

IMPROVED REHANDLING STRATEGIES FOR CONTAINER RETRIEVAL

PROCESS

by

CENK AYDIN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2006

IMPROVED REHANDLING STRATEGIES FOR CONTAINER RETRIEVAL

PROCESS

APPROVED BY

Assist. Prof. Dr. Tonguç Ünlüyurt ……………………….

(Thesis Supervisor)

Assist. Prof. Dr. Bülent Çatay ……………………….

Assoc. Prof. Dr. Meltem Denizel ……………………….

 Assist. Prof. Dr. Özgür Erçetin ……………………….

Assist. Prof. Dr. Kemal Kılıç ……………………….

DATE OF APPROVAL: ……………………….

© Cenk Aydın 2006

All Rights Reserved

iv

IMPROVED REHANDLING STRATEGIES FOR CONTAINER RETRIEVAL

PROCESS

Cenk Aydın

Industrial Engineering, MS Thesis, 2006

Thesis Supervisor: Asst. Prof. Tonguç Ünlüyurt

Keywords:
Container terminal operation, Rehandling strategies

Abstract

Breakdown of trade barriers among countries exploded the volume of international

trade. Consequently, amount of bulk cargo carried in containers and transported over seas
exploded due to flexibility, reliability and easy handling. Containerization started in mid-
fifties and spread all around the world. Number and capacities of containerships as well as
container terminals have increased considerably. Only in the 90’s usage of containers has
increased 2.5 times. So efficiency in container terminals has become a major problem. Today
container terminals serve ships that can carry 5000-6000 containers. Number of ships to be
served and containers to be handled increase day by day. So efficiency during operations has
become the key point, thus container terminals become perfect places for Operations Research
applications.
 In this work we deal with a low level operational problem in container terminals.
Basically efficient retrieval of containers from their stacks is considered. We try to minimize
number of container relocations and total distance traveled by the crane. Problem is solved
optimally using branch and bound based procedure and alternative heuristics that give near
optimal solutions are proposed. In addition, a new concept to further optimize the retrieval
operation is introduced, formulated and tested.

v

KONTEYNIR ALIM SÜRECİNDE GELİŞMİŞ ELEÇLEME STRATEJİLERİ

Cenk Aydın

Endüstri Mühendisliği, Master Tezi, 2006

Tez Danışmanı: Yrd. Doç. Tonguç Ünlüyurt

Anahtar Kelimeler:
Konteynır terminal operasyonu, Eleçleme stratejisi

Özet

Ülkeler arası ticari engellerin kalkmasıyla uluslar arası ticaretin hacmi büyük ölçüde

arttı. Buna parallel olarak dayanıklı olmalası ve taşıma ile eleçleme süreçlerinde esneği
sayesinde deniz yoluyla taşımacılıkta konteynır kullanımı da önemli miktarda arttı.

Konteynırların kullanımı 50’lilerin ortalarında başlayıp dünyaya hızlıca yayıldı.
Konteynır gemileri ile konteynır terminallerinin sayı ve kapasitelerinde de hızlı bir artış
olmuştur. Sadece 90’larda konteynır kullanımında 2.5 katlık bir artış gözlemlenmiştir. Bugün
konteynır terminallerinde 5000-6000 konteynır kapasiteli gemilere hizmet verilebiliyor. Bu
gemilerinin sayıları ile büyüklükleri her geçen gün artması terminal operasyonlarında etkinlik
ve verimliliği ön planda tutuyor. Bunedenle terminaller yöneylem araştırmaları için
mükemmel bir ortam oluşturuyor.

Bu çalışmada alt derecede opereasyonel bir problem olan depolanan konteynırların
alımlarında eleçleme sürecini ele aldık. Ve temel performans kriteri olarak eleçlenen konteynır
sayısı ve vincin kat ettiği mesafenin minimize edilmesine odaklandık. Problemin optimalini
dallan sınırla algoritmasıyla çözüldük ve alternatif sezgisel yöntemler önerdik. Bunun dışında
problemin çözümü için yeni bir fikir olan temizleme hareketlerini tanımlayıp formulize ettik.

vi

To my family

vii

Acknowledgements

First and foremost, I would like to thank my supervisor Dr. Tonguç Ünlüyurt for his help

with this work as well as my graduate study. He has always been understanding and

supportive and given very good advice on any matter. I consider myself very lucky for

working with him.

I owe many thanks to Dr. Bülent Çatay, Dr. Meltem Denizel, Dr. Özgür Erçetin and Dr.

Kemal Kılıç for their helpful comments.

I also want to thank my fellows, Ahmet, Aydın, Ayhan, Bahar, Can, Emre, Ersin, Esat,

Gürhan, Hatice, Ilkan, Mustafa, Tamer, Taner, Tevfik for their company and support namely.

Also I would like to thank my dear friends, Ali, Bahadır, Canan, Mahmut, Onur, Şahbey,

Volkan from the dormitory with whom I enjoyed a campus far away from Istanbul.

I thank Güler for her moral sport and help.

Although I don't know how to express my gratitude, I'll try anyway. Thanks to my

family for their love and support. I know that they believe in my success by heart, that's why

I'm so confident and hopeful about the future.

viii

TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 Motivation...1

1.2 Container Terminals and Operations ..2

1.3 General Approach ...4

2 RELATED WORK... 7

2.1 Container Terminal Systems...8

2.2 Ship Planning..9

2.3 Transport Optimization...10

2.4 Simulation Systems...11

2.5 Storage and Stacking Logistics...11

3 METHODS TO RETRIEVE CONTAINERS WITHIN A BAY 16

3.1 Branch and Bound Search...21

3.1.1 Branching Process... 23

3.1.2 Bounding Process ... 25

3.1.3 Data Generation .. 27

3.1.4 Comparison of Case 1 and Case 2: ... 27

3.2 Heuristic with Expected Additional Relocations..31

3.2.1 Modifying Expected Additional Relocation Idea for Case 2............................ 34

3.3 Greedy Heuristic ...35

3.4 Difference Heuristic..37

3.5 Comparison of Heuristics ...41

4 INTRODUCING CLEANING MOVES .. 46

4.1 Recognition of Cleaning Moves ...49

4.2 Justification of a Cleaning Move for Case 1...50

4.2.1 Idea of Mobilized Containers ... 50

4.2.2 Justification... 51

4.2.3 Probability Estimation .. 51

4.2.4 Transition Probability Matrix ... 53

4.3 Combining Cleaning Moves with Difference Heuristic ...54

ix

4.4 Modifying Justification for Case 2 ...55

4.5 Results...56

5 CONCLUSION AND FUTURE WORK ... 61

6 REFERENCES ... 62

APPENDIX... 66

A Number of instances solved to optimality using branch and bound method66

B Branch and Bound Solution Times For Case 1 (msec) ...67

C Branch and Bound Solution Times For Case 2 (msec) ...68

D Comparison of Branch and Bound Solution Times (sec) ...69

E Ration of Additional Movements Between Case 1 and Case 2.....................................70

x

LIST OF FIGURES

Figure 1.1 Schematic view of a container terminal .. 3

Figure 1.2 View of a berthed ship with 3 quay cranes assigned Marport................................... 4

Figure 1.3 Straddle Carrier ... 4

Figure 1.4 A yard crane assigned to a block Marport... 4

Figure 1.5 Sequence of operations in a container terminal [35]... 4

Figure 3.1 Yard Crane and a Container Block [24].. 16

Figure 3.2 Yard Crane Movements [3]... 17

Figure 3.3 Visual Representation of the Problem... 19

Figure 3.4 Example Configuration and Crane Is Represented as Grey Box 20

Figure 3.5 Container Movement as Branching Factor.. 24

Figure 3.6 Container Retrieval as Branching Factor .. 24

Figure 3.7 Rehandling In a Retrieval Operation... 26

Figure 3.8 Computation Times of Branch and Bound Algorithm .. 28

Figure 3.9 Average Computational Times for Various Tier Heights 29

Figure 3.10 Difference in Objective Values of Case 1 and Case 2 for Different Percent of

Initial Container Densities in a Balanced Bay. ... 30

Figure 3.11 Difference in Objective Values of Case 1 and Case 2 for Different Percent of

Initial Container Densities in an Unbalanced Bay.. 30

Figure 3.12 Example bay configuration ... 31

Figure 3.13 Expected Additional Relocation Algorithm for Case 1 (EAR1). 34

Figure 3.14 Expected Additional Relocation Algorithm for Case 2 (EAR2). 35

Figure 3.15 A Greedy Algorithm Iteration ... 36

Figure 3.16 Greedy Algorithm for Case 1 (GA1)... 36

Figure 3.17 Greedy Algorithm for Case 2 (GA2)... 36

Figure 3.18 Possible Bay Configurations for Difference Heuristic.. 38

Figure 3.19 Difference Algorithm for Case 1 (DA1) ... 39

Figure 3.20 Difference Algorithm for Case 2 (DA2) ... 40

Figure 3.21 Optimality Gap of Heuristics For Case 1 and Initially Balanced Bay 43

Figure 3.22 Optimality Gap of Heuristics For Case 2 and Initially Balanced Bay 43

xi

Figure 3.23 Optimality Gap of Heuristics For Case 1 and Initially Unbalanced Bay 43

Figure 3.24 Optimality Gap of Heuristics For Case 2 and Initially Unbalanced Bay 43

Figure 4.1 Example Configuration (Recognized Rehandles are Shaded) 46

Figure 4.2 Iterative Cleaning Moves .. 47

Figure 4.3 Number of Handles for Iterative Cleaning Moves .. 48

Figure 4.4 Computation Time for Iterative Cleaning Moves ... 48

Figure 4.5 Algorithm for Recognizing Cleaning Moves .. 49

Figure 4.6 Mobilized containers for 21 .. 50

Figure 4.7 Clean Difference Algorithm for Case 1 .. 55

Figure 4.8 Clean Difference Algorithm for Case 2 .. 56

Figure 4.9 Effect of Increasing Bay Height on Number of Handles for Balanced Bays and

Case 1.. 57

Figure 4.10 Effect of Increasing Bay Height on Number of Handles for Unbalanced Bays and

Case 1.. 58

Figure 4.11 Effect of Increasing Bay Height on Number of Handles for Balanced Bays and

Case 2.. 58

Figure 4.12 Effect of Increasing Bay Height on Number of Handles for Unbalanced Bays and

Case 2.. 59

Figure 4.13 Effect of Increasing Bay Height on Number of Handles for Bays Initially %70

Occupied and Unbalanced, Case 2 ... 60

xii

LIST OF TABLES

Table 1.1 Port throughputs in 1000 TEU’s... 2

Table 3.1 One to One Comparison of Heuristic Values with the Optimal Values for Case 1.. 41

Table 3.2 One to One Comparison of Heuristic Values with the Optimal Values for Case 2.. 41

Table 3.3 One to One Comparison of Heuristic Values with the Random Movement Values for

Case 1.. 42

Table 3.4 One to One Comparison of Heuristic Values with the Random Movement Values for

Case 2.. 42

Table 3.5 Overall Comparison of Heuristics with the Optimal .. 42

Table 3.6 The Heuristic Solutions Compared with Random Container Movement Solutions. 44

Table 4.1 Overall comparison for including cleaning in to difference heuristic 56

Table 4.2 Individual instance comparisons in % change.. 57

1

1 INTRODUCTION

1.1 Motivation

Containers are basically large boxes that are used for carrying goods and assess

properties like; easy handling, hard structure for less damaging and most importantly

globally standardized. As a result, containers become today’s main unit in cargo

transportation and usage is spread all around the world. Containerization Institute defines,

containerization as “the utilization, grouping or consolidating of multiple units into a larger

container for more efficient movement” [9]. Today two types of containers are used; 20 and

40 feet, and a 20 feet container is universally known as 1 TEU and 40 feet is 2 TEU.

First usage of containers was in mid-fifties, and through the years cargo handling with

containers has rapidly increased. Only between 1990 and 2002 the growth of

containerization increased by %250 percent throughout the world [11]. According to [21]

the number of containers around the world will reach 491 million by 2012. This enormous

increase in world’s cargo brings needs for modern and highly efficient container terminals.

Today %25 percent of world’s container traffic goes in Mediterranean, between

Southeast Asia and Europe and main ports in the Mediterranean are Malta, Piraeus,

Limasol, Larnaka, Alexandria, Damietta, Port Said, Haifa, Valetta, Ravenna, Gioia Tauro

and Algeciras. Even though %91.4 of Turkey’s foreign trade is conducted via sea

transportation, none of the Turkish ports can play a major role in the Mediterranean

container traffic [21]. As a consequence, in the last five years the ports have been privatized

to increase Turkey’s share in the sector.

2

Table 1.1 Port throughputs in 1000 TEU’s.

 Turkey Hong
Kong

 Haydarpaşa Mersin Bandırma İzmir Marport Kwai Tsing
2000 207.417 339.063 0.018 561.197 0 0
2001 226.471 384.146 0 547.218 0 11285
2002 130.38 191.916 0 282.169 469.505 11892
2003 193.894 0.374 328.621 1109.108 553.95 12070
2004 189.076 0.02 347.275 1158.207 769.656 13425
2005 236.016 0.019 399.908 604.768 791.029 14284

 Table 1.1 [37], [29], [14] gives a summary of throughputs of main Turkish ports as

well as the busiest port of the world, Hong Kong. Haydarpaşa, Mersin, Bandırma, İzmir

ports are operated by the state and Marport is private. One can see that even total container

throughput of Turkey is much smaller than Hong Kong’s main terminal Kwai Tsing.

Although the numbers are very pessimistic, the increase in Turkey’s role in Mediterranean

trade and privatization of the state ports are increasing attention to operations at container

ports.

1.2 Container Terminals and Operations

Container can be transported over the seas or on land, and container terminals are

facilities where the mode of transportation of containers is changed. Container terminals

can be classified into two: automated and non-automated. Automated terminals are located

where man power is costly like Western Europe and non-automated terminals operate in

Southeast Asia, where labor is less expensive. Terminals, either automated or not, function

similarly. Figure 1.1 represents the basic structure of the container terminals [35].

3

Figure 1.1 Schematic view of a container terminal

 Three type of containers arrive at container terminals: export, import and transit. An

import container comes in a vessel and stored in the terminal until it is transported by land.

An export container comes by land and is stored until it is loaded on a ship. Transit

containers are the ones which are discharged from one ship and uploaded on another. The

order of operations differ according to the type of the container.

 Operations for an import container start with the arrival of a ship. When a ship

arrives at a port, a berth is assigned for unloading. After the ship is positioned on the berth,

a necessary number of quay cranes is allocated to unload the ship (see Figure 1.2). When a

container is unloaded by the quay crane it is loaded to a vehicle and transported to yard area

for storage. At the storage area containers are stacked into blocks either with yard cranes or

straddle carriers (see Figure 1.3 and Figure 1.4). Containers are stored in blocks until they

are claimed by the importer. When a container is claimed it is loaded to a truck with a yard

crane. Operations for the container end with its departure.

4

Figure 1.2 View of a berthed ship
with 3 quay cranes assigned Marport

Figure 1.3 Straddle
Carrier

Figure 1.4 A yard crane
assigned to a block Marport

Figure 1.5 Sequence of operations in a container terminal [35]

 Similar operations for export and transit containers are applied. The diagram in

Figure 1.5 is illustrates a summary of the main operations in a container terminal. Every

process is highly dependent on the previous one. Except for arrival and departure of

external vehicles all the operations are under the control of port’s personnel. A large

number of highly dependent operations needs continuous coordination and high efficiency.

As a result Operations Research techniques become very handy in planning and control.

1.3 General Approach

Modeling a terminal, including all different processes and problems, is far behind

today’s technical capabilities. Therefore, decisions on terminal operations are differentiated

based on their levels and consequences. These decisions can be grouped in two: strategic

5

decisions like location and equipment selection and operational decisions such as berth

allocation for ships, equipment scheduling, space allocation for containers or even finding

exact locations for containers to be stored. Strategic decisions are made very infrequently,

whereas operational decisions can be made monthly or as frequently as hourly.

Zhang et al in his work [45], propose a hierarchical model for the operational decisions

as depicted in Figure 1.6. This work deals with the location assignment problems which are

very low level and need to be applied continuously.

 The problem we address is the optimization of the retrieval process of the containers

from a bay. In particular, we develop algorithms to determine near optimal moves for a

crane to retrieve a set of containers in a sequence to minimize the total number of rehandles

and distance traveled. Our contributions can be listed as:

Berth Allocation
(allocating vessel to

berths)

Schedule and stowage plan of
ships

QC Allocation (allocation QCs
to (bays of) vessels

Storage Space Allocation (determining the number of
different types of containers of vessels to blocks

Location Assignment (determining the
exact locations of containers in blocks)

Yard Crane deployment
(deployement of cranes yard to

blokcks)

Vehicle deployment

Figure 1.6 Decision Hierarchy in operations

6

• We find exact branch and bound solutions,

• In addition to number of rehandles, we introduce the total distance traveled by the

crane as a criterion,

• We introduce the notion of cleaning moves and present an algorithm based on

cleaning moves.

 The Remainder of this thesis is organized as follows. A literature review, especially

on stacking logistics, is presented in Chapter 2. Chapter 3 provides a reformulation of the

container retrieving problem. In this chapter, the problem is solved to optimality and

alternative heuristics are developed. Chapter 4 discusses the concept and application of

cleaning moves. The thesis concludes with final remarks and future research directions.

7

2 RELATED WORK

 In this chapter, a review of published works will be presented. Optimization in the

container terminals is very popular both for industrial researchers and academicians. A

huge number of studies is conducted and plenty more is going on. We will be mainly

focusing on works based on operations research techniques.

 There are two well known and accepted overviews on the subject ([35], [39]).

Steenken et al. [35] present a detailed review including; the history of containers, terminal

structure, handling equipment types and optimization methods for terminal logistics

covering all the processes. Vis and Koster [39] is focused more on process optimization in

the terminals. The main difference between the two studies is the way they classify the

literature. Steenken et al. [35] classified the literature as follows:

• Overviews

• Container Terminal Systems

• Terminal Logistics and Optimization Methods

o Ship Planning

� Berth Allocation

� Stowage Planning

� Crane Split

o Storage and Stacking Logistics

o Transport Optimization

� Quayside Transport

� Landside Transport

� Crane Transport Optimization

o Simulation Systems.

8

 On the other hand Vis and Koster’s [39] classification is as follows:

• Arrival of the Ship

• Unloading and Loading of the Ship

• Transportation of Containers Between Ships and Stacks

• Stacking of Containers

• Inter Terminal Transport and Other Modes of Transportation

• Complete Container Terminals

• Remaining Literature

 While the second classification is based on the sequence of operations in the

container terminals, the first one is based on optimization hierarchy. We will be using first

approach because it is more compatible to operations research subjects. In the remainder of

this chapter, storage and stacking logistics are discussed in detail but the literature related to

other subjects is reviewed briefly.

2.1 Container Terminal Systems

 Some researchers work on terminal systems as a whole. These studies are mostly for

strategic decisions or descriptive simulations. Choi et al. [6] suggest integration of ERP to

the container terminal systems. By doing so, the integration of the facilities followed by the

increase in efficiency is achieved, especially for terminals operated by more then one

company. Hartmann [13] proposes a scenario generator, which is to be used for generating

proper data for testing optimization models. Architectural design for a software that will

control and dispatch jobs in an automated terminal is given by Kim et al. [26]. Bielli et al.

[3] give a simulation model of a terminal and its components. The aim of this study is to

provide strategies for increased port efficiency. Murty et al. [30] work on development of a

decision support system to deal with the daily decisions at terminals. Mathematical models

and algorithms are presented.

9

2.2 Ship Planning

In terminals, berths are locations where sea vessels are unloaded and loaded. Figure

 1.2 shows a ship being unloaded at a berth. The number of ships being served

simultaneously in a berth depends on the length of the berth as well as the ship sizes. Berth

allocation concerns determining berthing times and the locations of container ships, which

is most likely to be decided on a daily basis. Kim and Mon [25] use simulated annealing

technique to schedule container ships. Imai et al. [17] try to maximize berth utilization with

a mixed integer programming model and define a related heuristic. Imai et al. [18] deals

with the problem by assigning service priorities to container ships. Priorities are based on

the service times of the vessels. Imai et al. [20] propose a continuous berth allocation

problem rather than discrete assignments as in [17], [18]. The latter method [20] tries to

achieve higher port efficiency than the previous ones.

Stowage planning is assigning positions in the ship hangars to containers. This plan is

first done by the shipping line, according to route and stability of the ship. The objective of

the lines is to maximize ship utilization and/or to minimize the container shifting within the

ship. Before the loading operation, the ship line delivers its own plan to terminal operators,

who plan their operations accordingly. Terminal operators’ objective is to maximize quay

cranes efficiency and/or to minimize relocation movements at the yard considering ships

stability. The plan of the ships, allocates spaces at the vessel on container groups and the

plan of the terminal determines exact locations for each container within the group. Wilson

and Roach [42] deal with the problem using a tabu search meta-heuristic, which is applied

on the objective function to reduce searching time. Ambrosino et al. [1] define master bay

planning problem and model a binary linear program. A heuristic as well as some pre-

stowage rules are derived. Imai et al. [19] formulate the problem as a multi-objective

integer programming model and use weighting procedure to obtain non-inferior solutions.

Chung and Vairaktarakis [7] provides an optimal algorithm and develop a heuristic for

loading and unloading operations for a single quay crane.

10

The assignment of quay cranes to berthed ships is called as crane split. Daganzo [10]

formulates a mixed integer program for static split of cranes to already berthed ships with

no incoming of ships. Peterkofsky and Daganzo [33] present a branch and bound method to

minimize delay cost of the ships. Gamberdella et al. [12] split the problem into two sub-

problems and solve them hierarchically. Park and Kim [32] propose a two phase solution

hierarchical approach. In the first phase a near optimal solution is found by sub-gradient

optimization, which is then used to schedule cranes in detail. Kim and Park [27] present a

mixed integer programming model, solve it with branch and bound method and then

propose a heuristic called ‘Greedy Randomized Adaptive Search Procedure’.

2.3 Transport Optimization

Transport optimization for the container terminals is a very wide subject and there are

huge amount of studies conducted. Details and classification of the subjects can be found in

[35] and [39]. Here we just present the main problem types found in the literature.

Managing vehicles that carry containers between ships and storage area is referred to

as quay side transportation. The number of vehicles, their sequencing, scheduling and

control are the main aspects of the problem. Mostly automated guided vehicles are

assumed.

In terminals which are connected to railroads or terminals having extra depots,

assignment and scheduling of resources is called as the land side transportation.

Another problem is crane transportation. In the storage area there are more stacks

than the number of yard cranes. This situation causes cranes to be moved between blocks,

which is a very time consuming operation. So, scheduling the cranes for the blocks with

minimum number of shifts is important in crane transportation problem.

11

2.4 Simulation Systems

In the last decade, simulation systems became popular because of the significant

increase in the computational powers of computers. Studies on terminal simulations became

more frequent and they are generally used for analysis of decisions or parameters. Sgouris

et al. [34] use simulation to evaluate handling of import containers in a medium-sized

terminal. Their aim is to use simulation as a tool for short term planning and process

improvement. Howard et al. [15] describe a commercial discrete event simulation model,

‘Portsim-5’. Another work belongs to Yang et al. [43], where the authors evaluate the

transportation performance within the automated container terminals. Their model suggests

the usage of automated lifting vehicles instead of classical automated guided vehicles.

2.5 Storage and Stacking Logistics

When containers arrive into terminals, they are stored until ships or vehicles come and

claim them. For example, a container brought by a ship is stored in the terminal until, either

it is claimed by a truck or loaded to another ship. Storage time depends on the type of the

container, import, export or transit, and can roughly take from a few days to few a weeks.

During this time, containers stored in the yard area in stacks are called as blocks (Figure 3.1

shows stacking of containers). During the storing operation problems such as; determining

necessary space, assigning containers to specific locations, scheduling containers to be

retrieved and rehandling/relocating containers may arise.

Chung et al. [8] model a simulation system and analyze the effect of buffer area for

containers to be retrieved. If sufficient number of yard trucks exists, then rehandling for

buffer and sweeping operations can be applied. In both cases having buffering space

reduces the cranes unproductive movements and increases efficiency significantly.

Watanabi [40] introduced the notion of selectivity index (SI). In his approach each

container in the bay is given a value inversely proportional to the number of containers

placed above it and the average value gives the SI of the bay. SI is ranged between 0

12

(exclusive) and 1 (inclusive). As SI increases selectivity, reaching containers, becomes

easier. SI’s for several block configurations are analyzed and for denser stacking and higher

selectivity the use of larger yard cranes is suggested to reduce the density of containers.

Using straddle carriers rather than yard cranes is found to be more efficient in terms of both

selectivity and ground occupancy. For ground occupancy yard cranes could be preferred for

high stacks, especially higher than four levels.

 Ashar [2] opposes Watanabi’s SI idea, in his work. According to [2] such an index

should asses two factors: storage density and handling convenience as storage

effectiveness. First instead of the term selectivity, accessibility, which represents the nature

of the problem better is suggested. Secondly, instead of SI, which only gives handling

convenience, the accessibility index (AI) based on the average number of shuffles per

container is suggested. AI captures the trade off between storage density and the number of

unproductive moves. For an example; increasing the stack height from 4 to 5 increases the

storage capacity 25 percent but it also increases the unproductive moves by %33 according

to AI. Ashar [2] concludes with suggesting detailed operation simulations for evaluating

different yard systems, rather than SI and AI only.

 In Castilho and Daganza [4] two basic strategies for storing import containers are

discussed. First one is similar to [2] and is based on expected number of moves per

container. For this strategy, best case, equal retrieval probabilities per container, versus

worst case, lower containers having higher retrieval probabilities, is analyzed. An average

of %33 difference between the best (ideal) case and the worst case is found. The expected

number of shuffles is minimized when all stacks are balanced and problem is referred to as

“length-biased sampling, expected delay for passengers waiting a bus” in [4]. Second

strategy is based on segregating containers according to arrival times. For this, clearing

moves are needed when space is not available for newly arrived containers. Then old

containers are relocated on top of containers arrived at different times. In this strategy the

expected clearing moves are calculated. Strategies are compared and the second strategy is

found to be insensitive to height of the stacks but very sensitive to the number of ship

13

arrivals. The opposite is true for former strategy. Non-segregating strategy should be used

in shorter stacks and segregating strategy should be used for higher stacking.

 Taleb-Ibrahimi et al. [16] discuss space allocation and storage strategies for export

containers. Given the vessel arrival patterns and workloads they find space requirements.

Strategies for reducing wasted space are given as using buffer space and/or remarshalling.

Dynamic strategies to minimize necessary space or minimizing re-handling are also given.

The results highly depend on the ships’ arrival patterns.

 The analytic evaluation of the expected number of rehandles in the container yards

is conducted by Kim [22]. Throughput rate is estimated by the number of rehandles.

Assuming random container retrievals and forbidding remarshalling above old containers,

their problem is to find the number of rehandles that would occur while emptying a bay of

containers. For various tier heights and bay widths, the expected number of container

relocations is calculated assuming equal retrieval probabilities for each container.

Considering different bay lengths and widths, various alternative combinations are solved

using dynamic programming. Based on these expectations, regression analysis is performed

and an approximation algorithm for calculating the expected number of rehandles is given.

The accuracy of the approximation formula is compared with the selectivity index

suggested in [40] and found to be better.

 Remarshalling for export containers is discussed in [23]. This operation is defined in

[22] as clearing moves. This work of Kim and Bae in a sense, fills the gap in [22] for

executing clearing moves. The initial and ideal block layouts are given for the problem and

transformation is discussed. The solution is obtained by dividing the problem in to three

sub- problems. First is the bay matching problem that is solved by dynamic programming.

Second is the move planning problem, which is transformed into the classic transportation

problem. Last one is the task sequencing problem for which the traveling salesperson

solution procedures are applied. The problem is defined clearly but no computations are

done. The suggested solution procedures are computationally intractable and heuristics

should be developed.

14

 Chen [5] work on factors causing unproductive moves during storage. The problem

is discussed from operational to strategic levels. No model is presented but higher land

utilization is discussed a from top to bottom perspective. [5] defines the problem elegantly

and provides several perspectives with alternative views.

 Kim et al. [24] derive a methodology to locate export containers within a bay. An

optimization model based on containers’ weight groups is formulated to find the exact

location within the bay, minimizing the expected number of rehandles for an arriving

export container. Dynamic programming is used to solve this model. The stages are defined

by the number of empty slots while the states are given as weight group and empty slots in

each row. For practical reasons dynamic programming can only solve small instances, so a

complementary decision tree of the problem is formed. The decision tree is pruned based

on the classification procedures defined and a fast working heuristic is given. The results of

the heuristic are compared with dynamic programming and found to be acceptable.

 Space allocation for containers arriving by ships is also modeled by Zhang et al.

[45]. A rolling horizon approach is used and the problem is decomposed into two sub-

problems. In the first part, the total number of containers to be stored in blocks is decided.

This problem is formulated as a max-min problem and transformed to linear integer

programming with an objective function for balancing working times of yard cranes. The

second sub-problem is assigning the number of containers from different vessels to blocks

for which a transportation problem is generated. The output of the first sub-problem is used

as demand nodes and vessels become supply nodes. The associated costs are distances

between ships and blocks. In the objective function, total distance traveled between ships

and blocks is minimized. A numerical study is conducted on data generated according to

specifications of Hong Kong container terminal.

 Ünlüyurt and Özdemir [38] deal with the space allocation problem as [45]. The

problem is decomposed into two networks, one for space allocation and one for location

15

matching for containers. The model is tested for alternative types of layouts. Efficient

solutions, compared to solving location matching problem, are found in polynomial time.

 Container positioning problem is defined by Tranberg [36]. The problem is

minimizing total handling time of a block in an automated terminal. A linear mixed-integer

model with non-polynomial number of variables is formulated. The model consists of

container flow and time restrictions. The real backbone of the model is the application of

LIFO (last in first out), principle as a set of additional constraints. The model is intractable

for applications in real life problems, so heuristics should be developed.

 A recent work by Kim et al. [28], which is the starting point of our research, deals

with the problem of the retrieval of import containers from a bay. The problem is to find

exact locations of relocated containers while retrieving all the containers from a bay

according to a predetermined order. The model is formulated and first solved via a branch

and bound search with the objective of minimizing number of relocations. Then a heuristic

based on expected additional rehandles is proposed. The heuristic runs fast and gives results

with about %10 percent optimality gap.

16

3 METHODS TO RETRIEVE CONTAINERS WITHIN A BAY

 Blocks are main storage units for containers in the container yards. Each block

consists of a number of bays and each bay consists of a number of stacks/rows. Except for

temporary storage all the containers are stacked in blocks. Mainly yard cranes are assigned

to blocks for stacking operations. An illustration of how blocks look like and how yard

cranes operate is given in Figure 3.1. In the figure, the bay consists of 7 rows/stacks of

containers, where one is occupied by a truck, named as truck lane. Normally a bay could

have between 2 and 10 rows, each row containing 3-7 tiers. There is no limitation on the

number of bays but usually up to 20 bays and yard cranes can move between bays on their

wheels.

Figure 3.1 Yard Crane and a Container Block [24]

 Arrival and retrieval of containers are performed by trucks. When a container

arrives on a truck, as in Figure 3.1, the operator moves the crane to the right or left so that it

would get on top of the truck. Then, the crane is lowered to pick up the incoming container.

Once the container is picked up, the crane is levered up, to move on top of the available

position. Then, the crane lowers down to put down the container and is levered up to its

usual position. In order for the crane to move horizontally, it has to be levered up.

17

Retrieval of a container is almost like an arrival. The only difference is that, the

container to be retrieved should be accessible by the crane, which means that there should

not be any other containers on top of the container to be retrieved. If a container is not

accessible, then the containers above it should be rehandled / relocated to other available

positions in the bay. Obviously rehandling causes operational inefficiency.

Yard crane operations are low level operations in the terminal and are determined

by the crane operators. For example, if a container is being rehandled then crane operator

decides where to place it in the bay. In terminals having large throughputs, the yard crane

operations may become bottleneck [5]. Thus, there is a potential for improvement and

researchers are working on the topic.

Figure 3.2 Yard Crane Movements [3]

 There are four types of movements in yard crane operations (see Figure 3.2). These

movements are listed according to their associated costs in time units as follows:

• Bay movement (Gantry travel),

• Handling (Picking up and putting down containers),

• Row movement (Traverse travel) or horizontal movement,

• Tier movement (Hoist movement) or vertical movement.

18

 Because cost of bay movement is too high, when the arrival or retrieval of a

container occurs, bays are considered to be independent. Most of the research ([2], [22],

[24], [28], [40], assume no intra bay rehandles.

The related decision problem can be described as follows: Given an initial

configuration of a bay along with the sequence that the containers will be retrieved, we

would like to decide how to relocate containers (when necessary) to minimize an

appropriate objective function in terms of the costs defined above. In this chapter, we

assume that a container will be relocated only when another container beneath that

container is to be retrieved. In other words, we will try to devise a strategy that will retrieve

the containers in a bay one by one in a predetermined sequence. When there are other

containers on top of the container to be retrieved, the strategy will indicate where to

relocate those containers.

Kim et al. [28] have worked on the same problem, illustrated in Figure 3.3. Their

objective is to minimize the number of rehandles. The truck lane where containers enter

and leave the system is on the left hand side of the first row, <6, 5, 14, 15 >. The numbers

on the containers indicate the order that they will be retrieved.

19

Figure 3.3 Visual Representation of the Problem

Let us define a general cost function for the retrieval of container k. Given the

following constants, the cost of retrieving container k is given in equation (3-1).

Handling constant (pick up or put down)

Horizontal movement constant

Vertical movement constant

A

B

C

=

=

=

* *

 *
kCost A NumberofHandles B HorizontalDistance

C VerticalDistance

= +

+

(3-1)

20

5

4 2

T
ru

c
k

 l
a

n
e

1 3 6

Figure 3.4 Example Configuration and Crane Is Represented as Grey Box

For the example configuration given in Figure 3.4 assuming that, A=5, B=2 and

C=1, the cost of retrieving container 5 from the initial configuration is one handle, two

horizontal movements and four vertical movements which is equal to 13 (5*(1) + 2*(2*1) +

1*(2*2)). On the other hand the cost of retrieving container 1 depends on where the

containers 4 and 5 are relocated. Relocation of containers 4 and 5 also affect future number

of relocations when retrieving container 2.

It can be easily seen that problem is dynamic in nature and in fact NP-Hard [24]. In

the literature, (see for instance [24], [28]), constants B and C are taken as zero to simplify

the problem. This makes the associated cost function for container k as in equation (3-2).

Then objective becomes as in equation (3-3).

It can easily be shown that objective in equation (3-3) is same as objective in

equation (3-4). The number of handles is sum of the number of rehandles and the number

of retrievals and in fact number of retrievals is fixed for a problem.

*
k

Cost A NumberofHandles= (3-2)

()min
kk

NumberofHandles∑ (3-3)

()min Re
kk

Numberof Handles∑ (3-4)

21

Minimizing total number of re-handles is accepted in the literature because it

simplifies the problem a lot and also A>>B>>C. From now on, for convenience we will

refer this objective as Case 1.

In this part of our work, we will drop the assumption of the constant B being equal

to zero. Then the cost function of retrieving container k will be as equation (3-5) and the

objective function will be as equation (3-6). We will refer to this objective as Case 2.

3.1 Branch and Bound Search

We first propose a branch and bound procedure to solve the problem exactly. Our

main goal is to compare our proposed heuristic’s results with the optimal solutions when

possible. We will basically use the following notation introduced in [2] and define new

terms as need arises.

 :The number of containers in the initial bay.

 :The number of stacks in the bay.

 :Container to be retrieved

 :Stack number from 1 to

N

r

k

i

()1

 :The state of the bay after containers are picked up from the

 initial bay.

 :Action taken at the removal of container.

 :The number

k

k th

k k

r

S k

a k

h a S
−

1

of relocations experienced during action on the

 bay of state .

() :The minimum total number of relocations to pick up remaining

 containers

k

k

k

a

S

F S

−

 from the bay at state .kS

Problem with Case 1 is formulated in equation (3-7) [2]:

* *
k k k

Cost A NumberofHandles B HorizontalDistance= + (3-5)

()min * *
k kk

A NumberofHandles B HorizontalDistance+∑ (3-6)

22

For Case 2, we introduce the following notation:

()

()

1

1

1

 :The number of crane pick ups experienced during action

 on the bay of state .

 :Horizontal distance travelled by crane dur

k k k

k

k k

handle a S a

S

horizontal a S

−

−

−

1

ing action

 on the bay of state .

() :The minimum value to pick up remaining containers from

 the b

k

k

k

a

S

V s

−

ay at state .

 :Handling coefficient (handling time)

 :Horizontal movement coefficient (Horizontal movement time)

k
S

A

B

We formulated Case 2 as in equation (3-8):

For solving Case 1 and Case 2 optimally, a branch and bound search, with depth-

first and backtracking strategies in [28] is coded in C++ using Microsoft Visual Studio 6.0.

Alternative retrieval of containers are enumerated. Using consistent enumeration for

branching forced us to use depth-first search rather than other possible tree searching

algorithms, which may have been less time consuming. Alternative is to generate all

possible bay configurations for each possible retrieval scenario; but would limit our

problem size due to computer memory restriction.

1 2

0 1

,, 1

1

() min () ()

where for =1,2,...,

k

c

k
c c k

a a a
c

ac c

F S h a S F S

S S c k

−

=

−

= +

 →

∑

(3-7)

1

0 1 1

... 1

1

() min * () * () ()

 where for =1,2,...,

k

c

k
c c c c k

a a
c

ac c

V S A handle a S B horizontal a S F S

S S c k

− −

=

−

= + +

 →

∑

(3-

8)

23

3.1.1 Branching Process

In the implementation, our code differs from [28] when branching is executed. In

[28], each container movement is used as a branching strategy (each action c
a may be

expressed in several consecutive branches). On the other hand, we used each retrieval as a

branching strategy (each action, c
a , is a branch). So with the initial configuration, [<1, 4,

5><3, 2><6>], in Figure 3.4. Kim et al. [28] branch the root into two children with

configurations [<1, 4><3, 2, 5><6>] and [<1, 4><3, 2><6, 5>]. We branched it into four

children with configurations [<1><3, 2, 5, 4><6>], [<1><3, 2, 5><6, 4>], [<1><3, 2, 4><6,

5>] and [<1><3, 2><6, 5, 4>]. This makes our search tree smaller in number of nodes and

much shallower, thus, leading our program to search faster. The following statement would

explain why our algorithm is more efficient: Searching a not sorted tree is proportional to

internal path length of the tree which is ()logO N N where N is number of nodes and log

N is depth of the tree. Proof and details of the statement is out of the scope of this work but

can be found in [41].

24

Figure 3.5 Container Movement as Branching Factor

Figure 3.6 Container Retrieval as Branching Factor

Figure 3.5 and Figure 3.6 illustrate the two trees with different branching strategies.

The number of nodes and the depth of the first tree are 32 and 9, respectively. The second

one only has a depth of 5 with a total 22 nodes.

25

3.1.2 Bounding Process

 For the bounding process we need the following definitions. A realized action is an

action which has already occurred and a recognized action is an action which is confirmed

to take place. So in Case 1, the following terms are used and their numeric examples are

given w.r.t. Figure 3.5.

• Realized rehandle: number of rehandles that is actually acknowledged. For node

D1 there are 2 realized rehandles which are rehandling of containers 4 and 5.

• Recognized rehandle: number of rehandles that has to take place. For node D1,

container 4 and container 5 should be relocated so recognized rehandles is 2.

• Bound value for node: minimum number of rehandles to retrieve all the containers,

which is the number of realized rehandles plus the number of recognized rehandles.

For node D1 it is 2+2=4.

 Figure 3.7 illustrates rehandlings during a retrieval operation. Initially there are two

recognized rehandles, this means that bound on the number of minimum rehandles to

retrieve all of the containers is two. When container 5 is placed on top of container 6,

realized relocations increase by one and container 4 remains to be a recognized rehandle,

bound on the minimum is still two. When container 4 is relocated on top of container 2

realized number of rehandles increase by one and become two. Container 4 is again

recognized to be rehandled and thus makes the bound on the minimum as 2+1=3.

26

Figure 3.7 Rehandling In a Retrieval Operation

Bounding criteria for Case 2 is more complicated and needs additional definitions.

Numerical examples are given considering node D1 in Figure 3.5.

• Realized handle: number of pick-ups and put downs executed by the crane, (1

retrieval + 2 rehandles) = 3.

• Realized horizontal distance: horizontal distance already traveled by the crane, 2*(1

for container 1+1 for container 4+ 1 for container 5) = 6.

• Recognized handle: number of recognized rehandles plus remaining number of

containers, (2 for rehandles+5 for retrievals) = 7.

• Recognized horizontal distance: total minimum distance that should be traveled to

retrieve remaining containers, 2*(4 for number of containers in stack 2* 2 for

horizontal distance from stack 2 to truck lane+1 for number of containers in stack

3* 3 for horizontal distance from stack 3 to truck lane) = 2*(4*2+1*3) = 22.

• Bound value for node: given as in equation (3-9) minimum possible value for a

node, A*(3+7) + B*(6+22) = 10A + 28B.

* ()

* ()
k

Cost A numberofRealizedHandles numberofRecognizedHandles

B realizedHorizontalDistance recognizedHorizontalDistance

= +

+ +

(3-9)

27

Bounding process in Case 2 is very loose compared to Case 1 because recognized

horizontal distance is not affected by the number of rehandles. This situation can be viewed

in node E1 in Figure 3.5, second stack is not ordered and container 5 is recognized to be

rehandled, thus total recognized horizontal distance is 2*3 = 6 for the second stack. If

second stack was ordered, there was no recognized rehandles, then total recognized

horizontal distance would be again be 2*3 = 6.

3.1.3 Data Generation

Data used in our experiments are generated with C++ compiled at Microsoft Visual

Studio 6.0 using built in random classes. A total of 8000 problems are generated for

different initial layouts, different width and height of bays with different load percents.

Properties of differences can be given as:

• 2 layouts: balanced; meaning equal initial stack heights and unbalanced; meaning

random initial stack heights,

• 5 bay widths: 3 to 7 stacks,

• 4 bay heights: 4 to 7 which is maximum allowed containers on top of each others,

• 5 loading percentages: %55-%60-%65-%70-%75 of the bay is initially occupied,

• 40 cases for each possible combination.

For each case, the layout is determined first and then containers are distributed

uniformly random according to their order of retrieval.

3.1.4 Comparison of Case 1 and Case 2:

We have optimally solved 7286 of the 8000 instances in Case 1 and 6455 of the

8000 instances in Case 2. For Case 2, the parameters are assumed as 5, 1A B= = . The

28

number of problems solved by the branch and bound algorithm and average computation

times for each bay configuration are given in Appendices A, B and C.

 The difference between our branching strategy and that of [28] was previously

stated. Even though an exact comparison cannot be done because of lack in the details of

problem instances in [28], Figure 3.8 shows the difference between computation times. In

the figure computation times for randomly generated problems are given. Computer we

used is a Celeron (R) with 2.8 GHz processor and 256 MB of RAM. Computer used in [28]

is a Pentium III-800 with 128 MB RAM. Both programs our and [28]’s, are constructed by

Visual Studio C++ 6.0. It is clear that our algorithm performs much more efficiently. Small

and large instances are neglected in the figure but complete list for average computation

times and number instances solved is given in the Appendix D.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

9 11 13 15 17 19 21

Number of Containers

T
im

e
 (

s
e
c
)

Our Comp. Time

Comp. Time in [28]

Figure 3.8 Computation Times of Branch and Bound Algorithm

Figure 3.9 captures computational differences between Case 1 and Case 2. The

average computation times are for bays either initially balanced or unbalanced, with a width

of 6 rows which are initially %60 filled and height is the varying parameter. It is obvious

29

that average computational time increases from Case 1 to Case 2 and also from balanced to

unbalanced.

0

100000

200000

300000

400000

500000

600000

700000

800000

Max Tier Height

m
il
li
s
e
c
o

n
d

s

C1-Balanced 0 0 1 1

C1-Unbalancad 2 2 67 295

C2-Balanced 9 47 815 2062

C2-Unbalanced 1541 3577 107512 674073

4 5 6 7

Figure 3.9 Average Computational Times for Various Tier Heights

On the other hand Figure 3.10 and Figure 3.11 show how the gap between Case 1

and Case 2 increases for varying number of stacks when maximum tier height is kept fixed.

Values of Case 1 are recalculated according to equation (3-5) so as to be compatible with

values for Case 2. Data points in the graphics are ratio of the difference of Case 1 and Case

2’s objective values and calculated as (Case1 – Case 2)/Case 2.

30

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

3 4 5 6 7

Number of Stacks

D
if

fe
re

n
c
e
 R

a
ti

o

55

60

65

70

75

Figure 3.10 Difference in Objective Values of Case 1 and Case 2 for Different Percent of

Initial Container Densities in a Balanced Bay.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

3 4 5 6 7

Number of Stacks

D
if

fe
re

n
c

e
 R

a
ti

o

55

60

65

70

75

Figure 3.11 Difference in Objective Values of Case 1 and Case 2 for Different Percent of

Initial Container Densities in an Unbalanced Bay.

Complete data for differences between values of cases is given in Appendix E. We

observed that as the size of the problem increases, the solution gap between the two cases

of the same instance of the problem increases. Consequently we were convinced that the

31

distinction between Case 1 and Case 2 should be made even though solution to the problem

becomes harder.

3.2 Heuristic with Expected Additional Relocations

Since solving the problem for larger size instances requires excessive computational

effort, we propose heuristic algorithms. We compare the algorithms among themselves and

with the optimal solution, when possible, for Case 1 and Case 2.

According to our knowledge the only proposed heuristic for the solution of the

problem other than branch and bound search is suggested in [28], where a pessimistic

approach is considered assuming random container movements. Basically, the idea is to

check each alternative location for container X that is being rehandled and estimate the

expected additional relocations that would result by placing container X to the alternative

location. Since our first heuristic uses a similar idea we explain this heuristic in detail.

5

2 2 2

4 4 5 4 5

1 3 6 1 3 6 1 3 6

 a b C

Figure 3.12 Example bay configuration

Let us assume that the initial configuration of a bay is as in Figure 3.12-a. Then,

containers 4, 2, 5 have to be rehandled to retrieve container 1. First container to be moved

is 5 and there are two options as demonstrated in Figure 3.12-b and Figure 3.12-c.

For the first option assuming Case 1, Figure 3.12-b, cost of moving container 5 is at

least two additional rehandles. First rehandle is the movement from Figure 3.12-a to Figure

 3.12-b and the second one is the new recognized rehandle, container 5. On the other hand

this movement of container 5 on top of 3 may cause more additional rehandles if the two

32

slots above container 5 are filled with other containers like 6. So there is possibility for

other containers to be located on top of container 5, where two empty locations are

available. In the best case those two empty locations would remain empty and associated

cost with moving container 5 to middle stack would be two rehandles. In the worst case,

both of the empty locations could be filled, but assume that only one of them will be filled.

If container 2 is placed on top of 5, no additional rehandles would be added because

container 2 is earlier than 3, smallest container in the stack. If rather than container 2,

container 4 is placed above container 5 then a recognized rehandle should be added to the

cost because container 4 is later than 2 and should be relocated to retrieve container 2. In

scenario with container 2, movement of container 5 costs 2 rehandles, in the other scenario

if container 4 is placed above container 5 cost would be 3 rehandles. Assuming both

scenarios are equally likely then expected additional rehandle for moving container 5 to

middle stack would be 0.5*2+0.5*3=2.5.

For the second option, Figure 3.12-c, the expected additional rehandle is only 1,

which is rehandling of container 5. Container 5 is earlier than stack minimum, container 6,

and either moving container 4 or container 2 on top of container 5 would not add any more

additional movement. In the first option expected additional re-handles was 2.5 and in the

second option it is 1. Between two options choosing second one is better in the short term

and this is strategy in [28] for placement of rehandled containers. It is seen that this

heuristic greedily chooses between movements of containers with the best short term

additional cost. In this strategy we assume that only next movement is known and possible

movements after the next movement is assumed to be random.

The following notation is defined for the algorithm:

33

Remaining number of containers in the bay.

M aximum number of stacks in the bay.

Number of occupied slots in stack .

Accessible container of stack .

Container having minimum order number in

i

i

i

n

r

f i

a i

m

=

=

=

=

=

()

the stack .

Number of empty slots in stack .

Probability of container of order j being located to stack .

, Expected additional relocations that would be caused by relocating

future contain

i

ji

i

i

e i

p i

E e j

=

=

=

ers to stack with minimum order and number of empty slots.
i

j e

Let z be the order of next container that will be stacked on top of stack i. Then,

finding the expected additional relocations is a recursive function given as:

Equation (3-11) is a recursive function. To limit the number of recursions,
i

e is

limited with 1 if stack i contains more containers than bay’s average and n/r if− if less

than the bay’s average, as shown equation (3-10). For Case 1, the algorithm is presented in

Figure 3.13.

/ if / ,

1 if / ,

0 if =maximum possible height.

i i

i i

i

n r f f n r

e f n r

f

 − <

= >

(3-10)

() () ()()
1 1

, * 1, * 1 1,
j n

i zi i zi i

z z j

E e j p E e z p E e j
= = +

= − + + −∑ ∑
(3-11)

34

Figure 3.13 Expected Additional Relocation Algorithm for Case 1 (EAR1).

3.2.1 Modifying Expected Additional Relocation Idea for Case 2

We modify the recursive function for Case 2 so that it would contain crane’s

horizontal distance. Lets;

 :Handling coefficient

 :Horizontal movement coefficient

 :Container that is being rehandled

 :Stack origin of .

A

B

y

l y

Thus recursive function becomes as in equation (3-12) and the modified algorithm

EAR2 is given in Figure 3.14.

() () ()()mod
1 1

, * * 1, * 1, 1

 2 * *

j n

i yi i yi i

y y j

E e j A p E e y p E e j

B l i

= = +

= − + − +

+ −

∑ ∑

(3-12)

While (There is container to be retrieved)

 If (Container to be retrieved is accessible by the crane)

 Remove the container from the bay

 Else

 y= Accessible container on top of container to be retrieved

 ()arg min , for next container .
i

i

stack E e j y=

 Relocate container y to stack.

35

Figure 3.14 Expected Additional Relocation Algorithm for Case 2 (EAR2).

3.3 Greedy Heuristic

The idea of expected additional rehandles relies on the assumption of random

container movement. As a matter of fact, this will not typically be true. Therefore we

propose another algorithm which does not rely on such assumptions.

In branch and bound search, we use an effective branching strategy and generate well

structured trees for the optimal solution. In this algorithm, like greedily minimizing next

movement’s expected additional moves, we choose a branching action to minimize

bounding value of one step ahead configuration. The variables used for the following

algorithms are as defined previously in section 3.2.

While (There is container to be retrieved)

 If (Container to be retrieved is accessible by the crane)

 Remove the container from the bay

 Else

 y= Accessible container on top of container to be retrieved

 ()modarg min , for next container .
i

i

stack E e j y=

 Relocate container y to stack.

36

Figure 3.15 A Greedy Algorithm Iteration

Figure 3.15 is an illustration for the algorithm’s iteration. In the figure A1 is the

initial configuration and C1 to C4 are the possible configurations for retrieving container 1.

Among these possibilities C4 has the minimum possible value so that the greedy algorithm

for Case 1 iterates to C4 from A1. These iterations continue until all the stacks are ordered.

Algorithm for Case 1 is given in Figure 3.16 and the modified algorithm for Case 2 is in

Figure 3.17

Figure 3.16 Greedy Algorithm for Case 1 (GA1)

Figure 3.17 Greedy Algorithm for Case 2 (GA2)

While (There is container to be retrieved)

 At state k
S choose action k

a s.t.

 { }1 1arg min () where for =1,2,...,
i

k

ak i i

a

F S S S i k
+ −

 → (3-13)

While (There is container to be retrieved)

 At state k
S choose action k

a s.t.

 { }1 1arg min () where for =1,2,...,
i

k

ak i i

a
V S S S i k

+ −
 → (3-14)

37

3.4 Difference Heuristic

Both of the heuristics given above need many calculations. This may be a burden

even for a middle sized problem. Alternatively we propose another algorithm, which is very

straightforward and can even be applied manually. This is an algorithm for crane operators’

usage. The idea behind the algorithm is same with the expected additional relocation

algorithm. When a container X is to be relocated, a stack with container Y is chosen such

that:

• A container Y that is the container smallest with the order number in the

stack and bigger than that of container X is searched. This way we don’t add

any cost, just a recognized rehandle becomes a realized rehandle. If multiple

stacks satisfying this condition exist then stack containing smallest Y is

chosen. By minimizing the difference we minimize the number of containers

ordered between X and Y, which will be rehandled again in the case of being

relocated on X.

• If container Y satisfying above condition is not found then a container Z that

is accessible by the crane and with an order number smaller than X is

searched. In this way we stack containers which will be relocated in a reverse

order so that they may become ordered when they are relocated. Again the

difference between X and Z is minimized due to the same reasoning.

• If either Y or Z cannot be found, we simply minimize the difference between

the order numbers of container X and the container which X will be located

on.

38

Figure 3.18 Possible Bay Configurations for Difference Heuristic

So in each case we try to minimize the difference in the orders of containers to

minimize the number of containers that would potentially be rehandled in the future. While

doing this, empty stacks are assumed to contain highest ordered container. Figure 3.18

illustrates how the algorithm iterates at each step. The following notation will be used to

define the algorithm and in Figure 3.19 difference algorithm for Case 1 is given.

stack of container to be retrieved

alternative stack number for container

1 if stack is empty

 if stack j is closer to truck lane than

i

ij j i

ij i j

j j

i

j j a

mDist m a

aDist a a

m a N j

j i i

=

=

= −

= −

= = +

<

39

While (There is container to be retrieved) D1-1

 If (Container to be retrieved is accessible by the crane) D1-2

 Remove the container from the bay D1-3

 Else D1-4

 i = stack of container to be retrieved D1-5

 If ()
,

min 0
ij ij

j j i
mDist mDist

≠
> exists D1-6

 move
i

a to j D1-7

 Else if ()
,

min 0
ij ij

j j i
aDist aDist

≠
> exists D1-8

 move
i

a to j D1-9

 Else D1-10

 ()
,

min 0
ij ij

j j i
aDist aDist

≠
− < D1-11

 move
i

a to j D1-12

Figure 3.19 Difference Algorithm for Case 1 (DA1)

Lines 6, 8 and 11 of DA1 should be clarified. When the container to be retrieved is

not accessible, the container on top of stack i, say container X, should be rehandled. In line

6 we try to find a stack for container X which has a minimum order higher than X, so that it

should not be rehandled again. If such a stack could not be found, then the algorithm moves

to line 8.

In line 8 stacks with an accessible container Y, which has an order higher than X is

searched. The reason is as follows: When X is relocated if Y would also be relocated; then

Y could be positioned above X. If that is also not the case the remaining stacks are searched

in line 11. In every scenario, the difference in the orders of containers is minimized to

minimize the probability of unnecessary rehandlings for the containers ordered within that

difference.

40

While (There is container to be retrieved) D2-1

 If (Container to be retrieved is accessible by the crane) D2-2

 Remove the container from the bay D2-3

 Else D2-4

 i = stack of container to be retrieved D2-5

 If ()
,

min 0
ij ij

j j i
mDist mDist

<
> exists D2-6

 move
i

a to j D2-7

 else if ()
,

min 0
ij ij

j j i
mDist mDist

>
> exists D2-8

 move
i

a to j D2-9

 else if ()
,

min 0
ij ij

j j i
aDist aDist

<
> exists D2-10

 move
i

a to j D2-11

 else if ()
,

min 0
ij ij

j j i
aDist aDist

<
− < exist D2-12

 move
i

a to j D2-13

 else if ()
,

min 0
ij ij

j j i
aDist aDist

>
> exists D2-14

 move
i

a to j D2-15

 else D2-16

 ()
,

min 0
ij ij

j j i
aDist aDist

>
− < D2-17

 move
i

a to j D2-18

Figure 3.20 Difference Algorithm for Case 2 (DA2)

Modification for Case 2 is given in Figure 3.20 and distinction between two types of

stacks is done. First kind is the stacks between stack of container to be rehandled and truck

lane and it has higher priority than the other kind. If available position is not found in first

kind of stacks then the stacks away from the truck lane, are searched. This algorithm for

Case 2, is unlike other algorithms for Case 2, and does not consider constants the A and B,

but just the priority of handling is kept higher than the horizontal distance traveled.

41

3.5 Comparison of Heuristics

 All of the 8000 instances are tested for;

1. Random container movements,

2. Expected Additional Rehandle Algorithms Case 1 & Case 2,

3. Greedy Algorithms Case 1 & Case 2,

4. Difference Algorithms Case 1 & Case 2.

 Head-to-head comparisons of algorithms are presented in Table 3.1, Table 3.2,

Table 3.3, Table 3.4. For the tables each number in the cell corresponds to number of

instances that heuristic in the row head gives better solution than the heuristic in the column

head.

Table 3.1 One to One Comparison of
Heuristic Values with the Optimal Values

for Case 1

 Opt. Greedy Diff Exp.

Optimal 0 3263 2002 5077

Greedy 0 0 690 3990

Difference 0 2429 0 4613

Expected 0 704 249 0

 Out of 7286 cases

Table 3.2 One to One Comparison of
Heuristic Values with the Optimal Values for

Case 2

 Opt. Greedy Diff Exp.

Optimal 0 4598 5344 5493

Greedy 0 0 3670 3847

Difference 0 1779 0 3017

Expected 0 1568 2547 0

 Out of 6455 cases

 In Table 3.1 and Table 3.2 we compare the proposed heuristics with the optimal

solutions. As given in section 3.1.4, for Case 1 out of 8000 total instances 7286 of them are

solved through optimality and for Case 2 number of instances optimally solved are 6455. In

these two tables heuristics are compared for each instance’s optimal value and heuristic

value. So branch and bound search gives better solutions than: GA1 for 3263 instances,

DA1 for 2002 instances and EAR1 out of 7268 instances. This gap in the number of non

optimal solutions increases for Case 2: 4598 for GA2, 5344 for DA2 and 5493 for EAR2.

42

So from Table 3.1 we can conclude that the difference heuristic is better than the greedy

and expected heuristics for Case 1. However for Case 2 the greedy heuristic is better the

difference and the expected heuristics.

Table 3.3 One to One Comparison of
Heuristic Values with the Random

Movement Values for Case 1

One to One Comparison for Case 1

 Random Greedy Diff Exp.

Random 0 160 55 631

Greedy 7124 0 771 4599

Difference 7307 2951 0 253

Expected 6369 773 5307 0

Table 3.4 One to One Comparison of
Heuristic Values with the Random

Movement Values for Case 2

One to One Comparison for Case 2

 Random Greedy Diff Exp.

Random 0 258 448 602

Greedy 7532 0 4525 4926

Difference 7254 2450 0 4003

Expected 7117 2019 3088 0

Table 3.3 and Table 3.4 exclude optimal values and compare heuristics with the

solutions gathered by random container movements for each instance. For most of the

instances the heuristics do significantly better than random acting but none of the heuristics

seems superior to another one.

Performance of heuristics on finding the optimal solutions and optimality gaps of

the heuristics are given in Table 3.5. For Case 1 difference heuristic is superior and for %73

of the instances difference algorithm finds the optimal. When Case 2 is considered the

greedy heuristic is better, however performance of the heuristics decrease significantly

compared to Case 1.

Table 3.5 Overall Comparison of Heuristics with the Optimal

 Case 1 Case 2

 % Optimal % Gap % Optimal % Gap

Greedy 55 03 29 05

Difference 73 02 17 08

Expected 30 08 15 08

43

The effect of initial container density in the bay on the average optimality gaps are

given in Figure 3.21, Figure 3.22, Figure 3.23, Figure 3.24. Distinction between balanced

and unbalanced initial bay configurations is considered in the figures. Gaps are calculated

for Case 1 as (heuristic value-optimal value) and for Case 2 as (heuristic value/optimal

value)-1. The data points represent the average of differences not the difference of

averages. The heuristics are represented by their initials.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Percent

G
a

p

G 0.57 0.97 0.89 1.29 1.60

D 0.19 0.38 0.48 0.73 1.12

E 1.41 2.02 2.11 2.84 3.59

55 60 65 70 75

Figure 3.21 Optimality Gap of Heuristics
For Case 1 and Initially Balanced Bay

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Percent

G
a

p
G 0.04 0.05 0.06 0.06 0.06

D 0.07 0.07 0.08 0.08 0.09

E 0.06 0.07 0.09 0.09 0.10

55 60 65 70 75

Figure 3.22 Optimality Gap of Heuristics
For Case 2 and Initially Balanced Bay

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Percent

G
a

p

G 0.64 1.00 0.95 1.28 1.58

D 0.27 0.45 0.46 0.71 0.98

E 1.68 2.37 2.26 2.99 3.33

55 60 65 70 75

Figure 3.23 Optimality Gap of Heuristics
For Case 1 and Initially Unbalanced Bay

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Percent

G
a

p

G 0.04 0.05 0.05 0.06 0.06

D 0.07 0.07 0.07 0.08 0.08

E 0.07 0.09 0.09 0.09 0.10

55 60 65 70 75

Figure 3.24 Optimality Gap of Heuristics
For Case 2 and Initially Unbalanced Bay

44

We can see that the optimality gap for balanced bays is less than that of unbalanced

bays. Expected additional rehandle heuristic has the highest optimality gap in all cases

except for the two data points in Figure 3.22. The difference heuristic seems superior for

Case 1 and the greedy heuristic for Case 2. For Case 1 distinction within the heuristics is

more significant than Case 2. Figures confirm the results given in Table 3.5.

In Table 3.6, heuristic solutions are compared to solutions provided by random

relocation movements. The numbers in the tables are average ratios of the difference in the

heuristic solutions and random solutions. On average, all of the heuristics give better

results. As before the difference heuristic is better in Case 1 while the greedy heuristic is

better in Case 2. The gap between random solutions and heuristics is not effected by bays

initially being balanced or unbalanced.

Table 3.6 The Heuristic Solutions Compared with Random Container Movement Solutions

 Case 1 Case 2

 Balanced Unbalanced Average Balanced Unbalanced Average

Greedy 13 13 13 14 14 14

Difference 15 15 15 12 13 13

Expected 09 09 09 12 11 12

 Computation times of heuristics are omitted here because the majority of the

computations finished in less than 0.5 milliseconds on a personal computer Celeron 2.80

GHz with 256 MB RAM.

 Following remarks for the algorithms can be done:

• The greedy algorithm and branch and bound search are action based, the expected

algorithm and the difference algorithm are movement based, where actions consist

of several rehandling movements followed by a retrieval movement.

• Computation time will increase linearly as the number of rows in bays increases but

computation times for the greedy heuristic and the expected heuristic increases

exponentially as height of the bay increases.

45

• The performance of expected heuristic is weak and basic reason for this is the result

of assuming random container movements.

• Difference heuristic is easy and gives best results for Case 1 but modification for

Case 2 is weak and should be developed.

• Greedy heuristic is very robust and gives acceptable solutions for both cases but as

the problem gets detailed, the optimality gap of solutions increases.

• All of the suggested heuristics are easy to implement and require very short

computation times. So, a combination of these heuristics can give superior

heuristics.

46

4 INTRODUCING CLEANING MOVES

 In the previous chapter, relocation movement of a container is executed when the

container beneath will be retrieved. This is an assumption and in fact it may increase yard

crane’s workload by increasing number of relocations. To clarify consider the example in

Figure 4.1. According to the assumption in Chapter 3, container 20 will be rehandled when

container 5 will be retrieved. Relocating container 20 on 23, before any container ordered

smaller than 20, may reduce future number of relocations of container 20. In this chapter, to

minimize total handling time of the cranes, we propose a strategy that would allow

containers to be rehandled earlier than their turn. These movements will be referred to as

Cleaning Moves.

 In the literature, the need and possibility of cleaning moves were suggested for

different problems [5], [46]. The basic suggestion is the reorganization of a container

during the yard crane’s idle time. By the reorganization, when the time comes, retrieval

process of the containers will be improved. Although the concept was mentioned, exactly

when and how cleaning moves shall be performed were not defined.

 20

 10

8 11 17 19

9 21 16 24

6 14 12 4

15 5 22 13

3 18 23 7 25

i ii iii iv v

Figure 4.1 Example Configuration (Recognized Rehandles are Shaded)

47

We can illustrate how cleaning moves may be useful by the following example. In

Figure 4.1, configuration for an unbalanced bay is given and the container that will be

retrieved next is container number 3. When the problem is solved with the branch and

bound search described in the previous chapter, the next container movement is to move

container 8 from stack i to stack iii. This move is the optimal move under the assumptions

stated in Chapter 3, but obviously this move will cause extra rehandles later, if containers

ordered between 8 and 23 are placed on top of container 8. On the other hand, there are

containers which are already recognized to be rehandled and ordered within the range 8 to

23. So, there is a potential gain by placing one of containers 20, 17 and 19 on top of 23

before container 8. Among containers 20, 17 and 19 placing 20 on top of 23 is better

because 17 or 19 can be placed on top of 20 without being rehandled again.

 10 10 10 10

8 11 17 19 8 11 17 8 11 8 11 16

9 21 16 24 9 21 16 24 9 21 17 16 24 9 21 17 24

6 14 12 4 6 14 19 12 4 6 14 19 12 4 6 14 19 12 4

15 5 20 22 13 15 5 20 22 13 15 5 20 22 13 15 5 20 22 13

3 18 23 7 25 3 18 23 7 25 3 18 23 7 25 3 18 23 7 25

i ii iii iv v i ii Iii iv v I ii iii iv v i Ii iii iv v

 a b c d

Figure 4.2 Iterative Cleaning Moves

When container 20 is relocated on 23 as a cleaning move, the bound value (defined

in Chapter 3.1.2) of the bay assuming Case 1, has not been changed. Before the relocation

there were 15 recognized rehandles with in the bay and by moving container 20 on 23,

number of recognized rehandles is reduced to 14 and number of realized rehandles increase

by 1. Even though current values of bay configurations in Figure 4.1 and Figure 4.2-a are

same, when the problems are solved by the branch and bound algorithm the former has an

objective value of 46 and the latter has 44. In the latter case moving container 20 on top of

23 should be added to objective, which would make latter case’s objective value 45. So,

this cleaning move decreases the total working time of the crane by reducing the number of

rehandles by 1 (for Case 1). When Figure 4.2-a is analyzed we can see that instead of just

48

relocating container 20 in stack iii, all or some of containers 19, 17 and 16 can also be

relocated to the same stack earlier than their relocation time.

In Figure 4.3, the effect of consecutive cleaning moves (as in Figure 4.2) on the

optimal objective function is given for the above example. Figure 4.4 shows the

corresponding solution times of the instances. Clearly, except for the last cleaning move,

Figure 4.2-d, all of the moves resulted improvement in the objective value.

Re-Handles vs Cleaning Moves

40

42

44

46

48

Cleaning Moves

H
a
n

d
le

s

handles 46 45 44 43 43

0 1 2 3 4

Figure 4.3 Number of Handles for Iterative

Cleaning Moves

Computation Time vs Cleaning Moves

0

5000

10000

15000

20000

25000

30000

Cleaning Moves

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
m

s
e

c
)

Time 17719 26422 6062 1891 188

0 1 2 3 4

Figure 4.4 Computation Time for Iterative

Cleaning Moves

Change in the objective function value is the difference between the number of

future relocations of cleaned container (assume 20), if it was not moved and the number of

additional relocations of containers 21 and 22 caused by avoiding them to be placed on top

of container 23. The new objective function value might be superior as in Figure 4.2-a,

Figure 4.2-b and Figure 4.2-c, same as in Figure 4.2-d or be worse. So, if cleaning moves

will be executed they should improve the solution compared to the case of not doing the

cleaning move. In this context two main points for cleaning moves become important:

recognizing a cleaning move and justifying the cleaning move. The latter is referred as

deciding if the cleaning will improve the objective value or not. The idea of cleaning move

suggested here is a simple method towards finding the real optima of the problem.

49

4.1 Recognition of Cleaning Moves

We assume that a cleaning move should not increase a bay’s configuration value. So,

whenever a cleaning move is performed, a container recognized to be rehandled should be

moved to a stack such that it would not be rehandled again. With this strategy, our aim is to

find cleaning moves, if exist, that would potentially improve the bay configuration by

reducing the future number of rehandles. Essentially, recognizing a cleaning move means,

finding out whether there is a potential cleaning move that will reduce future number of

rehandles.

Define the following notation:

 The accessible container in stack

 The minimum container in stack

 1 if stack is empty

 if

 else

i

j

j j

j i j i

ij

a i

m j

m a N j

m a m a
mDist

=

=

= = +

− >
=

∞

In Figure 4.5 we propose an algorithm to recognize cleaning moves. The algorithm

searches stacks for finding a position for containers that are already recognized to be

rehandled but won’t be rehandled in the position that is found

Figure 4.5 Algorithm for Recognizing Cleaning Moves

..mDist = ∞

For all i

j= ()..
,

arg min
ij ij

j j i

mDist mDist mDist
≠

<

If
ij

mDist < ∞

 A potential cleaning move i to j exists
Else
 There is no cleaning move

50

4.2 Justification of a Cleaning Move for Case 1

4.2.1 Idea of Mobilized Containers

Mobilized containers, within a specific configuration, are those containers that have

to be relocated before a given container. For example, in Figure 4.6 mobilized containers

for container 21 are shaded. These containers will be relocated before 21 and one cannot

know where they are placed when 21 is being rehandled.

 20

 10

8 11 17 19

9 21 16 24

6 14 12 4

15 5 22 13

3 18 23 7 25

i ii iii iv v

Figure 4.6 Mobilized containers for 21

Finding mobilized containers in Figure 4.6 is easy. For instance, container 21 will

be rehandled to retrieve 5, so all of the containers located above containers smaller than 5

and containers above 21 will be relocated on some stack other than ii. Containers 3 and 4

will already be retrieved so they should not be considered as a part of mobilized containers

for 21.

Let container Y, be the container to be retrieved and let container X be a container

currently positioned on Y. Set of mobilized containers for X includes: containers placed

above X and containers placed above containers smaller than Y. Any container that is

ordered earlier than Y is excluded from the set. An additional information is that mobilized

containers for X can be in any stack other than stack of X.

51

When we exclude mobilized containers for X and containers retrieved before Y,

there will be untouched containers left in the bay. Because the locations of these containers

will be known when X is being rehandled, they will be referred as known configuration for

X.

4.2.2 Justification

 Suppose a cleaning move from i to j is recognized. Then
i

a is the container to be

moved and
j

m is the minimum container in the stack that
i

a will be moved to. This move

will avoid any further rehandles of
i

a , but may cause any container Z, ordered between
i

a

and
j

m to be rehandled unnecessarily. So if one can know either;

a. Z will not be rehandled if cleaning move is performed (Figure 4.2-b, c, d), or

b. Z will be rehandled even if cleaning move is not performed.

 Then cleaning move can be justified.

 We can know whether the condition in (a) holds a by the idea of mobilized

containers, but it is not easy to predict whether the condition imposed in (b) will occur. So,

the condition b will be predicted by the expected number of additional rehandles of Z, again

based on the idea of mobilized containers.

4.2.3 Probability Estimation

For container X, if known configuration and mobilized containers are given, we can

estimate worst case probability of X to be rehandled, assuming random relocation

movements. This probability can be found by equation (4-1).

52

For example in Figure 4.6 there are 9 mobilized containers for 21 and there are 4

available stacks for these containers to be placed (i, iii, iv, v). Container 21 will be

rehandled if it is placed on top of 8 out of 9 mobilized containers and 21 will not be

rehandled if it is placed in an empty stack (stack i will be empty when container 3 is

retrieved) or directly on top of container 23 in stack iii. So, if none of those 8 containers is

placed either in stack i or iii, then 21 may not be rehandled. This probability will be

randomly placing 8 containers to available 4 stacks in known configuration of container 21

(i, iii, iv, v) and positioning none of the containers either in stack i or iii.

Let:

 Set of mobilized containers for container .

Number of mobilized containers for i that will be retrieved earlier than i.

 Number of stacks where

i

i

i

mobilized i

mobilizedNum

e j

=

=

=

()

()

 and .

 Probability of container to be rehandled.

 Available number of stacks in a known configuration for container .

 Transition pro

i j

re handle

i

i

a m i j

P i i

f i

P f

−

< ≠

=

=

=

()

bability matrix of moving a container randomly in bay

 having stacks available.

 Probability of having after random container movements,

i

n

sm i i

f

P f m e n= =

 starting from in a bay having stacks available.
i i

s e f=

We justify a cleaning move from i to j if either of equations (4-2) or (4-3) holds. (4-

2) holds if 0
i

mobilizedNum = .

() ()0
i

i

mobilizedNum

re handle e iP i P f
−

≥ (4-1)

() 0
j

i

m

re handle

X a

P X
−

=

=∑
(4-2)

() 1
j

i

m

re handle

X a

P X
−

=

>∑
(4-3)

53

For the cases when equation (4-2) holds, the number of mobilized containers would

be 0. Thus when the cleaning movement is executed there would not be any container

ordered between
i

a and
j

m to rehandled. Equation (4-3) states that if the cleaning move is

not done, at least 1 container ordered between
i

a and
j

m is expected to be in stack j before

i
a . This will make

i
a to be rehandled if it is positioned to stack j. In a sense by cleaning

i
a

may avoid future relocations of
i

a when equation (4-3) holds.

4.2.4 Transition Probability Matrix

Randomly locating containers in stacks can be modeled as a Discrete Time Markov

Chain Process, assuming available stacks in the bay will not be full even after all containers

are positioned and every placement of a container corresponds to a time period. At every

random container placement,
j

e will either decrease by one or will not change. So, current

j
e only depends on previous

j
e .

Transition probability matrix can be used to estimate equation (4-1). If the states of

the Markov Chain model is defined as
j

e , where
j

e is an integer in the range []0, if , then

the transition probability matrix of the model will be formed as (4-4).

54

For Figure 4.6, P will be:

()1

1 0 0 0 0

1/ 4 3/ 4 0 0 0

4 0 2 / 4 2 / 4 0 0

0 0 3/ 4 1/ 4 0

0 0 0 1 0

P

 =

The justification of Figure 4.2-a will be done as:

() ()

() ()

8 12
20 204 4 ? 1

.80 .94 1

P P+

+ >
.

4.3 Combining Cleaning Moves with Difference Heuristic

 In the previous section we see that cleaning moves could improve the bound on the

optimal solution as defined in Chapter 3. One could try to find optimal cleaning moves by

branch and bound procedure but this will not be a viable alternative due to the following

reasons:

()1

1 0 0 . . . 0

1 1
0

2 2
0 0

. . . .

. . . .

11
. .

0 . . . 0 1 0

i

i i

i

i i

i

i

i i

f

f f

f

f f
P f

f

f f

−

−

=

−

4-4

55

• Branch and bound search is non-polynomial. Including cleaning moves into the

search would both increase depth and branching of the search tree (compared to

Chapter 3). Thus increase computation time of the algorithm which already is

excessive.

• Secondly, our branch and bound search relies on branching according to actions

(container movements ending with a retrieval), but cleaning movements may

change with each container movement. This makes combining cleaning moves with

the action based branching very challenging.

 Because we cannot integrate the branch and bound method with the cleaning moves

idea, we choose to combine the difference heuristic with cleaning moves; to which we refer

as clean difference heuristic. The clean difference algorithm is given in Figure 4.7.

Figure 4.7 Clean Difference Algorithm for Case 1

4.4 Modifying Justification for Case 2

For Case 2, our objective is not just to minimize the number of rehandles but to also

include distances. To account for this we incorporated the cleaning move distance with a

justification threshold. Equation (4-2) does not change but equation (4-3) is modified as

equation (4-5). As defined in the previous chapter, A is the rehandling constant and B is the

horizontal distance constant.

() 1 *
j

i

m

rehandle

X a

B
P X i j

A=

> + −

∑
4-5

While (There is container to be retrieved)
 If (There is a cleaning move from i to j and it is justified)
 Move

i
a to j

 Else
 Move container according to difference heuristic

56

 The algorithm does not really change except two small modifications: cleaning

move is justified according to Case 2 and the difference heuristic for Case 2 is used (Figure

 4.8).

Figure 4.8 Clean Difference Algorithm for Case 2

4.5 Results

All of the 8000 instances are solved with clean difference heuristic for both Case 1

and Case 2. When the data is analyzed over all the instances, as seen in Table 4.1, cleaning

do improves the difference heuristic for some instances, but generally the algorithm seems

to work better without cleaning. This is true for especially Case 1.

If the average of the instances are analyzed, on the average, cleaning improves the

algorithm for %0.3 in Case 1 but worsens by %8.0 in Case 2. Cleaning moves do not

improve the solutions on average but for individual cases up to % 30.0 and %75.9 cost

reduction can be gained, Table 4.2.

Table 4.1 Overall comparison for including cleaning in to difference heuristic

 Head to Head Comparison for Cleaning

 Case 1 Case 2

 Difference Clean Difference Difference Clean Difference

Difference 0 1024 0 3967

Clean Difference 548 0 3939 0

While (There is container to be retrieved)
 If (There is a cleaning move from i to j and it is justified for Case 2)
 Move

i
a to j

 Else
 Move container according to difference heuristic for Case 2

57

Table 4.2 Individual instance comparisons in % change

Change (%) Case 1 Case 2

Maximum 22.7 221.5

Minimum -30.0 -75.9

Average -0.3 8.0

We have calculated averages for each combination of parameters: initial container

density, balanced vs. unbalanced layout, width and height of the bay. For Case 1 results are

not interesting and nearly all combinations look alike except that the number of rehandles

increases as initial container density, width and tier increases as well as unbalanced bays

have higher number of rehandles. In the following figures: Figure 4.9, Figure 4.10, Figure

 4.11, Figure 4.12, graphical analysis of the instances where bays are initially %55 filled and

has width of 7 rows are given. Heuristics are represented with their initial letters.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

4 5 6 7

Number Of Tiers

N
u

m
b

e
r

O
f

H
a
n

d
le

s

B

D

C

Figure 4.9 Effect of Increasing Bay Height on Number of Handles for Balanced Bays and
Case 1

58

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

4 5 6 7

Number Of Tiers

N
u

m
b

e
r

O
f

H
a
n

d
le

s

B

D

C

Figure 4.10 Effect of Increasing Bay Height on Number of Handles for Unbalanced Bays
and Case 1

In Figure 4.9 and Figure 4.10 average of the solutions of branch and bound search

and the difference heuristics proposed in Chapter 3 is compared with the clean difference

heuristic for Case 1. Averages look nearly the same and heuristics cannot be really

distinguished but branch and bound search values are slightly better than clean difference

heuristic. For Case 2, following figures are given with the same parameters as in the figures

above.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

4 5 6 7

Number Of Tiers

T
o

ta
l
V

a
lu

e

B

D

C

Figure 4.11 Effect of Increasing Bay Height on Number of Handles for Balanced Bays and
Case 2

59

0.00

100.00

200.00

300.00

400.00

500.00

600.00

4 5 6 7

Number Of Tiers

T
o

ta
l
V

a
lu

e

B

D

C

Figure 4.12 Effect of Increasing Bay Height on Number of Handles for Unbalanced Bays
and Case 2

In Figure 4.11 and Figure 4.12 we can clearly see that cleaning improves the results

significantly. Results are even much better than the branch and bound search proposed in

Chapter 3. Also, improvement becomes more significant as the number of tiers increase.

These graphics contradicts with the results of over all analysis given in

Table 4.2. Reason for this may be clarified with the help of Figure 4.13 where

graphic of the solutions of instances with bays are 7 rows width, initially %70 filled and

unbalanced.

60

0

100

200

300

400

500

600

700

800

4 5 6 7

Number Of Tiers

T
o

ta
l
V

a
lu

e

B

D

C

Figure 4.13 Effect of Increasing Bay Height on Number of Handles for Bays Initially %70
Occupied and Unbalanced, Case 2

One can see that for less number of tiers in the bay, cleaning moves are inefficient,

compared the difference heuristic solutions without the cleaning moves. But as the tier

height of the bay increases cleaning works better.

As a conclusion, we see that;

• Cleaning works and even improves the bound on the optimal solution.

• Justification of cleaning moves should be improved. Integrating tier height in the

process may be useful.

• Random container movements is a loose assumption, which we have already seen in

Chapter 3 and is reminded again in this chapter.

• Cleaning does not seem to work for Case 1, because even if moves act as cost

reducing, difference heuristics increase the cost and improvement could not be

recognized. If the problem size gets bigger, by increasing width and height of the

bay, the improvement could be significant and easy to recognize.

61

5 CONCLUSION AND FUTURE WORK

 In this thesis, we study problem of the retrieval of containers from their stacks. The

problem is addressed in literature with the objective of minimizing number of rehandling

movements. We also incorporated the distance traveled by the crane and minimized total

number of rehandles plus the distance traveled. First objective is referred to as Case 1 and

the latter as Case2. Branch and bound method is implemented to find optimal values in both

cases. The optimal values indicated that distinguishing Case 2 from Case 1 may be useful.

Also three heuristics namely, Expected Additional Relocations Heuristic (based on [28]),

Greedy Heuristic and Difference Heuristics are developed for both of the cases. 8000 bay

configurations in 200 different combinations are generated and heuristics are applied.

Heuristic results compared with both the optimal solutions and the solutions obtained from

the random container movements are analyzed. Cross comparisons of heuristics are

performed.

 W also present a new idea, referred as the cleaning move, which is basically altering

the sequence of relocation movements to further reduce the workload of the crane. This

idea is implemented with the difference heuristic. On average introducing cleaning moves

does not improve the solutions, but huge amount of cost reduction is found for some

instances.

 Future research directions in this area may be as follows:

• Cleaning move concept can be discussed more deeply and the effectiveness of the

idea can be increased.

• Finding optimal cleaning moves and development of heuristics can be studied.

• The assumption that each container has different retrieval times. This can be

generalized to container groups having different retrieval times.

• Relocations on two dimensions (within the block) can be considered.

62

6 REFERENCES

[1] D. Ambrosino, A. Sciomachen, E. Tanfani, “Stowing a Containership: The Master

Bay Plan Problem”, Transportation Research Part A: Policy and Practice, 38(2), 81-99,
February 2004.

[2] A. Ashar, “On selectivity and accessibility”, Cargo Systems, 44-45, June 1991.

[3] M. Bielli, A. Boulmakoul, M. Rida, “Object Oriented Model for Container Terminal

Distributed Simulation”, European Journal of Operational Research, Available Online,
2005.

[4] B. De Castilho, C. F Daganzo, “Handling Strategies for Import Containers at
Marine Terminals”, Transportation Research B, 27(2), 151-166, 1993.

[5] T. Chen, “Yard operations in the container terminal: A Study in the Unproductive

Moves”, Maritime Policy & Management, 26(1), 27-38, 1999.

[6] H. R. Choi, H. S. Kim, B. J. Park, N. K. Park, S. W. Lee, “An ERP Approach for

Container Terminal Operating Systems”, Maritime Policy & Management, 30(3), 197-
211, July 2003.

[7] L. L. Chung, G. L. Vairaktarakis, “Loading and Unloading Operations in Container

Terminals”, IIE Transactions, 36(4), 287- 298, April 2004.

[8] Y. G. Chung, S.U. Randhawa, E. D. McDowell, “A Simulation Analysis for a

Transtainer-Based Container Handling Facility”, Computers & Industrial Engineering,
14(2), 113-125, 1998.

[9] Containerization and Intermodal Institute, www.containerization.org

[10] C. F. Daganzo, “The Crane Scheduling Problem”, Transportation Research-B,

23(3), 159–175, 1989.

[11] J. N. Ece, “Denizcilik Sektörünün Özelleştirilmesi”, Özelleştirme Stratejileri Paneli,

www.turkishpilots.org.tr/DOCUMENTS/J_Nur_Ece_Ozellestirme.htm

[12] L. M. Gambardella, M. Mastrolilli, A. E. Rizzoli, M. Zaffalon, “An Optimization

Methodology for Intermodal Terminal Management”, Journal of Intelligent
Manufacturing, 12(5)-(6), 521-534, October 2001.

[13] S. Hartmann, “Generating Scenarios for Simulation and Optimization of Container

Terminal Logistics”, OR Spectrum, 26(2), 171-193, March 2004.

[14] Hong Kong Port Development Council, www.pdc.gov.hk/eng/statistics/docs/KT-

stat.pdf

63

[15] D. L. Howard, M. J. Bragen, J. F. Burke, R. J. Love, “PORTSIM 5: Modeling From

a Seaport Level”, Mathematical and Computer Modeling, 39(6)-(8), 715-731, March
2004.

[16] M. T. Ibrahimi, B. De Castilho, C. F. Daganzo, “Storage Space vs. Handling Work
in Container Terminals”, Transportation Research B, 27, 13-32, 1993.

[17] A. Imai, E. Nishimura, S. Papadimitriou, “The Dynamic Berth Allocation Problem

For a Container Port”, Transportation Research-B, 35(4), 401–417, 2001.

[18] A. Imai, E. Nishimura, S. Papadimitriou, “Berth Allocation with Service Priority”,

Transportation Research Part B: Methodological, 37(5), 437- 457, June 2003.

[19] A. Imai, K. Sasaki, E. Nishimura, S. Papadimitriou, “Multi-Objective Simultaneous

Stowage and Load Planning for a Container Ship with Container Rehandle in Yard
Stacks”, European Journal of Operational Research, Available Online, December
2004.

[20] A. Imai, X. Sun, E. Nishimura, S. Papadimitriou, “Berth Allocation in a Container

Port: Using a Continuous Location Space Approach”, Transportation Research Part B:
Methodological, 39(3), 199-221, March 2005.

[21] Japan International Cooperation Agency (JICA), “Master Plan of National Port

Development”, www.jica.go.jp

[22] K. H. Kim, “Evaluation of the Number of Rehandles in Container Yards”,

Computers & Industrial Engineering, 32(4), 701-711, September 1997.

[23] K. H. Kim, J. W. Bae, “Re-Marshaling Export Containers in Port Container

Terminals”, Computers & Industrial Engineering, 35(3)-(4), 655-658, December 1998.

[24] K. H. Kim, Y. M. Park, K. R. Ryu, “Deriving Decision Rules to Locate Export

Containers in Container Yards”, European Journal of Operational Research, 124, 89-
101, 2000.

[25] K. H. Kim, K. C. Moon, “Berth Scheduling by Simulated Annealing”,
Transportation Research Part B: Methodological, 37(6), 541-560, July 2003.

[26] K. H. Kim, S. H. Won, J. K. Lim, T. Takahashi, “An Architectural Design of

Control Software for Automated Container Terminals”, Computers & Industrial
Engineering, 46(4), 741-754, July 2004.

[27] K. H. Kim, Y. M. Park, “A Crane Scheduling Method for Port Container

Terminals”, European Journal of Operational Research, 156(3), 752-768, August 2004.

[28] K. H. Kim, G. P. Hong, “A Heuristic Rule for Relocating Blocks”, Computers &

Operations Research, 33, 940-954, July 2006.

64

[29] Marport Liman İşletmeleri, www.marport.com.tr

[30] K. G. Murty, J. Liu, Y. Wan, R. Linn, “A Decision Support System for Operations

in a Container Terminal”, Decision Support Systems, 39(3), 309-332, May 2005.

[31] A. Narasimhan, U. S. Palekar, “Analysis and Algorithms for the Transtainer

Routing Problem in Container Port Operations”, Transportation Science, 36(1), 63-78,
February 2002.

[32] Y. M. Park, K. H. Kim, “A Scheduling Method for Berth and Quay Cranes”, OR

Spectrum, 25(1), 1-23, February 2003.

[33] R. I. Peterkofsky, C. F. Daganzo, “A Branch and Bound Solution Method for the

Crane Scheduling Problem”, Transportation Research Part B: Methodological, 24(3),
159-172, June 1990.

[34] S. P. Sgouridis, D. Makris, D. C. Angelides, “Simulation Analysis for Midterm

Yard Planning in Container Terminal “, Journal of Waterway, Port, Coastal & Ocean
Engineering, 129(4), 178-188, July 2003.

[35] D. Steenken, S. Voß, R. Stahlbock, “Container Terminal Operation and Operations

Research: A Classification and Literature Review”, OR Spectrum, 26(1), 3-49, January
2004.

[36] L. K. Tranberg, “Optimizing Yard Operations in Port Container Terminals”,

Proceedings of the 10th EWGT Meeting and 16. Mini Euro Conference, 386-391,
2005.

[37] Türkiye Cumhuriyeti Devlet Demiryolları Liman İşletmeleri,

www.tcdd.gov.tr/liman/konteyner.htm

[38] T. Ünlüyurt, H. M. Özdemir, “Space Allocation and Location Matching in

Container Terminals”, Proceedings of the 10th EWGT Meeting and 16. Mini Euro
Conference, 367-372, 2005.

[39] F. A. Vis, R. Koster, “Transshipment of Containers at a Container Terminal: An

Overview”, European Journal of Operational Research, 147(1), 1-16, May 2003.

[40] I. Watanabi, “Selection Process”, Cargo Systems, 35-36, March 1991.

[41] M. A. Weiss, “Data Structures & Algorithm Analysis in C++”, Chapter 8, Addison

Wesley, 2001

[42] D. Wilson, P. A. Roach, “Principles of Combinatorial Optimization Applied to

Container-Ship Stowage Planning”, Journal of Heuristics, 5(4), 403-418, December
1999.

65

[43] H. Yang, Y. S. Choi, T. Y. Ha, “Simulation-Based Performance Evaluation of

Transport Vehicles at Automated Container Terminals”, OR Spectrum, 26(2), 149-
170, March 2004.

[44] C. Q. Zhang, Y. W. Wan, J. Liu, R. J Linn, “Dynamic Crane Deployment in

Container Storage Yards”, Transportation Research Part B, 36, 537-555, 2002.

[45] C. Zhang, J. Liu, Y. Wan, K. G. Murty, R. J. Linn, “Storage Space Allocation in

Container Terminals”, Transportation Research Part B: Methodological, 37(10), 883-
903, December 2003.

[46] I. Zyngiridis, “Optimizing Container Movements Using One and Two Automated

Stacking Cranes”, Master Thesis, Naval Post Graduate School Monterey California,
2005

66

APPENDIX

A Number of instances solved to optimality using branch and bound method

 CASE 1 CASE 2

 4 5 6 7 4 5 6 7

 B U B U B U B U B U B U B U B U

55 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

60 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

65 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

70 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

3

75 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

55 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

60 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

65 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

70 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

4

75 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

55 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

60 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

65 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40

70 40 40 40 40 40 40 40 40 40 40 40 40 40 40 2 0

5

75 40 40 40 40 40 40 40 40 40 40 40 40 40 40 0 0

55 40 40 40 40 40 40 40 40 40 40 40 40 40 40 0 0

60 40 40 40 40 40 40 40 40 40 40 40 40 40 40 0 0

65 40 40 40 40 40 40 4 0 40 40 40 40 39 4 0 0

70 40 40 40 40 40 40 0 0 40 40 40 40 0 0 0 0

6

75 40 40 40 40 40 40 0 0 40 40 40 40 0 11 0 0

55 40 40 40 40 40 40 40 40 40 40 40 40 0 0 0 0

60 40 40 40 40 40 40 40 40 40 40 40 40 0 0 0 0

65 40 40 40 40 0 0 0 0 40 40 40 40 0 0 0 0

70 40 40 40 40 0 0 0 0 40 40 40 40 0 0 0 0

7

75 40 40 40 40 0 0 0 0 40 40 40 40 0 0 0 2

67

B Branch and Bound Solution Times For Case 1 (msec)

Case 1 Case2

Balanced Unbalanced Balanced Unbalanced

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

3 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0

4 0 0 1 6 0 1 2 21 0 1 3 334 1 2 23 990

5 1 0 4 4341 1 0 4 1187 1 4 281 19798 1 295 2062 674073

6 1 2 11 5481 1 0 93 10414 2 12 1342 12 250 38346

55

7 1 2 173 33686 0 13 971 19876 15 480 46 32120

3 0 1 0 0 0 0 1 1 1 0 1 2 0 1 1 0

4 0 1 2 23 1 0 2 15 0 2 14 2061 1 2 23 990

5 0 2 9 1541 0 2 47 3577 1 67 815 107512 1 295 2062 674073

6 1 3 30 101152 2 9 1223 38379 2 554 349566 12 250 38346

60

7 1 3 2615 543072 1 25 5378 1194229 10 5462 46 32120

3 1 0 0 1 0 2 0 3 1 1 0 2 0 2 1 4

4 0 2 10 66 0 1 2 47 1 3 200 1145 1 4 37 4472

5 1 1 97 1719 2 2 59 4559 4 31 9147 1211428 1 38 10367 259032

6 1 5 1342 60239 0 4 1800 3 1602 196258 9 5057 21611907

65

7 0 60 3 76 315 8194 209 207602

3 0 1 1 1 0 1 1 1 0 1 2 5 0 0 0 5

4 0 1 19 296 0 0 2 51 1 6 161 2292 0 3 44 1944

5 1 2 206 3482 0 3 545 272953 4 96 28470 3992415 2 121 5500

6 2 29 13655 2 17 1389 22 1295 34 5243

70

7 2 160 2 362 43 142433 90 111460

3 0 0 1 1 0 1 1 2 0 1 1 9 1 0 1 3

4 0 2 7 849 0 1 6 878 0 5 308 60425 1 4 452 94272

5 1 8 1280 44118 1 8 227 38790 4 120 700249 2 82 42201

6 1 448 308002 2 65 24489 54 161657 58 2448 5290603

75

7 2 1839 5 3257 16352 790 2282543 411 632230

68

C Branch and Bound Solution Times For Case 2 (msec)

Case 1 Case2

Balanced Unbalanced Balanced Unbalanced

4 5 6 7 4 5 6 7 4 5 6 7 4 5 6 7

3 3.5 2.5 3.3 2.5 2.4 4.2 3.4 2.5 2.5 0.0 2.4 4.1 4.1 4.2 0.0 3.4

4 2.5 2.4 5.1 14.8 2.5 3.4 5.2 72.4 2.4 4.2 7.2 1058.1 3.4 6.3 28.3 2178.7

5 3.4 2.5 7.5 25813.9 3.4 0.0 9.2 5971.9 3.3 14.4 654.2 62677.1 2.5 20.6 9458.4 420229.1

6 3.5 5.1 30.7 23832.2 3.4 2.5 262.6 35425.4 4.9 34.8 2767.8 7.4 10641.3 33810.8

55

7 3.4 7.0 608.7 97205.8 2.5 61.8 4066.6 55054.6 67.3 1483.7 18.7 2421.5

3 2.5 3.3 0.0 0.0 2.4 2.4 3.4 4.0 3.5 0.0 3.4 4.6 0.0 3.5 3.3 2.4

4 0.0 3.5 4.7 52.8 3.5 2.5 5.9 38.7 0.0 4.7 29.3 11629.1 4.3 5.7 67.8 3556.9

5 2.4 6.4 21.5 5068.3 0.0 4.8 121.1 14236.4 3.5 305.9 1788.6 370350.6 3.5 1626.9 8611.5 2224737.8

6 3.5 12.8 53.4 405475.2 5.2 31.6 5887.3 197820.7 8.3 2356.7 1490365.4 54.3 1064.3 105466.9

60

7 3.3 7.2 8927.0 1873206.9 4.2 126.6 25866.4 4672842.8 28.0 15459.3 148.9 181014.6

3 4.2 2.4 0.0 4.1 0.0 4.8 2.5 6.1 3.5 3.4 2.5 6.3 2.4 4.8 4.1 9.2

4 2.5 5.2 24.8 175.9 2.5 3.5 5.7 114.7 3.4 12.9 712.0 2652.2 3.4 7.7 127.4 13721.5

5 3.3 4.1 374.9 4290.8 4.9 5.3 168.6 18296.2 17.7 80.2 41822.8 3883538.4 4.1 92.7 44571.8 570886.6

6 4.2 16.3 4249.3 69785.2 2.5 17.6 7157.7 6.5 4696.6 478941.0 17.0 24200.0 37425292.4

65

7 0.0 218.8 6.4 388.7 1271.1 23488.7 621.4 893766.0

3 2.4 4.3 4.2 3.3 2.4 3.4 3.4 4.2 0.0 4.1 5.7 13.1 2.5 2.5 2.5 7.6

4 2.5 4.2 59.0 1163.5 0.0 2.4 4.8 94.4 4.2 15.4 435.5 4747.4 2.5 7.4 78.9 5810.7

5 4.3 8.2 529.5 11913.4 2.4 9.3 1758.3 1618004.4 7.7 415.4 66792.9 155330.1 4.7 361.8 12594.5

6 5.2 49.5 55814.3 7.8 41.4 3331.1 56.3 2713.9 124.6 26931.5

70

7 4.9 484.3 6.1 1234.4 108.2 432867.7 221.9 399907.1

3 2.5 0.0 4.3 3.4 0.0 3.3 4.3 4.8 0.0 3.5 3.5 42.0 4.2 0.0 4.1 7.2

4 0.0 4.9 15.8 2819.8 2.5 3.3 12.2 4056.5 0.0 7.4 1010.1 267761.1 3.4 7.7 2161.8 552084.9

5 4.2 30.6 3941.4 115127.1 3.4 17.7 473.5 134118.9 9.9 258.0 4239465.5 4.8 188.5 163855.5

6 4.1 2533.8 1702214.7 6.2 328.6 92276.7 173.9 995611.1 248.6 4839.2 10397341.2

75

7 4.8 10165.3 20.1 16730.3 21423.2 3522.8 10091662 1060.0 3302761.2

69

D Comparison of Branch and Bound Solution Times (sec)

 Number of
Containers

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 29 30

Number of
Problems

400 240 480 400 560 400 640 560 80 560 560 650 320 240 160 240 240 84 80 This Work

Solution
Time

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.44 0.64 1.05 3.36 69.24 25.34 23.59 161.20 868.65

Number of
 Problems

40 40 40 40 40 80 80 80 40 40 [28]

Solution
Time

7.3 8 13.2 14.8 14.5 41.45 136.15 147.35 223.3 2657.5

70

E Ration of Additional Movements Between Case 1 and Case 2

 Ratio of Additional Movements For the Balanced Bays

 4 5 6 7

 55 60 65 70 75 55 60 65 70 75 55 60 65 70 75 55 60 65 70 75

3 0.001 0.007 0.002 0.002 0.005 0.006 0.014 0.009 0.005 0.006 0.016 0.008 0.008 0.007 0.011 0.013 0.012 0.011 0.006 0.011

4 0.013 0.017 0.015 0.009 0.011 0.020 0.026 0.018 0.022 0.021 0.026 0.019 0.029 0.024 0.027 0.031 0.028 0.030 0.024 0.020

5 0.023 0.026 0.019 0.041 0.023 0.014 0.033 0.029 0.029 0.031 0.042 0.038 0.044 0.038 0.032 0.040 0.039 0.051 0.051

6 0.016 0.020 0.028 0.042 0.037 0.029 0.035 0.041 0.039 0.043 0.032 0.050 0.052

7 0.024 0.025 0.039 0.038 0.039 0.038 0.037 0.050 0.063 0.048

 Ratio of Additional Movements For the Unbalanced Bays

 4 5 6 7

 55 60 65 70 75 55 60 65 70 75 55 60 65 70 75 55 60 65 70 75

3 0.012 0.007 0.006 0.011 0.005 0.012 0.013 0.011 0.008 0.006 0.009 0.013 0.010 0.007 0.011 0.010 0.010 0.009 0.009 0.011

4 0.009 0.016 0.008 0.014 0.012 0.021 0.022 0.028 0.018 0.019 0.022 0.021 0.024 0.018 0.021 0.034 0.027 0.030 0.023 0.027

5 0.015 0.020 0.026 0.022 0.022 0.020 0.034 0.022 0.036 0.030 0.039 0.030 0.048 0.036 0.034 0.043 0.045 0.031

6 0.023 0.026 0.026 0.033 0.030 0.028 0.036 0.035 0.041 0.040 0.045 0.049 0.074 0.043

7 0.027 0.041 0.032 0.040 0.042 0.050 0.037 0.048 0.059 0.063

