  

An algorithm for the automatic construction of a 3D model of archeological 

vessels is presented in [45][46]. The importance of the determination of the exact 

volume of arbitrary vessels in archeology motivates this study, since the information 

about manufacturer and the usage of vessel is valuable. The object’s silhouette is the 
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only which is extracted from an input image. Images are acquired by rotating the object 

on a turntable in front of a stationary camera. The algorithm uses an octree 

representation of the model, and builds this model incrementally, by performing limited 

processing of all input images for each level of the octree. This work is not directly 

related to assembly of pieces. But the development in acquisition systems is important, 

because the solution of the reconstruction problem of fragments (especially in 

archaeology) usually deals with the acquisition of 3D objects. Also, the work [12] aims 

to digitize the shape and the color of large fragile objects under non-laboratory 

conditions. Their system employs the laser triangular rangefinders, laser time-of-flight 

rangefinders, digital still cameras, and a suite of software for acquiring, aligning, 

merging and viewing scanned data. As a demonstration of this system, they digitized 10 

statues by Michelangelo, including the well-known figure of David, two building 

interiors, and all 1,163 extant fragments of the Forma Urbis Romae, a giant marble map 

of ancient Rome. 

The Forma Urbis Romae, also known as the Severan Marble Plan, is a giant 

marble map of ancient Rome. Measuring 60 feet wide by 45 feet high and dating back 

to the reign of Septimius Severus (circa 200 A.D.), it is probably the single most 

important document on ancient Roman topography. Unfortunately, the map lies in 

fragments - 1,186 of them, and not all the fragments still exist. Piecing this jigsaw 

puzzle together has also been one of the great- unsolved problems in this situation [12]. 

The fragments of the Forma Urbis [47] present many clues to the would-be puzzle 

solver: the pattern of surface incisions, the 2D (and 3D) shapes of the border surfaces, 

the thickness and physical characteristics of the fragments, the direction of marble 

veining, matches to excavations in the modern city, and so on. Unfortunately, finding 

new fits among the fragments is difficult because they are large, heavy, and numerous. 

It is believed that the best hope for piecing the map together lies in using computer 

shape matching algorithms to search for matches among the fractured side surfaces of 

the fragments. In order to test this idea, it is needed 3D geometric models of every 

fragment of the map. To obtain this data, during June 1999, a team of faculty and 

students from Stanford University spent a month in Rome digitizing the shape and 

surface appearance of every known fragment of the map using laser scanners and digital 

color cameras. Their raw data consists of 8 billion polygons and 6 thousand color 

images, occupying 40 gigabytes.  
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The goals of the Digital Forma Urbis Romae Project are threefold: to assemble the 

raw range and color data into a set of 3D (polygon mesh) models and high-resolution 

(mosaiced) photographs - one for each of the 1,186 fragments of the map, to develop 

new shape matching algorithms that are suitable for finding fits between 3D models 

whose surfaces are defined by polygon meshes, and to use these algorithms to try 

solving the puzzle of the Forma Urbis Romae. Whether or not they succeed in solving 

the puzzle, one of the tangible results of this project will be a web-accessible relational 

database giving descriptions and bibliographic information about each fragment and 

including links to our 3D models and photographs. Their long-term plan is to make the 

entire database (1,186 fragments) freely available to the archeological (and computer 

graphics) research communities, educators, museum curators, and the general public. 

 
Figure 2.6 : A photograph of fragment of the Forma Urbis Romae (Severan 
Marble Plan). This fragment is roughly 3 feet across, which is 640 feet on the 
ground, and it weighs about 150 pounds. Each incised line is a wall; thus, 
parallelograms with gaps in their borders are rooms with doors. The small V's 
in narrow rooms are staircases, and sequences of round pits are porticos 
supported by columns [47]. 

In an article [13], they present a complete method – encapsulated in their Virtual 

Archaeologist system – for the full reconstruction of archaeological finds from 3D 

scanned fragments. In Virtual Archaeologist, they regard the reconstruction problem 

from a general, geometric point of view, relying on the broken surface morphology to 

determine correct matches between fragments. This approach does not require specific 

object information, but is versatile enough to exploit any other data available.  

This program detects candidate fractured faces, matches fragments one by one, 

and assembles (clusters) fragments into complete or partially complete entities. The 

only input data this system requires are the polygonal meshes with 3D scanner or 
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digitizer. Modeling or curve interpolation may be required in cases where only 

blueprints of cut sections of the fragments are available as part as the standard archiving 

procedure. This system does not require human intervention, but users can clarify the 

reconstruction by interactively fine-tuning the clustering and poses of the fragments. 

The general method proposed in another paper [48] from the same study matches 

and glues fragments or parts belonging to an object, one against one, using only their 

surface geometry, assuming no information about the fragments’ origin, data set 

sampling distribution or the final model to be reconstructed. The basic concept in their 

method is that, given two 3D models, the best fit is likely to occur at their relative pose, 

which minimizes the point-by-point distance between the mutually visible faces of the 

objects. For this reason, they introduce and calculate an error measure of the 

complementary matching between two object parts at a given relative pose, based on 

this point-by-point distance. 

This matching error is minimized by employing a standard global optimization 

scheme to determine the relative positioning of the two fragments that corresponds to 

their best complementary fit. During the automated assembly, it is assumed that the two 

object parts can be rigidly attached to one another without having to penetrate each 

other’s surface. For instance, the method cannot be used to connect two links of a chain. 

 
Figure 2.7 : The matching of the fractured faces. 

In [49], a strategy for detecting the joint among two potsherds is proposed. 

Similar to the other studies, the main idea in this method is that the most similar section 

between two contours must be detected by partial verification. Their implementations 

consist of five processes: the contour segmentation process, the segment description 

process, the segment verification process, the candidate extraction process, and the 

candidate verification process.  
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The color information is used in the paper [50], unlike the previous methods. 

Here, the color information does not indicate the color values of the pictorial data. The 

color specification technique in [50] exploits the fact that the spectral reflectance of 

materials like archaeological fragments varies slowly in the visible. They present an 

approach for accurate colorimetric information on fragments, performed on digital 

images containing archaeological fragments under different illuminants. A characteristic 

vector analysis of the reference reflectance leads to an algorithm that computes the 

calorimetrically accurate reflectance out of a video digitizing system. 

A EU funded project introduces the 3D Measurement and Virtual Reconstruction 

of Ancient Lost Worlds of Europe system (3D MURALE) [51]. It consists of a set of 

tools for recording, reconstructing, encoding, visualizing and database 

searching/querying that operate on buildings, building parts, statues, statue parts, 

pottery, stratigraphy, terrain geometry and texture and material texture. The tools are 

loosely linked together by a common database on which they all have the facility to 

store and access data. The paper describes the overall architecture of the 3D MURALE 

system and then briefly describes the functionality of the tools provided by the project. 

The paper compares the multimedia studio architecture adopted in this project with 

other multimedia studio architectures. 

Recording tools are being developed for measuring terrain, stratigraphy, 

buildings, building blocks, pottery, pottery sherds and statues on the archaeological site. 

The results of these measurements are being stored in the 3D-MURALE database 

system. Reconstruction systems are using a 3D graphics tool to combine the individual 

measured components and reconstruct building elements and buildings from building 

blocks, pottery from pottery sherds, statues from statue elements and stratigraphy from 

all finds within the excavation. 

There are also some applications and studies in virtual reality and computer 

graphics to reconstruct the pieces using human interaction. First, an image of 3D shape 

and the surface texture is acquired. Then, an interface for connecting broken fragments 

in virtual space is built as in [52], so that the original model can be visually recovered.  
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Figure 2.8 : The 3D-MURALE system consists of the Recording, Reconstruction, 

Database and Visualization components 
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Chapter 3 

3 EXPANDING PIECES 

The essential of matching two or more pieces in an assembly problem is that 

common features of neighbors are more strongly related than the others. We proposed a 

pictorial approach based on textural features. The first step is to expand each piece 

outwards by predicting the pictorial information of outer space. The aim of expansion is 

to expose relations of the fragments based on textural features. Inpainting and texture 

synthesis are two main fields in the literature related to this work. 

 

3.1 Introduction 

 

Image inpainting refers to the process of filling-in the missing areas or changing 

an image in a non-noticeable way by an observer. It is usually applied to the task of 

restoring photographs, films or paintings, and removing of occlusions, such as subtitles, 

stamps and text. This ancient practice is used in artwork restoration. However, after the 

notion digital inpainting is first introduced in [53], it is applied to many fields in image 

processing, such as image interpolation, zooming [54], and error concealment of 

wireless image transmission [55][77].  

    
Figure 3.1 : Restoration of a color image by the use of inpainting and removal of 

superimposed text. 

 33



The first work [53] in inpainting used the series of partial differential equations to 

mathematically model this process. These techniques determine how the linear 

structures (called isophotes) propagate into the region to be inpainted. Isophote 

directions are obtained along the inpainting contour by computing the vector 

perpendicular to the gradient, thus the information is propagated while preserving 

edges. The intensities of pixels are updated by estimating the variation in color 

smoothness approximated by a discrete laplacian. This variation is propagated along the 

mentioned isophote direction. Then, the algorithm smoothes the inpainting region by 

anisotropic diffusion iterations used to minimize the noise effects. Anisotropic diffusion 

also preserves boundaries of the inpainted region, and it prevents isophote lines inside 

the region from crossing. Image inpainting issue is addressed by similar methods in 

[56][57][58][59][60][61]. 

The same topic is studied for 3D volumetric data in [62]. This work addresses the 

problem of hole filling via isotropic diffusion of volumetric data (that is, iterative 

Gaussian convolution of some distance function to the known data). The approach 

proposed by the authors addresses holes with complicated topology, a task very difficult 

with mesh representations. In the paper, a literature review on the subject about the 

nature of the holes in scanning statues is described. Another work [63], inspired by [62], 

presents an alternative for the same task. In contrast with [62], they use a system of 

coupled anisotropic (geometric) partial differential equations designed to smoothly 

continue the isophotes of the embedding function, and therefore the surface of interest 

(as the zero level isophotes). 

Other inpainting approaches are the Total Variational (TV)[54] and Curvature-

Drive Diffusion models (CCD)[64]. TV uses an euler-lagrange equation to minimize 

total variation and employs anisotropic diffusion. Such a method handles noise well, but 

does not complete broken edges. CCD is based on the TV algorithm and geometric 

information of isophotes. The drawback of these methods is the blurring of inpainted 

image introduced by the diffusion process in the larger filling regions. The abstracts of 

the papers using the similar methods such as [65][66][67] are collected in the web page 

[68]. 

Texture synthesis is an active research topic in computer vision, which has broad 

applications such as foreground removal, lossy image compression, and texture 

generation. The problem of texture synthesis is to fill large image regions with a sample 

texture. This method, which replicates consistent textures, can be used in extension of 
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images, but it has problems to fill in real image patterns. Linear structures such as a 

drawing of a line or crossing regions of different textures usually include high 

frequency components, which prevent the generation of natural images by this 

approach. The second problem in these techniques is that boundaries between image 

regions are a complex product of mutual influences between different textures. In 

contrast to the two dimensional nature of pure textures, these boundaries form what 

might be considered more one dimensional, or linear, image structures. Another 

problem of these algorithms is its tendency for some textures to occasionally “slip” into 

a wrong part of the search space and start growing garbage or get locked onto one place 

in the sample image and produce verbatim copies of the original. These problems occur 

when the texture sample contains too many different types of texels (or the same texels 

but differently illuminated) making it hard to find close matches for the neighborhood 

context window. Providing a bigger sample image can usually eliminate these problems. 

    
Figure 3.2 : (left) A seed image and (right) synthesized image with texture 

synthesis methods. 

In paper [69], a non-parametric method for texture synthesis is proposed. The 

texture synthesis process grows a new image outward from an initial seed, one pixel at a 

time. A Markov random field model is assumed, and the conditional distribution of a 

pixel given all its neighbors synthesized so far is estimated by querying the sample 

image and finding all similar neighborhoods. The degree of randomness is controlled by 

a single perceptually intuitive parameter. The method aims at preserving as much local 

structure as possible and produces good results for a wide variety of synthetic and real-

world textures. 

In the study [70], a new method for image completion that interleaves a smooth 

approximation with detail completion by example fragments is introduced. The 
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unknown region and fills in the image by adaptive fragments is iteratively 

approximated. Then, a composition of fragments completes the image under 

combination of spatial transformations. The completion process can be regarded as a 

“push-background” process, in contrast to the “pull-foreground” process associated with 

image matting. This approach requires a relevant training set and a degree of self-

similarity within the input image. It is an image-based 2D method that does not 

incorporate high level information and can therefore produce unnatural looking 

completions. 

An interesting algorithm for the parallel synthesis of composite textures is 

described in [71]. A special-purpose solution for synthesizing the interface between two 

“knitted” textures is devised in this work.  

To overcome the drawbacks of inpainting and texture synthesis algorithms, the 

method presented here combines both approaches. There are very recent researches 

along similar lines. Proposed algorithm in [72] first decomposes the image into the sum 

of two components with different basic characteristics [73], and then reconstructs each 

one of these components separately with inpainting and texture synthesis. Another 

approach by Harrison [74] uses exemplar-based synthesis for object removal process. 

This approach turns out to perform surprisingly well, making attempts to add 

refinements using isophote flow irrelevant in many cases. The method assigns pixels 

information theoretic constraints based upon how much additional information 

neighboring pixels yield in predicting it (along with some assumed distribution of 

course). This categorization into neighboring pixels that constrain the central pixel turns 

out to account for much of the information flow techniques seem to provide already 

(although not always). Sampling and copying pixels from the source generate the output 

image in this method. Ordering in which pixels are added to output image is also 

described.  

Another method [75] that our algorithm uses the same overall approach also 

combines the inpainting and texture synthesis, but the algorithm differs in the 

implementation. We extend the image outwards, whereas the mentioned method is used 

to complete inner image portions. It is obvious that the image can be completed more 

accurately than can be extended, because the inner parts are surrounded by usable 

information.  
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3.2 Theory 

 

Our extension implementation is not only a filling-in process as other 

applications, but also a prediction method. We will predict the texture of a neighbor 

piece while the current piece is being extended. Therefore, we define the extension of an 

image outwards as prediction, which was not used before in the inpainting literature. 

We now proceed with the details of the prediction algorithm. 

 
Figure 3.3 : The notations: Original image, with the target region, its contour, and 

the source region 

In this section, we will use some symbols that define the images, contours or 

variables. For ease of comparison, we try to use and adapt notation to that used in the 

inpainting literature. The source region, Φ, is an acquired image and remains fixed 

throughout the algorithm.  This region provides the samples used in the filling process. 

A target band outwards from the source region is indicated by Ω. This region is being 

filled during the algorithm runs. This target band represents the extension region of the 

piece. The border between Φ and Ω is indicated by δΩ. This border evolves outward as 

the inpainting algorithm progresses.  

The inpainting algorithm consists of three main steps. These steps are iterated 

until whole target region or band has been filled.  First step is to compute the priority, P, 

which determines the order in which they are filled.  

The quality of the output image is highly influenced by the order in which the 

filling process proceeds. In the work [75], it is described and listed a number of desired 

properties of the “ideal” filling algorithm. 

A comparison between the standard concentric layer filling (onion-peel) and 

desired filling behavior is illustrated in Figure 3.4. This figure is taken directly from the 

technical report [75]. Figures 3.4-b,c,d show the progressive filling of a concave target 
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region via an anti clockwise onion-peel strategy. As it can be observed, this ordering of 

the filled patches produces the horizontal boundary between the background image 

regions to be unexpectedly reconstructed as a curve.  

 
Figure 3.4 : The importance of the filling order when dealing with concave target 

regions. 

A better filling algorithm would be one that gives higher priority of synthesis to 

those regions of the target area which lie on the continuation of image structures, as 

shown in Figures 3.4-b’,c’,d’. Together with the property of correct propagation of 

linear structures, the latter algorithm would also be more robust towards variations in 

the shape of the target regions.  

A concentric-layer ordering, coupled with a patch-based filling may produce 

further artifacts such as the ones illustrated in Figure 3.5. 

Therefore, filling order is crucial to non-parametric texture synthesis [69][76]. As 

it is discussed in paper [75], designing a fill order which explicitly encourages 

propagation of linear structure (together with texture) has never been explored, and thus 

far, the default favorite has been the “onion peel” strategy. 

Another desired property of a good filling algorithm is that of avoiding ‘over-

shooting’ artifacts that occur when image edges are allowed to grow indefinitely. The 

goal here is finding a good balance between the propagation of structured regions and 

that of textured regions (Figure 3.4-b’,c’,d’), without employing ad-hoc strategies. The 

algorithm achieves such a balance by combining the structure ‘push’ with a confidence 

term that tends to reduce sharp in-shooting appendices in the contour of the target 

region. 
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(a)    (b)    (c) 

Figure 3.5 : The importance of the filling order in patch-based filling. 

As in the paper [75], the filling algorithm proposed overcomes the issues that 

characterize the traditional concentric-layers filling approach and achieves the desired 

properties of:  

• Correct propagation of the linear structures, 

• Robustness to changes in the shape of the target region, 

• Balanced simultaneous structure and texture propagation 

Initially, each pixel maintains a color value in the source region, and a confidence 

value, which reflects our confidence in the pixel value, and which is frozen once a pixel 

has been filled. During the course of the algorithm, patches along the fill front are also 

given a temporary priority value, which determines the order in which they are filled.  

The priority computation is biased toward those patches which: (i) are on the 

continuation of strong edges and (ii) are surrounded by high-confidence pixels. Priority 

value is computed for the patches Ψp centered at the point p for p∈δΩ (see Figure 3.3). 

)().()( pDpCpP =                                                    (3.1) 

Conceptually, the priority depends on continuation of strong edges, D, and 

confidence of neighbor pixels, C. We call C(p) the confidence term and D(p) data term 

and they are defined as follows: 
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where |Ψp| is the area of Ψp, np is unit vector orthogonal to the front δΩ in the point p 

and ⊥ indicates the orthogonal operator. The priority P(p) is computed for every border 

patch, with distinct patches for each pixel on the boundary of the target region. Initially, 

we set the 100% reliability to C=1, and assign C=0 if any information does not exist. In 

a formal representation: 
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The confidence term C(p) ma be thought of as q measure of the amount of the 

reliable information surrounding the pixel p. The intention is to fill first those patches 

which have more of their pixels already filled, with additional preference given to pixels 

that were filled early on (or that were never part of the target region). For example, 

patches that include corners and thin tendrils of the target region will tend to be filled 

first, as they are surrounded by more pixels from the original image. These patches 

provide more reliable information against which to match. Conversely, patches at the tip 

of “peninsulas” of the filled pixels jutting into the target region will tend to be set aside 

until more of the surrounding pixels are filled in. At the coarse level C(p) approximately 

enforces the desirable concentric fill order. As filling proceeds, pixels in the outer layers 

of the target region will tend to be characterized by greater confidence values, and 

therefore be filled earlier; pixels far from the source region will have lesser confidence 

values. 

This confidence value, first introduced in [75], reflects reliability of a region or a 

pixel, and it affects filling order during inpainting process. Furthermore, we will also 

use the confidence values as a critical parameter in assembly step. 

The Data term D(p) is a function of the strength of isophotes hitting the front δΩ. 

This term increases the priority if an isophote flows into that patch. This term has an 

importance in both inpainting and assembly algorithm, because it causes the linear 

structures to be synthesized or filled first. Therefore, the linear structures orthogonal to 

border of pieces are completed earlier and these points or patches get higher confidence 

values.  This event is also very important for assembly process that will be described. 

           
(a)    (b)    (c) 

Figure 3.6 : (a) We want to synthesize the area delimited by the patch Ψp 
centered on the point p∈δΩ. (b) The most likely candidate matches for Ψp lie 
along the boundary between the two textures in the source region, e.g., Ψq’ 
and Ψq’’. (c) The best matching patch in the candidates set has been copied 
into the position occupied by Ψp, thus achieving partial filling of Ω. 
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When all priorities have been computed, the highest priority, p', is determined. 

The second step of inpainting algorithm is the propagating the texture and structure 

information into the target band. The color information is propagated via diffusion in 

classical inpainting techniques. In this method as in [75], propagation of the image 

texture occurs by direct sampling of source region.  

It is well-understood that exemplar-based approaches perform well for two-

dimensional textures. But, the work [75] note in addition that exemplar-based texture 

synthesis is sufficient for propagating extended linear image structures as well, i.e. a 

separate synthesis mechanism is not required for handling isophotes. 

Figure 3.6 taken from [75] illustrates this point. We now focus on a single 

iteration of the algorithm to show how structure and texture are adequately handled by 

examplar-based synthesis. Suppose that the square template Ψp∈Ω centered at the point 

p is to be filled. The best-match sample from the source region comes from the patch 

Ψq’∈Φ, which is most similar to those parts that are already filled in Ψp. In the example 

in Figure 3.6-a, we see that if Ψp lies on the continuation of an image edge, the most 

likely best matches will lie along the same (or a similar colored) edge (e.g. Ψq’ and Ψq’’ 

in the Figure 3.6-b).  

All that is required to propagate the isophote outwards is a simple transfer of the 

pattern from the best-match source patch (Figure 3.6-c). Notice that isophote orientation 

is automatically preserved. In the figure, despite the fact that the original edge is not 

orthogonal to the target contour δΩ, the propagated structure has maintained the same 

orientation as in the source region.  

We focus on a patch-based filling approach (as opposed to pixel-based ones) 

because this improves execution speed. Furthermore, it is noted in [75] that patch-based 

filling improves the accuracy of the propagated structures. 

The mathematical expression to find the most similar patch for sampling is: 

),(minarg qpq d
q

ΨΨ=Ψ ′
Φ∈

′
ψ

                                             (3.4) 

where d(Ψp′,Ψq) is the distance between already filled pixels of patches in the p' and q 

points. The Euclidian distance is used in the algorithm. Patch in the q' point is the most 

similar one and the values of each pixel to be filled in the p' patch { p' | p' ∈ (Ψp′ ∩ Ω) } 

are copied directly from the patch in the q' point.  

This suffices to achieve the propagation of structure and texture information from 

the source to the target region, one patch at a time. In fact, it is noted in [75] that any 
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further manipulation of the pixel values (e.g. adding noise, smoothing, and so forth) that 

does not explicitly depend upon statistics of the source region, is more likely to degrade 

visual similarity between the filled region and the source region, than to improve it. 

The last step for iterations is to update confidence values. After the patch Ψp′ has 

been filled new values, the confidence values affected by the filling of new patch are 

updated. This region is the limited by the neighbors of the p' point.  

Ω∩∈∀′= ′pppCpC ψ)()(                                         (3.5) 

As filling proceeds and going far from original (or source) region of the piece, the 

confidence values decay. This indicates that the color values of pixels far from border 

are less reliable than closer ones. This difference between far and closer pixel has also 

importance in the assembly algorithm.  

 

3.3 Implementation 

 

As we mentioned before, the main algorithm of the inpainting step in this project 

is similar with the research [75]. The main differences are in the implementation phase. 

The algorithm is implemented for each piece separately.  

First, a puzzle piece or an archaeological fragment is acquired with a camera or a 

scanner. The main point in this step is to use an ideal background, because the accuracy 

of extracting the shape of the pieces depends on the proper capturing.  

After acquisition, a standard algorithm is used to find outer boundary of the 

pieces. The inner part of this boundary is set as source region, Φ. Second step is to find 

target region, Ω. The target region is found by morphing the source region. The size of 

window used for morphing the region outwards determine the width of the band that 

will be predicted.  

There are also some parameters used in the algorithm while expanding the source 

image. The main parameter is the size of the template window Ψ. We provide default 

window sizes 9x9, 11x11 or 13x13 pixels for different examples. In practice, the user 

has to set it to be slightly larger than the largest distinguishable texture element, or 

“texel”, in the source region.  

A pseudo-code description of the algorithm is shown in Table 3.1. The substring i 

indicates the current piece and superscript t indicates the current iteration. 
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1. Acquire the image 

2. Extract the boundary of the ith piece 

3. Morph the source region outwards to find the expanding band 

4. Set the confidence of the source region as 1, and the confidence of the 

expanding band or target region as 0. 

5. Repeat until there exist any pixel to be filled in the target region: 

a. Compute new D(p) t
ip Ω∈∀ δ  

b. Compute priorities P(p) t
ip Ω∈∀ δ  

c. Find the patch Ψp′  with the maximum priority, )(maxarg pPp
t
ip Ω∈

=′
δ

 

d. Find the exemplar Ψq’∈Φ that minimize d(Ψp’,Ψq’) 

e. Copy image data from Ψq’ to Ψp’  t
ipp Ω∩Ψ∈∀ ′  

f. Update C(p) t
ipp Ω∩Ψ∈∀ ′  

Table 3.1 : The pseudo code of the expansion algorithm. 

The output image of the pieces and the confidence values of the same pieces are 

saved for the next step of the project. The image will be used for calculating the feature 

values of the texture. The confidence values are also used in the affinity function that 

will be defined in the next chapter. 

 

3.4 Results 

 

The effect of the confidence term is that of smoothing the contour of the target 

region by removing sharp appendices and making the target contour close to circular. It 

can be noticed that inwards-pointing appendices are discouraged by the confidence 

term. The presence of the data term in the priority function tends to favor inwards-

growing appendices in the places where structures hit the contour, thus achieving the 

desired structure propagation. But, as mentioned, the pixels of the target region in the 

proximity of those appendices are surrounded little confidence (most neighboring pixels 

are un-filled), and therefore, the ‘push’ due to image edges is mitigated by the 

confidence term. This achieves a graceful and automatic balance of the effects and an 
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organic synthesis of the target region via the mechanism of a single priority 

computation for all patches on the fill front.  

Furthermore, since the fill of the target region is dictated solely by the priority 

function, P(p), it is avoided having to predefined an arbitrary fill order as in existing 

patch-based approaches. The filling order of the algorithm is function of the image 

properties, resulting in an organic synthesis process that eliminates the risk of “broken –

structure” artifacts and also reduces blocky artifacts without a patch-cutting step or a 

blur-including blending step. 

 
Figure 3.7 : Image will be divided into four pieces, artificially. 

As a result, the edges in the images shown in Figure 3.7 are kept while expanding 

the pieces outwards. In the images, it is represented that there are some unusual image 

regions. Those are not meaningful images. Actually, it is not much important because 

we do not want to serve the pictorial properties of the expanded band, we will use only 

the features of this expanded regions. 
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(a1)    (b1)    (c1) 

         
(a2)    (b2)    (c2) 

         
(a3)    (b3)    (c3) 

         
(a4)    (b4)    (c4) 

Figure 3.8 : a(1), a(2), a(3) and a(4) show the original images of the pieces. 
b(1), b(2), b(3), b(4) represent the corresponding confidence images. c(1), 

c(2), c(3), c(4) show the expanded images of the original pieces. 
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(a1)    (b1)    (c1) 

         
(a2)    (b2)    (c2) 

         
(a3)    (b3)    (c3) 

         
(a4)    (b4)    (c4) 

Figure 3.9 : Four pieces of a broken ceramic. a(1), a(2), a(3) and a(4) show 
the original images of the fragments. b(1), b(2), b(3), b(4) represent the 

corresponding confidence images. c(1), c(2), c(3), c(4) show the expanded 
images of the original pieces. 
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Chapter 4 

4 AN AFFINITY MEASURE FOR COMPATIBILITY OF PIECES 

4.1 Introduction 

 

While matching or calculating the similarity of possible two neighboring pieces, 

pixel-by-pixel comparison of two pieces is not meaningful. Thus, image features are 

extracted from source and target regions for each piece after predicting the target band. 

Selection of the features depends on the structure of the image. The images are 

generally textural in classical jigsaw puzzles. In the archeological field, the images may 

include highly directional marble veining and paintings on the outer and inner surfaces. 

Additionally, we can assume the carvings and horizontal circles due to finger smoothing 

while the pot is spinning on the wheel and the pattern of surface incisions as a textural 

image.  

In the next section, we will represent a short overview on texture in the images. A 

detailed work [19] examines the textures and makes comparative experiments using 

different texture algorithms. This study is also valuable that the methods are evaluated 

according to archaeological applications. The content of the next section is prepared 

mostly using of this thesis.  

 

4.2 Texture Features 

 

There are many fields of image processing in which texture and color play 

important roles. The most important areas are probably classification, image 

segmentation, image encoding and computer graphics. The classification of textures, 

often real textures, is a common problem in medical image processing and in process 

control. Some typical applications are the recognition of tissues in microscope images, 

the quality control of timber, line boards and paper, or the classification of 
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reconnaissance and remote sensing images. Image segmentation is related to the 

classification problem; when other features, like shape, tone or color, are not sufficient 

to discriminate between regions, one criteria of image segmentation might be texture. In 

image coding, the image is compressed while conserving the information. Recently 

there have been attempts to improve the compression rate by recognizing the texture in 

an image and replacing it with a symbolic representation. Computer graphics has 

another approach to texture. Textures are used to mimic natural scenes. The problem is 

reversed. How to generate a natural texture? The effort to synthesize textures has also 

had an effect on texture recognition. Some texture recognition methods based on texture 

models have been developed. There is also research being undertaken to extract three-

dimensional information from two-dimensional images. This extraction is based on 

determining surface orientations. Surfaces are often textured. The surface orientation is 

determined by identifying the texture and the texture projection.  

Even though texture is an intuitive concept, a formal definition of texture has 

proven elusive in the literature over the years. Despite this lack of a universally agreed 

definition, all researchers agree on two points. Firstly, there is significant variation in 

intensity levels between nearby pixels; that is, at the limit of resolution, there is non-

homogeneity. Secondly, texture is a homogeneous property at some spatial scale larger 

than the resolution of the image. Some researchers describe texture in terms of the 

human visual system. They claim textures do not have uniform intensity, but are none-

the-less perceived as homogeneous regions by a human observer. Texture is an 

apparently paradoxical notion. On the one hand, it is commonly used in the early 

processing of visual information, especially for practical classification purposes. On the 

other hand, no one has succeeded in producing a commonly accepted definition of 

texture. A complete definition for texture is really challenging, nevertheless many 

experts successes it over the years. 

Due to its wide variability, people usually describe texture as fine, coarse, grained, 

smooth, etc., implying that more precise features must be defined to make machine 

recognition possible. Such features can be found in the tone and structure of a texture. 

Tone is mostly based on pixel intensity properties in the primitive, while structure is the 

spatial relationship between primitives. A texture primitive, a texel, is a contiguous set 

of pixels with some tonal and/or regional property, and can be described by its average 

intensity, maximum or minimum intensity, size, shape, etc. The texels may have various 

sizes and degrees of uniformity, may be oriented in various directions, may be spaced at 
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varying distances in different directions and may have various magnitudes and 

variations of contrast and opacity. The placement of a texel in texture could be periodic, 

quasi-periodic or random. Natural textures have generally random texels, whereas 

artificial textures have deterministic or periodic ones. The number, types of primitives 

and their spatial relationship describe the image texture as a global representation but it 

does not mean that we have optimal differentiability for all textures.  

Texture tone and structure are not independent; textures always display both tone 

and structure even though one or the other usually dominates, and we usually speak 

about one or the other only. Tone can be understood as tonal properties of primitives, 

taking primitive spatial relationships into consideration. Structure refers to spatial 

relationships of primitives considering their tonal properties as well. If the texture 

primitives in the image are small and if the tonal differences between neighboring 

primitives are large, a fine texture results. If the texture primitives are larger and consist 

of several pixels, a coarse texture results. Note that the fine/coarse texture characteristic 

depends on scale. Further, textures can be classified according to their strength, which 

then influences also the choice of texture description method. Weak textures have small 

spatial interactions between primitives, and can be adequately described by frequencies 

of primitive types appearing in some neighborhood. Because of this, many statistical 

texture properties are evaluated in the description of weak textures. In strong textures, 

the spatial interactions between primitives are somewhat regular. To describe strong 

textures, the frequency of occurrence of primitive pairs in some spatial relationship may 

be sufficient. Strong texture recognition is usually accompanied by an exact definition 

of texture primitives and their spatial relationships. Most texture research can be 

characterized by the underlying assumptions made about the texture formation process 

described above. Two main texture description approaches exist: statistical (stochastic) 

and structural (syntactic). The choice of the assumption depends primarily on the type 

of textures.  

Statistical methods yield characterizations of textures as smooth, coarse, grainy, 

etc. and are suitable if texture primitive sizes are comparable with the pixel sizes. 

Textures that are random in nature like sand, water and grass are well suited for 

statistical characterization. The structural placement paradigm for textures may also 

include a random aspect; from the stochastic point of view, however, we take a more 

extreme position and consider that the texture is a sample from a probability distribution 
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on the image space like noise on a television screen. The image space is usually an NxN 

grid and the value at each grid point is a random variable in the range {0, 1, …, G-1}. 

Syntactic (structural) methods are more suitable for textures where primitives can 

be assigned a label, meaning that primitive type can be described using a larger variety 

of properties like shape, size than just tonal properties. Purely syntactic texture 

description models are based on the idea that textures consist of primitives located in 

almost regular relationships. As an example, we could think of a strictly ordered array 

of identical sub-patterns like a checkerboard. The sub-patterns may be of deterministic 

shape, such as circles, hexagons, or even dot patterns. Macro textures have large 

primitives, whereas micro textures are composed of small primitives. These terms are 

again relative to the image resolution. 

The broad taxonomy map below (taken from work [19]) is derived by combining 

various charts from the literature, still does not claim to be an absolute truth due to the 

variability of the texture definitions. 

 
Figure 4.1 : Texture taxonomy [19] 

Feature extraction is the second step after predicting the expanded parts of the 

pieces. As it is described above, the achievement of an application based on texture 

directly depends on the selection of the ideal texture method. In this thesis, we proposed 

the assembly of the textural pieces. While we are developing the affinity measure used 

for assembly, we try to build a general framework on which a feature can be located. 
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The selection of a feature extraction method from texture exactly depends on the 

samples of the pieces. For example, the statistical method (histogram statistics) is better 

in a jigsaw puzzle. On the other hand, the structural methods (laplacian in a window) 

are more reasonable in a painting including directional lines on an archaeological 

fragment. Currently, only first and second moments (mean and variance) are used in 

experiments. We choose these two most common features that can be used in all cases, 

because the experiments with different puzzles can be comparable. In the case of using 

suitable texture features, the serious improvements can be observed. The features are 

calculated in a window. The window size directly depends on the resolution of the 

images on the pieces. 

After selection of the features, another problem is to find the distance function 

that gives the appropriateness between two features. In the experiments, we used the 

Euclidian distance function, because of generality of the experiments as in feature 

selection.  

 

4.3 Affinity Measure 

 

The first step is to generate feature values of pieces after expanding the pieces, 

because using directly the pixel values are not meaningful. For example, if we have a 

pictorial image that has high frequency texture, the distance of the pixel values does not 

give the proper relation. Currently, only first and second moments (mean and variance) 

are used in experiments. We set a window size, which is slightly larger than the largest 

distinguishable texture element or “texel”, to calculate mean and variance values. In the 

case of using suitable texture features, the important improvements can be observed. 

The features are calculated in a window. The window size directly depends on the 

resolution of the images on the pieces.  

The next step is the computation of confidence values for the features from the 

confidence of pixels calculated in the inpainting step. When a feature value is extracted 

by using the pixels in a window, the confidence of this feature for a point depends on 

the confidences of all pixels in this window. In the algorithm, mean of all confidence of 

pixels in the window is assigned to confidence of feature, Ci
'. The last predefinition is to 

determine a sufficiently large solution board or space. It is not a theoretical, only 

 51



practical necessity. Initially, the pieces are randomly inserted onto this board. Then, the 

calculation of cost function and searching of transformations will be done on it. 

Let Dk(fki,fkj) is the distance function between the kth feature values of i and j 

feature values. Ti=(∆xi,∆yi,∆θi) denotes the transform of the ith piece and Ti(fki) denotes 

transform of the kth feature extracted from the ith piece. For the simplicity of 

expressions, the (∆xi,∆yi,∆θi) parameter for each variable will not be shown.  

In the current experiments, the Euclidian distance is used for all features. If 

distances specific to texture and features of pieces are selected, the performance of 

assembly might improve.  Let define a threshold value Thk for kth feature distance. 

kkjkikk ThffDS −= ),(                                                    (4.1) 

We set a threshold, Thk, so that the more similar the feature values are, the larger 

negative value the similarity measure, Sk, will take or visa versa.  

[∑∑ −=
kk n

k
kkjkik

n

k
k ThffDS ),( ]

]

                                          (4.2) 

where nk is the number of features. (4.2) gives total similarity between i and j pieces. 

We can transform (4.2) into (4.3) by dividing all Sk
 into Thk and normalizing the total 

constants to 1, so that both of them give related responses for the same inputs.  
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wk are weight values for the kth feature and inversely proportional to Thk. Let define the 

above formula for all j pieces. 
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where np is the number of pieces in the puzzle. Expression (4.4) denotes that total 

similarity between i and j pieces are weighted according to jth confidence values, 

because it should be affected when confidence of a point is small (close to zero), even if 

two pieces are similar. It is also valid that the cost or affinity function should be more 

sensitive to texture distance if confidence is high. After weighting the similarities, 

summation for all j pieces where i different than j shows how much the ith piece fits the 

other pieces. Let define the above expression for all i pieces. 
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This is the first part of Cost or Affinity function and is derived from the weighted 

mean of (4.4). It is the summation of similarities for possible pairs. This value goes 

towards negative if there exists a good harmony between images of pieces. Let insert 

the transforms to the above expression. 
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The variables of this expression are the transforms of the pieces. When the 

transforms are changed, the affinity measure in a (x,y) point also changes. 

∑ ∑
+=

=
p pn

i

n

ij
jjii CTLCTLyxm

1
2 ))(())((),(                              (4.7) 

⎭
⎬
⎫

⎩
⎨
⎧

=
≠

=
0 if       1
0 if      0

)(    where
x
x

xL                                    (4.8) 

The second part of general Fcost function is for embedding the geometrical 

constraints to Cost or Affinity. In reality, two pieces cannot overlap on any point. In 

order to prevent this situation, a sufficiently large, wc, weight or constant is added to 

Cost function in the overlapping points. The confidence values are used to formulize 

overlapping operation. The L function produces 1 when only the original part of image 

is input; otherwise it produces 0 for the predicted regions. Thus, the Cost increases 

when the original parts of i and j images overlap. 

∑ += )( 21cos mmF t                                            (4.9) 

Total cost is summation of similarity and geometrical constraints terms for all 

points in predefined board or space. The only parameter of this performance measure 

that represents the goodness of assembly of pieces based on textural features and 

geometrical shape is the transformation of pieces, Ti.  
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(Left) Four pieces do not intersect in any point in the space. (Right) image represents 

the corresponding confidence. m1=0, m2=0 and Fcost=0. 

           
(Left) The expanded regions of first and second pieces are overlapped (Right) Image 

represents m1 values for all (x,y). m2=0 and Fcost=-176. 

           
(Left) The first and second pieces are assembled. (Right) Image represents m1 values for 

all (x,y). m2=0 and Fcost=-988. 
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(Left) Two groups of the assembled pieces. (Right) Image represents m1 values for all 

(x,y). m2=0 and Fcost=-3552. 

           

 
(Left) The original region of the pieces are overlapped. (Right) Image represents m1 

values for all (x,y). (Bottom) Image represents m2 values for all (x,y) and Fcost=+77564. 
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(Left) The final assembly. (Right) Image represents m1 values for all (x,y). m2=0 and 

Fcost=-8293. 

Figure 4.2 : The response of the m1 and m2 functions (Equations (4.6) and (4.7)) 
for the different assemblies. 

The fitness between the pieces is increasing while the Cost function is being 

optimized. Two types of optimization methods might be used in experiments. The first 

one depends on the best replacement strategy. Initially, the transformations of pieces are 

randomly assigned. The algorithm progresses by finding best movement in each step. 

When the function is stuck into a local minimum, two randomly selected pieces are 

exchanged. All local minima are buffered to find best assembly. The algorithm is 

stopped if the function reaches the best value in the local minima buffer more than n 

times.  

The second method depends on pairing of pieces. Initially, the algorithm searches 

for best pair that gives minimum cost. Then, these paired pieces are merged to produce 

unique piece. The algorithm is stopped when the all pieces in the puzzle are combined 

and become one piece. In this method, the algorithm backtracks when the pairing cannot 

improve the cost. To implement this method, the confidence and feature values of new 

piece should be defined after merging process.  
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M is the set of pieces that will be merged. (4.10) gives the new confidence value 

for overlapping points of pieces. The new confidence value is equal to 1 if one of piece 

has a confidence of 1, otherwise it is geometrical mean of possible confidence values in 

that point. (4.11) gives the new kth feature values by calculating the weighted mean of 

pieces in the set M.  

 

4.4 Implementation 

 

After the expanded pieces are generated using inpainting methods as described 

last chapter, the feature values are calculated and stored in a file. This file contains all 

information that will be used for later operations. This file includes data about the 

number of the pieces, the original image of each piece, the expanded image of each 

piece, the number of feature that will be used in assembly operations, the feature images 

for each feature and for each piece, the confidence image of each piece, and weights of 

features for affinity measure. We write two programs of which one returns the new cost 

value when the pieces are replaced manually. This program takes two files initially. 

First one is data file mentioned before. The second file is the transformation file. This 

file contains the temporary transformations of the pieces. 

By using of this user interface, we test the consistency of numerical value of cost 

function with harmony of pieces. The behavior of this affinity measure is observed 

under the different cases. The first of them is whether the edges continue on the 

neighboring piece or not. In the inpainting phase, the edges obtain the higher confidence 

values as it was explained. The higher confidence values force the cost function to 

locate the pieces properly. The second important criterion is similarity of corresponding 

textures on the neighboring pieces. The distance measure in the cost function attracts the 

similar textures if the expanded regions of pieces are accurately inpainted. Providing the 

geometrical constraints is another property of the cost function. 

The program first developed in MATLAB 7.0. Then, it is also implemented in 

VC++ environment. The test computer used in experiments is a PC that has 1.3 GHz 

and 1GB memory. To visualize the images, the OpenCV utility tool is used. Under these 

conditions, the affinity measure defined above can be implemented in real time. In 

another words, the affinity measure is changing while a piece is being moved.  
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Figure 4.3 : The scenes from the developed program. 

We perform a second experiment to test the consistency of the cost function. We 

artificially prepare puzzles including a few pieces (2,3 or 4). After that, we make an 

exhaustive search by running the cost function for all possible transformations of pieces. 

The reason of this experiment is to ascertain whether there exists any placement giving 

less cost value than right assembly or not. As a result of experiment, all other 

placements of pieces cost more than the true placement. And also, the values closer to 

right assembly of puzzle belongs to closer placements of pieces.  
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4.5 Results 

 

The first test for affinity measure is done subjectively. More than ten different 

people are used to test the consistency of affinity measure by using the user interface for 

puzzle assembly. People move the pieces and decide to whether it is more proper 

arrangement. Then, they compare their decisions and the affinity measure value 

computed by the program. After approximately 100 trials, we want them to subjectively 

give a success rate for the consistency of affinity and their decisions. The mean of the 

success rate is 92%. Actually, this value is not sufficient to numerically prove anything. 

But this experiment gives an intuition that the affinity measure does not give responses 

independent from the visual harmony of the pieces. 

           
Fcost=-8471      Fcost=-22536 

           
Fcost=-1891      Fcost=-15150 
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Fcost=-17575      Fcost=-18967 

Figure 4.4 : Images that are shown to humans. 

We use two different puzzles, here. Images of four pieces from a broken ceramic 

are used. The algorithms are tested with the more than 30 pieces, but we prefer to 

represent this experiment with 4 pieces so that the details of the images can be 

distinguished. The other experiment (13 pieces) presented in website of Stanford 

university is a real image of archeological fragment. In Figure 4.4, 4.6 and 4.7, the cost 

values are also shown for the different placement of pieces.  

     
Figure 4.5 : (Left) A puzzle consisting of 4 pieces, (Middle) confidence values of 

the predicted regions (Right) expanded versions of the pieces. (Fcost = 0) 

In Figure 4.5, the original images, confidence images and expanded images of 4 

pieces are placed, respectively. The cost of puzzle in the solution space is equal to zero 

for this placement, because the expanded or original regions of 4 pieces are not 

overlapped in anywhere. In Figure 4.6, only original images of pieces are shown with 4 

different assembly stages. Two right neighboring pieces are placed closer with a shift in 

Figure 4.6-a, and their corrected placement is represented in Figure 4.6-b. The main 

difference between the cost values of two assemblies is because the edges do not 
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continue in the first experiment although the neighboring textures are mostly similar. In 

Figure 4.6-c, the third piece is placed to their right positions, but original (real) regions 

of fourth piece and third piece are overlapped, in other words, the fourth piece violates 

the geometrical constraints. In this situation, the second part of cost function (m2) 

becomes dominant and the cost increases seriously. In the Figure 4.6-d, the puzzle is 

completed by placing the pieces to their right positions.  

               
(a) Fcost=+269      (b) Fcost=-40 

               
(a) Fcost=+2987     (b) Fcost=-1966 

Figure 4.6 : (a), (b), (c) Total cost of ceramic tiles for different layouts (d)Total 
cost for the completed puzzle 
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(a) Fcost=0      (b) Fcost=+9356 

            
(c) Fcost=-1554     (d) Fcost=-19318 

Figure 4.7 : (a), (b), (c) Total cost of artificial pieces for different layouts (d) Total 
cost for the completed puzzle 

The second test is to search all possible translation and rotation space for a piece. 

The aim of this experiment is to see if the affinity measure gives the best result for a 

meaningful replacement. The procedure for this experiment consists of two steps. The 

first is to locate the pieces in a related order and select a piece. Then, second step is to 

exhaustively search all possible translations and rotations in the space to find minimum 

affinity measure. A hot key is added to main program to perform this operation. After 

the translation and rotation that has minimum affinity measure is found, the program 

automatically replaces the selected piece. Then, it is manually checked the results. The 

all test for all puzzles give meaningful suggestions.  

The second program involves optimizing the cost function to find the best 

assembly of the puzzle. The program uses one of the optimization method mentioned 

before. A hot key is also added to main program for this purpose. The program is tested 
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for the pieces prepared artificially. Although the edges of pieces erode or one of puzzle 

piece disappears, the program can find the right assembly for puzzles under test. Even 

the optimization works, we cannot obtain the assembly results in a reasonable time, if 

there are more pieces in the puzzle (np>20), because the backtracking occurs many 

times while optimizing the cost. In the case of omitting the rotation parameter from the 

artificial puzzles to continue the experiments for more pieces, the program finds the 

assembly for (np<40) [76][78][79].  

 
Figure 4.8 : Completed puzzle of a ceramic tile that consists of twenty five pieces. 

The complexity of affinity calculation depends on the size of the image, number 

of features, nk, and the number of pieces, np. The equation (4.6) contains the 

transformations, the distance calculations, the confidence multiplications and the 

summations. The operations for a transformation of any point are four real 

multiplications and two summations. The operations of the distance calculation are one 

summation and one multiplication. The weighting and the subtraction of the threshold 

are performed by one multiplication and one summation, respectively. Thus, the total 

operations for the calculation of the distance function of two transformed features are 

ten multiplications and six summations (Total 16 operation). For all features in an 

(x0,y0) point, calculating the total distance has a complexity O(10nk). So, the complexity 

of the m1 for a point becomes O(np
2x(10nk+1)+10np) ≈ O(C1np

2nk). Similarly, the 

equation (4.7) has a complexity O(C2np
2). The summation of these two complexities 

gives the complexity of the Fcost(x0,y0) function at the point (x0,y0) as O(C1np
2nk+C2np

2). 
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Suppose that the images have a size of NxN. Then, the complexity of the total Fcost is 

O(N2(C1np
2nk+C2np

2)).  

The complexity of the optimization of the Fcost function by searching exhaustively 

all possible translations and the rotations is important to decide the following 

operations. All possible translation set includes NxN translation and suppose that there 

exists N possible discrete rotation angle. The complexity of the search operation 

becomes O(N5(C1np
2nk+C2np

2)). If the number of the pieces is not very big, the 

dominant variable in this complexity is the size of the board. The fifth degree of the size 

of a board, which can contain all pieces freely, is very high value to compute. Thus, this 

is not feasible for practical implementation. 

In the next chapter, we will introduce the Fourier methods in order to reduce the 

time consumption while searching for the best place for a piece in the optimization 

stage. Image registration methods using 2D Fourier transform can find the image 

correlations very fast. If it is considered that the original and expanded regions of pieces 

are correlated, assembly algorithm became faster by implementing mentioned method.  

To improve the optimization, some other methods might also be implemented. 

The self-organizing map and genetic algorithm are reasonable methods for optimizing 

the above cost function.  
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Chapter 5 

5 TEXTURE BASED PARTIAL MATCHING USING FFT TECHNIQUES 

Although the puzzle assembly problem can be stated as the optimization of the 

above cost function, the optimization problem is too computationally costly. For all 

practical purposes, the minimizing of the above distance function, D, is equivalent to 

maximizing the correlation between the pieces. We will therefore use the FFT shift 

theory to find a solution that will maximize the correlation between the predicted parts 

of a piece and other pieces. 

A survey of image registration techniques is detailed in [80]. Below, we briefly 

introduce these techniques using this survey and examine the relations between our 

cases and the applications described in the literature. 

 

5.1 Image Registration Survey 

 

Registration is the fundamental task in image processing used to match two or 

more pictures taken, for example, at different times, from different sensors or from 

different viewpoints. Techniques developed over the years have been independently 

studied for several different applications resulting in a large body of research. As an 

interesting example, the study [81] implemented the image registration to the field of 

archaeology. 

The need to register images has arisen in many practical problems in diverse 

fields. Registration is often necessary for: 

• Integrating information taken from different sensors; 

• Finding changes in images taken at different times of under different conditions; 

• Inferring three dimensional information from images in which either the camera 

or the scene have moved; 
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• Model-based object recognition. 

To register two images, a transformation must be found so that each point in one 

image can be mapped to a point in the second. This mapping must optimally align the 

two images where optimality depends on what needs to be matched. The work [80] 

contain many examples of specific problems in registration for the four main classes of 

problems taken from computer vision, pattern recognition, medical image analysis and 

remotely sensed data processing. These classes are multimodal registration that finds 

the transformations of the images of the same scene acquired from different sensors, 

template registration that finds a match for a reference pattern in an image, viewpoint 

registration that finds the replacement of the images taken from different viewpoints and 

temporal registration that registers the images of the same scene taken from at different 

times or under different conditions. Our situation has more similarities with template 

registration problems than the others. According to our assumption, the texture of the 

expanded region of a piece is nearly identical to the texture on the adjacent piece. So, 

the best matching of these two pieces is obtained if the templates on the pieces are able 

to be registered. 

Problem definition of image registration: 

Image registration is defined as a mapping between two images both spatially and 

with respect to intensity. Let define these two images as 2D arrays of a given size 

denoted I1 and I2 where I1(x,y) and I2(x,y) each map to their respective intensity values, 

then the mapping between images can be expressed as: 

)),(((),( 112 yxTIgyxI =                                                   (5.1) 

where T1 is a 2D spatial coordinate transformation, i.e., 

),(),( 1 yxTyx =′′                                                        (5.2) 

and g is an intensity transformation. The registration problem is the task involved in 

finding the optimal spatial and intensity transformations so that the images are matched 

with regard to the misregistration source. The intensity transformation is frequently not 

necessary as in our fragment assembly problem. It is also generally expressed 

parametrically as single –valued functions, T1x, T2x: 

)),(),,((),( 1112 yxTyxTIyxI yx=                                             (5.3) 

which may be more naturally implemented. In the thesis, we usually use shorter 

expressions like: 

)(or      )),((),( 112112 ITIyxTIyxI ==                                        (5.4) 
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Transformations: 

The most fundamental characteristic of any image registration technique is the 

type of spatial transformation or mapping needed to properly overlay two images. 

Although many types of distortion may be present in each image, the registration 

technique must select the class of transformation which will remove only the spatial 

distortions between images due to differences in acquisition and not due to differences 

in scene characteristics that are to be detected. The primary general transformations are 

affine, projective, perspective, and polynomial. These are well-defined mappings of one 

image onto another.  

Here, we will briefly define the different transformations that may be deal with 

our projects. A transformation is affine if T(x)-T(0) is linear. Affine transformations are 

linear, however, in the sense that they map straight lines into straight lines. The most 

commonly used registration transformation is the affine transformation which is 

sufficient to match two images of a scene taken from the same viewing angle but from a 

different position. This affine transformation is composed of the Cartesian operations of 

scaling, a transformation, and a rotation. It is a global transformation that is rigid since 

the overall geometric relations between points do not change. It is typically has four 

parameters, tx, ty, s, θ, which map a point (x1,y1) of the first image to a point (x2,y2) of the 

second image as follows: 
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The general 2D affine transformation has 6 parameters that can account for other 

spatial distortions, as well such as skew and aspect ratio. But this general term is not 

necessary in our case. The acquisition of the fragments is a controllable process for the 

puzzle problem. The pieces can be placed and captured in an ideal environment. 

Because the light conditions and the other factors that cause noise and distortion can be 

minimized, the 4 parameter rigid transform (5.5) is suitable in our situation. Actually, 

the constant s is also invariable. While acquiring the pieces, the real sizes can be 

obtained by the devices. So we will not use the scaling factor as a variable of our 

problem. In 2D, three parameters (tx, ty, θ) have to be estimated.  
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The perspective transformation, accounting for the distortion that occurs when a 

3D scene is projected, and other transformations are not directly related to our work. 

The descriptions are detailed in the surveys [80][82].  

Registration methods can be categorized with respect to various criteria. The ones 

usually used are the application area, dimensionality of data, type and complexity of 

assumed image deformations, computational cost and the essential ideas of registration 

algorithm. Here, we used Fourier methods in our applications. This technique is a 

subtitle of area-based methods in registration literature. We do not contemplate detailing 

other methods or describing results of comparisons of the algorithms; rather we will 

focus our assembly problem and the implementation of the Fourier method in this work. 

In the studies [80][82][83], all registrations techniques are explained and the 

comparative experiments are described. And papers [84][85][86] also introduce 2D and 

3D registration methods based on Fourier shift theory and applications in the several 

fields.  

 

5.1.1 Fourier Method for Image Registration 

 

The Fourier transform has several properties that can be exploited for image 

registration. There are equivalent operations of all transforms like translation, rotation, 

reflection and scale in the Fourier domain. Furthermore, Fourier domain operations 

have excellent robustness against correlated and frequency dependent noise. Another 

main advantage of the Fourier operations is that the transform can be efficiently 

implemented in hardware or alternatively can be used the Fast Fourier Transform (FFT). 

We will describe the main methods used to register images using Fourier analysis in this 

section.  

Phase correlation between two images exposes the shifting relative to one another. 

So it is used to align the images. Phase correlation relies on the translation property of 

the Fourier transform, sometimes referred to as the Shift Theory. For example, we have 

two images I1 and I2 which differ only by a distance placement (dx,dy); 

),(),( 12 yx dydxIyxI −−=                                        (5.7) 

Their Fourier transforms F1 and F2 are related by: 

),(),( 1
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2 yx
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yx FeF yyxx ωωωω ωω +−=                                (5.8) 
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These two images have the same Fourier magnitude but a phase difference 

directly related to the displacement. The inverse Fourier transform of the phase 

difference is a delta function centered at the displacement, which in this case, is the 

point of registration. In implementation, the continuous transform must be replaced by 

the discrete Fourier transform and the delta function becomes an impulse function. 

If I1 and I2 images are not identical images or they are noisy, the Fourier 

transforms differ. So, we have to estimate the best phase difference in those situations. 

The above function defines the optimized phase difference between two images.  
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ωωωω +=                              (5.9) 

Here, (5.9) is the computed values of the cross power spectrum of the images. The 

inverse of this expression gives the peaks in the high correlation regions, and location 

that has the peak value in the inverse Fourier transform of the (5.9) function indicates 

the translation parameters. The derivation of the above expression (5.9) is presented in 

Appendix A. In our implementations for assembly problem, we used this method. The 

usage of the method will be described in the next section. We will introduce the 

properties and the advantages of the Fourier based registration method in the remaining 

part of this section. 

Since the phase difference for every frequency contributes equally, this technique 

is particularly well suited to images with narrow bandwidth noise. Consequently, it is an 

effective technique for images obtained under differing conditions of illumination since 

illumination functions are usually slow varying and therefore concentrated at low spatial 

frequencies. Actually, the illumination is not a critical parameter in the archaeological 

fragments, because it is possible to acquire the images of the pieces in ideal conditions. 

However, the corruption in the archaeological fragments causes a change in the textural 

information of the pieces. This corruption generally has lower frequencies. For example, 

the one region of the fragment may be a few darker than another region and there are 

soft transitions between these regions. In these cases, the Fourier registration gives well 

responses. 

Similarly, the technique is relatively scene independent and useful for images 

acquired from different sensors since it is insensitive to changes in the spectral energy. 

This property of using only the phase information for the correlation is sometimes 

referred to as a whitening of each image. Among other things, whitening is invariant to 
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linear changes in brightness and makes the correlation measure relatively scene 

independent. With respect to above comments regarding illumination, the different 

pieces may have different brightness because of the corruption. If we prefer a method 

that assemblies the fragments according to the exact similarities of the adjacent pieces, 

it may give inadequate results. Thus, the Fourier registration method has also 

advantages in such cases. On the hand, if the white noise immunity is desired, a 

weighting function can be selected before taking the inverse Fourier transform.  

Certain assumptions underlie the use of the Fourier transform, which should not 

be overlooked. Since the images are bounded and discrete, frequency information is also 

bounded and discrete. By sampling theorem, in using the Fourier transform, it has been 

assumed that the images are bandlimited and periodic with the image size. In general, 

images are preprocessed in order to make these assumptions more valid. For example, a 

smoothing function can be applied to limit the bandwidth. In our application, we do not 

use a preprocessing. Because we apply the feature values to the Fourier transform, the 

values applied to the transform are already windowed in the feature generation phase. In 

another words, the fast transitions in the feature image values do not exist. So, the 

limited band precondition is partially obtained in feature generation phase.  

In extension of the phase correlation technique, [87] has proposed a technique to 

register image, which are both translated and rotated with respect to each other. 

Rotational movement, by itself without translation, can be deduced in a similar manner 

as translation using phase correlation by representing the rotation as a translation 

displacement with polar coordinates. But translation and rotation together represent a 

more complicated transformation. In [87], it is suggested that the first angle of rotation 

is determined and then the translation shift is detected.  

Rotation is invariant for the Fourier transform. Rotating the image with an angle 

in the spatial domain is equal to rotating in the Fourier domain with the same angle. 

Two images I1(x,y) and I2(x,y) which differ by a translation (xd,yd) and a rotation 0φ  will 

have Fourier transforms related by 
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By taking the phase of the cross-power spectrum as a function of the rotation 

angle estimate φ  and using polar coordinates to simplify the equation we have 
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Therefore, by first determining the angle φ  which makes the phase of the cross-

power spectrum the closest approximation to a unity pulse, we can then determine the 

translation as the location of this pulse.  

Also scaling can be a parameter of the registration. In this situation, log polar 

transforms can be used. In paper [88], a method using the log polar transformation is 

developed. In our assembly problem, we use similar registration method to fast match 

the pieces. The derivation and the usage details of log polar transforms are represented 

in Appendix B. 

While implementing the above method, it should be noted that some form of 

interpolation must be used to find the values of the transform after rotation since they do 

not naturally fall in the discrete grid. This might be accomplished by computing the 

transform after first rotating in the spatial domain. Although this solution is too costly 

for most applications, it can be used in systems using parallel computing. Another 

solution for the same problem is to apply the transform to a zero padded image thus 

increasing the resolution an improving the approximation of the transform after rotation 

[87]. Other interpolation techniques, for instance, the nearest neighbor and bilinear 

interpolation, proved to be unsatisfactory. Their method is also costly because of the 

difficulty in testing for each angle. In implementations for our problem, we used both 

methods that rotate the image before transformation and after transformation with zero 

padding. For the first method, it is slower but the results are better. In the second 

method, it is faster but it may fail in some cases. 

The Fourier methods, as a class, offer advantages in noise sensitivity and 

computational complexity. Many techniques similar to previous methods are developed. 

For example, an algorithm is used to register images using the power cepstrum (the 

power spectrum of the logarithm of the power spectrum). First images are made parallel 

by determining the angle, which minimizes the differences in their power spectra. Then, 

the power spectrum is used to determine the translation correspondence in a similar 

manner to phase correlation. This has the advantages over the previous methods of the 

computational savings gained by adding images instead of multiplying them due to the 

use of logarithms.  

All Fourier methods described above achieve better accuracy and robustness than 

the classical correlation algorithms. However, they are only applicable for certain well-

defined transformations such as rotation and translation, because the Fourier methods 

rely on their invariant properties. In many applications, the registration methods are 
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designed to overcome more complex transformations. Thus, the Fourier methods may 

not be preferred. But we need only rigid transformations (only rotation and translation) 

in our assembly problem. So, the Fourier algorithms are more applicable and more 

efficient (according to computational complexity) than the others. 

As we mentioned before, we use only rigid transformations. At the same time, the 

scaling is not a variable parameter of our solution. The exact imaging can be captured in 

acquisition by using proper resolution. So, it is sufficient to use polar coordinates 

without logarithmic computations. In Appendix C, the implementation of polar 

coordinates without logarithmic scale is derived and the rotation problem is changed 

from 2D registration to1D registration problem. 

 

5.2 FFT Based Solution 

 

For the clarity of the explanation, we will describe the FFT based solution step by 

step. In the first step, we will define the easiest puzzle problem and its solution. Then, 

we will add one more property in each step. At the last step, we will expand the solution 

for the real puzzle problems. 

Case 1 : Assumptions of the easiest puzzle problem:  

• There are only two pieces in the puzzle 

• The puzzle pieces are two-dimensional 

• The puzzle pieces do not contain texture, we will use only the shape information 

• The pieces are not rotated; all pieces are in their correct orientation 

• Only boundaries give the relation between pieces 

Definition of the easiest puzzle problem: Let us first consider the solution to a 2 

pieces puzzle. The solution set consists of the piece I0 and the transformed version of 

the piece I1. These images are black and white images.  

Solution: First step is to expand the images. The expanding operation is 

equivalent to morph images outwards, because the images are black and white. The 

window size that also determines the expanding band width is used to filter the images. 

This operation gives the expanded images, I0
+ and I1

+.  

The transformation consists of translation (T=(∆x,∆y)). The transformation that 

gives maximum correlation between I1
+ and I0 (and also I0

+ and I1) is the best match 

between the two pieces and, hence, is the solution defined below:  
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(a)      (b) 

           
(c)      (d) 

Figure 5.1 : (a) and (b) are two pieces from a puzzle and (c), (d) are their 
expanded forms, respectively. Red band shows the morphed region. 

( )))(,())(,( argmax 1010
2
general ITICITICS

T

++ +=                          (5.12) 

C denotes the correlation operator. The S expresses the solution set. The 

superscript is used to symbolize number of pieces in the puzzle. The subscript general 

term is used, because the maximum correlation solution does not guarantee the real 

solution to the puzzle, since it does not incorporate the physical constraint that two 

pieces cannot overlap. This constraint can be expressed in terms of correlations: 

∅=∩  ))((  )( 10 ITI                                                (5.13) 

This constraint is also written by using the correlation operation like: 

0))(,( 10 =ITIC                                                  (5.14) 

Hence the real solution set is given by: 
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The solution set lies where the original pieces have correlation 0, and the I1
th piece 

has maximum correlation with the I0
th piece. These correlations can be carried out very 

fast using FFT operations as in image registration methods [17]. (See also Appendix A 

for the derivation of the below formula) 
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where imax returns the indices of the max value. F , *F and F  denote the Fourier 

operator, its complex conjugate and the inverse Fourier operator, respectively. If we 

substitute (5.16) and (5.17) in (5.15): 
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When the inverse Fourier value in the second part of the formula is zero, the 

maximum values of the first part of the formula gives the ideal transformation 

parameters. By using of the linearity of Fourier operations, (5.18) can be written as: 
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Figure 5.1 shows a two-pieces puzzle. In Figure 5.1-a,b, there are two original 

pieces. In Figure 5.1c,d, the expanded pieces are shown. The image in Figure 5.2-a 

represents the correlation matrix between these two expanded pieces. This is the general 

solution for the problem. If the constraint expression is applied, however, the image in 

Figure 5.2-d is found. This matrix is the output of the inner part of expression (5.20). 

The red circle in Figure 5.2-d indicates the maximum point in this matrix. The indices 

of this maximum point give the translation coefficients. The last image in Figure 5.2-e 

shows the solution if this translation is applied to the second piece.  
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(a)       (b) 

            
(c)       (d) 

 
(e) 

Figure 5.2 : (a) The correlation matrix between the original regions and the 
expanded regions or the inner part of the Sgeneral (b) The correlation matrix of 
the original regions C(I0,I1) (c) represented the impossible translations or 
signature of the C(I0,I1), L(C(I0,I1)) (d) The possible correlations or the inner 
part of the Sreal and the red circle shows the maximum point (e) The final 
solution the puzzle. 
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From another point of view, this solution is also similar to identifying the 

maximum overlapping area between expanded and original regions. This approach 

shows us that the method developed above is meaningful and valid, when the sizes of 

the pieces are not considerably different. As we mentioned before, we prefer this 

method, because FFT based method is very fast so it is reasonable to implement in a 

search algorithm. 

Suppose that the size of the images is NxN. The computation of the correlation 

between these two images has a complexity of O(C1N4) in spatial domain, and the 

computation of the constraint term has also a complexity O(C1N4) (Totally O(2C1N4)). 

However, the computation in Fourier domain, as defined before, is easier. In order to 

use these easier operations, we assume that the size of the images or the board, N, is a 

power of two. As we know, the complexity of a 2D FFT is O(CN2log(N)). However, 

there is a difference between the primitive computations in spatial domain and in the 

Fourier domain. In Fourier domain, we use complex operation other than real 

operations. We can express this difference as C≈5C1 (then, the complexity of the 2D 

FFT is O(5C1N2log(N)).  

In the expression (5.20) for the case 1, the proposed matching method requires 

computation of four FFT and two inverse FFT. Other than the FFT’s, the remaining 

tasks (seven complex and one real multiplication, one complex summation and one sign 

operation) are all O(C1N2) (Total O(42 C1N2)). The total complexity for (5.20) becomes 

O(30C1N2log(N)+42C1N2). Note that the complexity for the calculations of the 

correlations in spatial domain is greater than the one in Fourier domain (O(2C1N4)>> 

O(30C1N2log(N)+42C1N2): Using the Fourier domain is efficient after N≥16).  

Case 2 : Removing the “no rotation” assumption: The new assumptions are: 

• There are only two pieces in the puzzle 

• The puzzle pieces are two-dimensional 

• The puzzle pieces do not contain texture, we will use only the shape information 

• Only boundaries give the relation between pieces 

Definition of the problem: Let us first consider the solution to a 2 pieces puzzle. 

The solution set consists of the piece I0 and the transformed version of the piece I1. 

These images are black and white images.  

Solution: First step is to expand the images as it is described previously. This 

operation gives the expanded images, I0
+ and I1

+.  
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Figure 5.3 : Two pieces puzzle. The second piece (right) is rotated. Red lines 

represent the morphed regions. 

The transformation consists of translation (T=(∆x,∆y,∆θ)). The transformation that 

gives maximum correlation between I1
+ and I0 (and also I0

+ and I1) is the best match 

between the two pieces. All expressions are same as (5.15). 

The main difference between the current problem and previous one is in the FFT 

phase. We can not find the translation and rotation with an operation as in (5.20). There 

are two possible ways to overcome this problem. First one is to try all possible discrete 

degrees for the best fitting. This method is slow but more accurate. This is an ordinary 

method, but it can be preferred in some cases. For example, the solution can be obtained 

more accurate and faster, if we use parallel computers. Because the formula (5.20) is 

run in each computer with different rotations, and then the best rotation and translation 

value is found in one step.  

The second method is more formal and algorithmic. First polar transformation is 

used to generate new images that are suitable to implement to the formula (5.20). Then, 

use an iterative algorithm to find the translation and rotation at the same time. This 

method is faster than the previous exhaustive search method if it is worked in a 

sequential computation environment. The details of this iterative algorithm are 

described in the research [88]. Polar and log-polar transformation and determination of 

rotation and scaling are detailed in the Appendix B. 
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Figure 5.4 : The first (left) and second (right) image transformed to the polar 

coordinates. 

Actually, the derivations in Appendix B cover the scaling and rotation. We can 

ideally acquire the fragments; hence the scaling is not a variable in a puzzle problem. 

So, we do not need to use log-polar coordinates. We use directly polar coordinates 

instead of log-polar coordinates.  
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    (5.21) 

The above formula is derived in Appendix C. The I0
T represents the polar 

transformed of image I0. The subscript of F1 is used to symbolize the 1D Fourier 

operations. We can find the rotation value in an iteration of the algorithm, mentioned 

before, by using above formula.  
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(a)      (b) 

           
(c)      (d) 

Figure 5.5 : (a) shows an intermediate position of the first piece from the 
iteration. (b) represents its image in polar coordinates, (c) the final 
transformation of the first piece and (d) its image in polar coordinates 

Even in the Polar Coordinates, the expanded regions of the second piece shown in 

the right image of the Figure 5.3 are correlated with the original regions of the first 

piece shown in the Figure 5.5-d. 

Since the finding the rotation and translation is an iterative operation, the 

complexity depends on the number of the iterations, niter. In each iteration, we use two 

registrations (one in Cartesian, one in Polar coordinates), one transformation from 

Cartesian to Polar coordinates and one rotation operation. The complexity of the 

Cartesian to Polar transformation and rotation are O(C1N2). In the Polar coordinates, the 

complexity of the expression (5.21) is O(10C1N2log(N)+5C1Nlog(N)+35C1N2) because 

the complexity of the 1D FFT’s is O(Nlog(N)). By adding the complexity of finding the 
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translation, the total complexity for each iteration is 

O(40C1N2log(N)+77C1N2+5C1Nlog(N)). According to dominant terms and the number 

of iterations, it is O(40C1niterN2log(N)). The complexity is proportional to niterN2.  

Case 3 : Removing the “no texture” assumption: The new assumptions are: 

• There are only two pieces in the puzzle 

• The puzzle pieces are two-dimensional 

Definition of the problem: Let us first consider the solution to a two-piece puzzle. 

The solution set consists of the piece I0 and the transformed version of the piece I1. 

These images are textural images.  

Solution:  We used the morphing operations to expand the images in two previous 

problems, because the images are defined as black and white. Here, our pieces have 

pictorial images. These images may contain only drawing or lines as well as complex 

textural structures. The expanding operation for the pictorial pieces should be more 

sophisticated that the expanded region of a piece is seriously similar to original region 

of the right neighbor pieces. This expanding operation is defined in the Chapter 3. 

The first step is to expand the images by using inpainting algorithms. This 

operation gives the expanded images, I0
+ and I1

+. 

          
Figure 5.6 : (left) the two pieces with the texture (right) the expanded images. 

The transformation consists of translation (T=(∆x,∆y,∆θ)). Here, we have to 

define one more step. As we mention before in the Chapter 4, we can not directly use 

the pixel color values. We have to use the feature values of the textural structures.  
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Figure 5.7 : Feature images of the original and expanded band. Mean (left) and 

variance (right) features. 

When we define nk (number of features) features, the new form of the formula 

(5.22), which represents the correlation between original and expanded regions, is; 

( ) ))(,())(,(argmax
kn

k
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2
general ∑ ++ += kkkkk

T
fTfCfTfCwS                    (5.22) 

The constraint formulas (5.14)(5.17) do not differ in this solution. But the formula 

(5.15) defining the real solution of the two-piece puzzle differs as: 
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At the same time, the Fourier version of the above formula is changed as: 
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 (5.24) 

The formula used in polar coordinates is affected same as S2
real formula. The 

images, I0
T, terms will be feature, fk0

T, terms and the weighted summation of features 

will also be added to expression. By using of mentioned iterative solution, the two-piece 

puzzle is solved. 
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(a)       (b) 

 
(c) 

Figure 5.8 : (a) The correlation matrix between the original and the expanded 
regions or the inner part of the Sgeneral. (b) The correlation matrix of the possible 
transformations or the inner part of the Sreal. (c) The final assembly. 

The red point has a maximum correlation value. The Figure 5.8-c shows the final 

replacement of the second image according to the transformation values found by Sreal.  

In the case 3, the complexity also depends on the number of the features, nk. The 

complexity is then derived from that of the case 2. The new complexity for the (5.24) 

becomes O(40C1niternkN2log(N)).  

Case 4 : Removing the “two-piece puzzle” assumption: 

The remaining last assumption is that the puzzle pieces are two-dimensional. 

Definition of the problem: We have a puzzle including np pieces. The images of 

these pieces are textural. We have to find the right transformations of all pieces that 

generate the best assembly. 
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Solution: The solution outlined above can be generalized to the solution of more 

realistic puzzles with larger number of pieces. Let np be the number of pieces involved. 

The solution is the set of appropriate transformations of each piece:  

{ } .,,.........,,,  3210 p

p
n

n TTTTTS =                                       (5.25) 

We develop two different algorithms to solve the general problem. The first one is 

semi-automated algorithm. This algorithm is used to solve the puzzles containing large 

number of pieces. This algorithm generates faster solutions in each step, but they are 

generally partial solutions. These partial solutions are shown to user. The user indicates 

the pieces which may be a group. Then the same algorithm generates new possible 

solution. These interactive operations continue until the user think that the final shape is 

generated.  

The second one is a full-automated algorithm. This algorithm is using the search 

tree methods. This method takes more time than the first one and the number of puzzle 

pieces that can manage to solve is less than the previous algorithm. 

5.3 A Semi-Automated Algorithm 

 

Assume that all the pieces are randomly dispensed on a big enough board (B). We 

randomly select a piece (It). For this piece, the transformation giving maximum 

correlation is obtained using the above technique. 
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where  { } .,,.........,,  210 pnIIIIB =                                    (5.27) 

Here Tt
’ symbolizes the best transformation when the other pieces in the board are 

fixed. The subtraction operation in the expression (like fkB-fkt) is used to represent the 

board without It image.  

The algorithm used in solving the puzzle is outlined below: 

1. Place the pieces on a board (B). This board should be big enough that all pieces 

can freely be placed. 

2. Randomly select a t piece.  

3. Find the best transform, Tt
’, by using the expression (5.26). 
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4. Continue to go to step 2 for all possible piece. Jump to next step if all pieces 

want to stay its original place. In another and formal words, if the transformation 

values calculated in step 3 give zero translation and rotation for all pieces, 

continue to step 5.  ( ) tTt ∀= )0,0,0('

5. Select one or more pieces randomly and transform them any free place in the 

board. This step is likened to adding noise operation in a search algorithm. This 

step partially saves the search from being stuck in a local solution.  

6. Go to step 2 until the step 4 generates same solutions (uniquely assembled) even 

if all pieces are tried in step 4. 

The main drawback of this operation is that there may be multiple solutions to the 

problem. These multiple solutions depend on the initial placement of pieces on B and 

the random selections of the tth piece. In these situations, the affinity measure developed 

in the previous chapter is used (Equation (4.6)). For a possible placement given by the 

proposed technique, the Fcost is calculated. If the algorithm reaches to a new solution 

that has a lower cost value than before, the new one becomes the best placement. These 

iterations continue until the last N possible placement cannot offer a better cost. This N 

value directly depends on the complexity of the puzzle. The main argument of the 

complexity for a puzzle is the number of the pieces. So the number N mainly depends 

on the np value. We assume N≈np
2 in our experiments.  

Hence the final version of the algorithm has the following two additional steps: 

7. Find Fcost and if the new one is better then before, save the transformation as the 

best solution and clear the counter N. 

8. Go to step 1, until N reaches to np
2. 

 

5.3.1 Implementation of the Semi-Automated Algorithm 

 

We implement the semi-automated algorithm into the same user interface. A hot 

key starts the algorithm to find a candidate placement. Then user decides to group the 

pieces to continue to assembly process. The grouped pieces combined together by using 

the expressions (4.10 and 4.11) mentioned in previous chapter. The algorithm may be 

triggered one more times to find a new solution. Figure 5.9 shows a scene from the 

program interface. It is captured when an algorithm just finished the search and offered 

a possible assembly of puzzle pieces. 
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The time for the semi-automated algorithm depends on the initial conditions. 

However, we may define the complexity by the use of coarse assumptions. In the first 

two steps, we can find the solution with a time linearly proportional to number of 

pieces, np. In the third step, we continue to do the same operations approximately np 

times. We can define a rough complexity for this algorithm as 

O(40C1niternknp
2N2log(N)). The time for the solution is proportional to the 

nknp
2N2log(N).  

      
Figure 5.9 : A scene from the developed program. 

 

5.3.2 Results of the Semi-Automated Algorithm 

 

We will demonstrate the results of the proposed algorithm on three different 

datasets. The first dataset (13 pieces) from Stanford University website is part of the 

Forma Urbis Romae dataset [47] which is a marble map of ancient Rome that has more 

than a thousand fragments. For this experiment, the image of a fragment from this 

dataset is broken artificially. Figure 4.7-a shows the pieces in the dataset and Figure 

5.10-a,b show the different assembly obtained. The final assembly has shown in Figure 

4.7-d 
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(a) Fcost = -18215    (b) Fcost = -18113 

Figure 5.10 . Various intermediate solutions of the semi-automated algorithm. 

      
(a) Fcost = 0     (b) Fcost = -17841 

      
(c) Fcost = -18577    (d) Fcost = -20250 

Figure 5.11 : Various solutions of the semi-automated algorithm for a ceramic tile 
with 21 pieces. 
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The second dataset consists of 21 pieces of an original ceramic tile. Figure 5.11-a 

shows the pieces to be assembled. Figures 5.11-b,c,d give three possible solutions. The 

corresponding cost functions are also given. It is noted that all the solutions are visually 

feasible solutions in terms of the texture and geometry information and the correct 

solution has the minimum cost function. 

The last experiment has pieces from two different ceramic tiles. This experiment 

is important since in a real archaeological set-up, pieces may come from two or more 

objects. 10 pieces of the tile used in Experiment 2 are mixed with 9 pieces from another 

tile. Resulting assembly is given in Figure 5.12.  

 
Figure 5.12 : Pieces from two different ceramic tiles. 

 

5.4 An Automated Algorithm 

 

The automated algorithm purposes to find a final assembly of the pieces. The 

developed method uses the arguments of the best first search algorithms.  

First, we set a search buffer that will contain the best nb assembly of the pieces in 

an intermediate stage of the algorithm. The size of the buffer depends on the complexity 

of the search space. As we mentioned before, the complexity of the puzzles is a function 

of only the number of the puzzle pieces if we consider the all possible puzzle types. In 

the experiments, we set the search buffer size, nb, as nb ≈ np
2.  

The second step is to place an initial piece to the search buffer. Then, a search 

procedure tries all possible pieces that are not used before. This procedure is applied for 

all elements of the search buffer. After this operation, we have a set of new candidate 

assemblies.  
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The FFT based method developed and described in previous stages is also used in 

the search procedure to fill the candidate set. The expression (5.24) can solve the best 

transformation when we have two pieces and want to place one close by the other. 

Consider that an assembly in a search buffer contains 3 pieces. These pieces can be 

merged together (by using the expressions (4.10 and 4.11)). After this operation, the 

problem becomes the similar with two pieces puzzle problem.  
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            (5.28) 

where { } )(    iBufferIIG ∈=                                       (5.29) 

Here Tt
’ symbolizes the best transformation between a group and tth piece. This 

group consists of the pieces in an element of a search buffer. 

Because the candidate set may contain the assemblies that have equal 

transformations, an extra procedure is called to clean such ambiguities. This procedure 

search for same solutions in the candidate set and cancels one of these solutions. Then, 

the affinity measures developed in the Chapter 4 is calculated for the remaining set 

consisting of unique solutions. The elements of the set are sorted according to the 

affinity measures. The assemblies that have the best nb measures are stored for the next 

iteration. The iterations continue until all pieces are assembled in all nb element of the 

search buffer.  

After iterations end, the best affinity measure is selected as the solution of the 

algorithm. There is a fragility of this procedure. If adding one new piece does not 

improve the affinity measure for all possible trails, the search buffer remains same with 

previous one. In this situation, the algorithm stuck on fixed state. To overcome this 

problem, the algorithm ends when the current state and previous state are equal. The 

pseudo-code of the above algorithm is shown in Table (5.1). 
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1. Set the size of the search buffer. 

2. Place the pieces into the search buffer one by one and sequentially. 

3. For all search buffer elements, i; 

a. For all pieces that does not exist in the group of the ith element; 

i. Find the best transformation by using the expression (5.28). 

ii. Calculate the affinity measure value. 

iii. Store transformations and affinity measure into the candidate 

buffer. 

4. Test all candidate assemblies if two more candidates offer the same 

transformation. If they are, stay only one by removing the others. 

5. Select the best nb assemblies. 

6. If the best assemblies are equal to previous search buffer, go to step 8. 

7. Replace the previous buffer with new assemblies and continue to go to step 

3. 

8. Transform the pieces according to the best affinity measure in the search 

buffer and show it to the user. 

Table 5.1 : The pseudo code of the fully-automated algorithm. 

5.4.1 Implementation of the Automated Algorithm 

 

We implement the automated algorithm into the same user interface. A hot key 

starts the algorithm to find a possible assembly of the puzzle pieces. This algorithm is 

also used like the semi-automated algorithm. The user may also decide to group the 

pieces to continue to assembly process. The algorithm may be triggered one more time 

to find a new solution. But the execution time of this algorithm is considerably higher 

than the semi-automated algorithm. So it is not meaningful to use this method as part of 

an interactive assembly operation. Figure (5.9) shows a scene from the program 

interface.  

Here, the succession of the algorithm is proportional to the size of the search 

buffer, nbuf. The time for the solution increases as the size of the buffer increases. In the 

first iteration (for the step 3), we compute the expression (5.28) (np-1) times for each 

nbuf. Then, (as a coarse assumption) we compute (np-2) times for each buffer element. 

Thus, we use this expression nbuf.np.(np-1)/2 ≈ nbuf.np
2/2 times. As we define the 

complexity of the mentioned expression, total complexity becomes 
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O(20C1niternknbufnp
2N2log(N)) for this algorithm. Also, suppose that the size of the buffer 

should, at least, be linearly proportional to the number of pieces. Thus, the complexity 

may be O(20C1niternknp
3N2log(N)). The complexity of the fully-automated algorithm is 

more dependent on the number of the pieces than the semi-automated algorithm. 

 

5.4.2 Results of the Automated Algorithm 

 

The example for automated algorithm contains four puzzle pieces. We choose the 

minimum number of pieces to be able to demonstrate the intermediate states of the 

algorithm. The search buffer is selected as four. Initially, the search buffer is stored with 

the pieces. The first piece is placed into the first element of the search buffer, and 

second goes second element, and so on. 

          
(a) Fcost = 0   (b) Fcost = 0  (c) Fcost = 0   (d) Fcost = 0 

Figure 5.13 : Puzzle pieces 

After first iteration, 12 new candidates is generated, and total candidates with the 

previous search buffer contains 16 possible assembly. All new candidates are shown in 

the Figure 5.14. The Fcost values are also attached to the images of the candidates. 

We choose the best fourth assembly to continue the second iterations. The 

selected assemblies are illustrated in Figure 5.14. The second iteration generates new 

candidates and search buffer is updated until the all search buffer elements use all 

pieces. The all intermediate iterations and the final assemblies are presented in Figure 

15. 

The second example belongs to same picture as the first example. The number of 

pieces is 16. The example is artificially prepared like first one. The pieces are shown in 

Figure 5.16. 
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(a) Fcost = -988  (b) Fcost = -3200 (c) Fcost = 289  (d) Fcost = -988 

          
(e) Fcost = 259  (f) Fcost = -359  (g) Fcost = -3200 (h) Fcost = 259 

          
(e) Fcost = -2564 (f) Fcost = 289  (g) Fcost = -359  (h) Fcost =--2564 

Figure 5.14 : All new candidates in the second step of the automated algorithm. 
The candidates selected in first step are (b),(g),(f), and (h). 

          
(a) Fcost = -3982 (b) Fcost = -5998 (c) Fcost = -3982 (d) Fcost = -5998 

          
(e) Fcost = -8293 (f) Fcost = -8293 (g) Fcost = -8293 (h) Fcost = -5998 

Figure 5.15 : (a),(b),(c), and (d) are the new elements of the search buffer in the 
second step. (e),(f),(g), and (h) are from third step. 
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Figure 5.16 : An artificial puzzle with 16 pieces. 

In this example, we present the assemblies that have the best affinity measure. 

Each assembly is taken from different iterations. These assemblies are shown in Figure 

5.17. 

The third example contains 21 pieces of real ceramic tiles. The erosion and the 

occlusion are tested. The intermediate assemblies and final result are demonstrated in 

Figure 5.18 and 5.11-d, respectively.  

 

          
(a) Fcost = -1598 (b) Fcost = -2864 (c) Fcost = -5032 (d) Fcost = -7152 

          
(e) Fcost = -10560 (f) Fcost = -12384 (g) Fcost = -17118 (h) Fcost = -22536 

Figure 5.17 : The images represent the assemblies with best cost value from the 
various iterations  
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Figure 5.18 : Two different assemblies from the 12th and 15th iterations. 

The last example contains more pieces. The solution can not generate final 

assembly. In this example, the pieces are grouped after the algorithm generates the 

intermediate solution. Then, the algorithm is triggered one more time. The next solution 

becomes the correct assembly. If it is observed that the Fcost belonging to final assembly 

is smaller than the first output of the algorithm, we can consider that the cost function 

responses to different placements accurately, but the optimization may fail as the 

number of the pieces increases [89][90][91]. 

We presented a method for the automated puzzle assembly problem using surface 

texture and picture. The approach is based on expanding the boundary of each piece 

using inpainting and texture synthesis methods and maximizing the correlation based on 

matching feature values obtained from these predicted regions. Initial experiments show 

that this approach is very promising for the automated puzzle assembly problem. The 

next chapter will concentrate on generalizing the presented algorithm to solve the 

matching problem for the 3D puzzle pieces. 
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Chapter 6 

6 3D EXTENSION OF THE PURPOSED APPROACH 

6.1 Introduction 

 

We use the FFT based methods to solve the partial matching problem in previous 

chapter. The partial matching of the pieces is the main operation in a reconstruction or 

assembly problem. Because the puzzles used in preceding chapters consist of two-

dimensional pieces, we have described and developed the 2D partial matching 

operations. In this chapter, we propose to apply the FFT based methods to the 3D partial 

curve and surface matching problems.  

The main idea is similar to the previous one. First, the pieces are expanded and 

are attempt to find the best transformation that maximizes the correlation between the 

expanded region or surface of one piece and the other. To find the maximum 

correlation, the FFT shift theory is used. For the FFT operation, the only difference 

between 2D and 3D is the implementation. The 3D FFT calculation may be a memory 

critical operation although the 2D FFT operations are not. To overcome this problem, 

we rescale pieces so that all pieces can fit into the space with a size of 128x128x128. 

But this extra arrangement causes that the relatively small pieces can not be used in the 

solution. 

The other difference between the assembly of the 2D puzzles and the methods that 

will be described in the current chapter is to propose to solve only the best matching of 

two pieces and give a matching score for this operation. The matching of the expanded 

region with original pieces meets with more or less same difficulty with the operations 

in 2D. But the embedding of the constraints, which are preventing the pieces to overlap, 

is much more difficult than it is used in 2D images. The main reason of this situation is 

the freedom of the pieces in 3D space. For example, a shell can easily come closer to 
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another shell without touching each other. Figure 6.1 shows such a situation. An 

additional procedure is described in the later sections to overcome this problem.  

     
Figure 6.1 : The second piece comes to closer to the first piece without them 

touching one another. 

In 3D, a piece has a freedom that can be expressed with six variables. 

),,,,,( φθψ ΔΔΔΔΔΔ= zyxT                                                 (6.1) 

and the transformation operation in 3D is; 

 
Figure 6.2 : Rotation in 3D 
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The FFT shift theory is applied translation and rotation iteratively as we 

implemented in 2D. In the iterations of the algorithm, we use the polar transformation 

methods to find the rotation. The Fourier calculations are relatively fast to find the 

transformation even in 3D, if the memory problem is overcame. 

Another aspect in 3D puzzle assembly is the texture implementation. We use the 

finger holes in archeological fragments as a textural structure. Although we test some 

track on the fragment shell in experiments, the matching of the fully textural pieces in 

3D is not examined in this study. The first open problem is to expand the textures. Some 
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results about 3D inpainting are reported in the work [63]. Another problem in the 

implementation is how we state the color values in a 3D volumetric space. This problem 

will be mentioned in other sections of this chapter. 

The rest of the chapter is organized as follows: the next section describes the data 

acquisition and preprocessing of real 3D archeological data. The third section outlines 

the expanding the 3D surfaces outwards. The later sections present the study of FFT 

based partial matching in 3D, the implementation and the results of defined algorithms, 

respectively. 

 

6.2 Data Acquisition 

 

To test the experiments, we collect the fragments of a 3D pot. It consists of 19 

pieces. The sizes of the pieces are various. We acquire the images of the pieces by using 

a camera system called ShapeSnatcher. The picture of the hard part of the system is 

shown in Figure 6.3. The System is a novel system to produce 3D-models of real 

objects. It consists of a grid projecting device, a camera, a computer and the 

ShapeSnatcher Slide that contains a fine grain pattern that is to be projected onto the 

object. All these components are assembled onto Eyetronics’ ShapeCam, such that the 

whole setup is portable. The 3D-shape acquisition is fast and easy. The camera takes 

only one image and the deformation of the pattern yields the 3D-data. The ShapeCam 

takes two images, one with the grid and one as a texture, such that the final result is 

even mush better, since the texture is not extracted from the grid-image anymore.  

 
Figure 6.3 : ShapeSnatcher scanner system 

The advantages of this system may be summarized as: Complex hardware is 

replaced by standard hardware and sophisticated software. The resulting model is 
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delivered as a surface mesh in formats compatible with most of standard modeling 

software. Technology consists of portable components, so the system can be easily 

brought to the objects. Misalignments between shape and texture are not possible. Both 

are extracted from one and the same image, so they match perfectly onto each other. 

The objects captured with the ShapeSnatcher can be of any size, ranging from small 

toys to full bodies and large statues. And also, it has a lower cost than the other 

professional 3D acquisition systems. 

The Shapenatcher slide contains a very fine grid pattern that is produced by 

special lithographic techniques. Projecting the grid onto the object is easy to 

comprehend. The ShapeSnatcher Software will measure the deformations of the grid 

lines, and calculate the 3D structure of the object. This means the objects can be 

modeled in 3D from only one image. From that same image, the ShapeSnatcher 

Software will also extract the texture of the object, by artificially removing the grid 

lines.  

In order to be able to use the ShapeSnatcher System, it has to be calibrated. 

Calibration is very crucial for all 3D acquisition systems. The calibration procedure is 

required to calculate the distances and angles between camera, projector and object. For 

most systems, the calibration procedure is very difficult, complex and time consuming. 

The ShapeSnatcher needs two kinds of information to calculate a 3D structure from the 

image. The first one is the relative position of the camera, slide projector and object. 

This information is obtained from the calibration file. The second is a picture of the 

object that will be modeled. This picture needs to be taken while the grid is projected, 

and has to same camera-projector setup as the calibration image. After these setups, the 

ShapeSnatcher software is ready to calculate the 3D structure of the model. The 

ShapeSnatcher Software also supports the extraction of the texture from the same image 

as used for the extraction of the 3D structure. By determining the 3D structure, the 

ShapeSnatcher knows how the grid looks like on the image. Then the program merely 

looks at the color intensities just beside the lines, and generates a new texture. The 3D 

structure and the texture match perfectly because all the information is rendered from 

one and the same image. 

After we capture the 3D data, an additional process is applied. The mentioned 

system may produce undesired outputs especially on the edges of the pieces. We clean 

this data points in order not to cause the following processes to fail. We assume that the 

occluded 3D points are considered as eroded borders of the fragments. This process is 
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made manually. Because hand made preprocessing is a time consuming operation, an 

additional utility has to be developed to overcome this problem if the techniques 

described in this chapter is decided to be implemented automatically. 

  
(a)       (b) 

 
(c) 

Figure 6.4 : (a) The captured 3D piece, (b) its 2D projection, (c) its 3D 
presentation. 

 

6.3 Expanding 3D Pieces 

 

The acquisition method mentioned above produces 3D coordinates of surface 

points and definitions of the surface patches, of which these points form. The points are 

scattered according to mesh grid pattern of acquisition method. Projected slide light 

structure produces the mesh grid pattern. A sample image and its mesh grid pattern are 

presented in Figure 6.5. 
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(a)      (b) 

        
(c)      (d) 

Figure 6.5 : (a) The captured image, (b) its textural view, (c) its 3D view, and (d) 
the grid structure of the piece. 

To find the correlation of a 3D piece with a possible neighbor piece by using our 

technique, we have to expand the pieces outwards. In 3D, there are two aspects of 

expanding operation. The first is to expand the pieces geometrically, and the other is to 

fill this expanding surface with predicted texture. In this section, we will focus the 

geometrical expanding. 

Currently, the expanding geometrically is assumed to find new mesh grid points 

and new surface patches, so that the surface formed by the new patches is reasonable 

continuation of original surface. In order to realize this assumption, we develop an 

algorithm to expand the pieces outwards. A pseudo code of this algorithm is shown in 

Table 6.1.  
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1. Load the image data. 

2. Find the boundary grid points. 

3. Calculate the neighborhood grid points for all boundary i points as: 

a. Find the all points that enter the sphere centered in ith point. 

b. Find the coefficients of a 2nd degree explicit function by fitting to 

point coordinates found in previous process. 

c. Find the coordinates of new points inside the defined expanding 

band. 

4. Solve the ambiguity about multiple offering for one new point. 

5. Find the surface patches formed by new points.

Table 6.1 : The pseudo code of the expansion algorithm. 

First operation after loading image data is to detect the boundary points of the 

pieces. The points, which generate a patch from only one side, are accepted as boundary 

points. A sample piece and its boundary are presented in Figure 6.6. 

 
Figure 6.6 : The boundary grid points are shown with red points. 

After determining the boundary points, they are processed in order to generate 

new points forming the expanding band. This process consists of three main steps. The 

first step is to find the closer points to current boundary point. These closer points 

belong to the surface of the piece. A predefined distance is used to determine the 

closers. In other words, the points entering a sphere centered in the same coordinate 

with the current point are determined for the next step. 

 100



 
Figure 6.7 : The yellow points represent the closer points to the first boundary 

point. 

The second step in the boundary point’s loop is to fit an explicit function to the 

coordinates of the points determined previous step. The degree of the explicit function 

is set to 2. In experiments, it is seen that the higher degrees do not generates more 

accurate results, although they sometimes generates abnormal solutions because of their 

unstable structures. The explicit functions are expressed as: 

)),(),,(),,((),,( ktfktfktfzyx zyx=                                        (6.4) 

where 
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t and k symbolize the sequence of the points in a mesh. As an example, a mesh grid 

with 12 points is shown in Figure 6.7. The red point represents the current boundary 

point. The other yellow points are the closer points to a chosen red point from all 

surface points.  

The third step is to calculate the coefficients of the explicit functions. We use least 

square error techniques to fit the functions. Let consider that we use ng number of closer 

points. The best coefficients according to least square method are found to be: 
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The solution is be obtained by: 
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The above technique is very general method in all data fitting processes. Because 

the first matrix may not be a square matrix, the pseudo inverse operation is used. The 

described solution is obtained for only one dimension, x. So, we apply same procedure 

for the other 2 dimensions. 

The next step is to create the new points by using of the generated functions. The 

first process in this step finds the unused (t,k) points in the mesh grid. These mesh 

points are searched in the region, which is not more distant than width of expanding 

band. The found mesh numbers is entered to functions to find the coordinates, (x,y,z).  

 
Figure 6.8 : The predicted points outside the surface are shown with red circles. 

After applying steps described above for all boundary pieces, an extra problem is 

encountered. More than one boundary point may offer a coordinate value for a same 

mesh grid point. To overcome this ambiguity, we take the mean of all offers for same 

mesh grid point.  

The new point cloud defines the expanding band, and it is sufficient to handle the 

matching problem. Here, we additionally generate the surface patches to examine the 

accuracy of the processes. Some samples are presented in Figure 6.10. The Figure 

contains the original images, expanded band and whole image of the samples. Also, the 

red line in the image, in which the expanded and original regions are combined, 

represents the boundary of original part of the pieces. 
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Figure 6.9 : (left) The expanded band and (right) the new expanded surface. 

        

        
Figure 6.10 : The steps of the expansion operation for another piece. 

 

6.4 Partial Matching Problem in 3D 

 

In this section, we try to match two pieces. For the clarity of the explanations, we 

will firstly describe the matching problem based on the correlations of the surface. 

Then, we will define the problems that make the explained method unusable, and 

improve the method that can overcome the mentioned problems. 
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As we pointed before, 3D FFT computations are memory critical operations. We 

rescale the size of pieces to overcome this problem. In the experiments, the biggest 

piece is arranged that it is able to fit into a 64x64x64 discrete space. The dimension of 

the whole space is 128x128x128, so that two large pieces can be freely placed on it. 

We have obtained the point clouds belonging to expanded regions in the previous 

section, and also we have the point clouds of the original regions. The next process is 

that these point clouds are placed on a 3D discrete space. When the coordinates of point 

cloud is rescaled to fit into finite and relatively small space, each point comes to a 

coordinate that is closed to a discrete point. Then, all discrete points which have a 

surface point around themselves are set to one. 

By using above method, we generate two 3D scatter matrixes. One is for original 

part of first piece. The other is for expanded part of the second piece. Then, the 

maximum correlations are computed. The algorithm to find the correlations is similar to 

one used for 2D application. The formula defining the best correlation between the 

pieces can be written as; 
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and the FFT form of above equation is: 
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Subscript for Fourier operator, F, symbolizes the 3D FFT operations. Here, I is 

not an image or a surface. It is a matrix containing ones and zeros. It may be considered 

as a volumetric matrix that expresses the existence.  

In 3D, another problem that does not exist in 2D is to calculate rotation. The 

rotation can be expressed with three variables in 3D. The polar transformation converts 

the Cartesian coordinates to Spherical coordinates. In Spherical coordinates, a point is 

expressed with two angles and a distance. However, two angles are not sufficient that 

each of three rotation angles is able to be used as a variable in a Spherical coordinates. 

Because of this situation, we can not use the iterative method using rotation and 

translation one by one. In order to overcome this problem, one of the rotation angles is 

extracted to be able to use the iterative algorithm. Then, this rotation angle is 
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exhaustively searched. To demonstrate the above processes, an artificial data is 

generated and shown in Figure 6.11. 

       
(a)      (b) 

       
(c)      (d) 

Figure 6.11 : (a) A piece created artificially, (b) The expanded band of the first 
image, (c) Another piece, and (d) the matching of two pieces. 

The partial matching algorithm is described above. It is shown that the partial 

curve matching problem can be theoretically handled by using purposed method. 

Although the experiments give good results in artificial data, there are two open 

problems in order to apply for the real data. The first one is that the discrete points in 

expanded surface rarely intersect with the points of the original surface even if they are 

right positions. The second and more serious problem is in the constraint term. The 

constraint term is not capable to prevent the undesired matching of pieces. A surface 

can stealthily come closer to other ones without contacting. However, we want the 

pieces to come together head to head. Figure 6.12 is represents an undesired and desired 

samples. 
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Figure 6.12 : (left) An undesired matching, and (right) a desired matching. 

We will call the approaches described up to now as primitive form of matching. 

To improve the performance of this form of solution, we will add one more process for 

the final form of partial matching. The solution of these two problems is considered 

together. The surface is inflated towards its normal. In the primitive form of matching, 

the ones represent the existence of the surface and the zeros represent the empty space. 

We think that if we convert the surface to a volume, the undesired approaching of the 

pieces may be prevented. The matrix is filled according to the probability of the 

existence. The term ‘probability of the existence’ means that a point of surface exists in 

a coordinate of the volume with a probability. This probability depends on the distance 

to the surface. The closer points to the surface have a greater probability than the farer 

ones. The mathematical relation with the distance and probability is calculated with 

Gaussian formulation.  
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σ

cedis

ekP
−

=                                               (6.13) 

where σ is standard deviation. The value of the standard deviation set the spreading or 

inflation wideness of the surface. The distance is calculated by finding the perpendicular 

distance to the closer surface.  

To test the effect of the texture information, we make an additional process in the 

matrix. The ‘probability of the existence’ values are multiplied by minus in order to be 

able to define the differences between the texture segments. Although a texture 

approach using such a method is relatively poor, we consider that it may be used to test 

the usefulness of the texture information. 
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6.5 Implementation 

 

MATLAB environment is used to implement the experiments. The data format 

containing acquired and preprocessed 3D surface data is vrml. Two kind of code is 

developed. The first is used to partially match the space curves. The other one is to 

match the two surfaces in the space. The theory described previous sections is used in 

the second implementation. The results of these experiments are presented in the next 

section. 

In 3D, we used 3 dimensional FFT computations. The computational complexity 

of the 3D FFT is O(N3log(N)). The complexity of the partial matching operation is 

derived with similar methods defined in the previous chapter. Here, the time depends on 

the size of the 3D volume and the number of iterations for finding the translation and 

two angle of the rotation. The complexity for this operation can be defined as 

O(C2niterN3log(N)). However, we exhaustively search the third angle to find the final 

solution. By the use of the assumption that the number of the possible discrete angles is 

proportional to the size of the volume, the complexity becomes O(C2niterN4log(N)).  

 

6.6 Results 

 

The first results belong to partial space curve matching experiments. Two space 

curves taken from the boundary curve of pieces are applied the algorithm developed in 

this chapter. The curves are shown in Figure 6.13.  

The first curve is inflated by using Gaussian function. Then, they are applied to 

FFT based algorithm. The second curve in the example is highly similar to a partition of 

the first curve. To test the erosion or deformation dependency, we deformed the second 

curve. The algorithm can match the curve even if they are distorted. The sigma, σ, value 

depends on the distortion level of the pieces. If the pieces are seriously distorted or 

eroded, the sigma value has to be taken higher. The value used in the samples without 

distortion may be relatively small, but it can not be as small as zero. The quantization or 

down-sampling in order to fit finite space always brings some amount of noise. This 

situation is mentioned in the previous theory section with a different view. 
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Figure 6.13 : The edge curves of two pieces from the puzzle. 

The second group of experiments is related to the partial surface matching. Some 

images of the surfaces are shown in Figure 6.14. The expanded surfaces and the 

boundary lines are also presented in this figure. 

     

     

     
Figure 6.14 : Three sample pieces are shown in first column. The second 
column shows the expanded bands and last column represents the corresponding 
expanded pieces. 

The primitive form of the matching algorithm is applied to some selected pieces. 

Two results are presented in Figure 6.15. The pieces mostly can not be placed to their 

true position, although the others can. The performance of the primitive form is not 
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sufficient to implement the algorithm for real data. The overall performance calculated 

for all possible pairs is 16%. Only 3 of 36 pairs can meaningfully reconstructed.  

The final form of the matching algorithm is applied to the same pairings. The 

performance of the matching is improved. A sample result is shown in Figure 6.16. This 

improvement is obtained by using the possibility of existence approach. Although the 

results are better and the method may be used, we think that the method have to be 

improved in order to be able to apply to a real life problem.  

 

        
Figure 6.15 . (left) An undesired matching, and (right) a desired matching. 

 
Figure 6.16 : A true matching. 

The sigma value set a constant value in all experiments. We try different sigma 

values. In very small sigma values, the possibility of existence becomes unaffected. 

After a threshold, the above results are obtained. The solutions are not sensitive to the 

sigma values greater than mentioned threshold. It is also noted that very high sigma 

values remove the information of the existence of the surface, so the solution becomes 

impossible.  
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The last experiments are made to test the effect of the footprints on the surface 

pieces. The pieces with lines are processed as we described in previous section. The 

‘probability of the existence’ values in marked regions are arithmetically inverted. In 

some cases, the algorithm can manage to match the pairs, whereas they are not regularly 

assembled without this process.  

In this chapter, we try to apply the partial matching algorithm to 3D pieces. This 

algorithm is first developed for the matching of 2D textural pieces. Here, we claim that 

the same algorithm may work for 3D applications. The experimental results show that 

the partial matching approach based on FFT methods can be used in 3D. However, we 

consider that the performance of the method is not sufficient. It has to be improved for 

the real life implementations in 3D. Furthermore, it has to be worked on the more 

complicated surface texture. The question “how can we embed both the 3D texture 

information and the probability of existence to the solution” has to be examined.  

The implementation of the FFT may also be problem depending on environment. 

3D FFT operations are memory critical and may also be computationally costly, 

nevertheless it is very fast method to implement. 
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Chapter 7 

7 SUMMARY AND CONCLUSIONS 

Our purpose in this research is to develop a method for the automated assembly of 

objects from their pieces. The task of reassembling has great importance in the fields of 

anthropology, failure analysis, forensics, art restoration and reconstructive surgery, 

restoration and reconstruction of archeological findings, repairing of broken objects, 

solving jigsaw type puzzles, molecular docking problem, etc. 

Reassembling contains many problems endemic to pattern recognition, computer 

vision, feature extraction, boundary matching and optimization fields. The one of the 

main subtitle for the assembly problem is the partial matching of pieces. Previous works 

focus mainly on this partial matching problem by using geometrical properties of 

pieces. The puzzle pieces are represented by their boundary curves. As the fractions of 

boundaries are adjacent and thus similar, a pairwise affinity measure is computed by 

partial curve matching. The puzzle pieces usually include not only geometrical shape 

information but also visual information of texture, color, continuity of lines and so on. 

Moreover, textural information is mainly used to assembly pieces in some cases like 

classic jigsaw puzzles. This research presents a new approach that pictorial assembly, in 

contrast to previous curve matching methods, uses texture information as well as 

geometric shape. The assembly is performed using textural features and geometrical 

constraints.  

In this research, the main idea used to solve the assembly problem can be 

explained in that the correlation between the features of the predicted region and the 

right neighbor is significantly higher than the alternative pairings. In order to realize this 

idea, we study four main topics. The first one is to develop a prediction algorithm to 

expand the pieces outwards. The second defines the performance measure that 

represents the appropriateness of the assembly based on textural features and 

geometrical shape. In the next study, we try to find the best transformations of pieces 
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that maximize harmony of textures of fragments while the geometrical constraints are 

being satisfied. Finally, the methods developed for the 2D pieces are applied to 3D 

problems. 

The prediction algorithm automatically fills in this expanding region with 

information diffusing from the central part. We use the mixture of inpainting and the 

texture synthesis methods for prediction. While extending the fragment image, we 

introduce confidence of expanding as a new parameter in the prediction phase of 

assembly problem. This parameter represents the reliability of expanded values. Then, 

we derive the feature values of both original fragment and expanded region. The results 

of the expanding process are presented in the research. Because the expanded regions 

are not used as an output of the assembly problem, actually, the quality of the pictures 

on the expanded band is not important. It is sufficient that the expanded band have 

similar features with possible right neighbors. Thus, we think that the performance of 

this process is sufficient for such an application.  

Actually, the assembly of fragments is to find the right transformations of pieces. 

To manage the assembly, we have to able to sense whether any arrangement of pieces 

becomes better or worse. We develop a measure called total affinity to be able to 

decide. According to the results of the experiments on artificial and real data, we 

determine that the harmony of pieces and the achievement of assembly improve while 

optimizing this affinity measure.  

Although the puzzle assembly problem can be stated as the optimization of the 

above cost function, the optimization is too computationally costly. So, we use an 

assumption that the minimizing distance function is equivalent to maximizing the 

correlation between the pieces. Therefore, we use the FFT based methods to maximize 

the correlation between the predicted parts of a piece and other pieces. Two new 

assembly algorithms using mentioned FFT approach are introduced in this research. The 

first one is the semi-automated algorithm. This is developed for the interactive usage. 

This method is relatively fast but produces uncompleted or intermediate solutions. And 

also, there is not any theoretical limitation for the number of pieces according to semi-

automated algorithm. We consider that this method can be implemented in the real life 

puzzle problems. The second one is a fully-automated assembly method. The algorithm 

for automated one has some limitations when the number of pieces, np, is greater than a 

threshold. The time for the solution is geometrically increasing while np is increasing. 

Another problem is that the final assembly may not be absolutely guaranteed in large np 
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values. It is useful for the puzzles that have a smaller np value than a threshold 

depending on the structure of pieces. 

The last study regarding the assembly problem involves testing the developed 

methods in 3D. We collect and preprocess 3D real data for the experiments and future 

research on the same topic. The experimental results show that the partial matching 

approach based on FFT methods can be used in 3D. However, we consider that the 

performance of the method has to be improved for the real life implementations in 3D.  

During our research, we produce 2 programs and a MATLAB implementation. 

The first program is used for generating expanded images from the acquired pictures. 

The same program generates feature values of the pieces for the next assembly process. 

The second program is the main one to assemble the pieces. It has a user interface to 

serve the user to open the data and run the assembly operations. The hot keys are 

implemented in order to move, rotate, merge, group or trigger the semi-automated or 

automated assembly algorithms. 

As a summary:  

• We used the texture information in classical puzzle problem. Textural 

information is very important to assemble the pieces. Using this information 

dramatically increases the assembly performance. 

o It can be used to order the related images with soft transitions. 

o Up to now, embedding the texture information to the assembly problem 

is supposed to be very hard operation in the previous research. 

• We developed a measure that expresses the harmony of the assembly. 

o It can be used to order the related images with soft transitions. 

o The future research about the puzzle problem may accept this affinity as 

a common metric to compare the different assemblies. 

• We developed a texture based partial matching method using the Fourier 

techniques. The FFT operations have many advantages for such applications. 

For the image registration, there may be more efficient techniques, but the nature 

of the assembly in some points differs from the image registration. We need 

more robust technique, and the registrations should not directly depend on the 

pixel’s locations. In another words, we need an area based techniques. The FFT 

processes have all these properties. The partial image registration by FFT 

methods can be used as partial matching in proper applications, as ours. 
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o The predicting outwards (also expanding or morphing) for the images is 

practical for registration or matching. Especially, if we work on partial 

matching, the advantage of expanding increases more. 

o The developed technique can be applied to the space curve matching 

problem. 

o In all kinds of recognition problems using the silhouette (or boundary 

curves), the method may be tried. 

• We show that image registration techniques can also be used in 3D matching. 

The FFT can also be used in 3D if the memory problems are overcome in the 

implementations. Even if there is a large amount of data, it is a fast process. 

o The data matching in 3D may be solved by the Fourier based image 

registration techniques. (Espacially in the noisy data) 

o For example, we may use the mentioned method for fitting of a candidate 

face data points cloud to a template data instead of classical ICP 

algorithms. 

During the thesis, we emphasize some open problems in the result sections of the 

related chapters. These problems may be worked on by using the outcomes of this 

study. Some are: 

• The assembly problem can be solved by directly optimizing the affinity measure 

depending on the translations of the pieces. For example, it may be assumed that 

the problem of obtaining the translations is similar to the traveling salesman 

problem, and the self organizing maps may be used to assemble the pieces. 

• The developed partial curve matching method based on FFT theory may be 

applied to other applications. 

• The texture expanding method may be implemented into the new research fields 

such as medical image registration and ours. 

• The embedding the texture information into the 3D assembly method explained 

in the previous chapter may be improved. 
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Appendix A 

Determination of the Translation 

 

Below descriptions are collected by using of the source [92]. All variables and the 

operations are arranged in accordance with the terminology used previously. We will 

assume that: 

),()(      and     ),()( vuHwFyxIxI ==
rr                                   (A.1) 

It is known that if two images, )( and  )( 21 xIxI rr  differ only by shift (translation), 

i.e. if )()( 12 axIxI rrr
+= , where ar  is some unknown shift, then their Fourier transforms 

are: 
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Their Fourier transforms are then related by the following equations: 

)()( 1
)(2

2 wFewF awi rr rrπ−=                                                      (A.4) 

and also 

)()( 12 wFwF rr
=                                                          (A.5) 

To obtain shift a , equation (A.4) is used to compute the value of the following 

ratio: 

r
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Inverse Fourier transform of this ratio is equal to the delta function )( ax rr
−δ . This 

inverse Fourier transform is equal to zero everywhere except for the point . So the 

desired shift  can be determined from the fact that it represents only value for which 

inverse Fourier of the ratio is not equal to zero. 

ax rr
=

ar

In the ideal case the absolute value of the ratio is equal to 1. In real life images 

have some noise in them. In the presence of noise observed values of the intensities may 
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differ from the actual values, and as a result the absolute value of the ratio  may be 

different from 1. To find out exact value of the ratio in the presence of noise following 

can be done. Let  

)(wR r

be awi =− )(2 rrπ                                                       (A.7) 

then in absence of noise: 

)()( 12 wbFwF rr
=                                                    (A.8) 

In the presence of noise Fourier transforms, )( and )( 21 wFwF rr , can be different 

from the actual values so the equation (A.8) changes to 

)()( 12 wbFwF rr
≈                                                   (A.9) 

As stated before it is also known that absolute value of b is equal to 1: 

1.   i.e.   1 *2 === bbbb                                           (A.10) 

where  is complex conjugate to b. *b

Now the best estimate for  that satisfies condition in equation (A.10) and 

approximation equation (A.9) has to be found. For this task the Least Square Method 

can be used. This method assumes that the best curve fitting of a given type is the curve 

that has the minimal sum of the deviations squared (least square error) from a given set 

of data. According to this method for each estimation of b, error (E) can be defined as 

follows: 

b

)()( 12 wbFwFE rr
−=                                                  (A.11) 

Then among all estimates that satisfy the additional condition in equation (A.10), 

a value of b for which the square of error, *2 .EEE = , is minimum is found. Knowing  
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Resulting expression has to be minimized under the constraint in Equation (A.10). 

Constraint optimization is the minimization of an objective function subject to 

constraints on the possible values of the independent variable. The typical constrained 

optimization problem has the following form:  

0g(x) subject to    )(argmin =xf
x

                                    (A.13) 

where  is the scalar-valued objective function and  is the vector-valued 

constraint function. 

)(xf )(xg
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The classical approach to solving constraint optimization problems is the method 

of Lagrange Multipliers. This approach converts the constrained optimization problem 

into an unconstrained one. The Lagrangian of a constraint optimization problem is 

defined to be the scalar-valued function 

g(x))(),( TxfxL λλ +=                                                   (A.14) 

where λ is Lagrange multiplier. 

Stationary points of the Lagrangian are potential solutions of the constrained 

optimization problem, as always each candidate solution must be tested to determine 

which one minimizes the objective function. As shown in Figure A.1, the constraint 

corresponds to a contour in the x plane. 

 
Figure A.1 : Geometric interpolation of Lagrange multipliers (taken from [92]) 

In the above figure thick line corresponds to the contour of the values of x 

satisfying constraint equation 0)( =xg . The thinner lines are contours of constant 

values of the objective function . The contour corresponding to the smallest value 

of the objective function just tangent to the constraint contour is the solution to the 

optimization problem with equality constraints. 

)(xf

In the other words minimum of the function  under the constraint )(xf 0)( =xg  

is attained when for some real number λ  function ),( λxL  attains its unconstraint 

minimum. 

This leads to finding the value of the complex variable b for which the expression  

)1.()().()().()().()().( **
11

2*
21

*
12

**
22 −++−− bbwFwFbwFwbFwFwFbwFwF λrrrrrrrr   (A.15) 

takes the smallest possible value. 

Since complex variable is in effect a pair of two real variables minimum can be 

found as a point at which the partial derivatives with respect of each of these variables 
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are both equal to zero. If equation (A.15) is differentiated relative to following linear 

equation is obtained: 

*b

bwFwbFwFwF λ++− )().()().( *
11

*
12

rrrr                                      (A.16) 

From this equation b can be found as  
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rr

                                                  (A.17) 

From the condition in equation (A.10) that value b should satisfy, the coefficient 

λ  can be determined. Knowing that denominator in equation (A.17) is a real number, it 

is sufficient to find a value of this denominator for which 1. *2 == bbb . To achieve 

this, the absolute value of the numerator should be taken as denominator, i.e.  

)(.)()().( *
12

*
12 wFwFwFwF rrrr

=                                                   (A.18) 

and now expression for b, equation (A.17), has a following form  
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The ratio 
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=  from the ideal non-noise case becomes  
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in the presence of noise. 

From the equation above it is obvious that inverse Fourier transform of )(wR r in 

the presence of noise has values that are slightly different from the delta function, but 

still absolute value of the inverse Fourier transform should be much larger at point 

 than all the other values of this function. In this case desired shift  represents 

the point for which the absolute value of the inverse Fourier transform takes the largest 

possible value.  

ax rr
= ar
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Appendix B 

Using Log-Polar Coordinates for the Determination of Rotation & Scaling 

 

Below descriptions are collected by using of the source [92]. All variables and the 

operations are arranged in accordance with the terminology used previously. 

If one image differs from another not only by shift, but also by the rotation and 

scaling then the absolute values (magnitudes) of their Fourier transforms are not equal, 

but also differ by the corresponding rotation and scale. 

By using transformation to go from Cartesian to polar coordinates ),( θr  in the wr  

plane, rotation by an angle 0θ  is described by simple shift 0θθθ −→ . In the polar 

coordinates scaling is also simple but cannot be described by simple shift rr λ→ . On 

the other hand if transformation is made form Cartesian to log-polar coordinates ),( ηξ  

where )log(r=ξ  and θη =  then scaling can be also represented by the shift 

c−→ξξ , where )log(λ=c . From this is obvious that log-polar transformation can be 

used to describe both rotation and scaling as a shift.  

Log-Polar Transformation of an Image 

The log-polar transformation is a conformal mapping from the points on the 

Cartesian plane  to points in the log-polar plane ),( yx ),( ηξ  as shown in Figure B.1. 

If  is an image with support on a rectangular set in the Euclidean plane, 

then the log-polar transform with origin  is described by following mapping: 

),( yxI
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The transform maps a 2D image onto the surface of a cylinder. The cylinder is 

indexed by ξ  and η . The ξ -axis is parallel to the axis of the cylinder. The η -axis 

forms a circle around the cylinder. 

As shown above log-polar image is produced through a projection onto an image 

plane, which is not sampled in a rectangular -grid, but in the following way: the 

pixels are arranged in concentric circular rings around the focus of attention. On each 

),( yx
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ring the same number of pixels is sampled, and the pixel size increases exponentially 

with growing radius of the rings in such a way, that all pixels are approximately square 

(see Figure B.1).  

 

 
Figure B.1 : Cartesian and log-polar planes (taken from [92]) 

After log-polar image is mapped back to Cartesian coordinates the decrease in 

resolution with increasing radius can be observed. 

Determining Rotation and Scaling 

Log-polar transformation can be used to describe both rotation and scaling as a 

shift. To determine rotation and scaling needed for the image registration both images 

have to be transformed from the original Cartesian coordinates to log-polar coordinates. 

Next same Fourier transforms as described for the translation determination are used to 

determine the corresponding shift ))log(,( 0 λθ , from these values rotation angle 0θ  and 

scaling factor λ  are reconstructed.  

However, computing ),( ηξ  from the original rectangular grid leads to points that 

are not located exactly at points in the original grid. Thus, interpolation is needed to find 
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a value of ))(( wFabs r  on the desired grid. A bilinear interpolation is used for 

resampling. Knowing the transformation relationship between the log-polar plane and 

Cartesian plane, point  in Cartesian plane is related to the desired grid point ),( yx ),( ηξ  

by: 
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ry
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                                                    (B.3) 

To find value of ))(()( wFabswA rr
=  i.e.  using bilinear interpolation, 

intensities  of four original grid points 

 and 

),( yxA

1,11,1,1,  and , , , +++++ jijijiji AAAA

),1,(),,1(),,( ++ jijiji )1,1( ++ ji  that surround point are used: 

1,11,,1, )1()1()1)(1(),( ++++ +−+−+−−= jijijiji uvAvAuAvuAvuyxA          (B.4) 

where u is fractional part of x and v is fractional part of y, see Figure B.2. 

Relations used:  
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Finally 
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Figure B.2 : Bilinear interpolation (taken from [92]) 
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Figure B.3 : A sample image shows the relation between Cartesian and Polar 

coordinates. 
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Appendix C 

Using Polar Coordinates for the Determination of only the Rotation 

 

As we stated in chapter 4 and defined in Appendix A, the max phase correlation 

gives the best translation as: 
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where imax is a function that returns the index of the max value of input. F  is the 

inverse Fourier operator and I is represents the images.  

Additionally, the phase correlation operation can also give the best scaling and 

rotation by using log-polar coordinates (See Appendix B). But (as we described in 

chapter 4) the scaling is not a variable in a puzzle problems. So, we do not need to use 

log-polar coordinates. We will use directly polar coordinates instead of log-polar 

coordinates. 

When we transform the image to polar coordinates, we obtain another 2D image 

(Figure B.3). Using this image, we can find two parameters by applying a phase 

correlation method. These parameters refer to scaling and rotation, as we know. Here, 

we will deform this operation to find the ideal rotation with a constraint of constant 

scaling.  

In ideal case, the solution can be obtained using any crr = value as: 

   
)),(( . )),((
)),(( . )),((

imax
1

*
101

1
*

101
1

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

==

==
=

θθ

θθ
θ

c
T

c
T

c
T

c
T

rrIFrrIF
rrIFrrIF

F                         (C.2) 

Here,  represents the 1D Fourier operation and the polar transformed form of 

image  is shown by . The notation  is used to symbolize the 1D 

sequence that consists of the values in 

1F

0I TI 0 ),(0 θc
T rrI =

crr =  for all degrees. 

(Note that this assumption is valid only for sufficiently complex images. In 

another word, there should be no ambiguous rotations for crr = .) 
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But this operation may fail for non-ideal cases. So we have to use all information 

to find rotation (instead of calculating using only crr = ). 
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Here nr is the number of different r-values or we can say the width of the images 

in polar coordinates. The summation of the phase correlations for all radius give the 

over all phase correlation value for a fix scale. By using of linearity of Fourier 

operation, we will reorganize the equation (C.3) as: 
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Equation (C.4) gives the best rotation with a fix scale according to phase 

correlation methods. 
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Figure C.1 : The 1D plotting of the image presented in Figure B.3 for r = 180 
(left) and r = 300 (right). The horizontal and vertical axes show the angles and 
the gray scale intensity values, respectively. The second image has zeros 
because the r = 300 exceed the rectangle image in some regions. 
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