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for their helpful comments about my thesis.

Special thanks also go to my professor Özgür Kıbrıs for his motivation
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ON CONTINUITY OF MASKIN’S IMPLEMENTATION RESULT

Nuh Aygün DALKIRAN

Economics, MA Thesis, 2006

Supervisor: Mehmet BARLO

Abstract

This thesis displays that the seminal results of Maskin (1999) on Nash

implementation are continuous with respect to a specific measure when atten-

tion is restricted to the domain of preferences representable by cardinal utility

functions. Our continuity measure is associated with three modified com-

ponents of Maskin’s results: epsilon-implementability, epsilon-monotonicity

and epsilon-no veto power. Employing cardinal utility functions, we define

epsilon-neighborhoods around Maskin’s standard components and show that

his results continue to hold with this epsilon-approximation.

Keywords: Nash implementation, epsilon-equilibrium, Maskin mono-

tonicity.



MASKİN’İN UYGULAMA SONUCUNUN SÜREKLİLİG̃İ ÜZERİNE

Nuh Aygün DALKIRAN

Ekonomi, Yüksek Lisans Tezi, 2006

Tez Danşmanı: Mehmet BARLO

Özet

Bu tezde, Maskin’in Nash uygulaması için buldug̃u temel sonucların süreklilig̃i

incelenmektedir. Bunun için kullandıg̃ımız süreklilik ölçüsü Maskin (1999)’in

sonuçlarının kaynag̃ı olan üç temel unsurun uygun şekilde deg̃iştirilmesi ile

elde edilmiş üç yeni nosyona dayanmaktadır. Bu üç yeni unsur sırasıyla:

epsilon-dengesi, epsilon-monotonisite ve epsilon-veto hakkı olmamasıdır. Bu

unsurlar standard unsurların epsilon komşuluklarıdır. Buldug̃umuz sonuç

göstermektedir ki kardinal fayda fonksiyonları kullanıldıg̃ında Maskin’in sonucu

bu epsilon yaklaşım için de geçerli olmaktadır.

Anahtar Sözcükler: Nash uygulaması, epsilon-dengesi, Maskin mono-

tonisitesi.
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Chapter 1

Introduction

A society is a group of individuals distinguishable from other groups by mu-

tual interests, characteristic relationships, shared institutions, and a common

culture. Here what is meant by a society is merely a collection of individuals

with certain characteristics. We often refer to these individuals as agents of

the society. A society faces many economic, social, and political situations

where individuals must interact to make decisions that may affect them col-

lectively. Voting to elect representatives, choosing a public policy, as well as

production and allocation of private and/or public goods are some common

examples. These kind of situations in which a society has to decide among

the available alternatives are known as social decision problems.

We will assume that the objectives of a society are represented by a social

choice rule depending on the social decision problem and the characteristics

of the society. A social choice rule can be regarded as a rule agreed by the

members of the society or designed by a social planner according to some

normative characteristics; and it selects a feasible set of alternatives among

1
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all alternatives available to the society depending on the characteristics of

the society. One can regard the social choice rule as the set of socially

optimal alternatives. Examples range from the Pareto rule which selects

Pareto optimal alternatives, to the Walrasian rule which is a social choice

rule selecting the competitive equilibrium allocations.

If the relevant characteristics of the society are publicly known, then social

choice rule outcomes can be obtained easily. The problem of implementa-

tion arises because the true preference profile of the society is generally not

common knowledge. Hence, a social planner may have to elicit preferences

of individuals in the society. However, there is then the problem of misrep-

resentation of preferences. Depending on the preference profile of the society

and the social choice rule, individuals may act strategically to influence the

outcome of a social decision problem to their advantage. Hence, the design of

the institution through which individuals of a society interact has a profound

effect on the strategic behavior of the individuals of that society.

A social choice rule is said to be implementable if a mechanism exists

so that the equilibrium of this mechanism and the socially optimal alterna-

tives indicated by the social choice rule coincide. To be more precise, given

a normative goal characterized by a social choice rule, implementation the-

ory deals with the characterization of mechanisms that will create outcomes

consistent with the given normative goal hence with the social choice rule.1

Obviously, game theory plays a central role in implementation theory,

1More information on implementation theory can be found in the following surveys;

Allen (1997), Corchón (1996), Groves and Ledyard (1987), Jackson (2001), Maskin (1985),

Maskin and Sjöström (2002), Moore (1992), Moulin (1982), Palfrey (1992), Palfrey (2001),

Palfrey and Srivastava (1993), and Postlewaite (1985)
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since an institution is modeled as a mechanism which is nothing but a non-

cooperative game form. In implementation theory, unlike the many appli-

cations in game theory, a game is not given but is to be identified, that is,

rather than fixing a game and looking for the set of outcomes given by some

solution concept, we fix a set of outcomes and look for a game that yields

that set of outcomes as equilibria.

Another important point we should mention about implementation is the

revelation principle which demonstrates that if standard concepts of equilib-

rium are used (Nash equilibrium, weak dominance or Bayesian Nash equilib-

rium) it is always possible to define a mechanism for an implementable social

choice rule such that truthful revelation of preferences is an equilibrium of

this mechanism. Such mechanisms are called direct revelation mechanisms.

An example at this point would clarify what implementation theory deals

with. Consider a society that has to select a project among a set of projects.

Each member of the society has a preference ranking over the set of projects.

The society may have formed a certain normative goal which forms a social

choice rule defining the project to be selected as a function of the preference

profile of the society. In particular, the society may be unwilling to select a

project ranked lower than another project by all members of the society. (i.e.

a project which is Pareto dominated). The society may also wish to select

a Condorcet winner2 if it exists. Then the implementation problem would

be: “Does there exist a procedure where for every possible preference profile

of the society, the equilibrium outcome of the procedure would be Pareto

2An alternative is a Condorcet winner if it defeats any other alternative in a (pairwise)

majority voting election.
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efficient and Condorcet consistent?”

In order to render a positive answer to this question, one has to come up

with a mechanism whose equilibria coincide with outcomes identified by the

social choice rule for all possible preference profiles the agents may have. It

should be noted that by a mechanism we mean a game form which specifies a

set of possible actions to the members of the society and specifies the outcome

as a function of these actions.

One of the most important problems considered by implementation theory

is the full characterization of implementable social choice rules. That is to

say: “Can we identify properties that precisely identify the social choice rules

which are implementable and which are not implementable?”

As we have mentioned previously, the implementability of a social choice

rule depends on the game theoretic equilibrium concept employed. Imple-

mentation theory has considered several equilibrium concepts so far. If we

assume that the individuals behave in a non-cooperative manner, the equilib-

rium concept must be chosen among non-cooperative equilibrium concepts3.

An important point in modeling the non-cooperative mode of behavior of the

society is its information structure. If the information is incomplete, it is nat-

ural to restrict attention to weak dominance or Bayesian Nash equilibrium.

However, if we assume complete information, one of the most prominent

equilibrium concepts is Nash Equilibrium.

One of the main results regarding implementation in Nash equilibrium

3A cooperative equilibrium concept can also be used; see for example Dutta and Sen

(1991a) for strong Nash equilibrium, and Bernheim and Whinston (1987) for coalition

proof equilibrium
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is due to Maskin (1999).4 He has found out that a condition called “mono-

tonicity” is necessary for a social choice rule to be Nash-implementable and,

with at least three agents, monotonicity coupled with a condition called “no

veto power” is sufficient for Nash implementability5.

The monotonicity condition says that in case of a change in the preference

profile of the society, if in all agents’ preference orderings, a socially optimal

alternative does not fall below relative to any other alternative that it was not

below before, then it remains socially optimal. The no veto power property,

on the other hand, is a condition of near unanimity which says that if all but

one agent has the same alternative top ranked, then that alternative must

be socially optimal.

In this thesis, we prove the continuity of Maskin’s main results when pref-

erences of the society can all be represented by cardinal utility functions. The

restrictions we put on the domain of preferences are due to the essence of our

continuity measure; that is, the domain we consider is almost the most gen-

eral domain of preferences where this continuity measure for implementation

can be defined.

The continuity measure we define for Nash-implementability is due to

two new conditions we define, namely, epsilon-monotonicity and epsilon-

no veto power. These two conditions generalize the standard monotonicity

and no veto power conditions. We define an equilibrium concept which we

call epsilon-equilibrium and we prove that these two new conditions mimic

the properties of monotonicity and no veto power in Nash implementation

4Maskin’s article was circulated as a working paper in 1977.
5We will give a brief survey on Nash Implementation later in Chapter 3.
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for epsilon-equilibrium. That is, epsilon-monotonicity turns out to be a

necessity condition for epsilon-implementation (implementation in epsilon-

equilibrium), and epsilon-no veto power coupled with monotonicity is suffi-

cient for a social choice rule to be epsilon-implemented when there are at

least three agents in the society.

The results we obtained are important because they may be used to define

a distance notion for social choice rules in terms of Nash implementability.

This may lead us to a notion which, given the mechanism, measures the

sacrifice of a society when a non-Nash implementable social choice rule is

to be implemented. Finally, we must confess that the construction of an

appropriate example to present our results remains to be done.

The paper is organized as follows : Chapter 2 gives the definitions and the

notation used throughout this thesis. Chapter 3 provides a short survey on

Nash implementation. Chapter 4, introduces the preference domain we deal

with, and defines our continuity measure for implementation on this domain.

Finally, chapter 5 concludes the paper.



Chapter 2

Preliminaries

This chapter offers the basic definitions and the notations to be used later in

this thesis.

Let N = {1, 2, ..., n} denote a society with n agents where i ∈ N denotes

ith agent in the society and A denote the non-empty set of alternatives (or

outcomes) available to the society. (Note that A may be finite, denumerable

or uncountable.)

The set of all complete preorders on A is denoted by RA ( It is sometimes

called the unrestricted domain of preferences.) where an element Ri ∈

RA is called the preference ordering of agent i on A.1 (The set of all

strict preference orderings on A is denoted by PA
2). A preference profile

of the society is denoted by R = {R1, R2, ..., Rn} where Ri ∈ RA for all

i ∈ N . The set of all possible preference profiles of the society is denoted

1aRib means agent i weakly prefers a to b. (i.e a is at least as high as b in the ordering

Ri.
2A strict preference ordering is a negatively transitive and asymmetric binary relation.

i.e. It ranks no two alternatives as indifferent.

7
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by R =
∏

i∈N Ri where Ri ⊆ RA is the set of all possible preference

orderings of agent i on A.

We start with the definition of a social choice rule.

Definition 1 A social choice rule (an SCR) F : R � A is a corre-

spondence from R into A, that is it selects a subset of A for each possible

preference profile of the society: F (R) ⊆ A for all R ∈ R. If an alternative

a ∈ A is chosen by the social choice rule F under a preference profile R ∈ R

i.e. a ∈ F (R), we say that a is F -optimal with respect to R.

As mentioned previously, a social choice rule is interpreted as selecting

the “welfare optimal” alternatives F (R) for each possible preference profile

R ∈ R of the society.3 Prominent examples of social choice rules include the

Pareto Rule, F PO = {a ∈ A| for all b ∈ A there exists i such that aRib}

which selects all Pareto Optimal alternatives given the preference profile R,

the Condorcet Rule, FCON = {a ∈ A| for all b ∈ A #{aRib} = #{aRib}},

where #{aRib} denotes the number of individuals who prefer a to b, and

it selects a (pairwise) majority voting winner for each profile R of strict

preferences, and in a pure exchange economy of l goods, where an alternative

means an allocation of goods across individuals (i.e. a = (a1, ..., an), where

ai ∈ Rl
+), the Walrasian Rule FW which, given individuals’ endowments

(e1, ..., en), chooses the set of competitive equilibrium allocations.

3A social choice rule differs from a social welfare function of Arrow (1951) in that it

does not rank non-optimal alternatives. However, a social choice welfare function f induces

a natural social choice rule, that is the correspondence which selects the alternatives top-

ranked by f for each profile.
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We continue with the definition of a mechanism and the definition of

implementability of a social choice rule by a mechanism via an equilibrium

concept.

Definition 2 A (normal form) mechanism µ (or game form) is a pair

µ = (S = ×i∈NSi, g) where Si is the non-empty set denoting strategy space

for each agent i ∈ N and g : S → A is the outcome function. Note also

that (N, µ, R) defines a normal form game to be played by the society if the

preference profile of the society is R ∈ R

Definition 3 A social choice rule F : R � A is implementable by a

mechanism µ via the equilibrium concept Σ if

Σ(N, µ, R) = F (R) for all R ∈ R

The definitions below give some of the technical terms which are mostly

game theoretic and employed later in this thesis.

Definition 4 An n-person normal form game is Γ = 〈N, (Si)i∈N , (ui)i∈N〉

where Si is a non-empty set of strategies of player i ∈ N , and ui : ×i∈NSi →

R is agent i’s utility or payoff function.

Definition 5 Let µ = (S, g) be a normal form mechanism. A strategy profile

s∗ ∈ ×i∈NSi is called a Nash Equilibrium of µ at R, if for all i ∈ N ,

and for all si ∈ Si

g(s∗)Rig(si, s
∗
−i).

Definition 6 Let µ = (S, g) be a normal form mechanism. A strategy si ∈ Si

is a dominant strategy for i in the game (N, µ, R) if
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g(si, s−i)Rig(s′i, s−i) for all s′i ∈ Si and for all s−i ∈ ×j 6=iSj

A strategy profile s ∈ S is a dominant strategy equilibrium of the game

(N, µ, R) if si is a dominant strategy for each i in the game (N, µ, R).

Definition 7 The lower contour set Li(a, R) of i at a ∈ A under R is

defined by

Li(a, R) = {b ∈ A|aRib}.

The strict lower contour set SLi(a, R) of i at a ∈ A under R is defined

by

SLi(a, R) = {b ∈ A|aPib}.

where Pi is the strict preference ordering induced by Ri.

Definition 8 A social choice rule F : R � A is dictatorial if there exists

i ∈ N such that for all R ∈ R and a ∈ A, one has aRib for all b ∈ A implies

a ∈ F (R).

Definition 9 An outcome a ∈ A is Pareto optimal with respect to the

preference profile R ∈ R if there exists an outcome b such that bPia for some

i ∈ N then there exists i 6= j ∈ N such that aPjb. A social choice rule

F : R � A is said to be Pareto optimal if, for all R ∈ R and a ∈ F (R),

the outcome a is Pareto optimal with respect to R.

Definition 10 A function ui : A → R from the alternative set into real

numbers, represents the preference ordering Ri on A if; aRib if and

only if ui(a) ≥ ui(b) holds, for all a, b ∈ A. If there exists a function ui :

A → R that represents a preference relation Ri on A then we say that Ri is

representable by the utility function u.



Chapter 3

Implementation in Nash

Equilibrium

3.1 Introduction

This chapter provides a brief survey on Nash Implementation.

Nash implementation was first studied by Groves and Ledyard (1977),

Hurwicz and Schmeidler (1978), and Maskin (1999)1. However, the most gen-

eral results were obtained by Maskin. The following quotation from Jackson

(2001) explains the importance of his works:

The seminal work on Nash implementation, not only provides

us an understanding of what is Nash implementable, but it also

provides a blueprint for the techniques and approach that underlie

many of the general characterization results in the literature.

1Recall that; this article was circulated as a working paper as Maskin (1977) and

reprinted in 1999.

11
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We mentioned before that Maskin identified two conditions, namely mono-

tonicity and no veto power, where monotonicity turns out to be a necessary

condition for a social choice rule to be Nash implementable and, when there

are at least three agents in the society, monotonicity together with no veto

power suffice for a social choice rule to be Nash implementable.

Two other important works on Nash implementation are Moore and Re-

pullo (1990) and Danilov (1992). Moore and Repullo (1990) define a con-

dition, which is called condition µ, and which turns out to be a necessary

and sufficient condition for Nash implementability in case of three or more

agents. Although their condition closes the gap between Maskin’s necessity

and sufficiency conditions, to determine whether or not a social choice rule

satisfies this condition is difficult. Danilov (1992) gives an explicit formula

for the system of sets which condition µ of Moore and Repullo is based on

and he introduces the condition called essential monotonicity (a.k.a Danilov

monotonicity) which is also a necessary and sufficiency condition for Nash

implementability when there are at least three agents in the society. How-

ever, it should be noted that Moore and Repullo’s approach works in a more

general setting2.

Our work in this thesis is based on the seminal work of Maskin (1999).

Hence, in the next section, we will explore the conditions identified by Maskin

thoroughly and we will present the proofs of the necessity and sufficiency

theorems of Maskin (1999).

2For further information see Moore and Repullo (1990) and Danilov (1992)
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3.2 Necessity and Sufficiency

We start with two equivalent definitions of “monotonicity”. The first one is

the original definition in Maskin (1999). We include the second one since it

is more commonly used in the literature.

Definition 11 3 A social choice rule F : R � A is monotonic if for all

a ∈ A,

∀R,R′ ∈ R if a ∈ F (R) and ∀i ∈ N,∀b ∈ A, aRib ⇒ aR′
ib, then a ∈ F (R′).

Definition 12 A social choice rule F : R � A is monotonic if and only

if for all a ∈ A, for all R,R′ ∈ R the following is true:

if a ∈ F (R) and Li(a, R) ⊆ Li(a, R′) ∀i ∈ N, then a ∈ F (R′).

In other words, monotonicity calls for the social choice rule to satisfy the

following property: If an alternative is chosen under a given preference profile

by the social choice rule, then it must also be chosen when the preference

profile is altered so that none of the alternatives beaten by the original one

gets to be ranked higher than the original one in any of the agents’ preference

orderings; i.e. if the lower contour set of a socially optimal alternative does

not shrink for any agent, then this alternative must remain being socially

optimal. This seems to be an intuitive condition. It is also reasonable in

the sense that, it is satisfied by the prominent social choice rules mentioned

above, which are the Pareto Rule, F PO; the Condorcet Rule, FCON ; and

3Monotonicity condition was called as “strong positive association” by Muller and

Satterthwaite (1977).
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the Walrasian Rule, FW .4 To be more precise, let us give a small argument

which explains why the Pareto Rule satisfies monotonicity. Let a ∈ A be a

Pareto optimal alternative with respect to preference profile R, hence chosen

by the Pareto Rule under R. This means for any other alternative b ∈ N ,

there exists an agent i∗ ∈ N such that,aRi∗b. If we replace the preference

profile R with R′ such that for all i ∈ N , aRib implies aR′
ib, then aR′

i∗b

holds, therefore a is Pareto optimal with respect to R′ as well, and hence it

is chosen under R′ by the Pareto Rule, F PO.

On the other hand, some well-known social choice rules do not satisfy

monotonicity. For example, the Borda Count Rule, FBC , (i.e rank-order

voting) fails to satisfy monotonicity. The Borda Count Rule works as follows:

each individual assigns points to every alternative in the alternative set A

so that the best alternative of each player get #A points, the second best of

each individual gets #A− 1 points, and so on. The alternatives who get the

highest points in total are chosen by the Borda Count Rule. Now, to see why

the Borda Count Rule fails to satisfy monotonicity, consider the following

example:

Example 1 Let N={1,2} and A={a,b,c,d} and let the preference profile R

be as follows;

• aR1bR1cR1d;

• dR2cR2aR2b;

4The Walrasian Rule is not monotonic in general but it is monotonic on a domain of

preferences such that all competitive equilibria occur in the interior of the feasible set, see

Hurwicz and E. Maskin (1995) for more detail.
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Here, a gets 6 points and it is the only alternative chosen by FBC. Now,

consider the following preference profile R′ defined as follows;

• aR1cR1bR1d;

• cR2dR2aR2b;

Note that, aRib implies aR′
ib but now c is the only alternative chosen by FBC.

This is a violation to monotonicity.

One may have doubts for the monotonicity condition, but as the theorem

we will present after defining Nash implementability suggests, for a social

choice rule to be Nash Implementable monotonicity is inescapable.

Definition 13 A social choice rule F : R � A is implementable in Nash

Equilibrium if there exists a mechanism µ = (S, g) such that:

1. For every R ∈ R and for every a ∈ F (R) there exists s∗ ∈ S such that

s∗ is a Nash equilibrium of µ at R and g(s∗) = a.

2. For every R ∈ R and for every b /∈ F (R), there does not exist s∗ ∈ S

such that s∗ is a Nash equilibrium of µ at R and g(s∗) = b.

Requirement (1) in the definition of Nash implementability of a social

choice rule F means that, there is a Nash equilibrium of µ corresponding to

each F -optimal alternative. On the other hand requirement (2) means, every

Nash equilibrium of µ is F -optimal.5. Together they imply that if F is Nash

implementable by a mechanism µ then Nash equilibria of µ and F -optimal

alternatives coincide.
5This is the contrapositive of what is stated in requirement (2) in the definition of Nash

implementability.
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Theorem 1 If a social choice rule F : R � A is implementable in Nash

Equilibrium then it is monotonic.

Proof. The proof here is a modified version of the proof in Maskin (1999)

Let F : R � A be a Nash implementable social choice rule. Take R,R′ ∈ R

such that a ∈ F (R) and assume aRib implies aR′
ib for all i inN and for all

b ∈ A

Since F is implementable via Nash Equilibrium, there exists a mechanism

µ = (S, g) such that g : S → A where there exists s ∈ S with g(s) = a and

g(s)Rig(si, s−i) for all s′i ∈ Si for all i ∈ N .

By assumption, this implies g(s)R′
ig(si, s−i) for all s′i ∈ Si for all i ∈ N

which means s is a Nash Equilibrium with respect to R′ and hence g(s) ∈

F (R′) i.e a ∈ F (R′). Therefore F is monotonic.

Monotonicity in terms of Nash implementability can be interpreted in two

ways. The first is: if an alternative is to be implemented at one profile but not

another, then it must have fallen in someone’s rankings in order to break the

Nash equilibrium via some deviation. Whereas the second interpretation is:

if an alternative is implemented at one profile and rises in each individual’s

rankings at another preference profile, then the strategy profile leading to

the alternative which forms a Nash equilibrium at the first profile must still

be a Nash equilibrium profile at the second profile. These conditions are

equivalent since they are the contra-positive of each other. Both of these

interpretations are important. The first implies that there must exist some

preference reversal if an equilibrium at one profile is broken at another. The

second emphasizes that if the ranking of an equilibrium alternative improves

for each agent then it must remain an equilibrium outcome, which is often
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used for checking if monotonicity is satisfied.

We continue with the sufficiency conditions for Nash implementation; we

restrict ourselves to the case, where there are at least three agents6.

The example below which is due to Maskin (1985) indicates that mono-

tonicity itself is not sufficient for a social choice rule to be Nash imple-

mentable.

Example 2 A monotonic social choice rule which is not Nash im-

plementable:

Let n = 3, A = {a, b, c}, R = PA × PA × PA. Consider the social choice

rule F : R � A such that, for any R ∈ R and x, y ∈ A the following holds:

x ∈ F (R) if and only if

x is Pareto optimal,

if x ∈ a, b and xP1y for all y 6= x;

if x = c then there exists y ∈ A such that xP1y.

It is clear that F is monotonic. Assume, F is Nash implementable by a

mechanism µ = (S, g). Now consider the following profiles P, P ′, P ′′ ∈ R

such that;

• bP1cP1a; cP2aP2b; cP3aP3b

F (P ) = {b, c}

• aP ′
1bP

′
1c; cP ′

2bP
′
2a; cP ′

3aP ′
3b

F (P ′) = {a}

• bP ′′
1 aP ′′

1 c; aP ′′
2 bP ′′

2 c; aP ′′
3 bP ′′

3 c

F (P ′′) = {b}
6We will give a short discussion for the case of two agents later.
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Since µ Nash implements F , there exists s ∈ S such that s is a Nash

equilibrium under P and g(s) = c. Because bP1c, there does not exist s′1 ∈ S1

such that g(s′1, s−1) = b. Moreover, there does not exist s′1 ∈ S such that

g(s′1, s−1) = a because if exists, then (s′1, s−1) would be a Nash equilibrium

under P ′′ with g(s′1, s−1) = a contradicting F (P ′′) = b, but this implies s is a

Nash equilibrium under P ′ with g(s) = c contradicting F (P ′) = a. Therefore,

F is not Nash implementable.

As the above example shows, monotonicity is not sufficient for a social

choice rule to be Nash implementable. Thus we need additional conditions.

Below we will define a new condition called “no veto power”, and then, we

will prove that monotonicity together with no veto power is sufficient for

a social choice rule to be Nash implemented when there are at least three

agents in the society.

Definition 14 A social choice rule is said to satisfy the no veto power

(NVP) property if there exists a player j ∈ N such that for all the other

players i 6= j, and for all b ∈ A, aRib implies a ∈ F (R).

No veto power is a near unanimity condition as mentioned before; it

basically says that if all but one agent rank an alternative as first (i.e. as

one of their best alternatives), then that alternative must be optimal for the

society; hence it must be chosen by the social choice rule.

Now, we present the sufficiency theorem for Nash implementability when

there are at least three agents in the society.

Theorem 2 Let n ≥ 3, if a social choice rule F : R � A is monotonic and

satisfies no veto power then F is Nash implementable.
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Proof. 7 The proof here is a modified version of Repullo (1987) and

will be used as a blue print for the sufficiency proof in Chapter 4. We will

construct a game form which implements F in Nash Equilibrium8. For each

player i ∈ N define the strategy space

Si = R× A× N

That is, each agent i ∈ N announces a triple consisting of a preference profile

Ri ∈ R for the society (not necessarily the true one), an alternative ai ∈ A

and a natural number m ∈ N (the numbers are for breaking the ties). Define

the outcome function g : S → A as follows:

(i) If si = (R, a, m) for all i ∈ N and a ∈ F (R), then g(s) = a.

That is if players are unanimous in their strategy, and their proposed

alternative is F -optimal with respect to the proposed preference profile

R, the outcome is a.

(ii) If there exists a player j ∈ N such that for all the other players i 6= j

si = (R, a, m) and sj = (Rj, aj, mj) and a ∈ F (R) then g(s) = aj if

aj ∈ L(a, Ri), and g(s) = a otherwise.

In other words, if all the players but one play the same strategy, and

their proposed alternative a is F -optimal with respect to their proposed

7This theorem has been proved by Williams (1986) with stronger assumptions than in

Maskin (1999), also Repullo (1987), Saijo (1988) and McKelvey (1989) have proved this

sufficiency theorem for Nash implementability.
8Here, we construct a mechanism whose all pure strategy Nash equilibria satisfy (1)

and (2) in the definition of Nash implementation, but the construction can be extended

to handle mixed strategies. See Maskin (1999) for details.
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profile R, the odd-man-out gets his proposed alternative only if it is in

the lower contour set of a under the preference ordering that the other

players propose for him; otherwise outcome is a.

(iii) If neither (i) nor (ii) applies, then g(s) = ak where k = max{j|j ∈

argmaxi∈N mi}.

That is, when neither (i) nor (ii) applies, the outcome is the alterna-

tive proposed by the player with the highest index among those whose

proposed number is maximal.

It remains to show that the mechanism defined above implements any

F , which satisfies monotonicity and no veto power, in Nash equilibrium. To

make the proof more understandable, we divide it into claims.

Claim 1 For all R ∈ R and all a ∈ A, if a ∈ F (R), for any m ∈ N

s = (s1, ..., sn) such that si = (R, a, m) for all i ∈ N , constitutes a Nash

equilibrium with respect to R. i.e for all i ∈ N , (g(s))Ri(g(s′i, s−i)), for all

s′i ∈ Si.

Proof. To understand why, consider a unilateral deviation of agent j.

Then (ii) applies. Thus, this will lead to either no change in outcome or it

will change the outcome to aj. In the former, g(s) = a and the claim trivially

holds. The latter case is possible only if aj ∈ L(a, Ri), which is worse for

agent j. Therefore, player j does not have any incetive to deviate.i.e for

all i ∈ N , (g(s))Ri(g(s′i, s−i)), for all s′i ∈ Si holds and hence, s is a Nash

equilibrium with respect to R.
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With this claim, we established the requirement (1) –that there is a Nash

equilibrium of µ corresponding to each F optimal alternative– of Nash imple-

mentability. To establish the requirement (2) –that every Nash equilibrium

of µ is F optimal–we propose the second claim below.

Claim 2 Let s ∈ S be a Nash equilibrium of µ with respect to real preference

profile R∗ of the society. Then g(s) ∈ F (R∗).

Proof. We will divide the proof into subcases:

Case 1: Assume si 6= sj for some i, j ∈ N then either (ii) or (iii)

applies. However, in both cases, it is possible for n− 1 agents to obtain any

alternative in A by a unilateral deviation. (To do so, they should just increase

their proposed natural number to a higher number than the current proposed

highest number.) But since s is a Nash Equilibrium then, g(s)R∗g(s′i, s−i)

for all i ∈ N , and for all s′i ∈ Si. Hence, it must be that there is j ∈ N such

that for all j 6= i g(s)R∗b for all b ∈ A. Hence, by no veto power property

g(s) ∈ F (R∗).

Case 2:Assume si = (R, a, m) for all i ∈ N . Now we have additional

subcases:

Subcase 1: If a /∈ F (R) then (iii) applies and as above g(s) ∈ F (R∗).

Subcase 2: If a ∈ F (R) then g(s) = a by (i). Now we need to show

that a ∈ F (R∗). In this case, we have for all i ∈ N and for all b ∈ A

with aRib implies aR∗
i b. To see why, assume it does not hold, i.e for some

i ∈ N and some b ∈ A aRib holds but aR∗
i b) does not hold. Then, by

(ii) agent i can change the outcome to b by just changing his strategy to

s′i = (R∗, b, ri). But this means g(s′i, s−i)R
∗g(s) This is a contradiction of
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s being Nash equilibrium with respect to R∗. Thus, aRib implies aR∗
i b and

since F is monotonic; this implies a ∈ F (R∗) i.e g(s) ∈ F (R∗).

Hence, we established requirement (2) in the definition of Nash imple-

mentability as well. By Claim 1 and Claim 2 we conclude that any monotonic

social choice rule which satisfy no veto power condition, is implementable in

Nash equilibrium when there are at least three agents in the society.

In the proof above, a very abstract mechanism is used. Nevertheless, its

complexity derives from its generality. One can think this theorem as a kind

of existence theorem for the implementation in Nash equilibrium. Practical

mechanisms to be used in real world examples are another subject to be

considered after these kind of characterization theorems.

A point we should mention before ending this chapter is the case where

there are 2 agents in the society. This may seem awkward to the reader, a

society with two agents only, but it is of obvious importance since there are

many bilateral interactions that one would want the theory to explain. It is

interesting that there are non-trivial differences between the case of n = 2

and n 5 3. Note that the no veto power condition is vague in case of n = 2. A

sufficient condition called “non-empty lower intersection condition” appears

in Dutta and Sen (1991b).Interested reader can find the characterization for

the case n = 2 in Dutta and Sen (1991b) and Moore and Repullo (1990).



Chapter 4

Continuity of Maskin’s

Implementation Result

4.1 Introduction

In this chapter, we will consider a continuity measure on implementability of

social choice rules on a restricted domain of preferences. We restrict ourselves

to a domain where each preference ordering can be represented by a cardi-

nal utility function. The continuity measure we will consider, will employ

those cardinal utilities in order to approximate payoffs for both equilibrium

considerations and monotonicity and no veto power properties.

4.2 The Domain

For a special class of preferences, it is possible to use utility functions to

denote the preference orderings of agents in the society, similarly the prefer-

23
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ence profile of the society can be identified by the use of the utility functions

for those special class of preferences. (Recall: Debreu’s representation theo-

rem1.)

We restrict ourselves to the domain of preferences where preference or-

derings of the agents are representable by cardinal utility functions on the

non-empty compact alternative set A. That is, we consider a society N =

{1, ...., n} where every individual i ∈ N has a cardinal utility function ui :

A → R representing his/her preference orderings on the compact alternative

set A. Hence the preference profile of the society is represented by a vec-

tor of functions u = {u1, ..., un}. An example would be preferences that are

represented by von-Neumann Morgenstern utility functions.

Let UA represent the set of all cardinal utility functions on A. For every

agent i ∈ N , let Ui ⊆ UA be the set of all possible utility functions denoting

agent i’s possible preferences. Then, the set of all possible utility profiles of

the society is represented by U = ×i∈NUi.

Now, we give the definition of a social choice rule on the domain we

restrict our attention. Note that, this definition presents nothing new, it is

just the restriction of the canonical definition to our domain.

Definition 15 A social choice rule F : U � A is a correspondence, which

selects a feasible subset F (u) ⊆ A for all possible utility profile u ∈ U of the

1Debreu’s representation theorem basically says that, any continuous complete preorder

on an arbitrary set is representable by a continuous utility function, in fact it is possible

to narrow down the assumptions of this theorem, for any arbitrary set and a complete

preorder R on this set, there exists a utility function representing R if and only if there

exist a subset of this arbitrary set which is countable and R-order-dense. See Debreu

(1959), Kreps (1988), and Fishburn (1970) for more details.
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society.

4.3 The continuity measure

4.3.1 Equilibrium Concept

We start with the equilibrium concept, for which we will characterize the

implementable social choice rules on our domain. Let us first define what

epsilon-equilibrium of a mechanism µ means:

Definition 16 Let µ = (S, g) be a normal form mechanism. A strategy

profile s∗ ∈ ×i∈NSi is called an epsilon-equilibrium of µ at u, if, given

any ε ∈ R, for all i ∈ N , and for all si ∈ Si

ui(g(s∗)) = ui(g(si, s
∗
−i))− ε.

Note that, ε in the definition of epsilon-equilibrium is allowed to be a

negative real number. The notion of epsilon-equilibrium is aimed to general-

ize the notion of Nash equilibrium where during game play an agent requires

a payoff at least as much as ε to deviate from an outcome. That is exactly

why we restrict attention to cardinal utility functions because otherwise the

particular value of ε does not have any meaning.

According to the particular values of ε ∈ R we can interpret the epsilon-

equilibrium in three phases: If ε > 0 epsilon-equilibrium is equivalent to

the epsilon-Nash equilibrium introduced by Radner (1980), it coincides with

Nash equilibrium when ε = 0 and when ε < 0 it prescribes another equilib-

rium concept, which we will refer to it as epsilon-strict Nash equilibrium.
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Another important point is that; these three phases of ε, define a subset-

superset relation between epsilon-equilibrium and the Nash equilibrium; that

is, when ε > 0 epsilon-equilibrium is a superset of Nash equilibrium, when

ε = 0 epsilon-equilibrium is exactly equivalent to Nash equilibrium, and

when ε < 0 epsilon-equilibrium is a refinement, that is a subset of Nash

equilibrium2.

We continue with the definition of implementability of a social choice rule

in epsilon-equilibrium.

Definition 17 (ε-implementability) Let ε ∈ R. A social choice rule F :

U � A is ε-implementable if there exists a mechanism µ = (S, g) such

that the following conditions hold:

1. For all u ∈ U , and for all a ∈ F (u), there exists s ∈ S such that

g(s) = a and for all i ∈ N

ui(g(s)) > ui(g(s′i, s−i))− ε, for all s′i ∈ Si,

and;

2. For any s ∈ S which satisfies, for all i ∈ N

ui(g(s)) > ui(g(s′i, s−i))− ε, for all s′i ∈ Si,

g(s) must be in F (u).

Requirement (1) in the definition of epsilon-Nash implementability of a

social choice rule F says that, there is an epsilon-equilibrium of µ correspond-

ing to each F -optimal alternative. On the other hand requirement (2) says,

2Note that; when ε < 0, the set of epsilon equilibria of a game can be empty. An

example is zero-sum games.
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every epsilon-equilibrium of µ is F -optimal. Together, they imply that if F is

epsilon-implementable by a mechanism µ then the epsilon-equilibria of µ and

F -optimal alternatives coincide as in the case of the Nash implementation.3

When the utility profile and the game form to be used are fixed, the size

of ε may be useful to compare two social choice rules in terms of imple-

mentability. Obviously, 0-Nash Implementability coincides with Nash imple-

mentability. In the next section below, we continue with the necessity and

sufficiency conditions for epsilon-implementability.

4.3.2 Epsilon-Monotonicity

We start with the definition of epsilon-monotonicity, which will be turned

out to be a necessary condition for epsilon-implementability.

Definition 18 (ε-Monotonicity) Let ε ∈ R. A social choice rule F : U �

A is ε-monotonic if for all u, u′ ∈ U , and for all a ∈ F (u), the following

is true:

for all b ∈ A such that ui(a) ≥ ui(b)− ε implies u′i(a) ≥ u′i(b)− ε

implies a ∈ F (u′).

The notion of ε-monotonicity is aimed to generalize Maskin monotonicity,

with which it coincides when ε is set to equal 0. In words it tells us that if

a is chosen when the preference profile is given by u, then a must also be

chosen with the preference profile altered to u′ such that under u′ none of

3Note that, we restrict ourselves to pure strategies only.
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the alternatives that have a utility figure lower than ui(a)+ε receive a utility

figure higher than u′i(a) + ε.

Indeed, for each ε > 0, the notion of ε-monotonicity is stronger than

monotonicity. To observe this, note that given a utility profile u ∈ U , if

ε > 0 is chosen sufficiently high, e.g. ε > maxa,b∈A,i∈N |ui(a) − ui(b)|, only

constant social choice rules satisfy ε-monotonicity condition. On the other

hand, for each ε < 0, the notion of ε-monotonicity is also stronger than

monotonicity condition since, if ε < 0 is chosen sufficiently small, e.g. ε <

−maxa,b∈A,i∈N |ui(a) − ui(b)|, again only constant social choice rules satisfy

ε-monotonicity condition.

Now, we present the necessity theorem for epsilon-implementation which

states that epsilon-Monotonicity is inescapable for epsilon-implementability.

Theorem 3 Let ε ∈ R. If a social choice rule F : U � A is ε-implementable,

then it is ε-monotonic.

Proof. Let F : U � A be ε-implementable by the mechanism µ = (S, g).

Consider two utility profiles u, u′ ∈ U with for all b ∈ A such that ui(a) ≥

ui(b)− ε implies u′i(a) ≥ u′i(b)− ε for all i ∈ N . Let a ∈ F (u) What we need

to show is a ∈ F (u′).

Since F is implementable by µ = (S, g) in epsilon-equilibrium, there exists

s ∈ S such that g(s) = a where ui(g(s)) ≥ ui(g(s′i, s−i))−ε, for all i ∈ N , for

all s′i ∈ Si. Then by assumption u′i(g(s)) ≥ u′i(g(s′i, s−i)) − ε for all s′i ∈ Si,

for all i ∈ N but this means s satisfies the condition of (2) in the definition

of ε-implementability, then by (2) g(s) ∈ F (u′) i.e. a ∈ F (u′) therefore F is

ε-monotonic.
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4.3.3 Epsilon-No Veto Power

We continue with the definition of another condition called epsilon-no-veto

power which is a variant of no veto power condition and which will be turned

out to be a sufficient condition for epsilon-implementability when combined

with epsilon-monotonicity.

Definition 19 (ε-NVP) Let ε ∈ R. A social choice rule is said to satisfy

ε-no veto power condition if there exists a player j ∈ N such that for all

the other players i 6= j, and for all b ∈ A, ui(a) ≥ ui(b)−ε implies a ∈ F (u).

The ε-no veto power condition is a generalization of the standard no veto

power condition to which this new notion equals when ε = 0. In words, ε-no

veto power condition can be interpreted in two different ways according to

the particular value of ε: When ε > 0, it implies that, if all the players but

one were to think that an alternative provides a return figure that is not less

than ε from the utility level of their highest ranked alternative, then it must

be chosen. On the other hand, when ε < 0 it basically says that if there

exists an alternative which provides a return figure which is more than | ε |

from the utility level of all the other alternatives for all but one player, then

it must be chosen.

When ε > 0 is sufficiently high, e.g. ε > maxa,b∈A,i∈N |ui(a) − ui(b)|, we

point out that no social choice rule but only the one which chooses A, i.e

identity correspondence satisfy ε-no veto power property. When ε < 0 ε-no

veto power property is weaker than the no veto power property. To see this

consider ε̄ < −maxa,b∈A,i∈N |ui(a) − ui(b)|. Then, the restriction put in the

definition of ε-no veto power will not bind, hence, any social choice rule will
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be ε̄-NVP.

We, now present the sufficiency theorem for epsilon-implementation which

basically says that epsilon-monotonicity coupled with epsilon-no veto power

turns out to be sufficient for epsilon-Nash implementation where there are

at least three agents in the society.

Theorem 4 (#N ≥ 3)Let ε ∈ R. If a social choice rule F : U � A satisfies

ε-monotonicity and ε-no veto power, then it is ε-implementable.

Proof. The proof is by construction, we will construct a mechanism

µ = (S, g) which implements F in epsilon-Nash equilibrium. Consider the

mechanism µ = (S, g) such that g : S → A is the outcome function and

the strategy spaces are defined as Si = (U,A, (0, 1)) for all i ∈ N . That is,

every agent proposes a utility profile for the society, an alternative and a real

number in the open interval (0,1). The outcome function g is given by the

following:

(i) If si = (u, a, r) for all i ∈ N and a ∈ F (u), then g(s) = a.

(ii) If there exists a player j ∈ N such that for all the other players i 6= j

si = (u, a, r) and sj = (uj, aj, rj) and a ∈ F (u) then g(s) = aj if

uj(a) ≥ uj(a
j)− ε, and g(s) = a otherwise.

(iii) If neither (i) nor (ii) applies, then g(s) = ak where k ∈ argmaxi(r
i).

Now the rest of the proof is to show that the mechanism µ = (S, g) defined

above ε-implements F .

Claim 3 For all u ∈ U and a ∈ A, si = (u, a, 1/2) for all i ∈ N , is an

ε-equilibrium, i.e for all i ∈ N , ui(g(s)) ≥ ui(g(s′i, s−i))− ε, for all s′i ∈ Si.
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Proof. To understand why consider a unilateral deviation of agent j.

Then (ii) applies. So, this will lead to either no changes in outcome or

it will change the outcome to aj. In the former, g(s) = a and the claim

trivially holds. The latter case is possible only if uj(a) > uj(a
j) − ε i.e

uj(g(s)) > uj(g(s′j, s−j))−ε. Therefore, player j does not have any deviation

opportunities. Hence, (1) in the definition of ε-implementability holds.

Claim 4 Consider any ε-equilibrium s ∈ S with respect to the real utility

profile u∗ of the society. Then g(s) ∈ F (u∗).

Proof. We will work with subcases:

Case 1:si 6= sj for some i, j ∈ N . Then either (ii) or (iii) applies. But

in both cases, it is possible for n− 1 agents to get any alternative in A by a

unilateral deviation. (To do so, they should just increase their proposed real

number to a higher number than the current proposed highest number.) But

since s is an ε-equilibrium then, u∗i (g(s)) ≥ u∗i (g(s′i, s−i)) − ε, for all i ∈ N

for all s′i ∈ Si. Hence, it must be that there exists j ∈ N such that for all

j 6= i u∗i (g(s)) ≥ u∗i (b)− ε for all b ∈ A. Hence, by ε-no veto power condition

g(s) ∈ F (u∗).

Case 2: si = (u, a, r) for all i ∈ N . Now we have additional subcases:

Subcase 1: a /∈ F (u). Then (iii) applies and as above g(s) ∈ F (u′).

Subcase 2: a ∈ F (u). Then g(s) = a by (i). Now we need to show that

a ∈ F (u∗). In this case we have for all i ∈ N and for all b ∈ A with ui(a) ≥

ui(b)−ε implies u∗i (a) ≥ u∗i (b)−ε. To see why assume not, i.e for some i ∈ N

and some b ∈ A ui(a) ≥ ui(b)− ε holds but u∗i (a) < u∗i (b)− ε. Then, agent i

can change the outcome to b by just changing his strategy to s′i = (ui, b, ri)
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by (ii). But then u∗i (g(s)) < u∗i (g(s′i), s−i) − ε This is a contradiction of s

being an ε-equilibrium. Thus, by ε-monotonicity, a ∈ F (u∗) i.e g(s) ∈ F (u′).

Hence the requirement (2) in the definition of epsilon-implementability is

satisfied.

By the two claims above we established both requirement (1) and (2) in

the definition of epsilon-implementability. Therefore, every social choice rule

which satisfies epsilon-monotonicity and epsilon-no veto power conditions is

implementable in epsilon-equilibrium.



Chapter 5

Conclusion

In this thesis, we briefly surveyed Nash implementation and after concen-

trating on a restricted domain of cardinal preferences we defined a continuity

measure by using an equilibrium concept, which we call epsilon-equilibrium.

Although, we characterized the implementable social choice rules in epsilon-

equilibrium, we have not yet discovered a relevant example on our domain

to examine the regularities of our conditions.

We believe that, our characterization of epsilon-implementation may lead

us to a distance notion for social choice rules in terms of implementabil-

ity in Nash equilibrium. In turn, one may use these to construct a notion

which in some sense measures the sacrifice of a society when a non-Nash

implementable social choice rule is to be implemented.

Finally, the analysis of some of the prominent social choice rules and

some other intuitive examples of social choice rules on our domain obviously

constitute a future avenue for research.
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