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BASES AND ISOMORPHISMS IN SPACES OF ANALYTIC

FUNCTIONS

Abstract

We will discuss the construction of bases in a space of analytic functions for a

given domain and isomorphic classification of spaces of analytic functions. We will

focus on results in one dimensional case.

In one dimensional case, we consider the construction of bases in two different

ways. Using one of them, we construct interpolational bases for the space of an-

alytic functions on a compactum K and in that part, results of Leja, Walsh, and

Zahariuta are used. Then, isomorphic classification follows by the use of Potential

Theory. Using the second way, we construct a common basis for the spaces of an-

alytic functions of a regular pair “compact set – domain” by the Hilbert methods

that was proposed by Zahariuta. GKS-duality is used for both of the cases.

In multidimensional case, some results about bases and isomorphisms of spaces of

analytic functions in several variables that were proved by Zahariuta are represented

(see also Aytuna). Since a multidimensional analogue of GKS-duality does not

exist, interpolational bases cannot be constructed as in one dimensional case. But

the bases constructed by Hilbert methods proves to be applicable for studying the

isomorphism of the space of analytic functions on D to the space of analytic functions

on the unit circle of n-dimensional complex plane.

Keywords: Hilbert scales, spaces of analytic functions, Green potential, regular-

ity, GKS-duality.
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ANALİTİK FONKSİYON UZAYLARINDA İZOMORFİK

SINIFLANDIRMA VE TABAN İNŞASI

Özet

Bu tezde belirli bir bölgedeki analitik fonksiyon uzayları için taban inşası ve

izomorfik sınıflandırma tartışılacaktır. Tek boyutlu düzlem için bulunan sonuçlar

üzerinde yoğunlaşılacaktır.

Tek boyutlu durumda, taban kurulumu için iki farklı yöntem üzerinde duru-

lacaktır. Birini kullanarak, bir tıkız küme K üzerindeki analitik fonksiyon uzay-

ları için enterpolasyon yollu taban inşası yapılacaktır ve bu durumda, Leja, Walsh

ve Zahariuta’nın sonuçları kullanılmaktadır. Potansiyel Teori yardımıyla, bulu-

nan tabanları kullanarak izomorfik sınıflandırma yapılacaktır. İkinci yolu kulla-

narak, regüler bir ”tıkız küme-bölge” ikilisi üzerindeki analitik fonksiyon uzayları

için Hilbert yöntemleri kullanılarak ortak bir taban kurulacaktır. Bu metod, Zahar-

iuta tarafından bulunmuştur. GKS-düalitesi her iki yöntem için de kullanılmıştır.

Çok boyutlu durumda, çok değişkenli analitik fonksiyon uzaylarında taban inşası

ve izomorfik sınıflandırma için Zahariuta tarafından ispat edilen bazı sonuçlar sunula-

caktır. GKS-düalitesinin çok boyutlu bir analoğu olmadığı için, tek boyutlu du-

rumda olduğu gibi enterpolasyon yollu tabanlar kurulamaz. Ama, Hilbert yöntemlerini

kullanarak inşa edilen tabanlar belirli bir bölge D ve n boyutlu kompleks düzlemdeki

birim çember üzerinde tanımlı analitik fonksiyon uzaylarının arasındaki izomorfaları

çalışmak için kullanılabilir.

Anahtar Kelimeler: Hilbert skalaları, analitik fonksiyon uzayları, Green potan-

siyeli, regülerlik, GKS-düalitesi.
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CHAPTER 1

INTRODUCTION

Spaces of analytic functions were studied by many mathematicians (e.g., Poincaré,

Pincerle, Fantappie, Uryson, Whittaker, Newns, Markushewich, Haplanov, Mar-

tineau, Aizenberg, Mityagin, Khavin, Arsove, Boas, Ronkin, Köthe, Grothendieck,

Zahariuta, Aytuna et. al.). We will introduce spaces of analytic functions in Chapter

4.

In this thesis, we will discuss the construction of bases in a space of analytic

functions for a given domain and isomorphic classification of spaces of analytic

functions. We will focus on the one dimensional case.

Many problems of Approximation and Interpolation Theory of analytic functions

of one variable require notions and methods of Potential Theory. Therefore, we will

use Potential Theory for the results on existence of bases and isomorphisms of spaces

of analytic functions. Sufficient information about Potential Theory can be found

in Chapter 3. The following result will be discussed in Chapter 5.

Proposition 1 Let K be a compactum in C with a connected complement. If K is

regular or polar, there exists a sequence of knots {ζ1, ζ2, · · · , ζν , · · · } (there may be

repetitions) such that the system of Newton interpolation polynomials

pk (z) =
k∏

ν=1

(z − ζν) , k = 1, 2, · · · , p0 (z) ≡ 1,

forms a basis in the space A (K) .

The case where K is a regular compactum was proved by J. L. Walsh [32] and

F. Leja [17], and the case where K is a polar compactum was proved by V. P.
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Zahariuta [34].

After construction of the bases also the following theorems which were proved

by Zahariuta [34] will be discussed in Chapter 5.

Theorem 1 Let K be a compactum in Ĉ. For the spaces A(K) and Ā1 to be

isomorphic, it is necessary and sufficient that (a) the compactum K be regular, and

(b) the complement K∗ = Ĉ \K consist no more than a finite number of connected

components.

Theorem 2 Let K be a compactum in Ĉ. For the spaces A(K) and Ā0 to be

isomorphic, it is necessary and sufficient that C(K) = 0.

Theorem 3 Let K be a compactum in Ĉ. For the spaces A(K) and Ā1 × Ā0 to

be isomorphic, it is necessary and sufficient that the compactum K be decomposed

into two disjoint non-empty compacta K(1) and K(2), where K(1) is a regular com-

pactum whose complement consists of a finite number of connected components and

C(K(2)) = 0.

We will also discuss another method for construction of bases that is based on

Hilbert methods which was suggested by Zahariuta [35]. Using that method, a

common basis for a regular pair ”compact set-domain” (K, D) will be constructed.

Information about Hilbert scales is represented in Chapter 2. The following result

will be discussed in Chapter 5.

Theorem 4 Let K ⊂ D be a regular pair ”compact set-domain”. Let H0, H1 be

such that the dense continuous imbeddings hold:

A (K) ↪→ H0 ↪→ AC (K) ,

A (D∗) ↪→ H ′
1 ↪→ AC (D∗) ,

where H ′
1 is a GKS-realization of the dual space H∗

1 . Then the common orthogonal

basis {ek (z)} for H0, H1, normalized in H0 and ordered by non-increasing of its

norms in H1 :

‖ek‖H0
= 1, µk = µk (H0, H1) := ‖ek‖H1

↗∞,
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is also a common basis in all spaces A (D) , A (Dα) , A (Kδ) , and A (K) where Dα, Kδ

are the sublevel domains as defined in Lemma 6.

Notice that in a very particular case (for a 1-connected domain D and continuum

K) a common basis was constructed by Erokhin [9] by means of refined technique

of conformal mappings and by Walsh and Russel [33] in the form of interpolational

rational system of functions. Both of the methods are essentially one dimensional

and cannot be applied for the case of several variables.

For multidimensional case, we will represent some results about bases and iso-

morphisms of spaces of analytic functions that were proved by Zahariuta [37], [38]

(see also [3]) without detailed proofs. Interpolational bases cannot be constructed

as in one dimensional case since there does not exist a multidimensional analogue of

GKS-duality. But the bases constructed by Hilbert methods proves to be applicable,

as confirmed by Zahariuta [37], [38]. A sketch of the following theorem will be given

in Chapter 6.

Theorem 5 ( [37], [38]) Let (K, D) be a pluriregular pair ”compact set-Stein mani-

fold”. Then there exists a common basis {xi (z)} in the spaces A (D), A (K), A (Kα),

A (Dα), 0 < α < 1, satisfying the asymptotic estimate

lim
ζ→z

lim
i→∞

ln
∣∣xi(z)

∣∣
ai

= ω (D, K, z) , z ∈ D \K,

where

Kα = {z ∈ D : ω (D,K, z) ≤ α} , Dα = {z ∈ D : ω (D,K, z) < α} , 0 < α < 1,

and {ai} is a certain non-decreasing sequence of positive numbers such that with

n = dim D,

ai ³ i
1
n , i →∞.

Then, using the extendible bases that are constructed, the following theorem

was proved by Zahariuta. We will again give a sketch of the proof.
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Theorem 6 ( [37], [38]) Let Ω be a Stein manifold on dimension n. For the iso-

morphism

A (Ω) ' A (Un)

it is necessary and sufficient that Ω is pluriregular and consists of at most finite

number of connected components, where Un is the unit circle in Cn.

The sufficiency in Theorem 6 was preceded by many results on sufficient condi-

tion for isomorphism A (Ω) ' A (Un), such as: for n-circular (Reinhardt) domains

Aizenberg-Mityagin [2], Bezdudniy [5], [6], Mityagin [18], Okun [20], Rolewicz [22],

for (p1, p2, · · · , pn)-circular domains Aizenberg [1], for convex domains Zahariuta

[44], and for strongly pseudoconvex domains Henkin-Mityagin [13].
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CHAPTER 2

SOME TOPICS OF FUNCTIONAL ANALYSIS

In this chapter, some preliminary concepts about functional analysis will be men-

tioned. In Section 2.1, locally convex spaces will be introduced [19]. This section is

also where we define inductive and projective limit topologies and give definitions

of some of the spaces that will be used, like nuclear spaces.

In Section 2.2, Hilbert scales will be introduced ( [16], [18]) and a theorem that

constructs a common basis for a pair of Hilbert spaces is discussed [35].

2.1 Locally Convex Spaces

Let X be a non-empty set. We will define a topology on X as a system T of

subsets of X which has the properties:

1. The union of arbitrarily many open sets is open; ∅ is open.

2. The intersection of finitely many open sets is open; X is open.

The elements of T are called open sets. A topological space (X, T ) is a set X

with a topology T .

A topological space X is called Hausdorff space if for each pair x, y ∈ X with

x 6= y there exists disjoint open sets Ux and Uy with x ∈ Ux and y ∈ Uy. Later on,

we will always assume the topological spaces to be Hausdorff.

By a topological vector space, we will mean a K-vector space E with a topology

T for which addition + : E × E → E and a scalar multiplication · : K × E → E

are continuous in T . The continuity of the addition means that for each elements

5



x, y ∈ E and each neighborhood Uz of z = x + y there exist neighborhoods Ux of

x and Uy of y such that Ux + Uy ⊂ Uz; where A + B := {a + b : a ∈ A, b ∈ B} for

any two sets A and B. The continuity of the scalar multiplication means that for

each λ0 ∈ K, x0 ∈ E and every neighborhood Uλ0x0 of λ0x0 there exist ε > 0 and a

neighborhood Ux0 such that

{λv : |λ− λ0| ≤ ε, v ∈ Ux0} ⊂ Uλ0x0 .

A topology T on a K-vector space E is called a vector space topology, if (E, T )

is a topological vector space.

Proposition 2 The following are direct consequences of the definition of topological

vector space E :

1. For each y ∈ E, the translation x 7→ x + y is continuous and therefore a

homeomorphism of E. In particular the neighborhoods of each x ∈ E are of

the form x + V := {x + v : v ∈ V } , where V is a zero neighborhood.

2. For each zero neighborhood U in E there exists a zero neighborhood V in E

with V + V ⊂ U. In particular E has a zero neighborhood basis consisting of

closed zero neighborhoods.

3. For each zero neighborhood U in E there exists zero neighborhood W ⊂ U with

W = {λw : |λ| ≤ 1, w ∈ W} .

4. For every zero neighborhood U in E we have E = ∪n∈NnU.

Proof.

1. Since addition is continuous, for each fixed y ∈ E and each pair (x, y) ∈ E×E,

(x, y) 7−→ x + y

and its inverse operator

(x, y) 7−→ x− y

6



are continuous. Hence, for each y ∈ E, the translation is a homeomorphism of

E. Now, let U be a neighborhood of any x ∈ E. Then, for any x0 ∈ U, there

exists v0 such that x0 = x+v0, where v0 ∈ V for some open zero neighborhood

V. Since translations are continuous, we can therefore write

U := x + V : {x + v : v ∈ V } ,

where V is a zero neighborhood.

2. We have 0 + 0 = 0 and we know that the addition is continuous. Hence, by

definition, for each neighborhood U of zero in E, there exists a neighborhood

V of zero in E such that V + V ⊂ U. Let U, V be neighborhoods of zero in

E. Then,

Ū ⊂ U + V = {u + V : u ∈ U} = ∪u∈U (u + V )

since any u ∈ Ū is by definition in some u + V for some zero neighborhood

V. So, E has a zero neighborhood basis consisting of closed zero neighborhoods.

3. This follows directly from the continuity of the multiplication with λ0 = 0,

x0 = 0 and W = {λv : |λ| ≤ ε, v ∈ V } .

4. Let U be a zero neighborhood in E. Then, since for each x ∈ E,
(

x
n

)
converges

to 0, x ∈ nU for some n ∈ N. Hence, E = ∪n∈NnU.

Definition 1 A locally convex space, E, is a topological vector space E in which

each point has a neighborhood basis of convex sets.

A locally convex topology, on a K-vector space E, is a topology T on E for which

(E, T ) is a locally convex space.

Proposition 3 For a topological vector space E the following are equivalent:

1. E is a locally convex space.

2. E has a zero neighborhood basis of convex sets.

7



3. E has a zero neighborhood basis of absolutely convex sets.

Let E be a locally convex space. A collection U of zero neighborhoods in E is

called a fundamental system of zero neighborhoods, if for every zero neighborhood

U there exists a V ∈ U and an ε > 0 with εV ⊂ U.

A family (‖·‖α)α∈A of continuous semi-norms on E is called a fundamental system

of semi-norms, if the sets

Uα := {x ∈ E : ‖x‖α < 1} , α ∈ A,

form a fundamental system of zero neighborhoods.

Proposition 4 Every locally convex space E has a fundamental system of semi-

norms. Every fundamental system of semi-norms (‖·‖α)α∈A has the following prop-

erties:

1. For every x ∈ E with x 6= 0 there exists an α ∈ A with ‖x‖α > 0.

2. For α, β ∈ A there exist γ ∈ A and C > 0 with max
(
‖·‖α , ‖·‖β

)
≤ C ‖·‖γ .

Proposition 5 Let E be a K-vector space and (‖·‖α)
α∈A

be a family of semi-norms

on E having properties 1. and 2. of Proposition 4. Then there exists a unique locally

convex topology on E for which (‖·‖α)α∈A is a fundamental system of semi-norms.

If (‖·‖α)α∈A is a fundamental system of semi-norms in the locally convex space

E, then a net (xτ )τ∈T converges to x0 ∈ E if, and only if, limτ∈T ‖xτ − x0‖ = 0,

for each α ∈ A, that is for any ε > 0, there exists τ0 ∈ T such that ‖xτ − x0‖ < ε

whenever τ > τ0.

A K-vector space E together with a family of locally convex spaces (Ei)i∈I and

linear maps πi : E → Ei, i ∈ I, is called a projective system, if for each x ∈ E,

x 6= 0, there exists an i ∈ I with πi(x) 6= 0. Consider the system of semi-norms

{
pM (x) := max

i∈M
pi (πi(x)) , x ∈ E, pi is a continuous semi-norm on Ei

}

8



where M runs through P (I) , the set of all finite subsets of I.This system is a

fundamental system of semi-norms for a locally convex topology on E, which is

called the projective topology determined by {πi : E → Ei}i∈I . We will denote it as:

E = limproji∈I (Ei, πi) .

Proposition 6 Let the locally convex space E have the projective topology of the

system (πi : E → Ei)i∈I . Let F be a locally convex space and T : F → E be a linear

map. Then, T is continuous if and only if πi ◦ T is continuous for each i ∈ I.

A K-vector space E together with a family of locally convex spaces (Ei)i∈I and

linear maps ηi : Ei → E is called an inductive system, if ∪i∈I ηi(Ei) = E. If a finest

locally convex topology for which all the maps ηi are continuous exists on E, then

it is called the inductive topology of the system (ηi : Ei → E)i∈I . We will denote it

as:

E = limindi∈I (Ei, ηi) .

Proposition 7 Let the locally convex space E have the inductive topology of the

system (ηi : Ei → E)i∈I . Let F be a locally convex space and T : E → F be a linear

map. Then, T is continuous if and only if T ◦ ηi is continuous for each i ∈ I.

We now introduce some special classes of locally convex spaces which will be

important for us.

Let E be a locally convex space. If for each absolutely convex zero neighborhood

U in E there exists a zero neighborhood V such that for each ε > 0, there exists

points x1, · · · , xn ∈ V such that

V ⊂ ∪n
j=1 (xj + εU)

then E is said to be a Schwartz space. For example, the spaces A (D) and C∞ (Ω)

are Schwartz spaces.

Definition 2 Let E be a locally convex space and let M ⊂ E. M is called a barrel if

M is absolutely convex, closed, and absorbing. E is said to be barreled if each barrel

in E is a zero neighborhood.

9



Let E be a locally convex space. If E is a barrelled space in which each bounded

set is relatively compact, then it is called a Montel space. Note that every Montel

space is reflexive. For example, the spaces A (D) and C∞ (Ω) are Montel spaces.

Definition 3 Let E and F be Banach spaces and A : E → F be a linear map. If

there exists sequences (λj)j∈N in E ′and (βj)j∈N in F such that
∑
j∈N

‖λj‖ ‖βj‖ < ∞,

so that

Ax =
∑

j∈N
λj (x) βj for all x ∈ E, (2.1)

then A is called a nuclear operator. (2.1) is said to be a nuclear representation of

A.

Let E be a locally convex space. Let p be a semi-norm on E and Np :=

{x ∈ E : p (x) = 0}. A norm is defined on the quotient space E/Np by ‖x + Np‖p :=

p (x). The space Ep :=
(
Ê/Np, ‖‖p

)
is called the local Banach space for the semi-

norm p. We have ‖ιp (x)‖p = p (x), for all x ∈ E, where ιp is the canonical map,

ιp : E → Ep, ιp (x) := x+Np. Note that if p and q are semi-norms on E and if q ≥ p,

then the identity map on E induces a continuous linear linking map ιpq : Eq → Ep

between the local Banach spaces determined by the relation ιpq ◦ ιp = ιq.

If for each continuous semi-norm p on E there exists a continuous semi-norm q

with q ≥ p, so that ιpq : Eq → Ep is nuclear, then E is called a nuclear space. For

example, the spaces A (D) and C∞ (Ω) are nuclear spaces.

2.2 Hilbert Pairs and Scales

Theorem 7 (see e.g. 1001[35]) Let H0, H1 be a pair of Hilbert spaces with a linear

dense compact imbedding H1 ↪→ H0. Then there exists a system {ek} ⊂ H1 which is

a common orthogonal basis in H1 and H0 such that

‖ek‖H0
= 1, µk = µk (H0, H1) := ‖ek‖H1

↗∞. (2.2)

Proof. Let H0, H1 be a pair of Hilbert spaces. Define the restriction operator

J : H1 → H0 as Jx ≡ x for any x ∈ H1. Then J is a linear dense compact

imbedding.

10



For any x ∈ H1, y ∈ H0 the adjoint operator J∗ : H0 → H1 is defined as

〈Jx, y〉H0
= 〈x, J∗y〉H1

.

Define A := J∗J . Then, since A∗ = (J∗J)∗ = J∗J = A, A is self-adjoint. If both x

and y are elements of H1, then since x = Jx,

〈x, y〉H0
= 〈Jx, y〉H0

= 〈Jx, Jy〉H0

= 〈x, J∗Jy〉H1
= 〈x,Ay〉H1

= 〈Ax, y〉H1
,

where the last equality follows since A is self-adjoint.

Now, A is compact since it is the superposition of a continuous and a compact

operator. Also, since 〈x, y〉H0
= 〈Ax, y〉H1

, for any x ∈ H1, 〈Ax, x〉H1
≥ 0 as

〈Ax, x〉H1
= 0 if and only if x = 0.

So, A is a compact, self-adjoint, strictly positively defined operator. Hence there

exists a complete orthonormalized sequence of eigenvectors {gk} :

Agk = λkgk, k ∈ N, λk > 0, λk → 0.

Take λk ↓ 0. Then,

〈gk, gj〉H0
= 〈Agk, gj〉H1

= 〈λkgk, gj〉 = λkδkj.

So, ‖gk‖H0
=
√

λk, ‖gk‖H1
= 1 and {gk} is a common orthogonal basis in H1

and H0. To renormalize this system, let ek := 1
λk

gk. Then, {ek} is also a common

orthogonal basis in H1 and H0 such that

‖ek‖H0
= 1, ‖ek‖H1

= µk = µk (H0, H1) ↗∞ as k →∞ (2.3)

where µk = 1√
λk

.

Given a couple of Hilbert spaces (H0, H1) with a dense linear continuous imbed-

ding H1 ↪→ H0 we denote by Hα = H1−α
0 Hα

1 , α ∈ (−∞,∞) , the Hilbert scale

spanned on (H0, H1) ( [16], [18]). If the imbedding is compact (which is sufficient

for all our considerations) this scale can be described especially transparently, since

in this case there is a common orthogonal basis {ek} for H0 and H1, normalized in

11



H0 and arranged by non-decreasing of norms in the space H1 as in (2.3). Using this

basis the scale is determined by the norms

‖x‖Hα
:=

(∞
k=1 |ξk|2 µ2α

k

)1/2
, x =∞

k=1 ξk ek (2.4)

(in the case α ≥ 0 the space Hα consists of x ∈ H0 with a finite norm (2.4); for

α < 0 the space Hα is the completion of H0 by the norm (2.4)).
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CHAPTER 3

SOME TOPICS OF POTENTIAL AND PLURIPOTENTIAL THEORY

In this chapter, some of the notions about Potential and Pluripotential Theory that

will be useful for our considerations will be given ( [12], [27], [23], [28], [36]).

3.1 Potential Theory

Since potential theory may be defined as the study of harmonic functions, sub-

harmonic functions, and capacities, we will first define what these are. As a subhar-

monic function is semi-continuous as part of its definition, first we have to define

semi-continuous functions.

3.1.1 Semi-continuous Functions

Let X be a topological space. We say that a function u : X → [−∞,∞) is upper

semi-continuous if the set {x ∈ X : u(x) < α} is open in X for each α ∈ R. Also

v : X → (−∞,∞] is lower semi-continuous if −v is upper semi-continuous.

Notice that u is continuous if and only if it is both upper and lower semi-

continuous.

Properties of Semi-continuous Functions

1. A function u(x) that is upper semi-continuous on a compactum K attains its

maximum value at K.

2. The lower envelope

u(x) = inf
α

uα(x)

13



of a family {uα(x)} of functions that are upper semi-continuous on a set A is

upper semi-continuous in A.

3. The limit of a decreasing sequence of upper semi-continuous functions defined

on a set A is upper semi-continuous in A.

4. If u(x) is upper semi-continuous on a compactum K and u(x) < ∞ in K,

there exists a decreasing sequence of continuous functions that converges to

u(x).

3.1.2 Subharmonic Functions

Let U be an open subset of C. A function u : U → [−∞,∞) is called subhar-

monic (u ∈ S (U)) if it is upper semi-continuous and satisfies the local submean

inequality, i.e. given w ∈ U , there exists ρ > 0 such that

u(w) ≤ 1

2π

2π∫

0

u(w + reit)dt (0 ≤ r < ρ).

Also v : U → (−∞,∞] is superharmonic if −v is subharmonic.

Notice that a function is harmonic if and only if it is both subharmonic and

superharmonic function.

Properties of Subharmonic Functions

1. If f is analytic on an open set U in C, then log |f | is subharmonic on U .

2. Let u and v be subharmonic functions on an open set U in C. Then:

(a) max(u, v) is subharmonic on U ;

(b) αu + βv is subharmonic on U for all α, β ≥ 0.

3. (Maximum Principle) Let u be a subharmonic function on a domain D in C.

(a) If u attains a global maximum on D, then u is constant.

(b) If lim
z→ζ

u(z) ≤ 0 for all ζ ∈ ∂D, then u ≤ 0 on D.

14



4. Let U be an open subset of C, and let u : U → [−∞,∞) be an upper semi-

continuous function. Then the following are equivalent.

(a) The function u is subharmonic on U .

(b) Whenever ∆̄(w, ρ) ⊂ U , then for r < ρ and 0 ≤ t < 2π,

u(w + reit) ≤ 1

2π

2π∫

0

ρ2 − r2

ρ2 − 2ρr cos(θ − t) + r2
u(w + ρeiθ)θdθ.

(c) Whenever D is a relatively compact subdomain of U , and h is a harmonic

function on D satisfying

lim
z→ζ

(u− h)(z) ≤ 0 (ζ ∈ ∂D)

then u ≤ h on D.

5. (Global Submean Inequality) If u is a subharmonic function on an open set U

in C, and if ∆̄(w, ρ) ⊂ U , then

u(w) ≤ 1

2π

2π∫

0

u(w + ρeiθ)dθ.

6. Let U be an open subset of C, and let u ∈ C2(U). Then u is subharmonic on

U if and only if ∆u ≥ 0 on U .

7. (Gluing Theorem) Let u be a subharmonic function on an open set U in C,

and let v be a subharmonic function on an open subset V of U such that

lim
z→ζ

v(z) ≤ u(ζ) (ζ ∈ U ∩ ∂V ).

Then ũ is subharmonic on U , where

ũ =





max(u, v) on V,

u on U \ V.

8. Let (un)n≥1 be subharmonic functions on an open set U in C, and suppose

that u1 ≥ u2 ≥ u3 ≥ ... on U . Then u := lim
n→∞

un is subharmonic on U.
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9. Let {uk}k∈N be a family of subharmonic functions that are locally uniformly

bounded above in the domain G. Then the upper envelope

u(z) = lim
z→z′

sup
k

uk(z
′)

is a subharmonic function in G.

Theorem 8 (Hartogs’ Theorem) Let vk be a sequence of subharmonic functions in

Ω which are uniformly bounded above from above on every compact subset of Ω, and

assume that lim
k→∞

vk(z) ≤ C for every z ∈ Ω. For every ε > 0 and every compactum

K ⊂ Ω, one can then find k0 so that

vk(z) ≤ C + ε, z ∈ K, k > k0.

Theorem 9 Let {uk}k∈N be a family of subharmonic functions that are locally uni-

formly bounded above in the domain G. Then the regularized limit superior

v(z) = lim
z
′→z

lim
k−→∞

uk(z
′)

is a subharmonic function in G.

Proof. The function v(z) < +∞ and is upper semi-continuous in G. {uk} are

measurable functions since they are subharmonic. Using the fact that they satisfy

the local submean inequality,

v(z) = lim
z′−→z

lim
k−→∞

uk(z
′) ≤ lim

z′−→z
lim

k−→∞
1

2π

2π∫

0

uk(z
′ + reiθ)dθ

≤ lim
z′−→z

1

2π

2π∫

0

lim
k−→∞

uk(z
′ + reiθ)dθ

≤ 1

2π

2π∫

0

lim
z′−→z

lim
k−→∞

uk(z
′ + reiθ)dθ

=
1

2π

2π∫

0

v(z + reiθ)dθ,
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where the second inequality follows from Fatou’s Lemma. Hence, v(z) is subhar-

monic.

3.1.3 Logarithmic Potential

Now we will define logarithmic potentials. They provide an important source

of examples of subharmonic functions thereby allow us to construct subharmonic

functions with prescribed properties. Also, logarithmic potentials turn out to be

almost as general as arbitrary subharmonic functions and for many purposes the

two classes are equivalent.

We will define logarithmic potentials only for finite measures of compact support.

Let µ be a finite Borel measure on C with compact support. Its logarithmic

potential is the function

pµ (z) =

∫
log |z − w| dµ(w) (z ∈ C).

Properties of Logarithmic Potentials

1. With the notation above, pµ is subharmonic on C, and harmonic on C\(suppµ).

Also

pµ (z) = µ (C) log |z|+ O(|z|−1) as z →∞.

2. (Continuity Principle) Let µ be a finite Borel measure on C with compact

support K.

(a) If ζ0 ∈ K, then lim inf
z→ζ0

pµ (z) = lim inf
ζ→ζ0
ζ∈K

pµ (ζ) .

(b) If further lim
ζ→ζ0
ζ∈K

pµ (ζ) = pµ (ζ0), then lim
z→ζ0

pµ (z) = pµ (ζ0) .

3. (Minimum Principle) Let µ be a finite Borel measure on C with compact

support K. If pµ ≥ M on K, then pµ ≥ M on the whole of C.
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3.1.4 Equilibrium Measures

Let µ be a finite Borel measure on C with compact support. Its energy I (µ) is

given by

I (µ) =

∫ ∫
log |z − w| dµ (z) dµ (w) =

∫
pµ (z) dµ (z) .

Now, let K be a compact subset of C, and denote by P(K) the collection of all

Borel probability measures on K. If there exists ν ∈ P(K) such that

I (ν) = sup
µ∈P(K)

I (µ) ,

then ν is called an equilibrium measure for K.

Properties of Equilibrium Measures

1. If the sequence (µn)n≥1 in P(K) is weak∗-convergent to µ in P(K), i.e.

∫

K

φdµn −→
∫

K

φdµ for each φ ∈ C (K) ,

where C (K) is the space of continuous functions with the usual sup-norm,

then limI(µn) ≤ I(µ).

2. Every compactum K in C has an equilibrium measure.

3.1.5 Logarithmic Capacity

The logarithmic capacity of a subset E of C is given by

C(E) := sup
µ

eI(µ),

where the supremum is taken over all Borel probability measures µ on C whose sup-

port is a compact subset of E. In particular, if K is a compactum with equilibrium

measure ν, then

C(K) = eI(ν).

Properties of Logarithmic Capacity

1. (a) If E1 ⊂ E2 then C (E1) ≤ C (E2) .
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(b) If E ⊂ C then C (E) = sup {C (K) : compact K ⊂ E}

(c) If E ⊂ C then C (αE + β) = |α|C (E) for all α, β ∈ C.

(a) If K is a compact subset of C then C (K) = C (∂εK) .

(b) If K1 ⊃ K2 ⊃ K3 ⊃ · · · are compact subsets of C and K = ∩nKn, then

C(K) = lim
n→∞

C(Kn).

(c) If B1 ⊂ B2 ⊂ B3 · · · are Borel subsets of C and B = ∪nBn, thenC(B) =

lim
n→∞

C(Bn).

2. Let (Bn) be a (finite or infinite) sequence of Borel subsets of C, let B = ∪nBn,

and let d > 0.

(a) If diam (B) ≤ d, then C (B) ≤ d and

1

ln (d/C (B))
≤

∑
n

1

ln (d/C (Bn))
.

(b) If dist(Bj, Bk) ≥ d whenever j 6= k, then

1

ln+ (d/C (B))
≥

∑
n

1

ln+ (d/C (Bn))
.

3.1.6 Transfinite Diameter

Definition 4 Let K be a compact subset of C, and let n ≥ 2. The n-th diameter of

K is given by

δn(K) := sup

{ ∏

j,k;j<k

|wj − wk|
2

n(n−1) : w1, . . . wn ∈ K

}
.

An n-tuple w1, . . . wn ∈ K for which the supremum is attained is called a Fekete

n-tuple for K.

As K is compact, there always exists a set of points such that the supremum is

attained, but that set is not necessarily unique. The decreasing sequence {δn(K)}∞n=2

has a limit that is called the transfinite diameter.
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Theorem 10 (Fekete-Szegö Theorem) Let K be a compact subset of C. Then the

sequence (δn(K))n≥2 is decreasing, and

lim
n→∞

δn(K) = C(K).

For compactum K in Ĉ, a Fekete polynomial for K of degree n is a polynomial

of the form

q (z) =
n∏

i=1

(z − wi) ,

where w1, w2, · · · , wn is a Fekete n-tuple for K. Then the following useful result is

valid, where we define

‖q‖K := sup {|q (z)| : z ∈ K} .

Lemma 1 Let K be a compact subset of Ĉ.

1. If q is a monic polynomial of degree n ≥ 1, then ‖q‖
1
n
K ≥ C (K) .

2. If q is a Fekete polynomial of degree n ≥ 2, then ‖q‖
1
n
K ≤ δn (K) .

The following is another characterization of capacity.

Proposition 8 Let K be a compact subset of C, and for each n ≥ 1 let

mn(K) = inf {‖q‖K : q is a monic polynomial of degree n} .

Then

lim
n→∞

mn(K)
1
n = inf

n≥1
mn(K)

1
n = C(K).

A monic polynomial q of degree n for which ‖q‖K = mn(K) is called a Chebyshev

polynomial.

3.1.7 Polar Sets

Polar sets play the role of negligible sets in potential theory.

1. A subset E of C is called polar if I (µ) = −∞ for every finite Borel measure

µ 6= 0 for which suppµ is a compact subset of E.

2. A property is said to hold nearly everywhere (n.e.) on a subset S of C if it

holds everywhere on S\E, for some Borel polar set E.
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Properties of Polar Sets

1. Let µ be a finite Borel measure on C with compact support, and suppose that

I (µ) > −∞. Then µ (E) = 0 for every Borel polar set E.

2. Every Borel polar set has Lebesgue measure zero.

3. A countable union of Borel polar set is polar. In particular, every countable

subset of C is polar.

Note that though every countable set is polar, not every polar set is countable.

Lemma 2 Let C (K) > 0 and let Ψ (z) be a function subharmonic and bounded

above in D�K, satisfying the condition

lim
z→z0

Ψ (z) = −∞

for each z0 ∈ ∂K∗. Then Ψ (z) ≡ −∞ in D�K.

Proof. Assume that Ψ (z) 6≡ −∞ in D�K. Then, extend the function onto K such

that:

Ψ̄ (z) =





Ψ (z) , z ∈ D�K,

−∞, z ∈ K.

Then, Ψ̄ is subharmonic in the whole region D. Since Ψ̄ (z) = −∞ for z ∈ K, K is

a polar set and so must have zero capacity. But, that contradicts with the fact that

C (K) > 0. This contradiction shows that Ψ (z) ≡ −∞ in D�K.

3.1.8 Solution of The Dirichlet Problem and Regularity

Let D be a subdomain of C, and let φ : ∂D → R be a continuous function. The

Dirichlet problem is to find a harmonic function h on D such that lim
z→ζ

h (z) = φ (ζ)

for all ζ ∈ ∂D.

For ”nice” domains, a solution always exists. Also, it is easily seen that there

exists at most one solution to the Dirichlet problem.

We will now introduce the Perron method that can be used to solve the problem.
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Let D be a proper subdomain of Ĉ, and let φ : ∂D −→ R be a bounded function.

The associated Perron function (the generalized solution of the Dirichlet problem)

HDφ : D −→ R is defined by

HDφ = sup
u∈U

u,

where U denotes the family of all subharmonic functions u on D such that lim
z−→ζ

u(z) ≤
φ(ζ) for each ζ ∈ ∂D.

If the Dirichlet problem has a solution, that it should be HDφ. If h is such

a solution, then h ∈ U and so h ≤ HDφ. On the other hand, by the maximum

principle, if u ∈ U then u ∈ h on D so HDφ ≤ h. Hence, HDφ = h.

The following result shows that HDφ is always a bounded harmonic function.

Lemma 3 (Poisson Modification) Let D be a domain in C, let ∆ be an open disc

with ∆̄ ⊂ D, and let u be a subharmonic function on D with u 6≡ −∞. If we define

ũ on D by

u =





P∆u on ∆,

u on D\∆,

then ũ is subharmonic on D, harmonic on ∆, ũ ≥ u on D.

Theorem 11 Let D be a proper subdomain of C∞, and let φ : ∂D −→ R be a

bounded function. Then HDφ is harmonic on D, and

sup
D
|HDφ| ≤ sup

∂D
|φ| .

The following notion will be needed so that the Perron function will have the

prescribed boundary limits.

Let D be a proper subdomain of Ĉ, and let ζ0 ∈ ∂D. A barrier at ζ0 is a

subharmonic function b defined on D ∩ N , where N is an open neighborhood of

ζ0, satisfying

b < 0 on D ∩N and lim
z−→ζ0

b(z) = 0.

A boundary point at which a barrier exists is called regular, otherwise it is irregular.

If every ζ ∈ ∂D is regular, then D is called a regular domain.

We say that a pair (K, D) is regular if K and D are regular, D has no components

free from K, and K̂D = K , i.e. K has no disjoint holes with D.
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Lemma 4 If D is a proper subdomain of Ĉ and φ : ∂D −→ R is a bounded function,

then

HDφ ≤ −HD (−φ) on D.

Lemma 5 (Bouligand’s Lemma) Let ζ0 be a regular boundary point of a domain

D, and let N0 be an open neighborhood of ζ0. Then, given ε > 0,there exists a

subharmonic function bε on D such that

bε < 0 on D, bε ≤ −1 on D \N0, and lim inf
z−→ζ0

bε(z) ≥ −ε.

Theorem 12 Let D be a proper subdomain of Ĉ, and let ζ0 be a regular boundary

point of D. If φ : ∂D −→ R is a bounded function which is continuous at ζ0, then

lim
z−→ζ0

HDφ (z) = φ (ζ0) .

Green’s Functions

Let D be a proper subdomain of Ĉ. A Green’s function for D is a map gD : D×D →
(−∞,∞] , such that for each w ∈ D :

1. gD (·, w) is harmonic on D \ {w} , and bounded outside each neighborhood of

w;

2. gD (w,w) = ∞, and as z → w, gD (z, w) =





ln |z|+ O (1) , w = ∞,

− ln |z − w|+ O (1) , w 6= ∞;

3. gD (z, w) → 0 as z → ζ, for n.e. ζ ∈ ∂D.

Properties of Green’s Functions

1. If D is a domain in Ĉ such that ∂D is non-polar, then there exists a unique

Green’s function gD for D.

2. Let D be a domain in Ĉ such that ∂D is non-polar. Then

gD (z, w) > 0 for z, w ∈ D.
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3. Let D be a domain in Ĉ such that ∂D is non-polar, and let (Dn)n≥1 be sub-

domains of D such that D1 ⊂ D2 ⊂ D3 · · · and ∪nDn = D. Then

lim
n→∞

gDn (z, w) = gD (z, w) for z, w ∈ D.

4. Let D be a domain in Ĉ such that ∂D is non-polar. Then

gD (z, w) = gD (w, z) for z, w ∈ D.

5. Let D be a domain in Ĉ such that ∂D is non-polar, let w ∈ D, and let ζ ∈ ∂D.

Then

lim
z→ζ

gD (z, w) = 0

if and only if ζ is a regular boundary point of D.

Definition 5 Let K ⊂ D be a couple ”compact set-open set”. The Green potential

of that couple is

ω (z) = ω (D, K, z) = lim
ζ→z

sup {u (ζ) : u ∈ S (K, D)} , z ∈ D

where S (K,D) denotes a class of subharmonic functions in D that are nonpositive

on K and are bounded above by 1.

If z ∈ D \ K̂D then this function coincides with the traditional generalized har-

monic measure ω
(
z, ∂D,D \ K̂D

)
, i.e. ω (z) = ω (D, K, z) will be the generalized

solution of the Dirichlet problem in the region D \K with respect to the function

f (z) =





1 z ∈ ∂D,

0 z ∈ ∂K∗.
.

Remark 1 The following three cases are possible; we give various equivalent char-

acterizations of each case:

(a) ∂K∗ consists only of regular points ⇐⇒ K is a regular compactum ⇐⇒ 0 <

ω (z) < 1 for z ∈ D \K and lim
z→z0

ω (z) = 0 for each z0 ∈ ∂K∗.
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(b) ∂K∗ consists only of irregular points ⇐⇒ C (K) = 0 ⇐⇒ ω (z) ≡ 1 for z ∈
D \K.

(c) ∂K∗ contains both irregular and regular points⇐⇒ K is not regular and C (K) >

0 ⇐⇒ 0 < ω (z) < 1 for z ∈ D \K and there exists a point z0 ∈ ∂K∗ and a

sequence {zn} ⊂ D \K, zk → z0 such that ω (zk) → α0.

Lemma 6 Let ω (z) = ω (D, K, z) be the Green potential of the ”compact set-open

set” couple K ⊂ D. Let Dq be a sequence of open sets exhausting D where Dq :=

{z ∈ D : 0 < ω (D,K, z) < q} , Kδ be a sequence of compact sets Kδ ↓ K such that

Kδ := {z ∈ D : 0 < ω (D,K, z) ≤ δ}. Then,

ω (Dq, K, z) =
1

q
ω (D,K, z) , z ∈ Dq,

ω (D, Kδ, z) =





ω(D,K,z)−δ
1−δ

, z ∈ D \Kδ,

0, z ∈ Kδ.

,

ω (Dq, Kδ, z) =





ω(D,K,z)−δ
q−δ

, z ∈ Dq \Kδ,

0, z ∈ Kδ.

.

Theorem 13 (Hadamard Inequality)Let D be a domain in Ĉ, K be a compactum

in D. If f ∈ A (D), then

|f |Dα
≤ |f |1−α

K |f |αD ,

where

Dα = {z ∈ D : ω (D, K, z) < α} , 0 < α < 1.

Theorem 13 is also known as the two constant theorem.

Theorem 14 (Evans’ Lemma) Let E be a compact polar set. Then there exists a

Borel probability measure µ on E such that pµ(z) = −∞ for all z ∈ E. Moreover,

this measure can be taken discrete, i.e. there is a sequence {ζν} ⊂ E and a sequence

of nonnegative numbers {αν},
∞∑

ν=1

αν = 1 such that µ =
∞∑

ν=1

ανµζν where µζ means

an atomic measure at the point ζ.
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3.2 Some Facts of Pluripotential Theory

3.2.1 Plurisubharmonic Functions

Plurisubharmonic functions are the complex analogue of convex functions of

several variables and the multidimensional analogue of subharmonic functions.

Definition 6 Let D be a domain in Cn. A function u : D → [−∞,∞] is called

plurisubharmonic (u ∈ P (D)) if u is upper semi-continuous in D and for any point

z0 ∈ D and for any complex line z = l (ζ) = z0 + ωζ, where ω ∈ Cn, ζ ∈ C, the

restriction of u to this line, i.e., the function u ◦ l (ζ) , is subharmonic on the open

set {ζ ∈ C : l (ζ) ∈ D} .

Properties of Plurisubharmonic Functions

1. For a function u ∈ C2 (D) to be plurisubharmonic it is necessary and sufficient

that at each point z ∈ D the form Hz (u, ω) satisfy

Hz (u, ω) =
n∑

µ,ν=1

∂2u (z)

∂zµ∂z̄ν

|zωµω̄ν ≥ 0 for all ω ∈ Cn.

2. If u is a plurisubharmonic function in a domain D and u attains a local max-

imum at some point z0 ∈ D, then it is constant in D.

3. A function that is plurisubharmonic in some neighborhood of each point z0 ∈
D is plurisubharmonic in the domain D.

4. If the upper envelope u (z) = sup
α∈A

uα (z) of a family of functions uα, α ∈ A,

that are plurisubharmonic in a domain D, is upper semi-continuous in D, then

it is plurisubharmonic in D.

5. For an upper semi-continuous function u to be plurisubharmonic in a domain

D it is necessary and sufficient that for each point z ∈ D and each vector

ω ∈ Cn there exist a number r0 = r0 (z, ω) such that

u (z) ≤ 1

2π

2π∫

0

u
(
z + ωreit

)
dt
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for all r < r0.

6. For any function u that is plurisubharmonic in a neighborhood of a point z0 ∈
Cn the value u (z0) does not exceed its mean value on the sphere {|z − z0| = r}
of sufficiently small radius r :

u
(
z0

) ≤
∫

{|z−z0|=r}

u (z) dσ,

where σ (r) is the area of this sphere and dσ is the area element.

7. Any plurisubharmonic function in a domain D ⊂ Cn is a subharmonic function

of 2n real variables, i.e. , for any point z0 ∈ D and ball B = {|z − z0| = r} of

sufficiently small radius any function h that is harmonic in B and continuous

in B̄ possesses the property

u |∂B≤ h |∂B=⇒ u |B≤ h |B .

8. If the function u is plurisubharmonic in a neighborhood of a point z0 ∈ Cn,

then its mean value S (r) on the sphere {|z − z0| = r} is an increasing function

of r.

9. For any function u that is plurisubharmonic in a domain D ⊂ Cn we can

construct an increasing sequence of open sets Gµ (µ = 1, 2, · · · ) ,∪∞µ=1Gµ = D ,

and a decreasing sequence of functions uµ ∈ C∞ (Gµ) , plurisubharmonic in

Gµ, converging to u at each point z ∈ D :

uµ (z) → u (z) , uµ+1 ≤ uµ.

10. If the function u is plurisubharmonic in a domain D ⊂ Cn, and v : u (D) → R

is an increasing convex function of class C2, then v ◦ u is plurisubharmonic in

D.

11. The restriction of a plurisubharmonic function u in a domain D ⊂ Cn to

any m-dimensional holomorphic surface f : G → Cn, G ⊂ Cm , is also a

plurisubharmonic function on an open set Ω = {ζ ∈ G : f (ζ) ∈ D} .
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12. (Grauert-Remmert) Any function that is plurisubharmonic in a domain D ⊂
Cn everywhere except for an analytic set and is bounded can be extended to

a function that is plurisubharmonic in D.

A function u ∈ P (D) is called maximal in D or MP-function (u ∈ MP (D))

if for any subdomain G b D and for any function v ∈ P (G) from v (z) ≤ u (z) ,

z ∈ ∂G, it follows that v (z) ≤ u (z) in G. (1001[24])

3.2.2 Green Pluripotential

Let E be a set in the complex manifold Ω (see pg. 35). Then the Green pluripo-

tential of this set with respect to Ω is the function

ω (z) = ω (Ω, E, z) := lim
ζ→z

ω0 (Ω, E, ζ) , z ∈ Ω, (3.1)

where

ω0 (z) = ω0 (Ω, E, ζ) = sup {u (z) : u ∈ P (E, Ω)} ,

P (E, Ω) = {u ∈ P (Ω) : u |E≤ 0; u (z) < 1, z ∈ Ω} .

The function (3.1) is also called the pluripotential of a condenser (K, D) .

Theorem 15 (Multidimensional Analogue of Hadamard Inequality) Let Ω be a Stein

manifold (see pg. 36), K be a compactum in Ω. If f is a bounded analytic function

on Ω then

|f (z)| ≤ (|f |Ω)ω(z) (|f |K)1−ω(z) , z ∈ Ω,

where ω (z) is the Green pluripotential of K with respect to Ω.

3.2.3 Pluriregularity

A Stein manifold Ω is called pluriregular (or strongly pseudoconvex) if there

exists a negative plurisubharmonic function u ∈ P (Ω) such that u (zν) → 0 for

every sequence {zν} ⊂ Ω without limit points in Ω. Briefly it will be written by the

following

lim
z→∂Ω

u (z) = 0.
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A compactum K in a Stein manifold Ω is said to be

1. pluriregular on Ω if for some open neighborhood D b Ω of K it follows that

ω (D,K, z) ≡ 0 on K;

2. strongly pluriregular on Ω if for any open neighborhood D b Ω of K it follows

for the envelope of holomorphy D̃ that

ω
(
D̃, K, z

)
≡ 0, z ∈ K.

Definition 7 We say that a pair (K, Ω) is pluriregular if K is a pluriregular holo-

morphically convex compactum on the pluriregular Stein manifold Ω and also every

connected component of Ω has a non-empty intersection with K.

Theorem 16 [37] If (K, Ω) is a pluriregular pair then the function ω (z) = ω (Ω, K, z)

is continuous in Ω and satisfies the conditions

ω (z) = 0, z ∈ K; 0 < ω (z) < 1, z ∈ Ω \K; lim
z→∂Ω

ω (z) = 1.
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CHAPTER 4

SPACES OF ANALYTIC FUNCTIONS

In this chapter, we will define complex manifolds following [12], then introduce

spaces of analytic functions. Also, a detailed proof of Grothendieck-Köthe-Silva

Duality which realizes the space A (E)∗, for any set E ∈ Ĉ, as the space of analytic

functions A (E∗) where E∗ = Ĉ \ E will be given for open and compact sets.

4.1 Complex Manifolds

A topological space Ω is called a manifold of dimension n if every point in Ω has a

neighborhood which is homeomorphic to an open set in Rn. The concept of complex

analytic manifolds is defined by means of a family of such homeomorphisms:

Definition 8 A manifold Ω (of dimension 2n) is called a complex analytic manifold

of complex dimension n if there is given a family F of homeomorphisms κ, called

complex analytic coordinate systems, of open sets Ωκ ⊂ Ω on open sets Ω̃κ ⊂ Cn

such that

1. If κ and κ′ ∈ F , then the mapping

κ′κ−1 : κ (Ωκ ∩ Ωκ′) → κ′ (Ωκ ∩ Ωκ′)

between open sets in Cn is analytic (interchanging κ and κ′ we find that the

inverse mapping is also analytic).

2. ∪κ∈FΩκ = Ω.
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3. If κ0 is a homeomorphism of an open set Ωκ0 ⊂ Ω onto an open set in Cn and

the mapping

κκ−1
0 : κ0 (Ωκ0 ∩ Ωκ) → κ (Ωκ0 ∩ Ωκ)

as well as its inverse are analytic for every κ ∈ F , it follows that κ0 ∈ F .

Let Ω be a Hausdorff topological space. Ω is said to be countable at infinity

if there exists a sequence of compact subsets K1, K2, · · · such that every compact

subset of Ω is contained in some Kj, that is Ω = ∪∞j=1Kj.

Definition 9 A complex analytic manifold Ω of dimension n which is countable at

infinity is said to be a Stein manifold if

1. Ω is holomorphically convex, that is,

K̂ = K̂Ω =

{
z : z ∈ Ω, |f (z)| ≤ sup

K
|f | for every f ∈ A (Ω)

}

is a compact subset of Ω for every compact subset K of Ω.

2. A (Ω) separates the points in Ω, that is for any different pair of points z1, z2 there

exists a function f ∈ A (Ω) such that f (z1) 6= f (z2) .

3. Local coordinates can be defined by global analytic functions, that is for every

z ∈ Ω, one can find n functions f1, · · · , fn ∈ A (Ω) which form a coordinate

system at z.

Example 1 Any holomorphically convex domain in Cn and Cn itself are Stein man-

ifolds. But, Ĉn or Pn are not Stein manifolds since using Liouville Theorem, only

analytic functions in these spaces are constants but these obviously cannot separate

points, therefore property 2 fails.

4.2 Spaces of Analytic Functions

Let Ω be a complex manifold. A (Ω) is the space of all analytic functions on

Ω with the topology of uniform convergence on compact subsets of Ω, i.e. with the

locally convex topology generated by the system of semi-norms

|x|K := max {|x (z)| : z ∈ K} , K ∈ K (Ω) (4.1)
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where K (Ω) denotes the set of all compacta on Ω. If Ω is countable at infinity, then

A (Ω) is a Fréchet space whose topology is produced by the sequence of semi-norms

{|x|Ks
:= max {|x (z)| : z ∈ Ks}

}
s∈N

where the Ks are compacta such that Ks ⊂ intKs+1, s = 1, 2, · · · , and ∪sKs = Ω.

Let E be an arbitrary subset of Ω. Let G (E) = GΩ (E) denote the collection of all

open neighborhoods of E in Ω. For Df , Dg ∈ G (E) , the functions f ∈ A (Df ) , g ∈
A (Dg) are said to be equivalent (f ∼ g) if there exists a D ∈ G (E) such that

D ⊂ Df ∩Dg and f (z) ≡ g (z) for all z ∈ D. A germ of analytic functions, briefly

(analytic) germ, is an equivalence class obtained that way. If x is a germ on E and

f ∈ x then we say that f generates the germ x. The set of all such germs on E is

a vector space. If E is an open set, then E ∈ G (E) and every germ on E can be

naturally identified with the unique analytic function on E, generating the germ.

We denote by A (E) the locally convex space of all analytic germs on E endowed

with the inductive limit topology

A (E) = limind
D∈G(E)

A (D) ,

that is with the finest topology on A (E) for which all the natural mappings A (D) →
A (E) , D ∈ G (E) , are continuous.

Let K be a compactum in the manifold Ω. Then the space A (K) can be repre-

sented as the countable inductive limit

A (K) = limind
s→∞

A (Ds) . (4.2)

Here Ds is any countable basis of G (K) . It is suitable to choose Ds with the following

properties: Ds+1 b Ds and every Ds does not contain any connected component

which is disjoint from K. It is sufficient to describe convergent sequences in order

to define the topology of this space: xk → x in the topology of A (K) if there exists

a neighborhood D ∈ G (K) (depending on the sequence) such that xk ∈ A (D) , x ∈
A (D) and (xk) is uniformly convergent to x on every compact subset of D. Let

J : A (K) → C (K)
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be the natural homomorphism of the restriction. Let AC (K) be a Banach space

obtained as the completion of the set J (A (K)) in the space C (K) according to

the norm defined in (4.1) . In the case when J is a monomorphism, we obtain the

injection

A (K) ↪→ AC (K) ,

then K is called a set of uniqueness of analytic functions on K.

Let Ω be a complex manifold. Then, if Ω is countable at the infinity, A (Ω) can

also be defined as

A (Ω) = limprojAC (Ks) , (4.3)

where the Ks are compacta such that Ks ⊂ intKs+1, s = 1, 2, · · · , and ∪sKs = Ω.

Also, the space (4.2) can be considered as an inductive limit of Banach spaces

A (K) = limindAC (Ds) (4.4)

where the Ds are open sets such that Ds c Ds+1, s = 1, 2, · · · , and ∩sDs = K.

We will use the following notations for the spaces of analytic functions on disks:

AR = A ({z : |z| < R}) , (4.5)

ĀR = A ({z : |z| ≤ R}) , (4.6)

Ā0 = Ā ({0}) .

We can also write the spaces AR and ĀR as the following inductive limits up to

isomorphism:

AR ' limindr↓Rl2 (rn) ,

ĀR ' limindr↑Rl2 (rn) .
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4.3 Duality

Let Ω be a Stein manifold. Elements of conjugate space A′ (Ω) = A (Ω)∗, that

is linear continuous functionals on A (Ω) , are called analytic functionals (on Ω).

In particular for Ω = C we obtain the space of analytic functionals A′ = A′ (Cn)

having well-known importance in the investigation of convolution equation (see [12]).

On the other hand analytic functionals have significant part in the investigation of

structure of spaces of analytic functions, especially in the basis problem.

If E is an arbitrary subset of Stein manifold Ω then the natural map

J∗ = J∗ (E, Ω) : A (E)∗ → A′ (Ω) , (4.7)

that transforms a functional x∗ ∈ A (E)∗ to its restriction on A (Ω) , is a linear

continuous map. Since A (E) is reflexive, J∗ is dense. In the case when E is a

Runge set in Ω (that is A (Ω) is dense in A (E)) the map in (4.7) is an imbedding.

For a Runge set E ⊂ Ω we will identify A′ (E) as the image of the space A (E)∗

in (4.7) . Then for any pair of Runge subsets E ⊂ F in Ω such that A (F ) is dense

in A (E) we have the natural imbeddings A′ (F ) ↪→ A′ (E) ↪→ A′ (Ω) .

4.4 The Grothendieck-Köthe-Silva Duality (GKS-duality)

The following result, due to Grothendieck, Köthe, and Silva (see [11], [14], [15],

[25]) (called shortly GKS-duality) realizes the space A (E)∗, for any set E ∈ Ĉ, as

the space of analytic functions A (E∗), where E∗ := Ĉ \ E. Usually there is an

agreement to suppose that all germs of A (E) are equal to 0 at the point ∞ if

∞ ∈ E. Here we restrict ourselves to the case when E is open or compact set.

Theorem 17 Let E be either an open set or a compactum in Ĉ, E 6= Ĉ, E 6= ∅.The

space A (E)∗, the conjugate of the space A (E), is isomorphic to the space A (E∗).

This isomorphism is defined by the formula x∗ → x′, where

x∗ (x) =
〈
x
′
, x

〉
=

∫

Γ

x
′
(ζ) x (ζ) dζ, x ∈ A (E) , (4.8)
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where x∗ ∈ A (E)∗ , x
′ ∈ A (E∗), and Γ is any contour consisting of a finite number

of smooth Jordan curves and separating the singularities of the functions x (ζ) and

x
′
(ζ). Therewith, the formula in (4.8) is independent on the choice of the contour

Γ.

Proof. Let E be an open set in Ĉ, E 6= Ĉ, E 6= ∅. Using (4.3) ,

A (E) = limprojAC (Ks) , (4.9)

where Ks are compacta such that Ks ⊂ intKs+1, s = 1, 2, · · · , and ∪sKs = E.

First we show that for any x′ ∈ A (E∗) the formula (4.8) determines the unique

functional x∗ ∈ A (E)∗. Let x′ ∈ A (E∗) . That means, there exists s0 ∈ N such that

x′ ∈ A
(
K∗

s0

)
. Then for any x ∈ A (E) , define

x∗ (x) =

∫

Γ

x′ (ζ) x (ζ) dζ, where Γ = ∂Ks for s > s0.

Then,

|x∗ (x)| ≤ |x′ (ζ)|Γ max |x (ζ)|Γ l (Γ) , (4.10)

where l (Γ) is the length of the contour Γ, that is,

|x∗ (x)| ≤ Cs max |x (ζ)|Γ = Cs |x|Ks
, where Cs = |x′ (ζ)|Γ l (Γ) ,

which implies x∗ is bounded in the norm of ‖x‖s = |x|Ks
.

Let x1, x2 ∈ A (E), c1, c2 ∈ C. Then,

x∗ (c1x1 + c2x2) =

∫

Γ

x
′
(ζ) (c1x1 + c2x2) (ζ) dζ

=

∫

Γ

x
′
(ζ) (c1x1 (ζ) + c2x2 (ζ)) dζ

=

∫

Γ

x
′
(ζ) c1x1 (ζ) dζ +

∫

Γ

x
′
(ζ) c2x2 (ζ) dζ

= x∗ (x1) + x∗ (x2) .

So, x∗ is linear and thus x∗ ∈ A (Ks)
∗ ↪→ A (E)∗ .Therefore, we observe that for any

x′ ∈ A (E∗), the unique functional x∗ ∈ A (E)∗ is defined by the formula (4.8).
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Now, we will show that for any functional x∗ ∈ A (E)∗ the formula (4.8) deter-

mines the unique function x′ ∈ A (E∗). Let x∗ ∈ A (E)∗ . That means, there exists

s0 ∈ N such that x∗ is bounded in the norm ‖x‖s0
= |x|Ks0

, i.e. x∗ ∈ AC (Ks0)
∗ .

Also, x∗ ∈ AC (Ks)
∗ , for s ∈ N, s ≥ s0.

According to the Cauchy Integral Formula,

x (z) =
1

2πi

∫

Γ

x (ζ)

ζ − z
dζ, where Γ = ∂Ks, z ∈ intKs.

We denote 1
2πi

1
ζ−z

=: uζ (z) . Then, for ζ ∈ K∗
s0

, uζ will be an element of the space

AC (Ks0) , thus x∗ can be applied to uζ . So, define x′ (ζ) := x∗ (uζ) . Now, using the

linearity and continuity of x∗,

lim
h→0

x′ (ζ + h)− x′ (ζ)

h
= lim

h→0

x∗ (uζ+h (z))− x∗ (uζ (z))

h

= lim
h→0

x∗
(

uζ+h (z)− uζ (z)

h

)
= x∗

(
lim
h→0

uζ+h (z)− uζ (z)

h

)

= x∗
(

d

dζ
uζ (z)

)
=

d

dζ
x∗ (uζ (z)) =

d

dζ
x′ (ζ)

Hence, x′ (ζ) is analytic and is an element of the space A (K∗
s ) ↪→ A (E∗) . Now,

since x∗ is linear and continuous,

x∗




∫

Γ

x (ζ) uζ (z) dζ


 =

∫

Γ

x∗ (x (ζ) uζ (z)) dζ

=

∫

Γ

x (ζ) x∗ (uζ (z)) dζ =

∫

Γ

x (ζ) x′ (ζ) dζ.

Hence, we have shown that the given mapping (4.8) is a bijection.

Using (4.9) , we can represent the space A (E)∗ as the countable inductive limit

A (E)∗ = liminds→∞AC (Ks)
∗ .

Also, by definition A (E∗) can be represented as a countable inductive limit as in

(4.4) . In particular, taking these open sets to be {K∗
s}∞s=1 , we can represent A (E∗)

as

A (E∗) = liminds→∞A (K∗
s ) = liminds→∞AC (K∗

s ) .
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By (4.10) , for any s ∈ N, we have

|x∗|AC(Ks)
∗ ≤ l (∂Ks) max |x (ζ)|∂Ks

|x′|K∗
s
, (4.11)

where l (∂Ks) is the length of the contour ∂Ks. (4.11) implies that the mapping

x′ → x∗ is continuous (see, for example [21], page 98).

On the other hand, for any ζ ∈ Ks+1,

|x′ (ζ)| ≤ |x∗ (uζ)| ≤ ‖x∗‖AC(Ks)
∗ |uζ |Ks

≤ ‖x∗‖AC(Ks)
∗ max

ζ∈Ks+1
z∈Ks

1

|ζ − z| ≤ C ′
s ‖x∗‖AC(Ks)

∗

where C ′
s = 1

δs
for δs = dist (Ks, Ks+1) . Thus, we get

|x′|∂Ks+1
≤ C ′

s ‖x∗‖AC(Ks)
∗ , (4.12)

which implies that the mapping x∗ → x′ is continuous. Combining (4.11) and (4.12)

we conclude that (4.8) is an isomorphism.

Let Γ, Γ′ be two arbitrary contours consisting of a finite number of smooth

Jordan curves and separating the singularities of the functions x (ζ) and x
′
(ζ). Then,

since they have the same singularities within, these two contours are homologous.

Therefore ∫

Γ

x
′
(ζ) x (ζ) dζ =

∫

Γ′

x
′
(ζ) x (ζ) dζ

for any x ∈ A (E) , x
′ ∈ A (E∗) which implies that the formula in (4.8) does not

depend on the choice of the contour.

Now, let K be an arbitrary compactum in Ĉ, K 6= Ĉ, K 6= ∅. Then, its

complement K∗ = E is an open set. By the part we have proved, there exists

an isomorphism

T : A (E)∗ → A (K) = A (E∗)

defined by the formula

x∗ (x) =
〈
x
′
, x

〉
=

∫

Γ

x
′
(ζ) x (ζ) dζ, x ∈ A (E) ,
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where x∗ ∈ A (E)∗ , x
′ ∈ A (E∗), and Γ is any contour consisting of a finite number

of smooth Jordan curves and separating the singularities of the functions x (ζ) and

x
′
(ζ) and x′ = Tx∗. Then, the adjoint of the operator T is an isomorphism:

T ∗ : A (K)∗ → A (E)∗∗ .

Besides, the spaces of analytic functions are Montel, reflexivity of the space A (E)

follows therefrom. That is, the natural embedding

J : A (E) → A (E)∗∗

is an isomorphism. Then,

S : A (K)∗ → A (E) = A (K∗)

defines an isomorphism as the superposition of isomorphisms, i.e. S = J−1 ◦ T ∗.

Now we have to show the isomorphism S is defined by the formula that is given

in the statement. For any x ∈ A (E)

Fx (x∗) = 〈x′, x〉 = x∗ (x) ,

where Fx = J−1x, x∗ ∈ A (E)∗, x′ ∈ A (K) and for any Fx ∈ A (E)∗∗, g = (S)−1x,

the equality

g (x′) = Fx (x∗)

holds. So, the theorem is proved.
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CHAPTER 5

BASES AND ISOMORPHISMS OF SPACES OF ANALYTIC FUNCTIONS

IN ONE DIMENSIONAL CASE

5.1 Bases

Let X be a complex linear topological space. A basis in X is a sequence {xk}
such that every vector x ∈ X has the unique expansion:

x =
∞∑

k=1

ξkxk, ξk ∈ C,

which converges in the topology of X.

A basis {xk} in A (E), E ⊂ Ω, is said to be extendible onto a set F, F 6=
E, F ∩ E 6= ∅ (outside if E ⊂ F and inside if F ⊂ E) if there exists a system of

germs {x̃k} ⊂ A (F ) with properties:

1. xk and x̃k generate the same germs on F ∩ E,

2. xk is also a basis in A (F ) .

For construction of extendible bases in the case of a compactum E = K ⊂ C it

is convenient to use Newton interpolational polynomials

p0 (z) = 1, pk (z) = (z − ζ1) · · · (z − ζk) , k ∈ N,

where {ζk} is a suitable sequence of points of interpolation on K.
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Example 2
{
zk

}∞
k=0

is a basis in all the spaces AR and ĀR, where AR and ĀR as

defined in (4.5) and (4.6), R ≥ 0. If ϕ : D → D1 is a conformal mapping, where D1

is the unit disc and D is a domain, the system of functions
{

ϕ (z)k
}∞

k=0
is a basis

for the space A (D). The system of functions
{

ϕ (z)k
}∞

k=0
also forms a basis for the

spaces A (Dr), A
(
D̄r

)
, where Dr = {|ϕ (z)| < r}, 0 < r < 1. So,

{
ϕ (z)k

}∞
k=0

is an

example of extendible bases, since it forms a basis for a family of spaces.

The existence of extendible bases was established by Walsh [32], Leja [17] for

regular and by Zahariuta [34] for polar compacta K ⊂ C. In both cases we have

a basis extendible on C and moreover onto a family of intermediate domains (or

compacta) bounded by level curves of some harmonic function, namely Green’s

potential.

Let X be a complex linear topological space and X∗ be the dual space of X.

The system {x′k}∞k=1 is said to be biorthogonal to the system {xk}∞k=1 in X if

〈xk, x
′
l〉 = δkl, for any k, l ∈ N,

where δkl is the Kronecker delta. For the case when the system in X is the Newton

polynomials, the biorthogonal system can be constructed in the following way:

Lemma 7 Let {βi}∞i=1 be any bounded sequence in C and

pk (z) =
k∏

i=1

(z − βi) , k = 1, 2, · · · , p0 (z) ≡ 1.

Then, the system

p′k (z) =
1

2πi

1

pk+1 (z)

is biorthogonal to the system of polynomials pk (z) for each k ∈ N, namely

〈p′l, pk〉 =

∫

Γ

p′l (ζ) pk (ζ) dζ = δlk,

where Γ is any arbitrary contour consisting of a finite number of smooth Jordan

curves separating the singularities of the functions pk (ζ) and p′l (ζ) for any k, l ∈ N,

i.e. {βi}∞i=1 are all inside the contour Γ.
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Proof. Let Γ be any arbitrary contour consisting of a finite number of smooth

Jordan curves separating the singularities of the functions pk (ζ) and p′l (ζ) for any

k, l ∈ N.

Let k = l. Then,

〈p′k, pk〉 =

∫

Γ

p′k (ζ) pk (ζ) dζ =
1

2πi

∫

Γ

1

pk+1 (ζ)
pk (ζ) dζ

=
1

2πi

∫

Γ

1

(ζ − βk+1)
dζ =

1

2πi
.2πi = 1,

by Cauchy Integral Formula.

Let k > l. Then,

〈p′k, pk〉 =

∫

Γ

p′k (ζ) pk (ζ) dζ =
1

2πi

∫

Γ

1

pk+1 (ζ)
pk (ζ) dζ

=
1

2πi

∫

Γ

(ξ − βl+2) (ξ − βl+3) . . . (ξ − βk) dξ = 0,

since the integrand is analytic inside the contour Γ.

Let k < l. Then,

〈p′k, pk〉 =

∫

Γ

p′k (ζ) pk (ζ) dζ =
1

2πi

∫

Γ

1

pk+1 (ζ)
pk (ζ) dζ

=
1

2πi

∫

Γ

1

(ξ − βk+1) (ξ − βk+2) . . . (ξ − βl+1)
dξ

=
1

2πi
2πiResζ=∞

(
1

(ξ − βk+1) (ξ − βk+2) . . . (ξ − βl+1)

)
. (see [26], pg 250)

But, since

1

(ξ − βk+1) (ξ − βk+2) . . . (ξ − βl+1)
=

1

ζ l−k+1
(
1− βk+1

ζ

)(
1− βk+2

ζ

)
. . .

(
1− βl+1

ζ

)

we conclude that

Resζ=∞

(
1

(ξ − βk+1) (ξ − βk+2) . . . (ξ − βl+1)

)
= 0.

Therefore 〈p′k, pk〉 = 0 for k < l as well, which proves the lemma.
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5.1.1 Construction of Newton Polynomials For Regular Compacta

Walsh Knots

Let K be a compactum in C. For any n ∈ N, let β
(n)
1 , β

(n)
2 , · · · , β

(n)
n+1 be a set of n+1

points z
(n)
k of K such that the modulus of the Vandermonde determinant

Vn

(
z

(n)
1 , z

(n)
2 , · · · , z

(n)
n+1

)
=

j=n+1∏
i<j=1

(
z

(n)
i − z

(n)
j

)
(5.1)

will be maximum, i.e. construct Fekete points for each n ∈ N. The Vandermonde

determinant is continuous in K and since K is compact, maximum is attained in K,

that is, for any n ∈ N, there exists
{

z
(n)
i

}n+1

i=1
⊂ K such that (5.1) is maximum. These

set of points may not be unique for each n ∈ N, but any set will suffice.

The following set of points

β
(0)
1 ,

β
(1)
1 , β

(1)
2 ,

· · · · · · · · · · · · · · · · · · · · ·

β
(n)
1 , β

(n)
2 , · · · , β

(n)
n+1,

· · · · · · · · · · · · · · · · · · · · ·

constructed by (5.1) for each n ∈ N are called the Walsh knots.

We will also enumerate the Walsh knots in the following way:

β1 = β
(0)
1 , β2 = β

(1)
1 , β3 = β

(1)
2 , · · · , βn = β

j(n)
k(n), · · · (5.2)

Lemma 8 Let K be a regular compactum in C with a connected complement. As-

sume that
{

β
(n)
i

}
, n ∈ N is any sequence of finite sets of points in K that satisfy

the condition

lim
n→∞

1

n

(
n+1∑
i=1

ln
∣∣∣z − β

(n)
i

∣∣∣
)

= gK∗ (z,∞) + ln C (K) , (5.3)

uniformly on any closed subset of K∗, where C (K) is the capacity of the compactum

K and gK∗ (z,∞) is the Green function. Then,

lim
k→∞

1

k

(
k∑

i=1

ln |z − βi|
)

= gK∗ (z,∞) + ln C (K) , (5.4)
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where {βj}k
j=1 is the sequence obtained by enumeration of β

(n)
i as in (5.2).

Proof. Let S be a compact subset of K∗. Consider the sequence of functions

ui (z) :=

i+1P
j=1

ln
���z−β

(n)
j

���
i+1

, i ∈ N in S. Then, by (5.3) , we have

lim
n→∞

ui (z) = gK∗ (z,∞) + ln C (K) .

uniformly on S. Denote kn = n(n+1)
2

and construct a new sequence {vi}∞i=1 as follows:

v1 = u1, v2 = u2, v3 = u2, v4 = u3, v5 = u3, v6 = u3, · · · ,

vkn−1+1 = un, · · · , vkn = un, vkn+1 = un+1, · · · .

That is, the nth term of {ui}∞i=1 will be repeated n times in {vi}∞i=1 . It is obvious

that also

lim
n→∞

vi (z) = gK∗ (z,∞) + ln C (K) .

uniformly on S. Now, take the partial sums Vm =
m∑

i=1

vi. Then, by Cesaro’s Theorem,

lim
m→∞

Vm

m
= gK∗ (z,∞) + ln C (K) ,

uniformly on S. Therefore

lim
kn→∞

n∑
j=0

j+1∑
i=1

ln
∣∣∣z − β

(j)
i

∣∣∣
kn

= lim
kn→∞

kn∑
j=1

ln |z − βj|

kn

(5.5)

= gK∗ (z,∞) + ln C (K) .

Hence, it is shown that (5.4) holds for the subsequence kn.

Now, let k ∈ N such that k = kn−1 + l < kn, l ∈ N. Then, since

1

k

k∑
j=1

ln |z − βj| = 1

k

kn−1∑
j=1

ln |z − βj|+ 1

k

k∑

j=kn−1+1

ln |z − βj| ,

taking the limit as k →∞, then also n →∞ and using (5.5) , we see

lim
k→∞

1

k

k∑
j=1

ln |z − βj| = gK∗ (z,∞) + ln C (K) + lim
k→∞

1

k

k∑

j=kn−1+1

ln |z − βj| ,
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Therefore, to prove (5.4) it suffices to show

lim
k→∞

1

k

k∑

j=kn−1+1

ln |z − βj| = 0

uniformly on S . Since there exists a constant 0 < ∆ < ∞ such that

1

∆
< |z − βj| < ∆, for j ∈ N, z ∈ S.

we obtain that

lim
k→∞

1

k

k∑

j=kn−11

ln |z − βj| ≤ lim
k→∞

1

k
(k − kn−1) ln ∆ = 0.

Therefore, (5.4) follows, which completes the proof.

Proposition 9 Let K be a regular compactum in C with a connected complement.

Let {βj : i = 1, 2, · · · } ⊂ K be any sequence such that the relation holds

lim
k→∞

1

k

(
k∑

i=1

ln |z − βi|
)

= gK∗ (z,∞) + ln C (K) , (5.6)

for each z ∈ K∗; here gK∗ (z,∞) is the Green’s function of the region K∗ with

singularity ln |z| at infinity. Then the system of polynomials

pk (z) =
k∏

i=1

(z − βi) , k = 1, 2, · · · , p0 (z) ≡ 1, (5.7)

forms a basis in the space A (K) and in all the spaces A (DR) , A (KR) , and A (C),

1 < R < ∞, where DR := {z ∈ K∗ : gK∗ (z,∞) < ln R} and KR := DR.

Proof. Let (5.6) hold. Then, it follows that

C1 (r, ε) (r − ε)n ≤ |pk (z)|Dr
≤ C2 (r, ε) (r + ε)n , 1 < r < ∞, (5.8)

for any ε > 0 with some positive constants C1 (r, ε) , C2 (r, ε) . By Lemma 7, p′k (z) =

1
2πi

1
pk+1(z)

is the biorthogonal system of pk (z) . Then, by (5.8) , the following is valid:

|p′k (z)|Dr
≤ C (r, ε)

(
1

r − ε

)k+1

= C3 (r, ε)

(
1

r − ε

)k

. (5.9)
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Let x ∈ A (DR) for any 1 < R < ∞. Then, for r < ρ < R, the following estimates

are valid:

|pk (z)|Dr
≤ C2 (r, ε) (r + ε)k , (5.10)

|p′k (z)|Dρ ≤ C ′
3 (ρ, ε)

(
1

ρ− ε

)k

. (5.11)

The formal expansion of x is x =
∑

ξkpk (z) , where ξk = 〈p′k, x〉 . Then, by (5.11)

and GKS-duality,

|ξk| ≤ |〈p′k, x〉| ≤ CC ′
3 (ρ, ε) |x|Dρ

(
1

ρ− ε

)k

. (5.12)

By (5.10) and (5.12) , the general term of the basis expansion of x has the following

bound:

|ξk| |pk (z)|Dr
≤ C (r, ρ, ε) |x|Dρ

(
r + ε

ρ− ε

)k

.

Choose ε so small that r+ε
ρ−ε

< 1. Then, it is seen that the sum
∑ |ξk| |pk (z)|Dr

is less

than the sum of a convergent geometric series, therefore it converges as well. So,

the system of polynomials {pk (z)} forms a basis for A (DR) .

Let x ∈ A (C) . Then, for any R ≥ 1, x ∈ A (C) ↪→ AC (DR) . Therefore, the

basis expansion of x is x =
∑

ξkpk (z) , where ξk = 〈p′k, x〉 . But it has been shown

that it is convergent in the topology of the space A (DR). Therefore, the system of

polynomials {pk (z)}∞k=0 is a basis for the space A (C) .

For any R ≥ 1, consider the space A (KR) , where KR := D̄R. We assume that

K1 = K. Then, each A (KR) can be represented as the inductive limit

A (KR) = limindr↓RA (Dr) .

Since the system of polynomials {pk (z)}∞k=0 is a basis for each of the spaces A (Dr) ,

it will also be a basis for their inductive limit. Therefore, the system of polynomials

{pk (z)}∞k=0 is a basis for the space A (KR) .

Corollary 1 Let K be a regular compactum in C with a connected complement.

Let {βj : i = 1, 2, · · · } ⊂ K be the enumerated Walsh knots as in (5.2) . Then, the

system of polynomials

pk (z) =
k∏

i=1

(z − βi) , k = 1, 2, · · · , p0 (z) ≡ 1, (5.13)
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forms a basis in the space A (K) and in all the spaces A (DR) , A (KR) , and A (C),

1 < R < ∞, where DR := {z ∈ K∗ : gK∗ (z,∞) < ln R} and KR := DR.

Proof. Let
{

β
(n)
i

}n+1

i=1
⊂ K be Fekete points. Define

qn (z) :=
n+1∏
i=1

(
z − β

(n)
i

)
.

Then, construct

u (z) :=
1

n
ln |qn (z)| − 1

n
ln ‖qn (z)‖K − gK∗ (z,∞) , where z ∈ K∗ \ {∞} .

Since all zeros of qn (z) lie in K, u is harmonic on C \K. Besides,

1

n
ln |qn (z)| =

1

n
ln

(
|zn|

(
1 +

a1

z
+ · · ·+ an

zn

))

= ln |z|+ 1

n
ln

(
1 +

a1

z
+ · · ·+ an

zn

)
,

which implies that u (z) is also harmonic at infinity. Therefore, we conclude that

u (z) is harmonic in K∗. Then, we have

lim sup
z→ζ

u (z) ≤ 1

n
ln |qn (z)| − 1

n
ln ‖qn (z)‖K ≤ 0, for ζ ∈ ∂K∗,

so by Maximum Principle, u ≤ 0 on K∗. Therefore

1

n
ln |qn (z)| ≤ 1

n
ln ‖qn (z)‖K + gK∗ (z,∞) , for z ∈ K∗ \ {∞} . (5.14)

Since u ≤ 0 on K∗, we may also apply Harnack’s inequality (see [23], pg 13) to −u

and obtain

u (z) ≥ τK∗ (z,∞) u (∞) for z ∈ K∗. (5.15)

Using Lemma 2,

u (∞) = ln C (K)− 1

n
ln ‖qn (z)‖K ≥ ln C (K)− ln δn (K) , (5.16)

where δn (K) is the n-th diameter of K. Then, combining (5.14) , (5.15) , and (5.16)

we get

ln

(
C (K)

δn (K)

)τK∗ (z,∞)

+ gK∗ (z,∞) +
1

n
ln ‖qn (z)‖K ≤ 1

n
ln |qn (z)| (5.17)

≤ gK∗ (z,∞) +
1

n
ln ‖qn (z)‖K .
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Now, taking the limit as n →∞ for (5.17) and using Lemma 1 again,

gK∗ (z,∞) + ln C (K) ≤ lim
n→∞

1

n
ln |qn (z)| ≤ gK∗ (z,∞) + ln C (K) .

Therefore,

lim
n→∞

1

n
ln |qn (z)| = gK∗ (z,∞) + ln C (K) . (5.18)

Using Lemma 8, it is seen that

lim
n→∞

1

n
ln |pn (z)| = gK∗ (z,∞) + ln C (K) ,

where pk (z) =
k∏

i=1

(z − βi) , k = 1, 2, · · · , p0 (z) ≡ 1, {βi}∞i=1 are the enumerated

Walsh knots as given in (5.2) . Then, by Lemma 9, we conclude that the system of

polynomials in (5.13) forms a basis for all the spaces A (K) , A (DR) , A (KR) , and

A (C) . That proves the corollary.

Leja Points

Let K be a compactum in the complex plane C. Take any β1 ∈ K. The sequence

(βi)
∞
i=1 is constructed inductively: If (n− 1) points {βi}n−1

i=1 ⊂ K are chosen, choose

nth point βn ∈ K such that modulus of the Vandermonde determinant satisfies the

condition

|Vn (β1, · · · , βn−1; βn)| = max {|Vn (β1, · · · , βn−1; ζ)| : ζ ∈ K} .

That is, if (n− 1) points are chosen, the nth point ζ = βn which maximizes the

Vandermonde determinant is chosen. Interpolation points constructed in that way

are called Leja points.

Corollary 2 Let K be a regular compactum in C with a connected complement. Let

{βj : i = 1, 2, · · · } ⊂ K be Leja points. Then the system of polynomials

pk (z) =
k∏

i=1

(z − βi) , k = 1, 2, · · · , p0 (z) ≡ 1,

forms a basis in the space A (K) and in all the spaces A (DR) , A (KR) , and A (C),

1 < R < ∞, where DR := {z ∈ K∗ : gK∗ (z,∞) < ln R} and KR := DR.
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Proof. Leja proved in [17] that the system of polynomials {pk} satisfy the condition

lim
k→∞

1

k
(ln |pk|) = gK∗ (z,∞) + ln C (K) .

Then, using Proposition 9, we conclude that the system {pk} forms a basis for the

spaces A (K) , A (DR) , A (KR) , and A (C) . Therefore, the corollary is proved.

5.1.2 Construction of Newton Polynomials For Polar Compacta

For a polar compact set K ⊂ C, as it was shown in [34], a basis in A (K) can be

constructed as sequence of interpolational Newton polynomials:

pn (z) =
n∏

j=1

(z − βj) .

In this case the sequence of knots is obtained from the sequence of Evans’ points ζν

(see Theorem 14), repeating them in such a way that, roughly speaking, among the

first n knots the point ζν appears nearly [αjn] times (proportionally to the weight

αj > 0); so βj behaves like a random sequence chosen from the probability space

{ζν} with the discrete probability measure µ defined by µ (ζν) = αν .

More precisely, it was shown in [34] and [39] that, for a polar compact set K ⊂ C,

the system of polynomials

pk (z) =
k∏

i=1

(z − ζi)
kj(n) , k = 1, 2, · · · , p0 (z) ≡ 1, (5.19)

will form a basis, where kj (n) satisfies the conditions:

1. kj (1) = δ1j,

2. kj (n + 1) = kj (n) + δj,µ(n) with some n ∈ N,

3.
∞∑

j=1

∣∣∣αj − kj(n)

n

∣∣∣ → 0 as n →∞.

Theorem 18 (Zahariuta [34], [39]) Let K be a polar compactum in C. Then the

system of polynomials

pk (z) =
k∏

i=1

(z − ζi)
kj(n) , k = 1, 2, · · · , p0 (z) ≡ 1,

where kj (n) satisfies the conditions above, forms a basis in A (K) .
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Proof. Let K be a polar compactum in C. Then, using Theorem 14, there exists a

sequence of nonnegative numbers {αj},
∞∑

j=1

αj = 1, and a point sequence {ζj} ⊂ K

such that the function Ψ(z) =
∞∑

j=1

αj ln |z − ζj| is subharmonic in the entire plane

C, harmonic C\K, and Ψ(z) ≡ −∞ for z ∈ K. We may assume that αj ↓ 0.

Let ∆α = {z : Ψ(z) < α}. The subharmonic function Ψ is upper semi-continuous

in C, so Ψ(z) → −∞ for z → z0 and z0 ∈ K. Thus

∩α∆α = K, ∆α b ∆β, α < β,

from which it follows that the system of norms |x|∆α
, −∞ < α < ∞ yields the

original topology in A(K).

Consider the system of polynomials

p0 ≡ 1, pn(z) =
n∏

j=1

(z − βj)
kj(n), n = 1, 2, · · ·

where kj(n) satisfies the conditions 1, 2, 3 of Section 5.1.2. Consider

ln |pn(z)|1/n = ln

∣∣∣∣∣
n∏

j=1

(z − βj)
kj(n)

∣∣∣∣∣

1/n

=
1

n

n∑
j=1

kj(n) ln |z − βj| .

Then,

lim
n→∞

ln |pn(z)|1/n = lim
n→∞

n∑
j=1

kj(n)

n
ln |z − βj| =

∞∑
j=1

αj ln |z − βj| = Ψ (z) .

Hence, we conclude that

lim
n→∞

|pn (z)|1/n = eΨ(z), z ∈ C. (5.20)

We will show that the system of polynomials {pn (z)} forms a basis in A (K). Con-

sider the system of functions

qn(z) =
1

2πi

1

pn+1(z)

in the space A(K∗). Using Lemma 7, the system of functions {qn} in the space

A (K∗) is biorthogonal to the system {pn} .The formal expansion of an arbitrary

x ∈ A(K) in a series of the {pn(z)} is the Newton interpolation series

x(z) =
∞∑

n=0

ξnpn(z), (5.21)
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where

ξn =

∫

∂∆α

x(ξ)qn(ξ)dξ, α = α(x) > −∞. (5.22)

The convergence of the series (5.21) in A(K) for each x ∈ A(K) remains to be

established. From (5.20) and (5.22) we obtain the bounds

C1(α, ε)e(α−ε)n ≤ |pn|∆α
≤ C2(α, ε)e(α+ε)n, (5.23)

|ξn| ≤
L(α) |x|∆α

2πC1(α, ε)
e−(α−ε)n = M(x, α, ε)e−(α−ε)n, (5.24)

0 < C1(α, ε), C2(α, ε) < ∞, −∞ < α < ∞, ε > 0. (5.25)

Taking β = α− 3ε, we obtain that

∑
|ξn| |pn|∆β

≤ M1 (x, α, ε)
∞∑

n=0

e−εn < ∞, (5.26)

M1 (x, α, ε) = M (x, α, ε) C (α− 3ε, ε) .

Inequality (5.26) shows that the series in (5.21) converges in A (K) for each x ∈
A (K). Hence, {pn} is a basis in A (K).

Remark 2 If a compactum L ⊂ Ĉ contains the infinite point then there is no

polynomial basis in A (L). But using results of the sections 5.1.1 and 5.1.2, we can

easily construct extendible bases, if L is regular or polar, but ∞ ∈ L 6= Ĉ. Indeed,

if ϕ (z) = 1
z−a

with a /∈ L, then K := ϕ (L) ⊂ C. Due to Corollary 1, or Theorem

18, there exists a polynomial basis {pk (z)} in A (K). Then, obviously, the system

qk (z) := pk

(
1

z − a

)
.

is a basis in all the spaces A (L) , A (LR) , A (GR), where LR = ϕ−1 (KR) and

GR = ϕ−1 (DR) and KR, DR are as defined in Proposition 9.

5.1.3 The Hilbert Methods Proof

Theorem 19 Let K ⊂ D be a regular pair ”compact set-domain”. Let H0, H1 be

such that the dense continuous imbeddings hold:

A (K) ↪→ H0 ↪→ AC (K) , (5.27)
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A (D∗) ↪→ H ′
1 ↪→ AC (D∗) , (5.28)

where H ′
1 is a GKS-realization of the dual space H∗

1 . Then the common orthogonal

basis {ek (z)} for H0, H1, normalized in H0 and ordered by non-decreasing of its

norms in H1 :

‖ek‖H0
= 1, µk = µk (H0, H1) := ‖ek‖H1

↗∞,

is also a common basis in all spaces A (D) , A (Dα) , A (Kδ) , and A (K) where Dα, Kδ

are the sublevel domains as defined in Lemma 6.

Proof. Let K, D, H0, H1 be spaces as given. Using GKS-duality, the left hand

side of the imbedding (5.28) can be realized as

H1 ↪→ A (D) . (5.29)

Then, combining (5.27) and (5.29) , the following continuous imbeddings are valid:

H1 ↪→ A (D) ↪→ A (K) ↪→ H0 ↪→ AC (K) (5.30)

On the other hand, using GKS-duality, the left hand side of the imbedding (5.27)

can be realized as

H ′
0 ↪→ A (K∗) . (5.31)

Then, combining (5.28) and (5.31), the following continuous imbeddings are valid:

H ′
0 ↪→ A (K∗) ↪→ A (D∗) ↪→ H ′

1 ↪→ AC (D∗) . (5.32)

The inclusion H1 ⊂ H0 is a dense linear imbedding and since the spaces A (D) , A (K)

are nuclear, it is compact. Then, using Theorem 7, there exists a system {ek} ⊂ H1

which is a common orthogonal basis in H1 and H0 such that

‖ek‖H0
= 1, µk = µk (H0, H1) = ‖ek‖H1

↗∞.

Let Dq be the sublevel open sets defined in Lemma 6. The continuity of the imbed-

ding H1 ↪→ A (D) implies that for any q, 0 < q < 1, there exists a constant Cq > 0

such that for any x ∈ H1 ↪→ A (D) ,

|x|Dq
≤ Cq ‖x‖H1
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In particular,

|ek|Dq
≤ Cq ‖ek‖H1

= Cqµk (5.33)

since ‖ek‖H1
= µk. The continuity of the imbedding H0 ↪→ AC (K) implies that, for

any x ∈ H0 ↪→ AC (K) ,

|x|K ≤ C ‖x‖H0
.

In particular,

|ek|K ≤ C ‖ek‖H0
= C (5.34)

since ‖ek‖H0
= 1. Using Theorem 13 for ek with the help of the (5.33) and (5.34) ,

|ek|Dαq
≤ |ek|1−α

K |ek|αDq
= C1−α (Cqµk)

α = C1−αCα
q µα

k .

where Dαq = {z ∈ D : 0 < ω (D, K, z) < αq} , 0 < αq < 1. Since αq ↑ α as q ↑ 1,

we get

|ek|Dα
≤ C (α, ε) µα+ε

k . (5.35)

Now, we have to find the estimates for the biorthogonal system. Let {e′k} ⊂ H ′
0 ⊂

A (K∗) . The formal expansion of an arbitrary x ∈ H1 can be written as

x =
∑

e∗k (x) ek

where {ek (z)} ⊂ H0 ⊂ A (D) .

Let Kδ be a sequence of compact sets such that Kδ ⇓ K where Kδ are as defined

in Lemma 6. The continuity of the imbedding H ′
0 ↪→ A (K∗) implies that for any δ,

0 < δ < 1, there exists a constant C ′
δ > 0 such that for any x′ ∈ H ′

0 ↪→ A (K∗) ,

|x′|Kδ
≤ C ′

δ ‖x′‖H′
0
.

In particular,

|e′k|Kδ
≤ C ′

δ ‖e′k‖H′
0

= C ′
δ, (5.36)

since ‖e′k‖H′
0

= 1.The continuity of the imbedding A (D∗) ↪→ H ′
1 implies that for

any x′ ∈ A (D∗) ↪→ H ′
1,

|x′|D∗ ≤ C ′ ‖x′‖H′
1
.
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In particular,

|e′k|D∗ ≤ C ′ ‖e′k‖H′
1

= C ′µ−1
k , (5.37)

since ‖e′k‖H′
1

= 1
µk

.

Again using Theorem 13 for e′k with the help of the (5.36) and (5.37) ,

|e′k|D∗αδ
≤ |ek|1−α

K∗
δ
|ek|αD∗ = C

′(1−α)
δ

(
C ′µ−1

k

)α
.

where Dαδ = {z ∈ D : 0 < ω (D,K, z) < αδ} , 0 < αδ < 1. Since αδ ↑ α as δ ↑ 1,

we get

|e′k|D∗α ≤ C ′ (α, ε) µ−α+ε
k . (5.38)

Now, we will show that {ek} will be a basis for each of the spaces A (D), A (Dα),

A (Kγ), and A (K) .We know

e′k ∈ H ′
0 ↪→ A (K∗) ↪→ A (D∗) ↪→ AC (D∗

α) ↪→ AC (D∗) ↪→ H ′
1.

To show that {ek} is a basis for A (D) , first observe that for any x ∈ A (D) ↪→
AC (Dβ) , and e′k ∈ H ′

0 ↪→ A (K∗) ↪→ A (D∗) ↪→ H ′
1

|e′k (x)| ≤ |e′k|∗β |x|β . (5.39)

Now, take any x ∈ A (D) ↪→ H0. Then, since x is also an element of H0, the formal

series expansion of x in H0 is

x =
∞∑

k=1

e′k (x) ek ∈ H0.

We have to show that for any x ∈ A (D) and any α < β,

∞∑

k=1

|e′k (x)| |ek|α < ∞ (5.40)

Using (5.39) and estimates (5.35) and (5.38) ,

∞∑

k=1

|e′k (x)| |ek|α ≤
∑

|e′k (x)|∗β |ek|α |x|β

≤ |x|β
∑

K (α, β, ε)
1

µβ−ε
k

µα+ε
k
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= |x|β K (α, β, ε)
∑

µα−β+2ε
k

where the second inequality follows from the (5.35) and (5.38). Take ε such that

α− β + 2ε = −σ < 0, then

∞∑

k=1

|e′k (x)| |ek|α ≤ |x|β K (α, β, ε)
∞∑

k=1

1

µσ
k

< ∞.

where
∞∑

k=1

1
µσ

k
< ∞ follows from the nuclearity of the operator H1 ↪→ H0. So, for any

x ∈ A (D) , indeed (5.40) is satisfied, therefore the system {ek} is a basis for A (D) .

Now, let’s show that {ek} is a basis for A (Dδ) , 0 < δ < 1. Observe that for any

x ∈ A (Dδ) ↪→ AC (Dβ) , and e′k ∈ H ′
0 ↪→ A (K∗) ↪→ A (D∗) ↪→ H ′

1 :

|e′k (x)|δ ≤ |e′k|∗β |x|β (5.41)

Now, take any x ∈ A (Dδ) ↪→ H0. Then, since x is also an element of H0, the formal

series expansion of x in H0 is

x =
∞∑

k=1

e′k (x) ek ∈ H0

We have to show that for any x ∈ A (Dδ) and any α < β < δ,

∞∑

k=1

|e′k (x)|δ |ek|α < ∞ (5.42)

Using (5.41) and estimates (5.35) and (5.38) ,

∞∑

k=1

|e′k (x)|δ |ek|α ≤
∑

|e′k (x)|∗β |ek|α |x|β

≤ |x|β
∑

K (α, β, ε)
1

µβ−ε
k

µα+ε
k

= |x|β K (α, β, ε)
∑

µα−β+2ε
k

where the second inequality follows from the (5.35) and (5.38). Take ε such that

α− β + 2ε = −σ < 0, then

∞∑

k=1

|e′k (x)|δ |ek|α ≤ |x|β K (α, β, ε)
∞∑

k=1

1

µσ
k

< ∞.
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where
∞∑

k=1

1
µσ

k
< ∞ follows from the nuclearity of the operator H1 ↪→ H0. So, for

any x ∈ A (Dδ) , indeed (5.42) is satisfied, therefore the system {ek} is a basis for

A (Dδ) .

Now, we will show that the system {ek} is a basis for the spaces for the spaces

A (K) and A (Kρ). These spaces can be represented as the inductive limits:

A (K) = limindδ↓0A (Dδ) ,

A (Kρ) = limindδ↓ρA (Dδ) .

Since the system {ek} is a basis for each of the spaces A (Dδ), it will be a basis for

their inductive limits as well. Therefore, the system {ek} is basis for both of the

spaces A (K) and A (Kρ) .

The restrictions on Hilbert spaces H1, H0 can be considerably weakened if the

pair (K,D) satisfies certain additional conditions (see, Theorem 20 below).

Definition 10 Let D be a regular domain in C.We say that D is stable from outside

if for any G(s) ⇓ D̄ we have

ω
(
G(s), K, z

) ↑ ω (D, K, z) , ∀z ∈ D.

Definition 11 Let K be a regular compactum in the domain D. We say that K is

stable from within if K∗ = C \K is stable from outside.

Let K∗ be stable from outside,

1− ω (K∗, D∗, ζ) = ω (D, K, ζ) ,

where K∗ = C \K, D∗ = C \D.Then,

1− ω
(
K(s)∗, D∗, ζ

)
= ω

(
D, K(s), ζ

)

where K(s) ⇑ G, K(s)∗ ⇓ G∗, K = Ḡ. Since K∗ is stable from outside,

ω
(
K(s)∗, D∗, ζ

) ↑ ω (K∗, D, ζ) .

So,

ω
(
D, K(s), ζ

) ↑ ω (D,K, ζ)

if K∗ is stable from outside.
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Theorem 20 Let K ⊂ D be a regular pair ”compact set-domain”, and K be sta-

ble from within and D be stable from outside. Let H0, H1 be such that the dense

continuous imbeddings hold:

A (K) ↪→ H0 ↪→ A (intK) , A (D∗) ⊂ H ′
1 ⊂ A

(
D̄∗) ,

where H ′
1 is a GKS-realization of the dual space H∗

1 . Then the common orthogonal

basis {ek (z)} for H0, H1, normalized in H0 and ordered by non-increasing of its

norms in H1 :

‖ek‖H0
= 1, µk = µk (H0, H1) := ‖ek‖H1

↗∞

is also a common basis in both spaces A (D) and A (K) .

Theorem 21 Let K ⊂ D be a regular pair ”compact set-domain”. Under the con-

ditions of Theorem 19, let {ek} be the common basis for the spaces A (K) and A (D)

that was constructed therefrom. Then the following asymptotics

lim
ζ→z

lim
k→∞

ln |ek (z)|
ln µk

= ω (D,K, z) , z ∈ D \K (5.43)

is fulfilled uniformly on every compactum L ⊂ D \K.

Proof. Let the sublevel domain Dα = {z ∈ D : ω (z) = ω (D, K, z) < α} . Using

(5.35) , we have

|ek (z)|Dα
≤ C (α, ε) µα+ε

k .

First, take the logarithm of both sides and divide by ln µk. Then, taking the limit

as k →∞, we get

lim
k→∞

ln |ek (z)|
ln µk

≤ α , for any z ∈ Dα.

After regularization,

u (z) = lim
ζ→z

lim
k→∞

ln |ek (z)|
ln µk

≤ α = ω (z) , for any z ∈ Dα.

We will prove the other inequality by contradiction. Assume that there exists z0 ∈
D \K such that

u (z0) < ω (z0) = α. (5.44)
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Then, there exists an open disk D (z0, ε) ⊂ D such that

u (z) < α− ε, for any z ∈ D (z0, ε) .

Using (5.44) , we conclude that there exists k0 ∈ N such that

ln |ek (z)|
ln µk

< α− δ, for any z ∈ D (z0, ε) ,

where k ≥ k0.

Let x ∈ A (Dα) be a function which is not analytically extendable to any larger

domain. The formal expansion of x will be:

x (z) =
∞∑

k=1

e′k (x) ek (z) .

By (5.38) , we have

|e′k| ≤ C (α, ε) µ−α+ε
k .

Then,
∞∑

k=1

|e′k (x)| |ek| ≤
∞∑

k=1

C (α, ε) µ−α+ε
k C ′ (α, δ) µα−δ

k

≤ C (α, ε, δ)
∞∑

k=1

µ−2α+ε+δ
k .

Choose δ so that −2α+ε+δ < 0. Then the convergence of the sum follows from the

nuclearity of the operator H1 ↪→ H0. That shows that x can be analytically extended

in the disk D (z0, ε) , which contradicts the assumption that x is not extendible. This

contradiction shows the validity of (5.43) .

5.2 Isomorphic Classification

5.2.1 About Compacta With Infinitely Many Holes

Theorem 22 Let K be a compactum, with complement D = K∗ consisting of an

enumerable collection of mutually exterior regions Dj. Then A (K) is isomorphic to

the topological sum of the spaces A (Kj) , Kj = (Dj)
∗ .
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The isomorphism mentioned is represented by the formula

x ↔ (x1, x2, · · · , xj, · · · ) ,

where xj ∈ A (Kj) , and is computed with the aid of the formula

xj (z) =

∫

Γj

x (ζ) dζ

ζ − z
,

where z ∈ ∆j and ∆j = ∆j (x) is a neighborhood of the compactum Kj, and the

contour Γj consists of a finite number of closed Jordan curves lying in (∆j)
∗ and

containing in its interior all the singular points of the function x (z) situated in

Dj. For each function x ∈ A (K) , only a finite number of the functions xj are not

identically zero. Thus x (z) =
∞∑

j=1

xj (z) for some neighborhood ∆ = ∆ (x) of the

compactum K.

Corollary 3 The space A (K) , where K satisfies the conditions of Theorem 22, is

not isomorphic to the space A (K0) if K0 is a compactum containing in its comple-

ment only a finite number of mutually exterior connected components.

5.2.2 Isomorphism to A1

Theorem 23 Let K be a compactum in Ĉ. For the spaces A(K) and Ā1 to be

isomorphic, it is necessary and sufficient that (a) the compactum K be regular, and

(b) the complement K∗ = Ĉ \K consist no more than a finite number of connected

components.

Proof. Sufficiency

Let the compactum K satisfy the conditions of Proposition 9. Then, from it follows

(5.6) that

L2(α, ε)C(K)ke(α−ε)k ≤ |pk(z)|∆α
≤ L1(α, ε)C(K)ke(α+ε)k, (5.45)

ε > 0, 0 < L2(α, ε), L1(α, ε) < ∞,

where ∆α is the interior of the level curve Γα = {z : gK∗ (z,∞) = α}, 0 < α < ∞
and gK∗ (z,∞) is the Green’s function. K is regular, hence gK∗ (z,∞) = 0 for any
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z ∈ K. Define ∆α b ∆β for α < β, then K = ∩α>0∆α. Inductive topology can be

defined on A (K) as in (4.4).

Given x ∈ A(K), consider its basis expansion:

x(z) =
∞∑

k=0

ξkpk (z) .

Then, from (5.45) we have

|x|∆α
≤ L(α, ε)

∞∑

k=0

|ξk|C(K)ke(α+ε)k.

Therefore the mapping T : Y → A (K), where Y := limindλ↓0l1(eλk) defined by

the formula
(
ξkC (K)k

)
→ x is continuous. Since both of the spaces A (K) and Y

are complete and the operator T is a continuous bijection, by Banach Theorem, we

get T is an isomorphism. Hence, A (K) is isomorphic to the space Y . Since Ā1 is

isomorphic to Y , we conclude that A (K) is isomorphic to Ā1. If ∞ ∈ K and K has

a simply connected complement, Remark 2 can be used to reduce to the same case.

Now, let K be a regular compactum in Ĉ with complement D = K∗, consisting

of a finite number of exterior connected components Dj, j = 1, 2, . . . , r. Then,

A(D) '
r∏

j=1

A(Dj), consequently

A(K) ' A(D)∗ '
r∏

j=1

A(Dj)
∗ '

r⊕
j=1

A(Kj),

where Kj = (Dj)
∗. Using the previous argument, A(Kj) ' Ā1, thus A(K) '

Ā1 × Ā1 × · · · × Ā1 (r times) and so A(K) ' Ā1.

Necessity of the condition (a)

Since the case the complement of K has finite number of connected complements

can be obtained similarly, we will assume that the complement of K is connected for

simplicity. Then the regularity of the compactum K will follow from the existence

of an isomorphism between the spaces A(K) and Ā1.

We will prove by contradiction. Assume that K is not regular but there is an

isomorphism T of the space A(K) onto Ā1. Then, the adjoint operator T ∗ is an

isomorphism of the space (Ā1)
∗ onto A(K)∗. Since A1 is Montel space, (Ā1)

∗ is
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isomorphic to A1 and the space A(K)∗, according to Theorem 17, is isomorphic to

the space A(D) where D = K∗. Hence there is an isomorphism T̃ of the space A1

onto A(D). Now, for D, we will define the projective limit topology as:

A (D) = limprojAC (Ds) ,

where the Ds are open sets, Ds b Ds+1, s = 1, 2, · · · , and ∪sDs.

Since the system of functions zk form a basis in A1, their isomorphic images

hk(z) = T̃ (zk) is a basis in A(D). Thus, for each s ≥ s0 = s0(T ), choose ri =

ri(s) < 1 and Ci(s), 0 < Ci < ∞, i = 1, 2, such that

C2r
k
2 ≤ |hk|Ds

≤ C1r
k
1 ,

and ri(s) ↑ 1 for s ↑ ∞.Define

Ψ(z) := lim
ς−→z

lim
k−→∞

ln |hk(ς)|
k

. (5.46)

Since hk(ς) are analytic in D, ln|hk(ς)|
k

are subharmonic functions in D. We have to

show that ln|hk(ς)|
k

are locally uniformly bounded above in the domain D. Let C be

a compactum in D. Then, there exists s such that C ⊂ Ds, so

|hk(ς)|C ≤ |hk(ς)|Ds
≤ C1r

k
1 , ∀k.

=⇒ ln |hk(ς)|C
k

≤ ln C1

k
+ ln r1,∀k (5.47)

Hence, ln|hk(ς)|
k

are indeed locally uniformly bounded on D. Using Theorem 9, we

conclude that Ψ(z) is a subharmonic function. Also, using (5.47),

lim
ς−→z

lim
k−→∞

ln |hk(ς)|
k

≤ lim
ς−→z

(
lim

k−→∞
ln C1

k

)
+ lim

ς−→z
lim

k−→∞
ln r1

=⇒ Ψ(z) ≤ 0, z ∈ D, since r1 < 1. (5.48)

Also, let z ∈ D̄0, where D0 = Ds0 . Then

Ψ(z) ≤ ln r1(s0) = −σ < 0. (5.49)

The set (D̄0)
∗ = G is open and consists of a finite number of mutually exterior

regular regions Gj, j = 1, 2, ..., m. Since the compactum K is not regular, for at

least one j the compactum Kj = Gj ∩K is not regular.
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Consider the generalized solution function wj(z) = w(Kj, Gj, z) constructed as

in Remark 1. By construction, since wj(z) must coincide with f on the boundaries,

wj(z) ≡ 1 on ∂Gj. So, for any z ∈ ∂Gj,

Ψ (z) ≤ −σwj(z).

By the generalized maximum principle, if the maximum value of Ψ (z) exists, it is

attained on the boundary. So,

Ψ (z) ≤ −σwj (z) , ∀z ∈ Gj.

Also, since Gj\Kj ⊂ Gj, that also holds for Gj\Kj, that is,

Ψ (z) ≤ −σwj (z) , ∀z ∈ Gj\Kj. (5.50)

From (5.46) and (5.50) the existence of the function C (z) , defined in Gj\Kj, follows,

and we have

|hk (z)| ≤ C (z) e−σwj(z)k, z ∈ Gj\Kj. (5.51)

As {hk (z)} form a basis for A (D), the basis expansion of an arbitrary element

x ∈ A (D) is:

x (z) =
∞∑

k=0

ξkhk (z) .

Since {hk (z)} is the isomorphic image of the power basis in A1, the following in-

equality holds for the coefficients ξk :

lim
k−→∞

|ξk|
1
k ≤ 1,

i.e., for each δ > 0,

|ξk| ≤ L (x, δ) eδk, k = 0, 1, · · · . (5.52)

Since Kj is an irregular compactum, it follows from Remark 1 that there exists a

point z0 ∈ ∂K∗
j and a sequence {zν} ⊂ Gj\Kj, zν → z0 , such that w(zν) → 2α0 > 0.

Without loss of generality we can assume w (zν) ≥ α0, ν = 1, 2, · · · . Hence by

choosing δ so small that δ−σα0 < 0 we obtain, by the use of (5.51) and (5.52), that

|x (zν)| ≤ L (x, δ) C (zν)
(
1− eδ−σα0

)−1
, x ∈ A (D) .
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Thus each function x ∈ A (D) has the bound

|x (zν)| = O (C (zν)) , (5.53)

where C (zν) is a fixed sequence not depending on x.

Relation (5.53) cannot be satisfied for all x ∈ A (D), since it is easy to construct

a function analytic except at the point z0 and assuming any previously assigned

values at the points zk [10]. The contradiction thus obtained establishes that the

compactum K is regular.

Necessity of the condition (b)

Let T be an isomorphism between the spaces Ā1 and A (K) . Since the comple-

ment of the set D = {z : |z| ≤ 1} consists of only one connected component, using

Corollary 2, Ā1 cannot be isomorphic to a space A (K0) for which the complement of

the set K0 consists of a countably infinite number of mutually exterior components.

Therefore, the complement of K consists no more than a finite number of connected

components.

Remark 3 If C (K) = 0, then the space A1 is not isomorphic to any subspace of

the space A (D) , D = K∗, where K satisfy the conditions of Theorem 23 (see [34]).

5.2.3 Isomorphism to A0

Theorem 24 Let K be a compactum in Ĉ. For the spaces A(K) and Ā0 to be

isomorphic, it is necessary and sufficient that C(K) = 0.

Proof. Sufficiency

Let the capacity of the compactum K be zero. We will show that in that case

the spaces A(K) and Ā0 are isomorphic.

For simplicity we will assume that ∞ /∈ K. The general case can be obtained

from this one by Remark 2. Since the capacity of the compactum K is zero, it is a

polar set. Therefore, using Theorem 18, the system of polynomials

p0 ≡ 1, pn(z) =
n∏

j=1

(z − βj)
kj(n), n = 1, 2, · · ·
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where kj (n) satisfies the conditions 1, 2, 3 of Section 5.1.2, {αj} is a sequence of

nonnegative numbers,
∞∑

j=1

αj = 1, and αj ↓ 0 forms a basis for the space A (K). We

know in that case we have the following bounds:

C1(α, ε)e(α−ε)n ≤ |pn|∆α
≤ C2(α, ε)e(α+ε)n, (5.54)

|ξn| ≤
L(α) |x|∆α

2πC1(α, ε)
e−(α−ε)n = M(x, α, ε)e−(α−ε)n, (5.55)

0 < C1(α, ε), C2(α, ε) < ∞, −∞ < α < ∞, ε > 0.

Using the bounds (5.54)and (5.55), it is seen that A (K) is isomorphic to space

limind
α↓−∞

(
l1e

αk
)

and hence to the space Ā0, which proves the sufficiency.

Necessity

Let A (K) be isomorphic to the space Ā0. We will show that the capacity of the

compactum K is zero.

We will prove by contradiction. Assume that C (K) > 0. Let T be an isomor-

phism of Ā0 onto A (K). Then the system of functions hk (z) = T
(
zk

)
is a basis in

A (K) as it is the isomorphic image of a basis. From this, for each s ≥ s0, select

ri = ri (s) > 0 and Ci = Ci (s) , 0 < Ci < ∞, i = 1, 2, such that

C2r
k
2 ≤ |hk|Gs

≤ C1r
k
1 , (5.56)

ri (s) ↓ 0 for s ↑ ∞, and Gs are an open sets as in (4.4).

Define the function

Φ (z) = lim
ζ→z

lim
k→∞

ln |hk (ζ)|
k

(5.57)

in D = Gs0 . Since hk (ζ) are analytic in D,
ln |hk (ζ)|

k
are subharmonic functions in

D. We have to show that
ln |hk (ζ)|

k
are locally uniformly bounded in the domain

D. Let C be a compactum in D.Then, there exists s such that C ⊂ Gs so

|hk(ς)|C ≤ |hk(ς)|Gs
≤ C1r

k
1 ,∀k.

=⇒ ln |hk(ς)|C
k

≤ ln C1

k
+ ln r1, ∀k. (5.58)
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Hence,
ln |hk (ζ)|

k
are indeed locally uniformly bounded on D. Using Theorem 9, we

conclude that Φ (z) is a subharmonic function. Also, using (5.58),

lim
z−→z0

lim
k−→∞

ln |hk(ς)|
k

≤ lim
z−→z0

(
lim

k−→∞
ln C1

k

)
+ lim

z−→z0

lim
k−→∞

ln r1

=⇒ Φ (z) → −∞, z → z0, z ∈ D�K, z0 ∈ ∂K∗, since r1 ↓ 0 for z0 ∈ ∂K∗. (5.59)

Again, with the use of (5.58), it is seen that

Φ (z) ≤ ln r1 (s0) = σ < ∞, z ∈ D. (5.60)

The open set D consists of a finite number of mutually exterior regular regions Dj,

j = 1, 2, · · · ,m. By the assumption C (K) > 0, an integer j can be found such

that C (Kj) > 0, where Kj = Dj ∩K.

We have ∂Kj = ∂K ∩ Dj, therefore applying Lemma 2 for the compactum Kj

by (5.59) and (5.60) , we obtain

Φ (z) ≡ −∞, z ∈ Dj \Kj. (5.61)

Using (5.57) and (5.61) , there exists a function C (z, ε) < ∞, z ∈ Dj, ε > 0, such

that

|hk (z)| ≤ C (z, ε) e
−k
ε , k = 0, 1, · · · . (5.62)

Substituting the subharmonic minorant C̃ (z, ε) for C (z, ε) in (5.62) and then using

the local boundedness of the function C̃ (z, ε) , we obtain the existence of an open

set ∆ such that Kj ⊂ ∆ b Dj and

|hk (z)| ≤ M (ε) e
−k
ε , z ∈ ∆, k = 0, 1, · · · , (5.63)

where M (ε) = sup
{

C̃ (z, ε) : z ∈ ∂∆
}

.

Now, let x (z) be an arbitrary element of the space A (K) , where

x (z) =
∑

ξkhk (z) (5.64)

is its basis expansion. Since {hk} is the isomorphic image of the power basis of Ā0,

the coefficients ξk have the following bound:

|ξk| ≤ L (x) e
k
δ , δ = δ (x) > 0. (5.65)
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Taking advantage of the inequalities (5.63) and (5.65) for ε < δ, we obtain

uniform convergence of the series (5.64) in the region ∆. Thus, an arbitrary element

x ∈ A (K) is an analytic function in the fixed neighborhood ∆ of the compactum

Kj. A contradiction is reached and this proves that C (K) = 0.

5.2.4 Isomorphism to A1 ×A0

Theorem 25 Let K be a compactum in Ĉ. For the spaces A(K) and Ā1 × Ā0 to

be isomorphic, it is necessary and sufficient that the compactum K be decomposed

into two disjoint non-empty compacta K(1) and K(2), where K(1) is a regular com-

pactum whose complement consists of a finite number of connected components and

C(K(2)) = 0.

Proof. Sufficiency Let K be decomposed into two disjoint non-empty compacta

K(1) and K(2), where K(1) is a regular compactum whose complement consists of a

finite number of connected components and C(K(2)) = 0, that is, K = K(1) ∪K(2).

Then, using the sufficiency parts of the Theorems 23 and 24 and from A (K) '
A

(
K(1)

)× A
(
K(2)

)
, we have that A (K) ' Ā1 × Ā0.

Necessity Let T be an isomorphism between the spaces Ā1 × Ā0 and A (K) .

Take the natural basis in the space Ā1 × Ā0 :

e2k =
(
0, zk

)
, e2k+1 =

(
zk, 0

)
, k = 0, 1, · · · .

Then, the system of the functions hj (z) = T (ej) , j = 0, 1, · · · , is a basis in the space

A (K) as the isomorphic image of a basis. Therefore, as in the proof of Theorem 23,

for each s ≥ s0 we can select δi = δi (s) , δi > 0, and Ci = Ci (s) , 0 < Ci < ∞, for

i = 1, 2, such that

C2e
−k
δ2 ≤ |h2k|Gs

≤ C1e
−k
δ1 , k = 0, 1, · · · , (5.66)

and δi (s) ↓ 0 for s ↑ ∞ and Gs is an open set.

Let D := Gs0 . For simplicity, assume that D consists of a finite number of

mutually exterior regular regions Dj, j = 1, 2, · · · , r. Let Kj := K ∩Dj. Denote the

65



union of the compacta for which C (Kj) > 0 by K(1) and K(2) := K \K(1). Then,

denote the corresponding unions of regions Dj by D(1) and D(2).

Without loss of generality, assume that
(
K(1)

)∗
is connected. The case where

(
K(1)

)∗
has a finite number of connected components can be obtained by a similar

argument.

Using the construction, it is seen that K(1)∩K(2) = ∅ and C
(
K(2)

)
= 0. Without

loss of generality, denote the Kj for which C (Kj) > 0 by Kj, j = 1, · · · , m. Then,

K(2) = K \K(1) = K \ ∪m
j=1 (K ∩Dj)

= K ∩ (∪m
j=1 (K ∩Dj)

)∗

= K ∩ (∩m
j=1 (K ∩Dj)

∗)

= K ∩ (∩m
j=1

(
K∗ ∪D∗

j

))

= ∩m
j=1

(
(K ∩K∗) ∪ (

K ∩D∗
j

))

= ∩m
j=1

(
K ∩D∗

j

)
.

Therefore, K(2) is a compactum as the intersection of compacta. We have to prove

that K(1) 6= ∅, K(2) 6= ∅, and K(1) is a regular compactum.

Denote G
(i)
s = Gs ∩ D(i) for i = 1, 2 and s ≥ s0. Then, each x ∈ A (K) can

uniquely be represented in the form of a sum: x (z) = ẋ (z) + ẍ (z) ,where

ẋ (z) =





x (z) , z ∈ G
(1)
s ,

0, z ∈ G
(2)
s ,

, s = s (x) , (5.67)

ẍ (z) =





0, z ∈ G
(1)
s ,

x (z) , z ∈ G
(2)
s ,

, s = s (x) . (5.68)

We will identify the subspaces of all elements of the forms (5.67) and (5.68) with

A
(
K(1)

)
and A

(
K(2)

)
, respectively. Then, A (K) = A

(
K(1)

)⊕ A
(
K(2)

)
.

Define the function

Φ (z) := lim
ς−→z

lim
k−→∞

ln |h2k(ς)|
k

, for z ∈ D.

Then, in a similar way as in the proof of Theorem 24, Φ (z) = −∞ for z ∈ D(1) and

|h2k (z)| ≤ Me
−k
ε , z ∈ G(i)

s , k = 0, 1, · · · , s ≥ s0 + 1, M = M (s, ε) . (5.69)
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Now, we will construct an operator S : A (K) → A (K) , where

S (h2k+1) = h2k+1 and S (h2k) = ḧ2k.

Then, represent S in the form S = I − B, where I is the identity operator and by

(5.67) and (5.68) ,

B (h2k+1) = 0 and B (h2k) = ḣ2k.

Using the bound in (5.66), we have

|Bx|Gp
≤

∑
|ξ2k|

∣∣∣ḣ2k

∣∣∣
G

(1)
p

≤ M (p, ε)
∑

|ξ2k| e− k
ε , p ≥ s0 + 1, (5.70)

since |Bh2k+1|Gp
= 0 for any k ∈ N. For ε < δ2 (s) in the left hand side of (5.66) ,

e
−k
ε < e

−k
δ2(s) ≤ |h2k|Gs

C2 (s)
,

therefore using that in (5.70) we get

|Bx|Gp
≤ M (s, δ2 (s))

C2 (s)

∑
|ξ2k| |h2k|Gs

, p ≥ s0 + 1, s = 1, 2, · · · . (5.71)

We get the inductive limit topology in A (K) which is equivalent to the origi-

nal topology using the system of unbounded norms ‖x‖p =
∑ |ξk| |hk|Gp

(see [18]).

Therefore, by (5.71) we see that the operator B transforms the space A (K) contin-

uously into the space AC (Gp) . The inverse image of the sphere

Σ =
{

γ ∈ AC (Gp) : |γ|Gp
< 1

}

is a neighborhood U of zero in the space A (K) . Σ is a compact set in A (K) and

thus it has been shown that there exists a neighborhood U of zero in A (K) for

which the set B (U) is compact in A (K) . Therefore we conclude that B is compact

in the space A (K) in the sense of Leray.

From the Riesz theorem, which has been extended to such operators in locally

convex spaces (for example, see [21]), it follows, in particular that, ImS is a closed

subspace in A (K) , dim KerS = m1 < ∞, and codimImS = m2 < ∞.

Therefore there exists a finite collection Γ = {i1, i2, · · · , im1} of natural numbers

such that the system

{
h2k+1, ḧ2i, k, i = 0, 1, · · · , i /∈ Γ

}
(5.72)
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is a basis in the closure of its linear span, which has finite codimension m2. There

exists a finite collection of elements x1, x2, · · · , xm2 which, when together with the

system (5.72) , forms a basis {gj, j = 0, 1, · · · } in A (K) :

g2i+1 =





xi+1, i = 0, 1, · · · ,m2 − 1,

h2(−m2+i)+1, i = m2, m2 + 1, · · · ,

where {g2i, i = 0, 1, · · · } is the renumbered subseries of the system {h2i, i /∈ Γ} .

Using the bounds (5.66) for h2k and the corresponding bounds for h2k+1, the

formula Φ (ej) = gj gives an isomorphism Φ of the space Ā1 × Ā0 onto the A (K)

such that Φ
(
Ā0

) ⊂ A
(
K(2)

)
. From now on, we will write Ā0 instead of {0} × Ā0.

The subspace X0 = Φ
(
Ā0

)
is complemented in the space A (K) by a subspace

spanned by part of the elements of the basis {gj} in A (K) . Since X0 ⊂ A
(
K(2)

)
,

X0 is complemented in A
(
K(2)

)
too.

Let Y0 be any subspace which is complementary with X0 in A
(
K(2)

)
; i.e. A

(
K(2)

)
=

X0 ⊕ Y0. Then

A
(
K(1)

)⊕ A
(
K(2)

)
= Φ

(
Ā1

)⊕X0 =
(
A

(
K(1)

)⊕ Y0

)⊕X0.

Therefore the subspaces Φ
(
Ā1

)
and

(
A

(
K(1)

)⊕ Y0

)
are isomorphic, being the

topological complement of one and the same subspace X0. Hence we obtain that

Ā1 ' A
(
K(1)

)⊕ Y0, or transferring to the conjugate space,

A1 ' A
(
D(1)

)⊕ Z0, where Z0 =
{
x′ ∈ A

(
D(2)

)
: 〈x′, x〉 = 0, x ∈ X0

}
.

Using an argument similar to the one in the proof of Theorem 23, we observe that

if K(1) 6= ∅, then K(1) is a regular compactum.

Now we have to show that K(1) 6= ∅. Assume to the contrary: K(1) = ∅.

Then, A1 ' Z0, where Z0 is a subspace of the space A
(
D(2)

)
, D(2) =

(
K(2)

)∗
, and

C
(
K(2)

)
= 0. But this contradicts the Remark 3, hence K(1) 6= ∅.

The fact that the compactum K(2) is non-empty follows from the inclusion

Φ
(
Ā0

) ⊂ A
(
K(2)

)
.
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5.2.5 Dual Result for Open Sets

Using GKS-duality, one can also obtain the following dual results [34]:

Theorem 26 Let D be an open set in Ĉ. For the spaces A (D) and A1 to be isomor-

phic, it is necessary and sufficient that the set D be regular and consist of a finite

number of connected regions.

Theorem 27 Let D be an open set in Ĉ. For the spaces A (D) and A∞ be isomor-

phic, it is necessary and sufficient that C (D∗) = 0 (or what is the same, that the

boundary ∂D consists only of irregular points).

Theorem 28 Let D be an open set in Ĉ. For the spaces A (D) and A1 ×A∞ to be

isomorphic, it is necessary and sufficient that the set I (D∗) of irregular points on

∂D and the set ∂D \ I (D∗) be closed and non-empty and that D consists of a finite

number of connected components.

Theorem 29 Let D = ∪∞j=1Dj, where the Dj 6= ∅ and are mutually exterior re-

gions. Then the space A (D) is isomorphic to the topological product
∞∏

j=1

A (Dj)

( [21]).

Corollary 4 All of the spaces A (D), where D is a regular set satisfying the condi-

tions of Theorem 29 are isomorphic to each other.

The following is an example where A (D) is not isomorphic to any of the three

canonical spaces A1, A∞, A1 × A∞.

Example 3 Let K = {0} ∪ ∪∞j=1Kj, where Kj = {z : |z − qj| ≤ rj}, 0 < q < 1,

and rj ↓ 0. If
∞∑

j=1

j
ln(1/rj)

= ∞, then K∗ = D is regular (see [23], pg 146), therefore

A (D) ' A1 by Theorem 26. If rj ↓ 0 rapidly enough, e.g.
∞∑

j=1

j
ln(1/rj)

< ∞, then {0}
will be the irregular point of ∂D (see [23], pg 146). But, {0} is not isolated, hence

the set of regular points R (D) = ∂D \ I (D) is not closed. Therefore, by Theorem

28, A (D) is not isomorphic the space A1 ×A∞. Also, since I (D) 6= ∅, R (D) 6= ∅
using Theorems 26 and 27, A (D) is not isomorphic to any of the spaces A1 and

A∞.
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CHAPTER 6

BASES AND ISOMORPHISMS OF SPACES OF ANALYTIC FUNCTIONS

IN MULTI- DIMENSIONAL CASE

In this chapter we will represent, without detailed proofs some results about several

complex variables which were proved by Zahariuta [37], [38] (see also [3]).

In multidimensional case, interpolational bases for spaces of analytic functions

cannot be found as in the case of one dimensional case. The reason for that is, a

multidimensional analogue of GKS-duality does not exist. But, the Hilbert Methods

that was suggested in [35] and that we have used in Section 5.1.3 can be applied, as

confirmed in [37], [38].

6.1 Dragilev Classes of F -Spaces

Let X be an F−space,
{
‖x‖p , p ∈ N

}
be a system of norms defining its topol-

ogy. Let us consider the system of non-bounded norms (conorms) in the strong dual

space X∗ :

‖x′‖∗p := sup {|x′ (x)| : x ∈ Up} , x′ ∈ X ′, p ∈ N.

where

Up =
{

x ∈ X : ‖x‖p ≤ 1
}

.

We will use the notation:

Up =
{

x ∈ X : ‖x‖p ≤ 1
}

,
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U0
p =

{
x′ ∈ X∗ : ‖x′‖∗p ≤ 1

}
, p ∈ N.

We will now discuss two important classes of F -spaces denoted by D1, D2 which

appeared ( [29], [31], [40], [42]) as a development of near concepts introduced by

Dragilev [7] under the notations d1, d2 (see also [4], [43]). The system of (co)norms in

spaces from one of these classes has the special interpolation estimates of a ”middle”

(co)norm by extreme ”small” and ”big” ones.

Definition 12 A Fréchet space X belongs:

1. to the class D1 if

∃p ∀q ∃r ∃C | ‖x‖2
q ≤ C ‖x‖p ‖x‖r , x ∈ X, (6.1)

2. to the class D2 if

∀p ∃q ∀r ∃C |
(
‖x′‖∗q

)2

≤ ‖x′‖∗p ‖x′‖∗r , x′ ∈ X∗. (6.2)

Using the same quantifiers, the conditions (6.1) and (6.2) are equivalent to the

following ( [29], [31]), respectively:

U0
q ⊂ tU0

p +
C

t
U0

r , t > 0,

Uq ⊂ tUr +
C

t
Up, t > 0.

Using these additive conditions, the following statement was proved:

Theorem 30 (Vogt [30]) Let X be a Fréchet-Schwarz space. Then X ∈ D2 if and

only if there exists a bounded closed absolutely convex set B ⊂ X such that

∀p ∀µ : 0 < µ < 1 ∃q ∃C | Uq ⊂ tµB +
C

t1−µ
Up, t > 0. (6.3)

That statement was actually proved in [37] under the assumption of the existence

of unconditional basis in a countably Hilbert (maybe not Schwartz) space.

Using the same quantifiers, the condition (6.3) can be written in the equivalent

form:

‖x′‖∗q ≤ C
(‖x′‖∗)1−µ

(
‖x′‖∗p

)µ

, x′ ∈ X∗, (6.4)
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where ‖x′‖∗ is the norm in X∗ defined as follows:

‖x′‖∗ := sup {|x′ (x)| : x ∈ B} , x′ ∈ X∗. (6.5)

Then, we say that a Banach space E that continuously embedded in X is a Vogt

space, or ”dead-end” space (E ∈ V (X)) if the condition (6.3) holds with the unit

ball B in E or that is the same (6.4) holds for the norm (6.5) .

The following two theorems describe the connection between the interpolational

properties of F -spaces A (Ω) , A (K)∗ and peculiarity of manifolds Ω and of com-

pacta K ( [37], [38]).

Theorem 31 Let Ω be a Stein manifold. Then A (Ω) ∈ D2 if and only if Ω is

pluriregular.

Theorem 32 Let K be a compact set on a Stein manifold Ω. Then A (K)∗ ∈ D2 if

and only if K is strongly pluriregular on Ω.

The proof of these theorems can be done using the two-constant theorems and

facts of complex potential theory.

6.2 Hilbert Scales of Analytic Function Spaces

The following theorem is the two constant theorem in the case of analytic func-

tionals.

Theorem 33 Let (K,D) be a pluriregular pair ”compact set-open set” on a Stein

manifold Ω where D is a strongly pluriregular open set on Ω. Then for any ε > 0,

α ∈ (0, 1) there exists a constant C = C (α, ε) such that for any x∗ ∈ AC (K)∗ the

following estimate holds

|x∗|∗Dα
≤ C (|x∗|∗K)

1−α+ε
(|x∗|∗D)

α−ε
,

where

Dα = {z ∈ D : ω (D, K, z) < α} .
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In [42], that result was considered in the implicit form and in [37], it was consid-

ered as a result about Hilbert scales for analytic functionals. In [38], it was shown

that these two methods are equivalent. Using that, the following theorem about

Hilbert scales in multidimensional case can be considered as a corollary of Theorem

33.

Theorem 34 ( [37])Let D be a strongly pluriregular open set on a Stein manifold

Ω, a compactum K ⊂ D be pluriregular on D and K = K̂D. Let H0, H1 be a pair of

Hilbert spaces with the continuous imbeddings

A (K) ↪→ H0 ↪→ AC (K)

A
(
D̄

)
↪→ H1 ↪→ A (D) .

Then the following continuous imbeddings hold:

A (Kα) ⊂ Hα = (H0)
1−α (H1)

α ⊂ A (Dα) , 0 < α < 1, (6.6)

where Hα = (H0)
1−α (H1)

α is a Hilbert scale generated by the pair H1 ⊂ H0 of

Hilbert scales with continuous imbedding.

This theorem was first proved in [37] and Theorem 33 was its corollary. Now,

we will give a sketch of a proof where Theorem 34 can be realized as a corollary of

Theorem 33.

Let the system {ek (z)} ⊂ H1 ↪→ A (D) be the common orthogonal basis for the

spaces H0, H1 as in (2.3) . Then, using Theorem 15 and Theorem 33, the following

estimates can be obtained for the common orthogonal basis {ek (z)} ⊂ H1 ↪→ A (D)

and the biorthogonal system {e′k} that is realized in H ′
0 ↪→ A (K)∗ ↪→ A′ (D) ,

|ek|Dα
≤ C (α, ε) µα+ε

k , (6.7)

|e′k|∗Dα
≤ C (α, ε) µ−α+ε

k . (6.8)

Since the imbedding H1 ↪→ H0 is nuclear, for any δ > 0,
∞∑

k=1

µ−δ
k < ∞. (6.9)

Then, the estimates of norms providing the continuous imbeddings (6.6) can be

obtained.
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6.3 Bases

Theorem 35 ( [37], [38]) Let (K,D) be a pluriregular pair ”compact set-Stein man-

ifold”. Then there exists a common basis {xi (z)} in the spaces A (D) , A (K) , A (Kα),

A (Dα) , 0 < α < 1, satisfying the asymptotic estimate

lim
ζ→z

lim
i→∞

ln
∣∣xi(z)

∣∣
ai

= ω (D, K, z) , z ∈ D \K, (6.10)

where

Kα = {z ∈ D : ω (D, K, z) ≤ α} , Dα = {z ∈ D : ω (D,K, z) < α} , 0 < α < 1,

and {ai} is a certain non-decreasing sequence of positive numbers such that with

n = dim D,

ai ³ i
1
n , i →∞.

Now, a sketch of the proof will be given. Take a common orthogonal basis

{xi (z)} for some pair of Hilbert spaces H0, H1 with the continuous imbeddings

H1 ↪→ A (D) ↪→ A (K) ↪→ H0

and with the following properties:

H1 ∈ V (A (D)) , H∗
0 ∈ V (A (K)∗) . (6.11)

The dual system H∗
0 is naturally embedded in A (K)∗ . Using Theorems 30, 31, and

32, it can be shown that such spaces in (6.11) exist. Notice that A. Aytuna, using

Hörmander ∂-techniques, suggested in [3] a direct construction of ”dead-end” space

H1 for the space A (D) if D is a pluriregular Stein manifold: they were realized as

weighted L2-spaces of analytic functions in D.

Let the system {xi} be normed and ordered in accordance with (2.3) and denote

ai = ln µi (H0, H1) . Then the conclusion of the theorem follows from (6.7) , (6.8) ,

and (6.9) . The asymptotics (6.10) can be obtained in a similar way with the one-

dimensional case, but techniques of complex potential theory are needed (see [37],

[38]).
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6.4 Isomorphic Classification

Using the extendible bases that were considered in Theorem 35, one can get the

multidimensional analogue of the one dimensional isomorphism result A (D) ' A1.

Theorem 36 ( [37], [38]) Let Ω be a Stein manifold on dimension n. For the

isomorphism

A (Ω) ' A (Un)

it is necessary and sufficient that Ω is pluriregular and consists of at most finite

number of connected components, where Un is the unit disc in Cn.

Necessity can be proved using the Theorem 31. On the other hand, let the Stein

manifold Ω satisfy the conditions. Let K be a pluriregular compactum having a non-

empty intersection with every connected component of the manifold Ω, K = K̂Ω.

If {xi (z)} is a common basis that exists due to Theorem 35, then the isomorphism

T : A (Ω) → A (Un) is established by the correspondence

xi (z)
T→ eaiei (z) , i ∈ N,

where {ei (z)} is a system of monomials enumerated as in (2.3) . Also, Aytuna repre-

sented a proof of sufficiency in [3] by a direct construction of a required ”dead-end”

space.

In the one dimensional case, due to GKS-duality, one can immediately obtain

the result about the compacta if the result about open sets is known. But, since

a multidimensional analogue of GKS-duality does not exist, the case for compacta

should be considered separately.

Theorem 37 ( [37]) Let K be a compactum on a Stein manifold Ω. Then

A (K) ' A
(
Un

)

if and only if K has a Runge neighborhood in Ω and moreover K is strongly plurireg-

ular, where Un is the unit disc in Cn.
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Necessity follows from Theorem 32. For sufficiency, the isomorphism may be

obtained by means of the basis from Theorem 35 constructed for the pair
(
K, D̃

)
,

where D is some Runge neighborhood of K such that its envelope of holomorphy D̃

is pluriregular.
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Folgrerungen, Manuscr. Math. 37, N3 (1982), 269-301.

[31] Vogt D., Wagner M. J., Charakterisierung der Quotientenräume von s und eine
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