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BASES AND ISOMORPHISMS IN SPACES OF ANALYTIC
FUNCTIONS

Abstract

We will discuss the construction of bases in a space of analytic functions for a
given domain and isomorphic classification of spaces of analytic functions. We will
focus on results in one dimensional case.

In one dimensional case, we consider the construction of bases in two different
ways. Using one of them, we construct interpolational bases for the space of an-
alytic functions on a compactum K and in that part, results of Leja, Walsh, and
Zahariuta are used. Then, isomorphic classification follows by the use of Potential
Theory. Using the second way, we construct a common basis for the spaces of an-
alytic functions of a regular pair “compact set — domain” by the Hilbert methods
that was proposed by Zahariuta. GKS-duality is used for both of the cases.

In multidimensional case, some results about bases and isomorphisms of spaces of
analytic functions in several variables that were proved by Zahariuta are represented
(see also Aytuna). Since a multidimensional analogue of GKS-duality does not
exist, interpolational bases cannot be constructed as in one dimensional case. But
the bases constructed by Hilbert methods proves to be applicable for studying the
isomorphism of the space of analytic functions on D to the space of analytic functions
on the unit circle of n-dimensional complex plane.

Keywords: Hilbert scales, spaces of analytic functions, Green potential, regular-

ity, GKS-duality.
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ANALITIK FONKSIYON UZAYLARINDA IZOMORFIK
SINIFLANDIRMA VE TABAN INSASI

(")zet

Bu tezde belirli bir bolgedeki analitik fonksiyon uzaylari i¢in taban ingasi ve
izomorfik simiflandirma tartisilacaktir. Tek boyutlu diizlem i¢in bulunan sonuclar
tizerinde yogunlagilacaktir.

Tek boyutlu durumda, taban kurulumu icin iki farkli yontem iizerinde duru-
lacaktir. Birini kullanarak, bir tikiz kiime K tizerindeki analitik fonksiyon uzay-
lar1 i¢in enterpolasyon yollu taban ingasi yapilacaktir ve bu durumda, Leja, Walsh
ve Zahariuta'min sonuclar1 kullanilmaktadir. Potansiyel Teori yardimiyla, bulu-
nan tabanlari kullanarak izomorfik siuflandirma yapilacaktir. Ikinci yolu kulla-
narak, regiiler bir "tikiz kiime-bolge” ikilisi tizerindeki analitik fonksiyon uzaylari
icin Hilbert yontemleri kullanilarak ortak bir taban kurulacaktir. Bu metod, Zahar-
iuta tarafindan bulunmustur. GKS-dialitesi her iki yontem icin de kullanilmigtir.

Cok boyutlu durumda, ¢ok degiskenli analitik fonksiyon uzaylarinda taban insasi
ve izomorfik simflandirma icin Zahariuta tarafindan ispat edilen bazi sonuclar sunula-
caktir. GKS-diialitesinin ¢ok boyutlu bir analogu olmadig: icin, tek boyutlu du-
rumda oldugu gibi enterpolasyon yollu tabanlar kurulamaz. Ama, Hilbert yontemlerini
kullanarak inga edilen tabanlar belirli bir bolge D ve n boyutlu kompleks diizlemdeki
birim ¢ember tizerinde tanimli analitik fonksiyon uzaylarinin arasindaki izomorfalari
caligmak i¢in kullanilabilir.

Anahtar Kelimeler: Hilbert skalalari, analitik fonksiyon uzaylari, Green potan-

siyeli, regiilerlik, GKS-diialitesi.
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CHAPTER 1

INTRODUCTION

Spaces of analytic functions were studied by many mathematicians (e.g., Poincaré,
Pincerle, Fantappie, Uryson, Whittaker, Newns, Markushewich, Haplanov, Mar-
tineau, Aizenberg, Mityagin, Khavin, Arsove, Boas, Ronkin, K&the, Grothendieck,
Zahariuta, Aytuna et. al.). We will introduce spaces of analytic functions in Chapter
4.

In this thesis, we will discuss the construction of bases in a space of analytic
functions for a given domain and isomorphic classification of spaces of analytic
functions. We will focus on the one dimensional case.

Many problems of Approximation and Interpolation Theory of analytic functions
of one variable require notions and methods of Potential Theory. Therefore, we will
use Potential Theory for the results on existence of bases and isomorphisms of spaces
of analytic functions. Sufficient information about Potential Theory can be found

in Chapter 3. The following result will be discussed in Chapter 5.

Proposition 1 Let K be a compactum in C with a connected complement. If K is
reqular or polar, there exists a sequence of knots {(1,(a, -+ ,Cyy -+ } (there may be
repetitions) such that the system of Newton interpolation polynomials

k

pk(z):H(z_CV)v k=1,2,---, pO(Z)EL

v=1

forms a basis in the space A (K).

The case where K is a regular compactum was proved by J. L. Walsh [32] and
F. Leja [17], and the case where K is a polar compactum was proved by V. P.



Zahariuta [34].
After construction of the bases also the following theorems which were proved

by Zahariuta [34] will be discussed in Chapter 5.

Theorem 1 Let K be a compactum in C. For the spaces A(K) and A, to be
isomorphic, it is necessary and sufficient that (a) the compactum K be regular, and
(b) the complement K* = C \ K consist no more than a finite number of connected

components.

Theorem 2 Let K be a compactum in C. For the spaces A(K) and Ay to be
isomorphic, it is necessary and sufficient that C'(K) = 0.

Theorem 3 Let K be a compactum in C. For the spaces A(K) and Ay x Ay to
be isomorphic, it is necessary and sufficient that the compactum K be decomposed
into two disjoint non-empty compacta KO and K@, where KW is a reqular com-

pactum whose complement consists of a finite number of connected components and

C(K®) = 0.

We will also discuss another method for construction of bases that is based on
Hilbert methods which was suggested by Zahariuta [35]. Using that method, a
common basis for a regular pair ”compact set-domain” (K, D) will be constructed.
Information about Hilbert scales is represented in Chapter 2. The following result

will be discussed in Chapter 5.

Theorem 4 Let K C D be a reqular pair "compact set-domain”. Let Hy, H; be

such that the dense continuous imbeddings hold:
A(K)— Hy— AC (K),
A(D*) — H; — AC (D"),

where H| is a GKS-realization of the dual space Hy. Then the common orthogonal
basis {ex (2)} for Hy, Hy, normalized in Hy and ordered by non-increasing of its

norms i H; :
lerllg, =1, pw = px (Ho, Hy) = |lex|l, /" oo,

2



is also a common basis in all spaces A (D), A(D,),A(Ks), and A (K) where D, Ks

are the sublevel domains as defined in Lemma 6.

Notice that in a very particular case (for a 1-connected domain D and continuum
K) a common basis was constructed by Erokhin [9] by means of refined technique
of conformal mappings and by Walsh and Russel [33] in the form of interpolational
rational system of functions. Both of the methods are essentially one dimensional
and cannot be applied for the case of several variables.

For multidimensional case, we will represent some results about bases and iso-
morphisms of spaces of analytic functions that were proved by Zahariuta [37], [3§]
(see also [3]) without detailed proofs. Interpolational bases cannot be constructed
as in one dimensional case since there does not exist a multidimensional analogue of
GKS-duality. But the bases constructed by Hilbert methods proves to be applicable,
as confirmed by Zahariuta [37], [38]. A sketch of the following theorem will be given
in Chapter 6.

Theorem 5 ([37], [38]) Let (K, D) be a pluriregular pair ”compact set-Stein mani-
fold”. Then there exists a common basis {x; (z)} in the spaces A (D), A(K), A(K,),
A(D,), 0 < a < 1, salisfying the asymptotic estimate

+:W(D,K,z), z€ D\ K,
where
K,={z€D:w(D,K,2)<a},D,={2z€D:w(D,K,z)<a},0<a<l,

and {a;} is a certain non-decreasing sequence of positive numbers such that with
n =dim D,

1
a; X in, 1 — 00.

Then, using the extendible bases that are constructed, the following theorem

was proved by Zahariuta. We will again give a sketch of the proof.



Theorem 6 ( [37], [38]) Let Q be a Stein manifold on dimension n. For the iso-
morphism

A(Q) ~ A(U™)

it 1s necessary and sufficient that € is plurireqular and consists of at most finite

number of connected components, where U™ is the unit circle in C".

The sufficiency in Theorem 6 was preceded by many results on sufficient condi-
tion for isomorphism A (Q2) ~ A (U™), such as: for n-circular (Reinhardt) domains
Aizenberg-Mityagin [2], Bezdudniy [5], [6], Mityagin [18], Okun [20], Rolewicz [22],
for (p1,p2, -+ ,pn)-circular domains Aizenberg [1], for convex domains Zahariuta

[44], and for strongly pseudoconvex domains Henkin-Mityagin [13].



CHAPTER 2

SOME TOPICS OF FUNCTIONAL ANALYSIS

In this chapter, some preliminary concepts about functional analysis will be men-
tioned. In Section 2.1, locally convex spaces will be introduced [19]. This section is
also where we define inductive and projective limit topologies and give definitions
of some of the spaces that will be used, like nuclear spaces.

In Section 2.2, Hilbert scales will be introduced ( [16], [18]) and a theorem that

constructs a common basis for a pair of Hilbert spaces is discussed [35].

2.1 Locally Convex Spaces

Let X be a non-empty set. We will define a topology on X as a system 7 of
subsets of X which has the properties:

1. The union of arbitrarily many open sets is open; () is open.

2. The intersection of finitely many open sets is open; X is open.

The elements of 7 are called open sets. A topological space (X,7) is a set X
with a topology 7.

A topological space X is called Hausdorff space if for each pair z,y € X with
x # y there exists disjoint open sets U, and U, with x € U, and y € U,. Later on,
we will always assume the topological spaces to be Hausdorff.

By a topological vector space, we will mean a K-vector space E with a topology
T for which addition 4+ : F x F — E and a scalar multiplication - : K x £ — F

are continuous in 7. The continuity of the addition means that for each elements



x, y € FE and each neighborhood U, of z = x + y there exist neighborhoods U, of
x and U, of y such that U, + U, C U,; where A+ B :={a+b:a€ A,be B} for
any two sets A and B. The continuity of the scalar multiplication means that for
each \g € K, zy € E and every neighborhood U),,, of Aoz there exist ¢ > 0 and a
neighborhood U,, such that

{A A= Xo] <e,v €Uy} C Uy

A topology 7 on a K-vector space E is called a vector space topology, if (E,T)

is a topological vector space.

Proposition 2 The following are direct consequences of the definition of topological

vector space E :

1. For each y € E, the translation © — x + y is continuous and therefore a
homeomorphism of E. In particular the neighborhoods of each x € E are of
the form x +V :={x+v:ve V}, whereV is a zero neighborhood.

2. For each zero neighborhood U in E there exists a zero meighborhood V in E
with V +V C U. In particular E has a zero neighborhood basis consisting of

closed zero neighborhoods.

3. For each zero neighborhood U in E there exists zero neighborhood W C U with

W={w:[N<1, weW}.

4. For every zero neighborhood U in E we have E = U,ennU.
Proof.
1. Since addition is continuous, for each fixed y € E and each pair (z,y) € EXFE,
(z,y) — z+y

and its inverse operator

(z,y) —z—y

6



are continuous. Hence, for each y € E the translation is a homeomorphism of
E. Now, let U be a neighborhood of any x € E. Then, for any xg € U, there
exists vy such that xy = x4 vy, where vy € V' for some open zero neighborhood

V. Since translations are continuous, we can therefore write
U=z+V:{z+v:ve V},
where V' is a zero neighborhood.

2. We have 0 + 0 = 0 and we know that the addition is continuous. Hence, by
definition, for each neighborhood U of zero in F, there exists a neighborhood
V' of zero in E such that V' 4+ V C U. Let U, V be neighborhoods of zero in
E. Then,
UcU+V={u+V:iuecU}=U,y(u+V)

since any u € U is by definition in some u + V for some zero neighborhood

V. So, E has a zero neighborhood basis consisting of closed zero neighborhoods.

3. This follows directly from the continuity of the multiplication with Ag = 0,
ro=0and W ={ v:|A<eveV}.

4. Let U be a zero neighborhood in E. Then, since for each z € F, (%) converges

to 0, x € nU for some n € N. Hence, ' = U,ennU.

Definition 1 A locally convex space, E, is a topological vector space E in which

each point has a neighborhood basis of convex sets.

A locally convex topology, on a K-vector space E, is a topology 7 on E for which

(E,T) is a locally convex space.
Proposition 3 For a topological vector space E the following are equivalent:

1. E is a locally convex space.

2. E has a zero neighborhood basis of convex sets.

7



3. E has a zero neighborhood basis of absolutely convez sets.

Let E be a locally convex space. A collection U of zero neighborhoods in E is
called a fundamental system of zero neighborhoods, if for every zero neighborhood
U there exists a V € Y and an € > 0 with eV C U.

A family ([|-,)

e Of continuous semi-norms on £ is called a fundamental system

of semi-norms, if the sets
Uy ={zxeE:|z||, <1},a €A,
form a fundamental system of zero neighborhoods.

Proposition 4 Every locally convex space E has a fundamental system of semi-

norms. Every fundamental system of semi-norms (||-]|,,) has the following prop-

a€A

erties:

1. For every x € E with x # 0 there exists an o € A with ||z||, > 0.

2. For o, 3 € A there exist v € A and C > 0 with maX(H~||a,H-Hﬁ) <C|l,-

Proposition 5 Let E be a K-vector space and (||||,,)... 4 be a family of semi-norms

acA
on E having properties 1. and 2. of Proposition 4. Then there exists a unique locally

convez topology on E for which (|-||,) is a fundamental system of semi-norms.

a€cA

If ([|]l ) 4eq 18 @ fundamental system of semi-norms in the locally convex space
E, then a net (x,)_ .y converges to xg € E if, and only if, lim.cp ||z, — 20| = 0,
for each a € A, that is for any ¢ > 0, there exists 79 € T such that ||z, — z¢|| < ¢
whenever 7 > 71y.

A K-vector space E together with a family of locally convex spaces (E;);c; and
linear maps m; : E — E;, ¢ € I, is called a projective system, if for each x € E,
x # 0, there exists an ¢ € I with m;(z) # 0. Consider the system of semi-norms

{pM (x) = max p; (mi(z)), © € E, p; is a continuous semi-norm on Ez}
1€



where M runs through P (I), the set of all finite subsets of [.This system is a
fundamental system of semi-norms for a locally convex topology on FE, which is

called the projective topology determined by {m; : E — E;} We will denote it as:

il
E = limproj,c; (E;, m;) .

Proposition 6 Let the locally convex space E have the projective topology of the
system (m; : B — E;)er. Let F be a locally convex space and T : F — E be a linear

map. Then, T is continuous if and only if w; o T is continuous for each i € I.

A K-vector space E together with a family of locally convex spaces (E;);c; and
linear maps n; : E; — E is called an inductive system, if U;e;n;(FE;) = E. If a finest
locally convex topology for which all the maps 7, are continuous exists on F, then
it is called the inductive topology of the system (n; : E; — E);c;. We will denote it
as:

Proposition 7 Let the locally conver space E have the inductive topology of the
system (n; 1 E; — E)ier. Let F be a locally convex space and T : E — F be a linear

map. Then, T is continuous if and only if T on; is continuous for each i € I.

We now introduce some special classes of locally convex spaces which will be
important for us.

Let E be a locally convex space. If for each absolutely convex zero neighborhood
U in E there exists a zero neighborhood V' such that for each ¢ > 0, there exists

points zq, -+ ,x, € V such that

then £ is said to be a Schwartz space. For example, the spaces A (D) and C* (Q2)

are Schwartz spaces.

Definition 2 Let E be a locally convex space and let M C E. M 1is called a barrel if
M s absolutely convex, closed, and absorbing. E is said to be barreled if each barrel

i E is a zero neighborhood.



Let E be a locally convex space. If E is a barrelled space in which each bounded
set is relatively compact, then it is called a Montel space. Note that every Montel

space is reflexive. For example, the spaces A (D) and C'* (€2) are Montel spaces.

Definition 3 Let E and F be Banach spaces and A : E — F be a linear map. If
there exists sequences (A;);oy in E'and (5;),cy in I such that jeZN 1A 851 < oo,
so that

Az = Z A () B; for all z € E, (2.1)

jEN
then A is called a nuclear operator. (2.1) is said to be a nuclear representation of

A.

Let E be a locally convex space. Let p be a semi-norm on E and N, :=
{z € E:p(x) =0}. Anorm is defined on the quotient space E/N, by |z + N||, :=
p(x). The space E, := (E//E, HHp> is called the local Banach space for the semi-
norm p. We have ||/ (z)]|, = p(z), for all z € E, where (¥ is the canonical map,
W E— E,, P (x) := 2+ N,. Note that if p and ¢ are semi-norms on E and if ¢ > p,
then the identity map on £ induces a continuous linear linking map ) : £, — E,
between the local Banach spaces determined by the relation (£ o /F = (2.

If for each continuous semi-norm p on E there exists a continuous semi-norm ¢
with ¢ > p, so that b : B, — E, is nuclear, then £ is called a nuclear space. For

example, the spaces A (D) and C'* (£2) are nuclear spaces.

2.2 Hilbert Pairs and Scales

Theorem 7 (see e.g. 1001[35]) Let Hy, Hy be a pair of Hilbert spaces with a linear
dense compact imbedding Hy — Hy. Then there ezists a system {e,} C Hy which is

a common orthogonal basis in Hy and Hy such that

el = 1o e = g (Ho, H) = lerlly, /" 00 (2:2)

Proof. Let Hy, H; be a pair of Hilbert spaces. Define the restriction operator
J: H — Hyas Jr = x for any x € H;. Then J is a linear dense compact

imbedding.

10



For any x € Hy, y € Hy the adjoint operator J* : Hy — H; is defined as

<Jx7y>H0 = <x7 J*y>H1 .

Define A := J*J. Then, since A* = (J*J)" = J*J = A, A is self-adjoint. If both z

and y are elements of Hy, then since z = Jx,

<$7y>H0 = <J$,y>H0:<J.1’, Jy>H0
= (z, J*Jy>H1 = (x,Ay)Hl = (Am,y>H1,

where the last equality follows since A is self-adjoint.

Now, A is compact since it is the superposition of a continuous and a compact
operator. Also, since (z,y)y = (Az,y)y, , for any z € Hy, (Azr,x)y > 0 as
(Az,r), = 0if and only if z = 0.

So, A is a compact, self-adjoint, strictly positively defined operator. Hence there

exists a complete orthonormalized sequence of eigenvectors { g} :
Agr = Megr, k€N, N\ >0, Ay — 0.
Take A\ | 0. Then,

{9k, 95) 1, = (AGk: 93) i1, = (MG 95) = AwOj-

So, lgkllgr, = VAks llgklly, = 1 and {gi} is a common orthogonal basis in H,
and Hy. To renormalize this system, let e; := ,\_l,cgk- Then, {e} is also a common

orthogonal basis in H; and Hj such that
lexlly = 1 Nkl = 1 = uc (Ho, Hy) 7 00 as k= o0 (2.3

where u, = ﬁ ]

Given a couple of Hilbert spaces (Hy, Hy) with a dense linear continuous imbed-
ding H, — Hy we denote by H, = Hy *HY, «a € (—o0,00), the Hilbert scale
spanned on (Hy, Hy) ( [16], [18]). If the imbedding is compact (which is sufficient
for all our considerations) this scale can be described especially transparently, since

in this case there is a common orthogonal basis {e} for Hy and Hy, normalized in

11



Hj and arranged by non-decreasing of norms in the space H; as in (2.3). Using this

basis the scale is determined by the norms

00 o\ 1/2 00
Il g, = oo l6l® 12%) " 2 =% & en (2.4)

(in the case a > 0 the space H, consists of € H, with a finite norm (2.4); for

a < 0 the space H, is the completion of Hy by the norm (2.4)).

12



CHAPTER 3

SOME TOPICS OF POTENTIAL AND PLURIPOTENTIAL THEORY

In this chapter, some of the notions about Potential and Pluripotential Theory that

will be useful for our considerations will be given ( [12], [27], [23], [28], [36]).

3.1 Potential Theory

Since potential theory may be defined as the study of harmonic functions, sub-
harmonic functions, and capacities, we will first define what these are. As a subhar-
monic function is semi-continuous as part of its definition, first we have to define

semi-continuous functions.

3.1.1 Semi-continuous Functions

Let X be a topological space. We say that a function u : X — [—00, 00) is upper
semi-continuous if the set {z € X : u(z) < a} is open in X for each v € R. Also
v: X — (—00,00] is lower semi-continuous if —v is upper semi-continuous.

Notice that u is continuous if and only if it is both upper and lower semi-

continuous.

Properties of Semi-continuous Functions

1. A function u(x) that is upper semi-continuous on a compactum K attains its

maximum value at K.

2. The lower envelope

u(zx) = ilgf Ua ()

13



of a family {u,(z)} of functions that are upper semi-continuous on a set A is

upper semi-continuous in A.

3. The limit of a decreasing sequence of upper semi-continuous functions defined

on a set A is upper semi-continuous in A.

4. If u(z) is upper semi-continuous on a compactum K and u(zr) < oo in K,
there exists a decreasing sequence of continuous functions that converges to

3.1.2 Subharmonic Functions

Let U be an open subset of C. A function u : U — [—00,00) is called subhar-
monic (v € S(U)) if it is upper semi-continuous and satisfies the local submean
inequality, i.e. given w € U, there exists p > 0 such that

2T

u(w) < Q—/u(w +ref)dt  (0<7r < p).

0
Also v : U — (—00, 00| is superharmonic if —v is subharmonic.
Notice that a function is harmonic if and only if it is both subharmonic and

superharmonic function.

Properties of Subharmonic Functions

1. If f is analytic on an open set U in C, then log|f| is subharmonic on U.

2. Let v and v be subharmonic functions on an open set U in C. Then:

(a) max(u,v) is subharmonic on U;

(b) au + Bv is subharmonic on U for all o, 5 > 0.
3. (Maximum Principle) Let u be a subharmonic function on a domain D in C.
(a) If u attains a global maximum on D, then w is constant.

(b) If limu(z) < 0 for all ¢ € D, then u < 0 on D.

z—(

14



4. Let U be an open subset of C, and let u : U — [—00,00) be an upper semi-

continuous function. Then the following are equivalent.

(a) The function u is subharmonic on U.

(b) Whenever A(w, p) C U, then for r < p and 0 < t < 2,

2

u(w + re') < ! / o (w + pe®)0do
— u(w + pe :
— 21 ) p*—2prcos(f —t)+1r? P
0

(¢c) Whenever D is arelatively compact subdomain of U, and h is a harmonic

function on D satisfying

lim(u — h)(2) <0 (¢ €0D)

z—(

then v < h on D.

5. (Global Submean Inequality) If u is a subharmonic function on an open set U
in C, and if A(w, p) C U, then

2

1 )
< 60 .
u(w) < o /u(w + pe”)db
0

6. Let U be an open subset of C, and let u € C*(U). Then u is subharmonic on
U if and only if Au>0on U.

7. (Gluing Theorem) Let u be a subharmonic function on an open set U in C,

and let v be a subharmonic function on an open subset V' of U such that

limv(z) < u(C) (CeUnaV).

z—(

Then u is subharmonic on U, where

max(u,v) onV,

u on U\ V.

=g
I

8. Let (uy,)n,>1 be subharmonic functions on an open set U in C, and suppose

that w; > uy > u3 > ... on U. Then v := lim w,, is subharmonic on U.

n—oo
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9. Let {ug}ren be a family of subharmonic functions that are locally uniformly
bounded above in the domain G. Then the upper envelope
u(z) = lim sup ug(2')
z—z k

is a subharmonic function in G.

Theorem 8 (Hartogs’ Theorem) Let vy, be a sequence of subharmonic functions in
Q which are uniformly bounded above from above on every compact subset of €2, and
assume that km vi(2) < C for every z € Q. For every € > 0 and every compactum

K C Q, one can then find ko so that
vp(z) < C + ¢, ze K, k> k.

Theorem 9 Let {uy}ren be a family of subharmonic functions that are locally uni-
formly bounded above in the domain G. Then the regularized limit superior
v(z) = l}_mkm ug(2")

1s a subharmonic function in G.

Proof. The function v(z) < +oco and is upper semi-continuous in G. {uy} are
measurable functions since they are subharmonic. Using the fact that they satisfy

the local submean inequality,

2
o) = Jm ) < Jm o [ e
0
2w
S hm —/ lim uk(Z/—l—Tew)dQ
Z—»z s — 0
<

—/ lim Tim u (2 + re)dd

2! —zk— 00

1 6
= 5 v(z—l—re )do,
0
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where the second inequality follows from Fatou’s Lemma. Hence, v(z) is subhar-

monic. W

3.1.3 Logarithmic Potential

Now we will define logarithmic potentials. They provide an important source
of examples of subharmonic functions thereby allow us to construct subharmonic
functions with prescribed properties. Also, logarithmic potentials turn out to be
almost as general as arbitrary subharmonic functions and for many purposes the
two classes are equivalent.

We will define logarithmic potentials only for finite measures of compact support.

Let p be a finite Borel measure on C with compact support. Its logarithmic

potential is the function

pu () = [logle — uldutu) (= ©)

Properties of Logarithmic Potentials

1. With the notation above, p,, is subharmonic on C, and harmonic on C\ (suppy).
Also
pu(2) = p(C)log |2 + O(|z[ 1) as z — oo.

2. (Continuity Principle) Let p be a finite Borel measure on C with compact

support K.

(a) If {y € K, then lim icnfpu (2) = liminfp, ().

2—Co ¢—Co
CEK
(b) If further lim p, (¢) = py (Co), then lim p, (2) = py (Co) -

CEK

3. (Minimum Principle) Let p be a finite Borel measure on C with compact

support K. If p, > M on K, then p, > M on the whole of C.

17



3.1.4 Equilibrium Measures

Let u be a finite Borel measure on C with compact support. Its energy I () is
given by

T = [ [1oglz— wldu ) dutw) = [, (o).
Now, let K be a compact subset of C, and denote by P(K) the collection of all
Borel probability measures on K. If there exists v € P(K) such that

I(v)= sup I(n),
REP(K)

then v is called an equilibrium measure for K.

Properties of Equilibrium Measures
1. If the sequence (u,),>, in P(K) is weak*-convergent to p in P(K), i.e.
/(bd,un — /gbd,u for each ¢ € C' (K),
K K
where C' (K) is the space of continuous functions with the usual sup-norm,
then BimI (u,) < I(p).

2. Every compactum K in C has an equilibrium measure.

3.1.5 Logarithmic Capacity
The logarithmic capacity of a subset E of C is given by

C(E) :=supe!®,
o
where the supremum is taken over all Borel probability measures 1 on C whose sup-
port is a compact subset of E. In particular, if K is a compactum with equilibrium

measure v, then

C(K) =™,

Properties of Logarithmic Capacity

1. (a) If £y C E5 then C(El) < C(Eg)

18



(b) If E C C then C'(E) =sup{C (K): compact K C E}

(c) If EC Cthen C(aFE + ) =|a|C(F) for all a, § € C.

(a) If K is a compact subset of C then C (K) = C (0-K).

(b) If K1 D Ky D K3 D --- are compact subsets of C and K = N, K, then
C(K) = lim C(K,).

(c¢) If By C By C Bs--- are Borel subsets of C and B = U, B, thenC(B) =
lim C(B,).

n—oo

2. Let (B,,) be a (finite or infinite) sequence of Borel subsets of C, let B = U, B,,
and let d > 0.

(a) If diam (B) < d, then C'(B) < d and

d/C’ Z In ( d/(] )

(b) If dist(Bj, By) > d whenever j # k, then

1 S Z 1
In* (d/C(B)) — ~ In* (d/C (B,))
3.1.6 Transfinite Diameter

Definition 4 Let K be a compact subset of C, and let n > 2. The n-th diameter of

K is given by

0n(K) —sup{ H |wj—w,€|n<n 0wy, wnEK}.

Jyk;i<k
An n-tuple wy, . .. w, € K for which the supremum is attained is called a Fekete
n-tuple for K.
As K is compact, there always exists a set of points such that the supremum is
o

attained, but that set is not necessarily unique. The decreasing sequence {6, (K)}._,

has a limit that is called the transfinite diameter.
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Theorem 10 (Fekete-Szegé Theorem) Let K be a compact subset of C. Then the

sequence (0, (K)),>, s decreasing, and

lim 6,(K) = C(K).

For compactum KA in (A:, a Fekete polynomial for K of degree n is a polynomial

of the form

¢(z) =]z —wy),
i=1
where wy, ws, - -+ ,w, is a Fekete n-tuple for K. Then the following useful result is

valid, where we define

lgll :=sup{lg(2)| : z € K}
Lemma 1 Let K be a compact subset of C.
1. If q is a monic polynomial of degree n > 1, then ||q||1%< >C(K).
2. If q is a Fekete polynomial of degree n > 2, then ||qHI%( < 6, (K).

The following is another characterization of capacity.

Proposition 8 Let K be a compact subset of C, and for each n > 1 let
mu(K) =inf {||q||; : ¢ is a monic polynomial of degree n} .

Then
lim my(K)w = inf m,(K)» = C(K).

n—oo n>1
A monic polynomial g of degree n for which ||g|| ,, = m,,(K) is called a Chebyshev

polynomial.

3.1.7 Polar Sets

Polar sets play the role of negligible sets in potential theory.
1. A subset E of C is called polar if I (1) = —oo for every finite Borel measure
i # 0 for which supppu is a compact subset of E.

2. A property is said to hold nearly everywhere (n.e.) on a subset S of C if it

holds everywhere on S\ E, for some Borel polar set E.
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Properties of Polar Sets

1. Let u be a finite Borel measure on C with compact support, and suppose that

I () > —o0. Then p (E) = 0 for every Borel polar set E.
2. Every Borel polar set has Lebesgue measure zero.

3. A countable union of Borel polar set is polar. In particular, every countable

subset of C is polar.
Note that though every countable set is polar, not every polar set is countable.

Lemma 2 Let C'(K) > 0 and let ¥ (2) be a function subharmonic and bounded
above in D\ K, satisfying the condition

lim ¥ (2) = —oc0

Z—Z20

for each zy € OK*. Then ¥ (z) = —oo in D\ K.

Proof. Assume that ¥ (z) # —oo in D\ K. Then, extend the function onto K such

that:
U(z), z€ D\K,

—00, z e K.
Then, ¥ is subharmonic in the whole region D. Since ¥ (2) = —cc for z € K, K is

a polar set and so must have zero capacity. But, that contradicts with the fact that

C (K) > 0. This contradiction shows that U (2) = —oco in D\ K. =

3.1.8 Solution of The Dirichlet Problem and Regularity

Let D be a subdomain of C, and let ¢ : 0D — R be a continuous function. The
Dirichlet problem is to find a harmonic function i on D such that il_)Héh (2) =0 (Q)
for all ( € 9D.

For "nice” domains, a solution always exists. Also, it is easily seen that there
exists at most one solution to the Dirichlet problem.

We will now introduce the Perron method that can be used to solve the problem.
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Let D be a proper subdomain of @, and let ¢ : 9D — R be a bounded function.
The associated Perron function (the generalized solution of the Dirichlet problem)
Hp¢ : D — R is defined by

Hpg¢ = supu,
ueU

where U denotes the family of all subharmonic functions v on D such that Z@Cu(z) <
¢(C) for each ¢ € OD.

If the Dirichlet problem has a solution, that it should be Hp¢. If h is such
a solution, then h € U and so h < Hp¢. On the other hand, by the maximum
principle, if w € U then u € h on D so Hp¢ < h. Hence, Hp¢p = h.

The following result shows that Hp¢ is always a bounded harmonic function.
Lemma 3 (Poisson Modification) Let D be a domain in C, let A be an open disc
with A C D, and let u be a subharmonic function on D with u % —oo. If we define

u on D by
Pau on A,

u  on D\A,

then @ is subharmonic on D, harmonic on A, @ > u on D.

Theorem 11 Let D be a proper subdomain of C.,, and let ¢ : 0D — R be a

bounded function. Then Hp¢ is harmonic on D, and

sup [Hpo| < sup|[g].
D D

The following notion will be needed so that the Perron function will have the
prescribed boundary limits.

Let D be a proper subdomain of ((Aj, and let (o € dD. A barrier at (p is a
subharmonic function b defined on D N N, where N is an open neighborhood of
o, satisfying

b<0Oon DNN and lim b(z) = 0.

z—Co

A boundary point at which a barrier exists is called reqular, otherwise it is irreqular.
If every ¢ € 0D is regular, then D is called a regular domain.

We say that a pair (K, D) is regular if K and D are regular, D has no components
free from K, and K = K ,i.e. K has no disjoint holes with D.
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Lemma 4 If D s a proper subdomain of@ and ¢ : 0D — R is a bounded function,
then
HDQb S _HD (—(b) on D.

Lemma 5 (Bouligand’s Lemma) Let (o be a regular boundary point of a domain
D, and let Ny be an open neighborhood of (y. Then, given ¢ > 0,there exists a

subharmonic function b, on D such that

b- <0 on D, b. < —1 on D\ Ny, and liminfb.(z) > —e.

z2—Co

Theorem 12 Let D be a proper subdomain of @, and let (y be a regular boundary
point of D. If ¢ : 0D — R is a bounded function which is continuous at (o, then

lim Hpo (2) = 6 (&)

Green’s Functions

Let D be a proper subdomain of C. A Green’s function for D isamap gp : Dx D —

(—00, 00|, such that for each w € D :

1. gp (-, w) is harmonic on D \ {w}, and bounded outside each neighborhood of

w;

In|z| +0(1), w = 00,
2. gp (w,w) = o0, and as z — w, gp (z,w) =
—Injz—w|+0(1), w# oo;

3. gp(z,w) — 0as z— (, forn.e. ( €9D.
Properties of Green’s Functions

1. If D is a domain in C such that 9D is non-polar, then there exists a unique

Green’s function gp for D.

2. Let D be a domain in C such that 9D is non-polar. Then

gp (z,w) > 0 for z,w € D.
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3. Let D be a domain in C such that 9D is non-polar, and let (D), ., be sub-
domains of D such that Dy C Dy C D3--- and U, D,, = D. Then

lim gp, (z,w) = gp (z,w) for z,w € D.

n—oo

4. Let D be a domain in C such that 9D is non-polar. Then

gp (z,w) = gp (w, z) for z,w € D.

5. Let D be a domain in C such that 9D is non-polar, let w € D, and let ¢ € 9D.
Then

lin% gp (z,w) =0
if and only if ¢ is a regular boundary point of D.

Definition 5 Let K C D be a couple "compact set-open set”. The Green potential
of that couple is

w(z)=w(D,K,z) :%i_msup{u(f) ue S(K,D)}, ze D
where S (K, D) denotes a class of subharmonic functions in D that are nonpositive
on K and are bounded above by 1.

If z € D\ Kp then this function coincides with the traditional generalized har-
monic measure w <z, 0D, D\ KD), ie. w(z) =w(D,K,z) will be the generalized
solution of the Dirichlet problem in the region D \ K with respect to the function

1 ze€edD,

f(z)= -
0 z€dK".

Remark 1 The following three cases are possible; we give various equivalent char-

acterizations of each case:

(a) OK™ consists only of reqular points <= K is a reqular compactum <— 0 <
w(z) <1 forze D\ K and limw (2) =0 for each zy € 0K*.
z—20
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(b) OK* consists only of irreqgular points <= C (K) = 0 <= w(z) = 1 for z €
D\ K.

(c) OK™ contains both irreqular and reqular points <= K is not regular and C (K) >
0<=0<w(z) <1 forze D\ K and there exists a point zy € OK* and a

sequence {z,} C D\ K, z; — zy such that w (z) — .

Lemma 6 Let w(z) = w (D, K, z) be the Green potential of the ”compact set-open
set” couple K C D. Let D, be a sequence of open sets ezhausting D where D, :=
{zeD:0<w(D,K,z) <q}, Ks be a sequence of compact sets K5 | K such that
Ks:={2€D:0<w(D,K,z) <6}. Then,

1
w(Dy, K,2)=-w(D,K,z), z € D,,

q
w(D,K,z)—0
(,U(DK(;Z): 1-5 ) ZED\K(S,
0, z € K,
w(D,K,z)—0
w(Dy Ky o) =4 o FEDs

0, z e K.

Theorem 13 (Hadamard Inequality)Let D be a domain in @, K be a compactum
in D. If f € A(D), then

1—
o, < 1" 1f1p

where

D,={z€D:w(D,K,z) <a},0<a<]l.

Theorem 13 is also known as the two constant theorem.

Theorem 14 (Evans’ Lemma) Let E be a compact polar set. Then there exists a
Borel probability measure p on E such that p,(z) = —oo for all z € E. Moreover,

this measure can be taken discrete, i.e. there is a sequence {(,} C E and a sequence
oo oo

of nonnegative numbers {a,}, > o, =1 such that = Y a,p, where e means
v=1 v=1

an atomic measure at the point C.
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3.2 Some Facts of Pluripotential Theory

3.2.1 Plurisubharmonic Functions

Plurisubharmonic functions are the complex analogue of convex functions of

several variables and the multidimensional analogue of subharmonic functions.

Definition 6 Let D be a domain in C*. A function w : D — [—o00,00] is called
plurisubharmonic (uw € P (D)) if u is upper semi-continuous in D and for any point
2% € D and for any complex line z = 1(¢) = 2° + w(, where w € C*, ¢ € C, the
restriction of u to this line, i.e., the function uwol((), is subharmonic on the open

set {Ce€C:1(¢) e D}.

Properties of Plurisubharmonic Functions

1. For a function u € C? (D) to be plurisubharmonic it is necessary and sufficient

that at each point z € D the form H, (u,w) satisfy

—| wuw, > 0 for all w € C".
8 (9 K
Zpdz

H,v=1

2. If u is a plurisubharmonic function in a domain D and u attains a local max-

imum at some point 2" € D, then it is constant in D.

3. A function that is plurisubharmonic in some neighborhood of each point z° €

D is plurisubharmonic in the domain D.

4. If the upper envelope u (z) = supu, (2) of a family of functions u,, o € A,
acA
that are plurisubharmonic in a domain D), is upper semi-continuous in D, then

it is plurisubharmonic in D.

5. For an upper semi-continuous function u to be plurisubharmonic in a domain
D it is necessary and sufficient that for each point z € D and each vector

w € C" there exist a number 79 = o (z,w) such that

2

1 it
u(z)gg/u(z—irwre )dt

0
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10.

11.

for all r < rg.

For any function w that is plurisubharmonic in a neighborhood of a point 2° €
C" the value u (2°) does not exceed its mean value on the sphere {|z — 2°| = r}

of sufficiently small radius r :

U (zo) < / u(z)do,

{lz=2%=r}

where o (r) is the area of this sphere and do is the area element.

. Any plurisubharmonic function in a domain D C C" is a subharmonic function

of 2n real variables, i.e. , for any point z° € D and ball B = {|z — 2°| = r} of
sufficiently small radius any function A that is harmonic in B and continuous

in B possesses the property

ulop< hlop=u |p< h |5 .

If the function u is plurisubharmonic in a neighborhood of a point 2z € C",
then its mean value S (r) on the sphere {|z — 2°| = r} is an increasing function

of r.

For any function u that is plurisubharmonic in a domain D C C" we can
construct an increasing sequence of open sets G, (u=1,2,---),Us2,G, = D,
and a decreasing sequence of functions u, € C*(G,), plurisubharmonic in

G, converging to u at each point z € D :

w (2) = u (), W <

If the function w is plurisubharmonic in a domain D C C*, and v : u (D) — R

is an increasing convex function of class C?, then v o u is plurisubharmonic in

D.

The restriction of a plurisubharmonic function v in a domain D C C" to
any m-dimensional holomorphic surface f : G — C", G C C™, is also a

plurisubharmonic function on an open set 2 ={¢ € G: f(¢) € D}.
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12. (Grauert-Remmert) Any function that is plurisubharmonic in a domain D C
C" everywhere except for an analytic set and is bounded can be extended to

a function that is plurisubharmonic in D.

A function u € P (D) is called mazimal in D or MP-function (v € M P (D))
if for any subdomain G € D and for any function v € P (G) from v(z) < u(z),
z € 0G, it follows that v (2) < w(z) in G.(1001[24])

3.2.2 Green Pluripotential

Let E be a set in the complex manifold 2 (see pg. 35). Then the Green pluripo-
tential of this set with respect to €2 is the function

w(z)=w(QE,z2) :=lmu’ (Q,E,(), 2 €9Q, (3.1)

(—z

where

W (2) =W (Q, B, () =sup{u(z):uec P(E,Q)},
P(E,Q) ={ueP(Q):u|pg<0u(z) <1, z€Q}.

The function (3.1) is also called the pluripotential of a condenser (K, D).
Theorem 15 (Multidimensional Analogue of Hadamard Inequality) Let Q) be a Stein
manifold (see pg. 36), K be a compactum in Q. If f is a bounded analytic function
on S) then

@I (fl)@ (1) ™9, zeq,

where w (z) is the Green pluripotential of K with respect to €.

3.2.3 Pluriregularity

A Stein manifold Q is called plurireqular (or strongly pseudoconvez) if there
exists a negative plurisubharmonic function v € P () such that w(z,) — 0 for
every sequence {z,} C Q without limit points in . Briefly it will be written by the
following

zli%lﬂu (Z) =0
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A compactum K in a Stein manifold €2 is said to be
1. pluriregular on € if for some open neighborhood D & (2 of K it follows that
w(D,K,z) =0on K;

2. strongly pluriregular on € if for any open neighborhood D & €2 of K it follows
for the envelope of holomorphy D that

w(D,K,z) =0, z€ K.

Definition 7 We say that a pair (K,Q) is plurireqular if K is a plurireqular holo-
morphically convex compactum on the plurireqular Stein manifold ) and also every

connected component of ) has a non-empty intersection with K.

Theorem 16 [37] If (K, Q) is a pluriregular pair then the functionw (z) = w (Q, K, 2)

s continuous in ) and satisfies the conditions

w(z)=0, ze K; 0<w(z)<1, z€ Q\ K; lirggw(z)zl_
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CHAPTER 4

SPACES OF ANALYTIC FUNCTIONS

In this chapter, we will define complex manifolds following [12], then introduce
spaces of analytic functions. Also, a detailed proof of Grothendieck-Kothe-Silva
Duality which realizes the space A (E)", for any set F € @, as the space of analytic

functions A (E*) where E* = C \ £ will be given for open and compact sets.

4.1 Complex Manifolds

A topological space € is called a manifold of dimension n if every point in €2 has a
neighborhood which is homeomorphic to an open set in R". The concept of complex
analytic manifolds is defined by means of a family of such homeomorphisms:
Definition 8 A manifold Q) (of dimension 2n) is called a complex analytic manifold
of complex dimension n if there is given a family F of homeomorphisms k, called
complex analytic coordinate systems, of open sets €. C 2 on open sets Q,{ c Ccr

such that
1. If k and k' € F, then the mapping
KET R (N Q) — K (RN Q)

between open sets in C" is analytic (interchanging k and k' we find that the

inverse mapping is also analytic).

2. UK/EFQK/ - Q
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3. If ko is a homeomorphism of an open set (., C Q onto an open set in C" and
the mapping
ki Ko (Qeg N Q) — K (Lo N Q)

as well as its inverse are analytic for every k € F, it follows that ky € F.

Let 2 be a Hausdorff topological space. () is said to be countable at infinity
if there exists a sequence of compact subsets K7, Ky, -+ such that every compact

subset of € is contained in some Kj, that is @ = U7, Kj;.

Definition 9 A complex analytic manifold Q0 of dimension n which is countable at

infinity is said to be a Stein manifold if
1. Q s holomorphically convex, that is,
K=Kq= {ZZGQ,|f(Z)| <sup|f| for evernyA(Q)}
K

18 a compact subset of Q1 for every compact subset K of €.

2. A () separates the points in ), that is for any different pair of points z1, zo there
exists a function f € A () such that f (z1) # f (22).

3. Local coordinates can be defined by global analytic functions, that is for every
z € Q, one can find n functions fi,--- , f, € A(Q) which form a coordinate

system at z.

Example 1 Any holomorphically convex domain in C* and C™ itself are Stein man-
ifolds. But, C" or P" are not Stein manifolds since using Liouville Theorem, only
analytic functions in these spaces are constants but these obviously cannot separate

points, therefore property 2 fails.

4.2 Spaces of Analytic Functions

Let 2 be a complex manifold. A () is the space of all analytic functions on
Q) with the topology of uniform convergence on compact subsets of €2, i.e. with the

locally convex topology generated by the system of semi-norms
2| :=max{|z (2)|: 2 € K}, K € K(2) (4.1)
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where IC (€2) denotes the set of all compacta on Q. If Q is countable at infinity, then

A (Q) is a Fréchet space whose topology is produced by the sequence of semi-norms

{|x|K9 =max{|z(2)]:z € Ks}}

seN

where the K are compacta such that Ky C intK, 1, s =1,2,--- , and UK = Q2.

Let E be an arbitrary subset of Q. Let G (E) = Gq (E) denote the collection of all
open neighborhoods of E in Q. For Dy, D, € G (E), the functions f € A(Dy), g €
A(D,) are said to be equivalent (f ~ g) if there exists a D € G (FE) such that
D cCc DyND,and f(z) =g(z) for all z € D. A germ of analytic functions, briefly
(analytic) germ, is an equivalence class obtained that way. If x is a germ on E and
f € x then we say that f generates the germ x. The set of all such germs on F is
a vector space. If F is an open set, then E € G (F) and every germ on E can be
naturally identified with the unique analytic function on F, generating the germ.

We denote by A (E) the locally convex space of all analytic germs on E endowed
with the inductive limit topology

A(E) = lgrerzgi(%c)iA (D),

that is with the finest topology on A (F) for which all the natural mappings A (D) —
A(E),D € G(FE), are continuous.

Let K be a compactum in the manifold 2. Then the space A (K) can be repre-

sented as the countable inductive limit

A(K) = limindA (D). (4.2)

Here D, is any countable basis of G (K) . It is suitable to choose D, with the following
properties: Dy €@ D, and every D, does not contain any connected component
which is disjoint from K. It is sufficient to describe convergent sequences in order
to define the topology of this space: x; — z in the topology of A (K) if there exists
a neighborhood D € G (K) (depending on the sequence) such that z, € A (D), z €

A (D) and (zy) is uniformly convergent to x on every compact subset of D. Let
J:A(K)— C(K)
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be the natural homomorphism of the restriction. Let AC (K) be a Banach space
obtained as the completion of the set J (A (K)) in the space C' (K) according to
the norm defined in (4.1). In the case when J is a monomorphism, we obtain the
injection
A(K)— AC (K),
then K is called a set of uniqueness of analytic functions on K.
Let  be a complex manifold. Then, if 2 is countable at the infinity, A (Q2) can

also be defined as

A(Q) = limprojAC (K5) (4.3)

where the K are compacta such that Ky C intKyq, s =1,2,---, and UK, = 2.

Also, the space (4.2) can be considered as an inductive limit of Banach spaces
A (K) = limindAC (Dy) (4.4)

where the D, are open sets such that Dy  Dgyq, s =1,2,--- , and NgDs = K.

We will use the following notations for the spaces of analytic functions on disks:

Ap=A({z:]2 < R}), (4.5)
Ap=A({z:|2| <R}, (4.6)
Ay = A({0}).

We can also write the spaces Ap and Apg as the following inductive limits up to
isomorphism:

Ag =~ limind, | gl* (r"),

Ag =~ limind,1gl* (r") .

33



4.3 Duality

Let © be a Stein manifold. Elements of conjugate space A’ (2) = A(Q), that
is linear continuous functionals on A (€2), are called analytic functionals (on ).
In particular for 2 = C we obtain the space of analytic functionals A" = A’ (C")
having well-known importance in the investigation of convolution equation (see [12]).
On the other hand analytic functionals have significant part in the investigation of
structure of spaces of analytic functions, especially in the basis problem.

If F is an arbitrary subset of Stein manifold €2 then the natural map
J=TJ(E,Q):AE) — A (Q), (4.7)

that transforms a functional z* € A(E)" to its restriction on A (), is a linear
continuous map. Since A (FE) is reflexive, J* is dense. In the case when E is a
Runge set in €2 (that is A (§2) is dense in A (F)) the map in (4.7) is an imbedding.

For a Runge set E C ) we will identify A’ (E) as the image of the space A (E)*
in (4.7). Then for any pair of Runge subsets £ C F' in 2 such that A (F) is dense
in A (F) we have the natural imbeddings A’ (F) — A’ (E) — A" (Q?).

4.4 The Grothendieck-K&the-Silva Duality (GKS-duality)

The following result, due to Grothendieck, Kothe, and Silva (see [11], [14], [15],
25]) (called shortly GKS-duality) realizes the space A (E), for any set F € ((A:, as
the space of analytic functions A (E*), where E* := C \ E. Usually there is an
agreement to suppose that all germs of A (FE) are equal to 0 at the point oo if

oo € E. Here we restrict ourselves to the case when E' is open or compact set.

Theorem 17 Let E be either an open set or a compactum in ((Aj, E # @, E # (. The
space A(E)", the conjugate of the space A (E), is isomorphic to the space A (E*).

This isomorphism is defined by the formula x* — x', where

v (2) = (x2) = /x Oz (C)dC, w € A(E), (4.8)

T
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where 2* € A(E)*, 2 € A(E*), and T is any contour consisting of a finite number
of smooth Jordan curves and separating the singularities of the functions x () and
x (¢). Therewith, the formula in (4.8) is independent on the choice of the contour
r.

Proof. Let E be an open set in C, E F# C, E # (). Using (4.3),
A(E) = limprojAC (K,), (4.9)

where K, are compacta such that Ky C intKyq, s=1,2,---, and U;K, = F.

First we show that for any 2’ € A (E*) the formula (4.8) determines the unique
functional z* € A (FE)". Let 2/ € A(E*). That means, there exists sy € N such that
2’ € A(KZ) . Then for any x € A(E), define

z* (z) = /:z:’ (€)z (¢)d¢, where I' = K, for s > sq.

T
Then,

2" ()] < 2" (¢)|p max [z (C)]p 1(T) (4.10)
where [(I") is the length of the contour I', that is,

|z* (z)| < Csmax |z (¢)|p = Cs |a:]K , where Cs = |2/ (Q)| {(T),

which implies * is bounded in the norm of ||z, = |z, .

Let x1,29 € A(E), ¢1,¢9 € C. Then,

z* (17, + cpxy) = / 2 (C) (1 + ea) () dC

= /:E/ (C) (Cll'l (C) + CaZ2 (C)) dC

r

_ / 7 () e (¢)dC + / 7' () carz (¢) dC
(1) 4 (1),

So, z* is linear and thus z* € A (K,)" <— A (FE)" .Therefore, we observe that for any

2’ € A(E*), the unique functional z* € A (E)" is defined by the formula (4.8).

35



Now, we will show that for any functional z* € A (E)" the formula (4.8) deter-
mines the unique function 2’ € A (E*). Let 2* € A(F)". That means, there exists
so € N such that z* is bounded in the norm ||z, = |:c]KSO ,le z* € AC (Kg,)" .
Also, z* € AC (K,)", for s € N, s > 5.

According to the Cauchy Integral Formula,

1
x(z) = —/ z(©) d¢, where I' = 0K,, z € intK,.
2t ) (— =z
T

We denote # L =:u¢(2). Then, for ¢ € K=, uc will be an element of the space

i (—z E

AC (K,) , thus z* can be applied to u¢. So, define 2’ (¢) := 2* (u¢) . Now, using the

linearity and continuity of z*,

2 (C+h) =2 ()

lim — lim z* (uein (7)) — a* (u¢ (2))

h—0 h ) :;) . (U<+h (Z)Z " (z)) - (lim Ucyh (z)h— ug (z))
hos0 h—0
= 7 (d%Uc (Z)) = d%$ (u¢ (2)) = d%x/ (©)

Hence, 2’ () is analytic and is an element of the space A(K}) — A(E*). Now,

since z* is linear and continuous,

o [eou@d) = [veOue)a

r

T— T —

£ (0) 2" (ug (2)) d = / (0« (¢) dC.

r

Hence, we have shown that the given mapping (4.8) is a bijection.

Using (4.9), we can represent the space A (E)" as the countable inductive limit
A(E)* = limind, .. AC (K,)".

Also, by definition A (E*) can be represented as a countable inductive limit as in

(e}

o, we can represent A (E)

(4.4) . In particular, taking these open sets to be { K}
as

A(E") = liminds_ A (K7) = liminds— AC (K7) .
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By (4.10), for any s € N, we have
|m*|AC(Ks)* < L(OK) max |z ()], |33,|KS , (4.11)

where [ (0K,) is the length of the contour 0K. (4.11) implies that the mapping
x’ — x* is continuous (see, for example [21], page 98).

On the other hand, for any ¢ € K1,

[ (O < 2" (w)] < 2" | acqy v

< . <C
< o ooy %, 72 < e
z€Ks
where C! = é for 05 = dist (K, Ks11) . Thus, we get
|xl|aKs+1 < ||$*||AC(KS)* ) (4.12)

which implies that the mapping z* — ' is continuous. Combining (4.11) and (4.12)
we conclude that (4.8) is an isomorphism.

Let I, TV be two arbitrary contours consisting of a finite number of smooth
Jordan curves and separating the singularities of the functions z (¢) and ' (¢). Then,
since they have the same singularities within, these two contours are homologous.

Therefore

[e@e0dc= [+ Oz

r NG
for any * € A(E), ' € A(E*) which implies that the formula in (4.8) does not
depend on the choice of the contour.

Now, let K be an arbitrary compactum in @, K # @, K # (. Then, its
complement K* = FE is an open set. By the part we have proved, there exists

an isomorphism

T:AE) — A(K)=A(E)

defined by the formula
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where 2* € A(E)", 2" € A(E*), and I is any contour consisting of a finite number
of smooth Jordan curves and separating the singularities of the functions x (¢) and

z (¢) and 2’ = Tx*. Then, the adjoint of the operator 7" is an isomorphism:
T : A(K)" — A(E)™.

Besides, the spaces of analytic functions are Montel, reflexivity of the space A (E)

follows therefrom. That is, the natural embedding
J:A(E)— A(E)™
is an isomorphism. Then,
S:AK) — A(E)=A(K")

defines an isomorphism as the superposition of isomorphisms, i.e. S = J 1o T*.
Now we have to show the isomorphism S is defined by the formula that is given

in the statement. For any x € A (F)
Fy (2") = (@) = 27 (z),

where F, = J 'z, 2* € A(E)*, 2’ € A(K) and for any F, € A(E)™, g = (S) 'a,
the equality

holds. So, the theorem is proved. m
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CHAPTER 5

BASES AND ISOMORPHISMS OF SPACES OF ANALYTIC FUNCTIONS

IN ONE DIMENSIONAL CASE

5.1 Bases

Let X be a complex linear topological space. A basis in X is a sequence {zy}

such that every vector x € X has the unique expansion:

[e.9]

r= kaxm & € C,

k=1
which converges in the topology of X.
A basis {zx} in A(F), E C (, is said to be extendible onto a set F, F #
E, FNE # & (outside if £ C F and inside if F' C E) if there exists a system of

germs {Z1} C A (F) with properties:
1. z, and 7 generate the same germs on F'N F,

2. xy is also a basis in A (F).

For construction of extendible bases in the case of a compactum F = K C C it

is convenient to use Newton interpolational polynomials

po(2) =Lpe(2) =(2=G)-- (2 =), kEN,

where {(}} is a suitable sequence of points of interpolation on K.
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Example 2 {zk}ZO:O is a basis in all the spaces Ar and Ag, where Ap and Ag as
defined in (4.5) and (4.6), R > 0. If ¢ : D — Dy is a conformal mapping, where Dy

is the unit disc and D is a domain, the system of functions {(p (z)k} s a basis

for the space A (D). The system of functions {gp (z)k}zo also forms a basis for the
=0
spaces A (D,), A(D,), where D, = {|p ()| <r}, 0 <r < 1. So, {gp (z)k} is an

example of extendible bases, since it forms a basis for a family of spaces.

The existence of extendible bases was established by Walsh [32], Leja [17] for
regular and by Zahariuta [34] for polar compacta K C C. In both cases we have
a basis extendible on C and moreover onto a family of intermediate domains (or
compacta) bounded by level curves of some harmonic function, namely Green’s
potential.

Let X be a complex linear topological space and X* be the dual space of X.
The system {z}},-, is said to be biorthogonal to the system {zy};-, in X if

(xk, x)) = Opy, for any k,l € N,

where 0y, is the Kronecker delta. For the case when the system in X is the Newton

polynomials, the biorthogonal system can be constructed in the following way:

Lemma 7 Let {f;};2, be any bounded sequence in C and

pk(z):H(Z—ﬁi), k=1,2,---, po(2) =1

i=1

Then, the system
1 1
270 pryr (2)

is biorthogonal to the system of polynomials py (2) for each k € N, namely

P (2)

%mﬁz/%@ﬁﬂ@ﬂz&m

r
where 1" is any arbitrary contour consisting of a finite number of smooth Jordan
curves separating the singularities of the functions py (¢) and p; (¢) for any k,l € N,

i.e. {Bi}ti2, are all inside the contour T
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Proof. Let I' be any arbitrary contour consisting of a finite number of smooth
Jordan curves separating the singularities of the functions py (¢) and pj (¢) for any

k,l€N.

Let k = 1. Then,
1 1
/ — / d - d
e 1) / PO pe (e = o / (O
1 1 1
“ ] E

by Cauchy Integral Formula.
Let k > [. Then,

W = [ 5On Q= 5 [ @) ac

= (€ B (€ s (€ B de =,

27
r

since the integrand is analytic inside the contour T'.

Let k < [. Then,

Whope) = / P ()i (¢) d = - / 0

N 2_7” Pk+1 (C)
r r
1 1
- Q_WF/ (€ = Brg1) (€ = Brga) - (€ — @H)d5
1 ) 1
= %QMRGSCZOO ((5 T ) (€= Brra) (€ = 5z+1)) . (see [26], pg 250)
But, since
1 B 1
(& = Brt1) (€ — Brta) . (€ — Bis1) B (l=h+1 (1 _ %) <1 _ %) <1 B %>

we conclude that

Hedace ((é ~ i) (€ - ﬁim - ﬁlm) -

Therefore (p),pr) =0 for k < as well, which proves the lemma. m
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5.1.1 Construction of Newton Polynomials For Regular Compacta

Walsh Knots

Let K be a compactum in C. For any n € N, let ﬁln) (n), e n+1 be a set of n+1

points zk ) of I such that the modulus of the Vandermonde determinant

j=n+1
Va (Zg ") Zén), e 73&21) = H (zz(n) — Z](n)) (5.1)

i<j=1
will be maximum, i.e. construct Fekete points for each n € N. The Vandermonde
determinant is continuous in K and since K is compact, maximum is attained in K,
that is, for any n € N, there exists { (m )} ) C K such that (5.1) is maximum. These
set of points may not be unique for eachl n € N, but any set will suffice.
The following set of points

(0)
1 >

s B,

gn)aﬂén% Tty 7(:1-)17

constructed by (5.1) for each n € N are called the Walsh knots.

We will also enumerate the Walsh knots in the following way:

0 j(n
Br=p" B =B By =B, B =Bl (5.2)
Lemma 8 Let K be a reqular compactum in C with a connected complement. As-
sume that {51(")}, n € N is any sequence of finite sets of points in K that satisfy
the condition

nh_{go - (% ln) ‘) = gk~ (2,00) +InC (K), (5.3)

=1

uniformly on any closed subset of K*, where C' (K) is the capacity of the compactum

K and g+ (z,00) is the Green function. Then,
hm — <Zln\z—ﬁz> = gr+ (2,00) +InC (K), (5.4)
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where {ﬁj}le is the sequence obtained by enumeration of ﬁi(") as in (5.2).

Proof. Let S be a compact subset of K*. Consider the sequence of functions

=]
In z—ﬁj(-n)

u; (2) = = —5—, 4 € Nin S. Then, by (5.3), we have

lim u; (2) = gi+ (2,00) + InC'(K) .
n—oo
uniformly on S. Denote k,, = % and construct a new sequence {v;}.-, as follows:

U1 = U1, V2 = U2, V3 = U2,Vq = U3,V5 = U3,V = U3, """,
Vkp_14+1 = Un, " 5 Uk, = Un, Uk, +1 = Untl, " -

That is, the n' term of {w;};, will be repeated n times in {v;};-,. It is obvious

that also
lim v; (2) = g+ (2,00) +InC (K) .

n—oo

uniformly on S. Now, take the partial sums V,,, = > v;. Then, by Cesaro’s Theorem,
i=1

lim Vin = gk (2,00) +InC (K),

m—oo M,

uniformly on S. Therefore

n j+1

IR

b
> Infz—
lim 2 — lm =

kp—00 kn kn—00 kTL

= g~ (Z,OO) +lnC(K).

(5.5)

Hence, it is shown that (5.4) holds for the subsequence k,.
Now, let k € N such that k =k, +1 < k,, [ € N. Then, since

k kn_1 k

1 1 1

EE 1n|2_6j|:E§ Infz =B + - > lnfz— g,
j=1 j=1 j=kn_1+1

taking the limit as k — oo, then also n — oo and using (5.5) , we see

k k

1 1

Jim E. 11n|z—ﬁj| = gxc+ (2,00) +InC (K) + lim - kE Hln!z—ﬁj\,
J= J=Fn—1
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Therefore, to prove (5.4) it suffices to show

k
.1
hmE Z Infz — 3| =0

k—oo )
J=kn—1+1

uniformly on S . Since there exists a constant 0 < A < oo such that

1
Z<|z—ﬁj|<A, forjeN, z€ 8.
we obtain that
1 & 1
klggoE | kZ: 1ln|z—ﬁj| < ’CILIEOE(k—kn,l)lnA = 0.
J=Fn—1

Therefore, (5.4) follows, which completes the proof. m

Proposition 9 Let K be a reqular compactum in C with a connected complement.

Let {B; :i=1,2,---} C K be any sequence such that the relation holds

k—oo k

lim 1 <Zln\z—ﬁi]> = gr~ (2,00) +InC (K), (5.6)

for each z € K*; here g« (z,00) is the Green’s function of the region K* with

singularity In |z| at infinity. Then the system of polynomials
k
pk(z):H<Z_ﬁz)7 k:1a27"'7 pO(Z)EL (57)
i=1
forms a basis in the space A (K) and in all the spaces A (Dg), A(KRg), and A(C),

1 < R < oo, where Dg := {z € K* : gg- (2,00) < In R} and Kp := Dpg.

Proof. Let (5.6) hold. Then, it follows that
Ci(r,e) (r—e)" <lpr(2)lp, < Ca(r,e) (r+e)", 1<r<oo, (5.8)

for any € > 0 with some positive constants C (r,¢),Cy (r,€). By Lemma 7, p (z) =

11
211 pry1(2)

is the biorthogonal system of py (z) . Then, by (5.8), the following is valid:

r—e

W, <00 () =ame () (5.9)



Let x € A(Dpg) for any 1 < R < oo. Then, for r < p < R, the following estimates
are valid:

Ik (2)]p, < Ca(re) (r+e)", (5.10)

|p;<z>|Dps05<p,s>( ! ) . (5.11)

p—¢

The formal expansion of z is = ) &pi (2) , where & = (p}, z) . Then, by (5.11)
and GKS-duality,

1 k
6] < (gl )| < CC (pr2) |2, (p_ ) | (5.12)

€
By (5.10) and (5.12), the general term of the basis expansion of x has the following
bound:

k

6l (), <€ (.2 el (25
Choose ¢ so small that ;—in < 1. Then, it is seen that the sum ) [§x| [px (2)]p, is less
than the sum of a convergent geometric series, therefore it converges as well. So,
the system of polynomials {py (2)} forms a basis for A (Dg).

Let x € A(C). Then, for any R > 1, 2 € A(C) — AC (Dg). Therefore, the
basis expansion of z is © = > &py (), where & = (p),, ) . But it has been shown
that it is convergent in the topology of the space A (Dg). Therefore, the system of
polynomials {py ()}, is a basis for the space A (C).

For any R > 1, consider the space A (Kg), where Ky := Dg. We assume that

K, = K. Then, each A (Kpg) can be represented as the inductive limit

Since the system of polynomials {pj, (z)},-, is a basis for each of the spaces A (D, ),
it will also be a basis for their inductive limit. Therefore, the system of polynomials

{pr (2)} 1=, is a basis for the space A(Kg). m

Corollary 1 Let K be a reqular compactum in C with a connected complement.
Let {B; :1=1,2,---} C K be the enumerated Walsh knots as in (5.2). Then, the

system of polynomials

() =][Gz=8), k=12, m(z)=1, (5.13)

i=1

45



forms a basis in the space A (K) and in all the spaces A(Dg), A(Kg), and A(C),
1 < R < oo, where Dg := {z € K* : gg- (2,00) < In R} and Kp := Dpg.

n+1
Proof. Let {@(n)} C K be Fekete points. Define

=1

n+1

o (2) =] (Z - @-(")) :

i=1

Then, construct
1 1 *
w(2) = gy ()] = - In g (2l — - (2,00) , where = € K*\ {oo}
Since all zeros of ¢, (2) lie in K, u is harmonic on C\ K. Besides,

1 1 .
~1Inlg, (2)] = —1n(\z"] <1+ﬂ+...+a_>>
n n P

Zn

1 n
= ln|z|—|——ln(1+ﬂ—|—---+a—>,
n Z 2"

which implies that u (z) is also harmonic at infinity. Therefore, we conclude that

u (z) is harmonic in K*. Then, we have

1 1
limsupu (z) < —Injg, (2)] — —In||g, (2)|| <0, for ¢ € OK™,
n n

z—(

so by Maximum Principle, v < 0 on K*. Therefore
1 1
ﬁln lgn (2)] < - In{|gn (2)|ljc + gx+ (2,00), for z € K\ {oo}. (5.14)

Since u < 0 on K*, we may also apply Harnack’s inequality (see [23], pg 13) to —u
and obtain

u(z) > 7+ (2,00) u (o) for z € K*. (5.15)
Using Lemma 2,
u(oo) =InC (K) — %ln”qn ()|l >InC(K)—1né, (K), (5.16)

where 0, (K) is the n-th diameter of K. Then, combining (5.14), (5.15), and (5.16)

we get
O(K) Tie* (2,00) 1 1
- —1 < =1 1
In (5n (K)) +gxe (2,00) + —lnflan (2l < —ngn (2)] (5.17)

1
< g (2,00) + - g (2)
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Now, taking the limit as n — oo for (5.17) and using Lemma 1 again,

1
i+ (2,00) + InC(K) < lim —1In|g, (2)| < gg+ (z,00) + InC (K).

n—oo M,
Therefore,

lim 1 In|q, (2)| = gx+ (z,00) + InC (K) . (5.18)

n—oo 1

Using Lemma 8, it is seen that

lim ~In[p, (2)] = gr- (2,00) + InC (K) .

n—oo M

k
where py, (2) = [[ (2 —6;), k=1,2,---,po(2) =1, {Gi};2, are the enumerated
i=1
Walsh knots as given in (5.2). Then, by Lemma 9, we conclude that the system of
polynomials in (5.13) forms a basis for all the spaces A (K), A(Dgr), A(Kg), and

A (C). That proves the corollary. m

Leja Points

Let K be a compactum in the complex plane C. Take any (3 € K. The sequence
(8:)32, is constructed inductively: If (n — 1) points {8;}7—, C K are chosen, choose
nth point (3, € K such that modulus of the Vandermonde determinant satisfies the

condition

|Vn (ﬁla"' aﬁn—l;ﬁn” = max{|Vn (51)"' aﬁn—l;C)| : C € K}

That is, if (n — 1) points are chosen, the nth point ( = (3, which maximizes the
Vandermonde determinant is chosen. Interpolation points constructed in that way

are called Leja points.

Corollary 2 Let K be a reqular compactum in C with a connected complement. Let
{B; :1=1,2,---} C K be Leja points. Then the system of polynomials

k

pr(z)=][(z=8), k=12, m(z)=1,

i=1
forms a basis in the space A(K) and in all the spaces A(Dgr), A(Kg), and A(C),
1 < R < oo, where Dg := {z € K* : gg- (2,00) < In R} and Kp := Dp.
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Proof. Leja proved in [17] that the system of polynomials {p;.} satisfy the condition

1
klim z (In |px|) = gr+ (2,00) + In C' (K) .
Then, using Proposition 9, we conclude that the system {py} forms a basis for the

spaces A(K), A(Dg), A(Kg), and A(C). Therefore, the corollary is proved. m

5.1.2 Construction of Newton Polynomials For Polar Compacta

For a polar compact set K C C, as it was shown in [34], a basis in A (K) can be
constructed as sequence of interpolational Newton polynomials:

pa(2) =] (z=5)).

j=1
In this case the sequence of knots is obtained from the sequence of Evans’ points (,
(see Theorem 14), repeating them in such a way that, roughly speaking, among the
first n knots the point ¢, appears nearly [o;n] times (proportionally to the weight
a; > 0); so (; behaves like a random sequence chosen from the probability space
{¢,} with the discrete probability measure u defined by 1 (¢,) = a.

More precisely, it was shown in [34] and [39] that, for a polar compact set K C C,

the system of polynomials

k
pe(2)=[[=¢)""™, k=12, p(2)=1, (5.19)

i=1
will form a basis, where k; (n) satisfies the conditions:
1. k?j (1) = (513‘,
2. kj(n+1)=Fkj(n)+ 0;,m with some n € N,

— 0 as n — 0.

3. %
=1

Theorem 18 (Zahariuta [34], [39]) Let K be a polar compactum in C. Then the

system of polynomaials

k
pe(2)=[(z=¢)"", k=12, p(2)=1,

i=1

where kj (n) satisfies the conditions above, forms a basis in A (K).
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Proof. Let K be a polar compactum in C. Then, using Theorem 14, there exists a

(o)
sequence of nonnegative numbers {a;}, > o; = 1, and a point sequence {(;} C K
j=1

such that the function ¥(2) = > a;In|z — (;| is subharmonic in the entire plane
j=
C, harmonic C\ K, and ¥(z) = —oo for z € K. We may assume that «; | 0.
Let A, = {z: ¥(2) < a}. The subharmonic function ¥ is upper semi-continuous

in C, so U(z) — —o0 for z — 29 and zp € K. Thus
Nl = K, A, € Ag,a < 3,

from which it follows that the system of norms |z|, , —0c0 < a < oo yields the
original topology in A(K).

Consider the system of polynomials
pO—lpn Hz_ﬁ] 7 _1727"'
7=1

where k;(n) satisfies the conditions 1, 2, 3 of Section 5.1.2. Consider

1/n

:_Zk )In [z = G

n

[1G=p8)k™

J=1

In |pn(z)|1/” =In

Then,

n

lim In|p,(z)|"" =gg@02@1nlz—ﬂj| =Y a;lnfz— Bl =¥ ().

j=1 j=1
Hence, we conclude that
lim |p, ()" =¥, z € C. (5.20)

We will show that the system of polynomials {p, (z)} forms a basis in A (K). Con-

sider the system of functions
1 1
%pn-&-l(z)
in the space A(K*). Using Lemma 7, the system of functions {g,} in the space

qn(2) =

A (K*) is biorthogonal to the system {p,}.The formal expansion of an arbitrary

x € A(K) in a series of the {p,(z)} is the Newton interpolation series
n=0
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where

&n = / z(&)qn(§)dE, a = ax) > —o0. (5.22)
00a
The convergence of the series (5.21) in A(K) for each z € A(K) remains to be

established. From (5.20) and (5.22) we obtain the bounds

Cy(a,e)el*™om < [Pnla, < Cyla, e)eletem, (5.23)
L) ||

1< ap—(a=e)n _ pr —(a—e)n 5.24

6] < g e (@.0,2)e 70 (5.24)

0 < Ci(a,e), Colaye) <oo, —oco<a<oo, e>0. (5.25)

Taking 3 = a — 3¢, we obtain that

D L&l Ipala, < My (z,006) Y e < o0, (5.26)
n=0

M (z,0,8) = M (z,0,¢) C (o — 3¢, €) .

Inequality (5.26) shows that the series in (5.21) converges in A (K) for each x €
A(K). Hence, {p,} is a basis in A(K). =

Remark 2 If a compactum L C C contains the infinite point then there is no
polynomial basis in A (L). But using results of the sections 5.1.1 and 5.1.2, we can
easily construct extendible bases, if L is regular or polar, but oo € L # C. Indeed,
if ¢(z) = = with a ¢ L, then K := ¢ (L) C C. Due to Corollary 1, or Theorem
18, there exists a polynomial basis {py (2)} in A(K). Then, obviously, the system

Gk (2) = pr (Zia) :

is a basis in all the spaces A(L), A(Lg), A(GRr), where L = ¢ ' (Kg) and
Gr = ¢ ' (Dg) and Kg, Dg are as defined in Proposition 9.

5.1.3 The Hilbert Methods Proof

Theorem 19 Let K C D be a reqular pair “compact set-domain”. Let Hy, Hy be

such that the dense continuous imbeddings hold:
A(K) — Hy — AC (K), (5.27)
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A(D*) — H; — AC (D*), (5.28)

where Hy is a GKS-realization of the dual space Hy. Then the common orthogonal
basis {ex ()} for Hy, Hy, normalized in Hy and ordered by non-decreasing of its

norms in Hiy :

lexll g, = 1, e = g (Ho, Hu) = [lex| g, /" 00,

is also a common basis in all spaces A (D), A(D,),A(Ks), and A(K) where D,, K

are the sublevel domains as defined in Lemma 6.

Proof. Let K, D, Hy, H, be spaces as given. Using GKS-duality, the left hand
side of the imbedding (5.28) can be realized as

H, < A(D). (5.29)
Then, combining (5.27) and (5.29), the following continuous imbeddings are valid:
Hy < A(D) — A(K) — Hy — AC (K) (5.30)

On the other hand, using GKS-duality, the left hand side of the imbedding (5.27)
can be realized as

H — A(K"). (5.31)
Then, combining (5.28) and (5.31), the following continuous imbeddings are valid:
H)— A(K*) — A(D*) — H] — AC (D"). (5.32)

The inclusion H; C Hj is a dense linear imbedding and since the spaces A (D), A (K)
are nuclear, it is compact. Then, using Theorem 7, there exists a system {e} C H;

which is a common orthogonal basis in H; and Hj such that

lewllmy =1, s = g (Ho, Hy) = [lexll, /o0

Let D, be the sublevel open sets defined in Lemma 6. The continuity of the imbed-
ding H; — A (D) implies that for any ¢, 0 < ¢ < 1, there exists a constant C, > 0
such that for any = € H; — A (D),

|21, < Collzlla,
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In particular,

lexlp, < Cqllerlly, = Capu (5.33)

since [|ex|y, = k- The continuity of the imbedding Hy — AC (K) implies that, for
any € Hy — AC (K),

2] < Ol g, -

In particular,

lerlxe < Cllexlly, = C (5.34)

since ||ex||, = 1. Using Theorem 13 for e;, with the help of the (5.33) and (5.34)
ekl p,,, < lewl “lexlp, = O (Com)™ = O Cg.

where Do, = {z € D:0<w(D,K,z)<aq}, 0 <ag <1 Sinceaqg T aasq 11,
we get

lexlp, < C o e) ™. (5.35)

Now, we have to find the estimates for the biorthogonal system. Let {e}} C Hj C

A (K*). The formal expansion of an arbitrary x € H; can be written as

:L':ZQ:(.T)Gk

where {ex (2)} C Hy C A(D).
Let K be a sequence of compact sets such that K5 || K where Ky are as defined
in Lemma 6. The continuity of the imbedding Hj — A (K*) implies that for any 9,

0 < 0 < 1, there exists a constant C§ > 0 such that for any 2’ € H) — A(K"),
1#]1s < C 110l -

In particular,

leklk; < Csllekllmy = Cs, (5.36)

since ||e}.]| ;= 1.The continuity of the imbedding A(D*) — H{ implies that for
any ©' € A(D*) — Hj,

@/l < C' 2]
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In particular,

ekl < C'llchll gy = C'hi™ (5.37)

1
e

Again using Theorem 13 for e}, with the help of the (5.36) and (5.37),

since [|e} |, =

%* _ C(/s(lfa) (Olulzl)a

1—
|€;€ D4 < ‘€k|Kga lex

where Dos = {2 € D:0<w(D,K,z) <ad}, 0 < ad < 1. Since ad T o as § T 1,
we get

ekl e < C' () . (5.38)

Now, we will show that {e;} will be a basis for each of the spaces A (D), A(D,),
A(K,), and A (K).We know

¢ € H) — A(K*) — A(D*) — AC (D) — AC (D*) — H..

To show that {ex} is a basis for A (D), first observe that for any x € A (D) —
AC (Dg), and e, € H) — A(K*) — A(D*) — Hj

ek (@)] < leklg lxls- (5.39)

Now, take any x € A (D) — Hj. Then, since x is also an element of Hy, the formal

series expansion of z in Hj is

o
:Ze )ex € Ho.
k=1

We have to show that for any x € A (D) and any o < 3,

> ek (@)] lexl, < o0 (5.40)

k=1

Using (5.39) and estimates (5.35) and (5.38),

oo
D lek @) erly < D lek (@)1 lexl, 2]
k=1

<laly Y K (@, 8,6) — " uz“*a
k
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= |‘T|ﬁ ﬁa Z:ua free

where the second inequality follows from the (5.35) and (5.38). Take e such that
a—fF+ 2 =—0 <0, then

oo [e.o]

1
Dl @)l lexla < lal K (@ 8,) 3 -5 < oo.

k=1 k=1 "k

where > M—lc, < oo follows from the nuclearity of the operator H; — Hj. So, for any
k=1""
x € A(D), indeed (5.40) is satisfied, therefore the system {ex} is a basis for A (D).

Now, let’s show that {ex} is a basis for A (Ds), 0 < d < 1. Observe that for any
x € A(Ds) — AC (Dg), and €), € Hj — A(K*) — A(D*) — Hj :

ek ()15 < lekls 2l (5.41)

Now, take any x € A (Ds) < Hy. Then, since x is also an element of Hy, the formal

series expansion of x in Hj is

(o ¢]
Ze )ex € Hy

k=1

We have to show that for any z € A (Ds) and any o < 3 < 9,

> el (@) lexl, < 00 (5.42)
k=1

Using (5.41) and estimates (5.35) and (5.38) ,

oo
D lek @)lslenl, < D lek (@)1 lexl, |2l
k=1

< loly 3K (o e =

= |zls K (o, B,2) Y pi 7

where the second inequality follows from the (5.35) and (5.38). Take € such that
a— (42 =—0<0, then

o oo 1
Stk (@)lslexl, < laly K (0,8,) S — < oo,
k=1 =1 Hk
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where Ii ik < oo follows from the nuclearity of the operator H; — H,. So, for
any x € A(Ds), indeed (5.42) is satisfied, therefore the system {ej} is a basis for
A(Ds) .

Now, we will show that the system {ej} is a basis for the spaces for the spaces

A(K) and A (K,). These spaces can be represented as the inductive limits:
A (K) = limmd(;loA (Dg) s
A (Kp) = limind(slpA (D(;) .

Since the system {ex} is a basis for each of the spaces A (Dy), it will be a basis for
their inductive limits as well. Therefore, the system {ex} is basis for both of the
spaces A (K) and A(K,). =

The restrictions on Hilbert spaces Hy, Hy can be considerably weakened if the

pair (K, D) satisfies certain additional conditions (see, Theorem 20 below).

Definition 10 Let D be a reqular domain in C. We say that D s stable from outside
if for any G || D we have

w(GY K,z) Tw(D,K,z?), Yz € D.

Definition 11 Let K be a reqular compactum in the domain D. We say that K 1is
stable from within if K* = C\ K is stable from outside.

Let K* be stable from outside,
l—w(K*,D*,()=w(D,K, (),
where K* =C\ K, D* = C\ D.Then,
1—w (K9, D* () =w (D, K¥ ()
where K® (G, K®)* || G*, K = G. Since K* is stable from outside,
w (K", D*,¢) Tw (K", D,().

So,
w(D, K. ¢) 1w (D, K,()

if K* is stable from outside.
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Theorem 20 Let K C D be a regular pair "compact set-domain”, and K be sta-
ble from within and D be stable from outside. Let Hy, Hy be such that the dense

continuous imbeddings hold:
A(K)— Hy— A(intK), A(D*)CH CA (D*) ,

where Hy is a GKS-realization of the dual space Hy. Then the common orthogonal
basis {ey (2)} for Hy, Hy, normalized in Hy and ordered by non-increasing of its
norms in Hiy :

lexll gy =1, pn = g (Ho, Hy) = [lex]| g, /" 00

is also a common basis in both spaces A (D) and A (K).

Theorem 21 Let K C D be a reqular pair "compact set-domain”. Under the con-
ditions of Theorem 19, let {e} be the common basis for the spaces A (K) and A (D)

that was constructed therefrom. Then the following asymptotics

T i 20 (2]
(—zk—o0 In Lk

=w(D,K,z), ze D\ K (5.43)

is fulfilled uniformly on every compactum L C D \ K.

Proof. Let the sublevel domain D, = {z € D:w(z) =w (D, K, 2) < a}. Using
(5.35) , we have

ek (2)|p, < C (o) ™.

First, take the logarithm of both sides and divide by In p;. Then, taking the limit
as k — oo, we get
ey (2)]

< «a, for any z € D,,.
k—oo  In g

After regularization,
a=w(z), forany z € D,,.

We will prove the other inequality by contradiction. Assume that there exists zy €
D\ K such that
u(z0) <wl(zo) = a. (5.44)
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Then, there exists an open disk D (zg,¢) C D such that
u(z) <a—e¢, forany z € D (z,¢).

Using (5.44) , we conclude that there exists ko € N such that

1
M < a—0, for any z € D (2,¢),
In g
where k > kg.
Let x € A(D,) be a function which is not analytically extendable to any larger

domain. The formal expansion of x will be:

z(2)=) e (a)en().

k=1
By (5.38), we have

eh] < O (a.e) ™.

Then,
Dl @) lerl <D C(ae) i =C" (o, 6) ™
k=1 k=1

o0
<C (CY, , 6) ZMI;2Q+E+6-
k=1

Choose 6 so that —2a+e49 < 0. Then the convergence of the sum follows from the
nuclearity of the operator H; — Hj. That shows that x can be analytically extended
in the disk D (29, €) , which contradicts the assumption that z is not extendible. This

contradiction shows the validity of (5.43). m

5.2 Isomorphic Classification

5.2.1 About Compacta With Infinitely Many Holes

Theorem 22 Let K be a compactum, with complement D = K* consisting of an
enumerable collection of mutually exterior regions D;. Then A (K) is isomorphic to

the topological sum of the spaces A (K;), K; = (D;)".
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The isomorphism mentioned is represented by the formula
€T <> (l’l,l'g,“‘ 7xj7"')a

where z; € A(Kj), and is computed with the aid of the formula

x; (2) :/%’(C_)CZK’

¢

where z € A; and A; = A (z) is a neighborhood of the compactum K, and the

contour I'; consists of a finite number of closed Jordan curves lying in (A;)" and

containing in its interior all the singular points of the function z (z) situated in

D;. For each function x € A(K), only a finite number of the functions z; are not

identically zero. Thus z(z) = ixj (z) for some neighborhood A = A (z) of the
i=

compactum K.

Corollary 3 The space A(K), where K satisfies the conditions of Theorem 22, is
not isomorphic to the space A (Ky) if Ko is a compactum containing in its comple-

ment only a finite number of mutually exterior connected components.

5.2.2 Isomorphism to A;

Theorem 23 Let K be a compactum in C. For the spaces A(K) and A, to be
isomorphic, it is necessary and sufficient that (a) the compactum K be regular, and
(b) the complement K* = C \ K consist no more than a finite number of connected

components.

Proof. Sufficiency
Let the compactum K satisfy the conditions of Proposition 9. Then, from it follows

(5.6) that
Ly(a, &) C(K)*e ™" < |pr(2)]a, < Li(a, )C(K) ek, (5.45)

£>0,0< Ly(a,e), L1(a,€) < o0,

where A, is the interior of the level curve I'y, = {z : gg+ (2,00) = a}, 0 < a < 00

and g+ (z,00) is the Green’s function. K is regular, hence gg- (z,00) = 0 for any
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z € K. Define A, € Ag for a < 3, then K = Ny>0A,. Inductive topology can be
defined on A (K) as in (4.4).

Given x € A(K), consider its basis expansion:
x(z) = Z&cpk (2) -
k=0
Then, from (5.45) we have
@ln, < L{a,e) Y |&] C(K el
k=0

Therefore the mapping 7' : Y — A(K), where Y := limindyol;(e**) defined by
the formula (&CC’ (K)k) — x is continuous. Since both of the spaces A (K) and Y
are complete and the operator T'is a continuous bijection, by Banach Theorem, we
get T is an isomorphism. Hence, A (K) is isomorphic to the space Y. Since A; is
isomorphic to Y, we conclude that A (K) is isomorphic to A;. If oo € K and K has
a simply connected complement, Remark 2 can be used to reduce to the same case.

Now, let K be a regular compactum in C with complement D = K*, consisting

of a finite number of exterior connected components D;, 7 = 1,2,...,r. Then,

A(D) ~ HIA(Dj)’ consequently
=

where K; = (D;)*. Using the previous argument, A(K;) ~ A;, thus A(K) ~
Ap x Ay x -+ x Ay (r times) and so A(K) ~ A;.

Necessity of the condition (a)

Since the case the complement of K has finite number of connected complements
can be obtained similarly, we will assume that the complement of K is connected for
simplicity. Then the regularity of the compactum K will follow from the existence
of an isomorphism between the spaces A(K) and A;.

We will prove by contradiction. Assume that K is not regular but there is an
isomorphism 7" of the space A(K) onto A;. Then, the adjoint operator T* is an
isomorphism of the space (A;)* onto A(K)*. Since A; is Montel space, (A;)* is
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isomorphic to A; and the space A(K)*, according to Theorem 17, is isomorphic to
the space A(D) where D = K*. Hence there is an isomorphism T of the space A;
onto A(D). Now, for D, we will define the projective limit topology as:

A (D) = limprojAC (D),

where the D, are open sets, Dy € Dsq, s =1,2,---, and UgD;.

Since the system of functions z* form a basis in A;, their isomorphic images
he(z) = T(z*) is a basis in A(D). Thus, for each s > sy = so(T), choose r; =
ri(s) <1 and Ci(s), 0 < C; < 00, i = 1,2, such that

Cor < |hylp, < Chrf,
and 7;(s) T 1 for s T co.Define

(5.46)

l h . . .
Infhx ()] ]’;(g) | are subharmonic functions in D. We have to

Since hg(<) are analytic in D,
show that W are locally uniformly bounded above in the domain D. Let C be

a compactum in D. Then, there exists s such that C' C Dy, so

1hie($)| e < [hw()p, < Cur, V.

In [hg(s)| o < In Cy
k -k

are indeed locally uniformly bounded on D. Using Theorem 9, we

+Inry, Vk (5.47)

In|hg ()]

Hence, ==

conclude that W¥(z) is a subharmonic function. Also, using (5.47),

1 _ 1 .
lim lim M < lim ( lim n—Cl) + lim lim Inr
¢—zk— 00 ¢—z \ k—o0 k} ¢—zk—00
= V(2) <0,z € D, since r; < 1. (5.48)

Also, let z € Dy, where Dy = D,. Then
U(z) <Inri(sg) = —o < 0. (5.49)

The set (Dg)* = G is open and consists of a finite number of mutually exterior
regular regions G;, j = 1,2,...,m. Since the compactum K is not regular, for at

least one j the compactum K; = G; N K is not regular.
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Consider the generalized solution function w;(z) = w(K;, G, z) constructed as
in Remark 1. By construction, since w;(z) must coincide with f on the boundaries,

w;j(z) =1 on 0G,. So, for any z € 0G},
VU (2) < —ow;(2).

By the generalized maximum principle, if the maximum value of W (2) exists, it is

attained on the boundary. So,
U (2) < —ow; (2), Yz € Gj.
Also, since G;\K; C G}, that also holds for G;\ K, that is,
U (z2) < —ow; (2), Vz € G;\Kj. (5.50)

From (5.46) and (5.50) the existence of the function C'(z2) , defined in G;\ K, follows,
and we have

|hi (2)] < C (2) ek 5 € G\ K;. (5.51)

As {hi (z)} form a basis for A (D), the basis expansion of an arbitrary element

x € A(D) is:
v(2) =Y &b (2).

Since {hy (2)} is the isomorphic image of the power basis in A;, the following in-

equality holds for the coefficients & :
— 1

i.e., for each 6 > 0,

|£k| SL(:Ca(S) e§k7 k:()al? . (552)

Since Kj is an irregular compactum, it follows from Remark 1 that there exists a
point zg € 0K and a sequence {z,} C G;\Kj, z, — 2, such that w(z,) — 200 > 0.
Without loss of generality we can assume w(z,) > ap, v = 1,2,---. Hence by

choosing § so small that § —oay < 0 we obtain, by the use of (5.51) and (5.52), that
2 (2)] < L(2,0)C(2) (1—€77) ", ze€ A(D).
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Thus each function x € A (D) has the bound
|z (2)| = 0(C(2)), (5.53)

where C'(z,) is a fixed sequence not depending on z.

Relation (5.53) cannot be satisfied for all x € A (D), since it is easy to construct
a function analytic except at the point 2z, and assuming any previously assigned
values at the points z; [10]. The contradiction thus obtained establishes that the
compactum K is regular.

Necessity of the condition (b)

Let T be an isomorphism between the spaces A; and A (K). Since the comple-
ment of the set D ={z:|z| < 1} consists of only one connected component, using
Corollary 2, A; cannot be isomorphic to a space A (Kj) for which the complement of
the set Ky consists of a countably infinite number of mutually exterior components.
Therefore, the complement of K consists no more than a finite number of connected

components. H

Remark 3 If C'(K) = 0, then the space A; is not isomorphic to any subspace of
the space A (D), D = K*, where K satisfy the conditions of Theorem 23 (see [34]).

5.2.3 Isomorphism to A

Theorem 24 Let K be a compactum in C. For the spaces A(K) and Ay to be

isomorphic, it is necessary and sufficient that C(K) = 0.

Proof. Sufficiency

Let the capacity of the compactum K be zero. We will show that in that case
the spaces A(K) and A are isomorphic.

For simplicity we will assume that oo ¢ K. The general case can be obtained
from this one by Remark 2. Since the capacity of the compactum K is zero, it is a

polar set. Therefore, using Theorem 18, the system of polynomials

n

Po = 17pn<z) = H(Z - 5],)163'(71)7” = 172a e

=1
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where k; (n) satisfies the conditions 1, 2, 3 of Section 5.1.2, {a;} is a sequence of

nonnegative numbers, > a; =1, and «; | 0 forms a basis for the space A (K). We
j=1
know in that case we have the following bounds:

Ci (e, €)e ™™ < |pyla. < Colay,e)e @, (5.54)
L) ||
1< a ,~(a—g)n _ M —(a—e)n ]

0 < Ci(a,e), Colaye) <oo, —oo<a<oo, e>0.

Using the bounds (5.54)and (5.55), it is seen that A (K) is isomorphic to space
lzomgzod (lleo‘k) and hence to the space Ay, which proves the sufficiency.

Necessity

Let A (K) be isomorphic to the space Ay. We will show that the capacity of the
compactum K is zero.

We will prove by contradiction. Assume that C'(K) > 0. Let T" be an isomor-
phism of Ay onto A (K). Then the system of functions hy, (z) = T (z¥) is a basis in

A(K) as it is the isomorphic image of a basis. From this, for each s > sg, select

ri=r;(s) >0and C; = C;(s), 0 < C; < o0, i =1,2, such that
Cory < |hilg, < Chrf, (5.56)

ri (s) | 0 for s T oo, and Gy are an open sets as in (4.4).

Define the function

(5.57)

In |7y ()]

in D = Gg,. Since hy (¢) are analytic in D, are subharmonic functions in

In [y ()]
k

D. We have to show that are locally uniformly bounded in the domain

D. Let C' be a compactum in D.Then, there exists s such that C' C G4 so

7 (e < hi(9)lg, < Cirt, Vk.

In |k (s)|o < In Cy

’ < — + Inry, Vk. (5.58)
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In [hy, ()]

Hence, I are indeed locally uniformly bounded on D. Using Theorem 9, we
conclude that ® (z) is a subharmonic function. Also, using (5.58),

— — Inj|h — ([ — InC -

lim lim M < lim lim | + lim lim Inr

z—z0k—00 k z—z0 \ k—00 /{j z—z0k— 00

— ®(2) - —00, 2 — 29, 2 € DN\K, 25 € OK™, since r; | 0 for zg € OK™. (5.59)

Again, with the use of (5.58), it is seen that
®(z) <Inri(s)) =0 <o0, z€D. (5.60)

The open set D consists of a finite number of mutually exterior regular regions D;,
j=1,2 .- m. By the assumption C' (K) > 0, an integer j can be found such
that C' (K;) > 0, where K; = D; N K.

We have 0K; = 0K N D;, therefore applying Lemma 2 for the compactum K;
by (5.59) and (5.60), we obtain

Q(2) =—o00, z€ D\ Kj. (5.61)

Using (5.57) and (5.61), there exists a function C (z,e) < 00, z € D;, € > 0, such
that
hy, (2)] < C (z,€) e, k=0,1,---. (5.62)

Substituting the subharmonic minorant C (2, ¢) for C'(z,¢) in (5.62) and then using
the local boundedness of the function C (z,€), we obtain the existence of an open

set A such that K; C A € D, and
i (2)] < M ()es, z€A, k=01, (5.63)
where M (g) = sup {é(z,s) 1z € (9A} :
Now, let x (2) be an arbitrary element of the space A (K), where

v(2) =) & (2) (5.64)

is its basis expansion. Since {h;} is the isomorphic image of the power basis of Ay,

the coefficients & have the following bound:
& < L(z)es, 6 =6 (x) > 0. (5.65)
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Taking advantage of the inequalities (5.63) and (5.65) for ¢ < 4, we obtain
uniform convergence of the series (5.64) in the region A. Thus, an arbitrary element
x € A(K) is an analytic function in the fixed neighborhood A of the compactum
K;. A contradiction is reached and this proves that C'(K) =0. m

5.2.4 Isomorphism to A; x A

Theorem 25 Let K be a compactum in C. For the spaces A(K) and Ay x Ag to
be isomorphic, it is necessary and sufficient that the compactum K be decomposed
into two disjoint non-empty compacta KO and K@, where KW is a reqular com-

pactum whose complement consists of a finite number of connected components and

C(K®) =0.

Proof. Sufficiency Let K be decomposed into two disjoint non-empty compacta
K® and K® | where KO is a regular compactum whose complement consists of a
finite number of connected components and C(K®) = 0, that is, K = KW U K®,
Then, using the sufficiency parts of the Theorems 23 and 24 and from A (K) ~
A(KW) x A(K®), we have that A (K) ~ A; x A

Necessity Let T be an isomorphism between the spaces A; x Ay and A (K).

Take the natural basis in the space A; x Ay :
€ = (O,Zk) y €2kl = (Zk70) , ]{;:O,]_7 .

Then, the system of the functions h; () =T (e;), j =0,1,--- ,is a basis in the space
A (K) as the isomorphic image of a basis. Therefore, as in the proof of Theorem 23,
for each s > sg we can select §; = ; (s), §; > 0, and C; = C; (s), 0 < C; < o0, for
1 =1, 2, such that

026%; < |h2k|G5 < Cle%fv k=0,1,---, (5.66)

and 6; (s) | 0 for s T oo and Gy is an open set.
Let D := Gs,. For simplicity, assume that D consists of a finite number of

mutually exterior regular regions D;, j = 1,2,--- ,r. Let K; := KN D);. Denote the
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union of the compacta for which C (K;) > 0 by K and K® := K \ K. Then,
denote the corresponding unions of regions D; by DM and D®.

Without loss of generality, assume that (K (1))* is connected. The case where
(K (1))* has a finite number of connected components can be obtained by a similar
argument.

Using the construction, it is seen that KWNK® = & and C (K(2)) = 0. Without
loss of generality, denote the K; for which C (K;) >0 by K;, j=1,---,m. Then,

K® = K\KY=K\U", (KnD)
:Km( 1 (KN D)

N (N7 (KN D;j)Y)

N (ML (K7 U D))

(KNK*)U(KnND;))

Dj).

Therefore, K® is a compactum as the intersection of compacta. We have to prove

N7y (
N, (K
that K £ @ K® £ @ and KW is a regular compactum.

Denote Gs = G, N DY for i = 1,2 and s > so. Then, each z € A(K) can

uniquely be represented in the form of a sum: = (2) = & (2) + & (2) ,where

_ z(z), ze€ GV,

T (z) = ,s=s(z), (5.67)
0, z € G(Q)
0, z € G(l)

I(z) = ,s=s(z). (5.68)

x(z), z€ G,
We will identify the subspaces of all elements of the forms (5.67) and (5.68) with
A(KWM) and A (K@), respectively. Then, A (K)=A(KW)® A(K®).

Define the function

In|h
® (2) := lim khm M, for z € D.
C—ZK——00
Then, in a similar way as in the proof of Theorem 24, ® (z) = —oo for z € D) and
ho (2)] < Me =, 2€GD, k=0,1,---, s>so+1, M=M(s,e). (5.69)
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Now, we will construct an operator S : A(K) — A(K), where
S (h2k+1) = hop41 and S (hzk) = h2k

Then, represent S in the form S = I — B, where [ is the identity operator and by
(5.67) and (5.68),
B (hgjs1) = 0 and B (hgy) = hag.

Using the bound in (5.66), we have

‘B$|Gp < Z |Ea|

since |Bhoj1|g, = 0 for any k € N. For € < d, (s) in the left hand side of (5.66),

hak GV <M (p,e)Y |&arle =, p>so+1, (5.70)

—k —k |h2k

e e < ek K G57
— Ga(s)
therefore using that in (5.70) we get
M (s, 02 (s))
|Bx|Gp S T(S)Z |§2k| |h2k|Gs y P Z S0 + ]-7 s = 1a27 . (571)

We get the inductive limit topology in A (K) which is equivalent to the origi-
nal topology using the system of unbounded norms [|z{[, = >~ (&l [f]g, (see [18]).
Therefore, by (5.71) we see that the operator B transforms the space A (K) contin-
uously into the space AC' (G,). The inverse image of the sphere

2 ={yeAC(G): g, <1}

is a neighborhood U of zero in the space A (K). ¥ is a compact set in A (K) and
thus it has been shown that there exists a neighborhood U of zero in A (K) for
which the set B (U) is compact in A (K'). Therefore we conclude that B is compact
in the space A (K) in the sense of Leray.

From the Riesz theorem, which has been extended to such operators in locally
convex spaces (for example, see [21]), it follows, in particular that, ImS is a closed
subspace in A (K), dim KerS =m; < oo, and codimImsS = ms < 00.

Therefore there exists a finite collection I' = {iy, i, - - , i, } of natural numbers

such that the system
{h2k+17h2z’,/€,i:0717"' i ¢ F} (5.72)
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is a basis in the closure of its linear span, which has finite codimension ms. There
exists a finite collection of elements z1,z9,- - , 2., which, when together with the
system (5.72) , forms a basis {g;,7 =0,1,---} in A(K) :

Tit1, 7::0717"'7m2_17

92i+1 = .
h2(—m2+i)+1, L=mg,mg+1,---,

where {g2;,7 =0,1,---} is the renumbered subseries of the system {hg;,i ¢ I'}.

Using the bounds (5.66) for hg, and the corresponding bounds for hogyq, the
formula ® (e;) = g; gives an isomorphism ® of the space A; x Ay onto the A (K)
such that ® (A4y) C A (K®). From now on, we will write Ay instead of {0} x Ay.

The subspace Xy = (AO) is complemented in the space A (K) by a subspace
spanned by part of the elements of the basis {g;} in A (K). Since Xy C A (K®),
Xp is complemented in A (K(z)) too.

Let Y; be any subspace which is complementary with Xoin A (K®) ;ie. A (K®) =
Xo®Yy. Then

AKM @ A(K?) =0 (4) @ Xo=(A(KD)aYy) & Xo.

Therefore the subspaces ® ([11) and (A (K (1)) EBYO) are isomorphic, being the
topological complement of one and the same subspace X,. Hence we obtain that

A~ A (K ) @ Yy, or transferring to the conjugate space,
A ~ A(D( )) ® Zy, where Zy = {2’ € A(D ) (2 x) = 0,2 € Xo}.

Using an argument similar to the one in the proof of Theorem 23, we observe that
if KM #£ @, then K is a regular compactum.

Now we have to show that K1) # @. Assume to the contrary: KU = @&,
Then, A; ~ Z,, where Z, is a subspace of the space A (D®?), D®) = (K(Q))* , and
C (K ) = 0. But this contradicts the Remark 3, hence KV £ &.

The fact that the compactum K@ is non-empty follows from the inclusion

®(A) CA(K?). m
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5.2.5 Dual Result for Open Sets

Using GKS-duality, one can also obtain the following dual results [34]:
Theorem 26 Let D be an open set in C. For the spaces A (D) and Ay to be isomor-
phic, it is necessary and sufficient that the set D be reqular and consist of a finite

number of connected regions.

Theorem 27 Let D be an open set in C. For the spaces A (D) and A be isomor-
phic, it is necessary and sufficient that C (D*) = 0 (or what is the same, that the

boundary 0D consists only of irreqular points).

Theorem 28 Let D be an open set in C. For the spaces A(D) and Ay x A to be
isomorphic, it is necessary and sufficient that the set I (D*) of irregular points on
0D and the set 0D \ I (D*) be closed and non-empty and that D consists of a finite

number of connected components.

Theorem 29 Let D = U3, D;, where the D; # @ and are mutually exterior re-

gions. Then the space A (D) is isomorphic to the topological product H A(Dy)
Jj=1
( [21]).

Corollary 4 All of the spaces A (D), where D is a reqular set satisfying the condi-

tions of Theorem 29 are isomorphic to each other.

The following is an example where A (D) is not isomorphic to any of the three

canonical spaces Aq, As, A1 X Ax

Example 3 Let K = {0} UU2 K, where K; = {z: |z —¢| <7}, 0 < ¢ < 1,
andr; | 0. If Z me = 00, then K* = D is reqular (see [23], pg 146), therefore

A (D) ~ Ay by Theorem 26. If r; | 0 rapidly enough, e.g. Z i 1/T < 00, then {0}
will be the irreqular point of 0D (see [23], pg 146). But, {O} is not isolated, hence
the set of reqular points R (D) = 0D \ I (D) is not closed. Therefore, by Theorem
28, A (D) is not isomorphic the space A1 X Aw. Also, since I (D) # &, R(D) # &
using Theorems 26 and 27, A (D) is not isomorphic to any of the spaces Ay and
Aso.
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CHAPTER 6

BASES AND ISOMORPHISMS OF SPACES OF ANALYTIC FUNCTIONS

IN MULTI- DIMENSIONAL CASE

In this chapter we will represent, without detailed proofs some results about several
complex variables which were proved by Zahariuta [37], [38] (see also [3]).

In multidimensional case, interpolational bases for spaces of analytic functions
cannot be found as in the case of one dimensional case. The reason for that is, a
multidimensional analogue of GKS-duality does not exist. But, the Hilbert Methods
that was suggested in [35] and that we have used in Section 5.1.3 can be applied, as
confirmed in [37], [38].

6.1 Dragilev Classes of F-Spaces

Let X be an F'—space, {||x||p, pE N} be a system of norms defining its topol-
ogy. Let us consider the system of non-bounded norms (conorms) in the strong dual
space X* :

||| := sup {|2" (z)| : x € Up}, 2" € X', p e N,

where

@:{xexqmmg1}

We will use the notation:

@:{xexqmmg1}
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o = {x e X" [l < 1}, peN.

We will now discuss two important classes of F-spaces denoted by D;, Dy which
appeared ( [29], [31], [40], [42]) as a development of near concepts introduced by
Dragilev [7] under the notations dy, ds (see also [4], [43]). The system of (co)norms in
spaces from one of these classes has the special interpolation estimates of a ”"middle”

(co)norm by extreme ”small” and ”big” ones.

Definition 12 A Fréchet space X belongs:

1. to the class Dy if

Ip g 3r 3C | 2] < Clal, llall,, v € X, (6.1)

2. to the class Dy if

2
vp 3¢ vr 3C | (I2'l;) < Il 1207, o € X (6:2)

Using the same quantifiers, the conditions (6.1) and (6.2) are equivalent to the

C
Uy C Uy + Uy, t>0.

Using these additive conditions, the following statement was proved:

Theorem 30 (Vogt [30]) Let X be a Fréchet-Schwarz space. Then X € Dy if and

only if there exists a bounded closed absolutely convexr set B C X such that
Y 1 dq 3C "B ¢
Vp /L.0<,LL< q |Uth +t1—_uUp,t>O. (63)

That statement was actually proved in [37] under the assumption of the existence
of unconditional basis in a countably Hilbert (maybe not Schwartz) space.

Using the same quantifiers, the condition (6.3) can be written in the equivalent
form:

* *\ 1— * H *
o'y < ¢ (l17)' ™ (1)) o' € X7, (6.4)

p
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where ||2/|" is the norm in X* defined as follows:
|2'|" == sup {|2’ (z)| : x € B}, ' € X*. (6.5)

Then, we say that a Banach space E that continuously embedded in X is a Vogt
space, or "dead-end” space (E €V (X)) if the condition (6.3) holds with the unit
ball B in E or that is the same (6.4) holds for the norm (6.5) .

The following two theorems describe the connection between the interpolational
properties of F-spaces A (), A(K)* and peculiarity of manifolds € and of com-
pacta K ( [37], [38]).

Theorem 31 Let Q2 be a Stein manifold. Then A(QY) € Dy if and only if Q is

pluriregular.

Theorem 32 Let K be a compact set on a Stein manifold Q0. Then A(K)* € Dy if
and only if K s strongly plurireqular on €.

The proof of these theorems can be done using the two-constant theorems and

facts of complex potential theory.

6.2 Hilbert Scales of Analytic Function Spaces

The following theorem is the two constant theorem in the case of analytic func-
tionals.
Theorem 33 Let (K, D) be a plurireqular pair "compact set-open set” on a Stein
manifold §2 where D is a strongly pluriregular open set on ). Then for any ¢ > 0,
a € (0,1) there exists a constant C' = C (a,€) such that for any x* € AC (K)" the

following estimate holds
% % w1k \1—a K,k \O—
|z |Da <C(|x ’K) e (= |D) °,

where

D,={2€D:w(D,K,z) < a}.
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In [42], that result was considered in the implicit form and in [37], it was consid-
ered as a result about Hilbert scales for analytic functionals. In [38], it was shown
that these two methods are equivalent. Using that, the following theorem about
Hilbert scales in multidimensional case can be considered as a corollary of Theorem

33.

Theorem 34 ( [37])Let D be a strongly pluriregular open set on a Stein manifold
Q, a compactum K C D be plurireqular on D and K = Kp. Let Hy, Hy be a pair of

Hilbert spaces with the continuous imbeddings
A(K) — Hy— AC (K)
A(D) — H, — A(D).
Then the following continuous imbeddings hold:
A(K,) C H* = (H)" *(H)*c A(D,), 0O<a<]l, (6.6)

where H® = (Hy)' ™ (Hy)® is a Hilbert scale generated by the pair Hi C Hy of

Hilbert scales with continuous imbedding.

This theorem was first proved in [37] and Theorem 33 was its corollary. Now,
we will give a sketch of a proof where Theorem 34 can be realized as a corollary of
Theorem 33.

Let the system {ex (2)} C H; — A (D) be the common orthogonal basis for the
spaces Hy, Hp as in (2.3). Then, using Theorem 15 and Theorem 33, the following
estimates can be obtained for the common orthogonal basis {e; (2)} C H; — A (D)
and the biorthogonal system {e},} that is realized in H), — A (K)" — A’ (D),

lerlp, < C(a,¢) pee, (6.7)
ekl < C(a,e) ™. (6.8)

Since the imbedding H; — Hj is nuclear, for any J > 0,
Z iy’ < o0. (6.9)
k=1

Then, the estimates of norms providing the continuous imbeddings (6.6) can be

obtained.
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6.3 Bases

Theorem 35 ([37], [38]) Let (K, D) be a pluriregular pair ”compact set-Stein man-
ifold”. Then there exists a common basis {x; (z)} in the spaces A (D), A(K),A(K,),
A(D,),0 < «a < 1, satisfying the asymptotic estimate

_ _ In|xz
lim lim —Z(z)|
(—2zi—00 a;

=w(D,K,z), z€ D\ K, (6.10)
where
K,={2€D:w(D,K,2)<a}, Dy={z€D:w(D,K,z)<a},0<a<l,

and {a;} is a certain non-decreasing sequence of positive numbers such that with
n =dim D,

1
a; X in, 1 — 00.

Now, a sketch of the proof will be given. Take a common orthogonal basis

{z; (2)} for some pair of Hilbert spaces Hy, H; with the continuous imbeddings
Hy — A(D) — A(K) — Hy
and with the following properties:
H,eV(A(D)), Hy e V(A(K)). (6.11)

The dual system H{ is naturally embedded in A (K)*. Using Theorems 30, 31, and
32, it can be shown that such spaces in (6.11) exist. Notice that A. Aytuna, using
Hormander 0-techniques, suggested in 3] a direct construction of ”dead-end” space
H; for the space A (D) if D is a pluriregular Stein manifold: they were realized as
weighted L2-spaces of analytic functions in D.

Let the system {z;} be normed and ordered in accordance with (2.3) and denote
a; = Inp; (Ho, Hy) . Then the conclusion of the theorem follows from (6.7), (6.8),
and (6.9). The asymptotics (6.10) can be obtained in a similar way with the one-
dimensional case, but techniques of complex potential theory are needed (see [37],

38]).
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6.4 Isomorphic Classification

Using the extendible bases that were considered in Theorem 35, one can get the
multidimensional analogue of the one dimensional isomorphism result A (D) ~ A;.
Theorem 36 ( [37], [38]) Let Q be a Stein manifold on dimension n. For the
isomorphism

A(Q) ~ A(U™)

it is necessary and sufficient that Q is plurireqular and consists of at most finite

number of connected components, where U™ is the unit disc in C".

Necessity can be proved using the Theorem 31. On the other hand, let the Stein
manifold €2 satisfy the conditions. Let K be a pluriregular compactum having a non-
empty intersection with every connected component of the manifold €2, K = K.
If {z; (2)} is a common basis that exists due to Theorem 35, then the isomorphism

T:A(Q) — A(U") is established by the correspondence
T 4 ,
x;(z) — e%e; (2), i €N,

where {e; (2)} is a system of monomials enumerated as in (2.3) . Also, Aytuna repre-
sented a proof of sufficiency in [3] by a direct construction of a required ”dead-end”
space.

In the one dimensional case, due to GKS-duality, one can immediately obtain
the result about the compacta if the result about open sets is known. But, since
a multidimensional analogue of GKS-duality does not exist, the case for compacta

should be considered separately.
Theorem 37 ([37]) Let K be a compactum on a Stein manifold Q2. Then
A(K)~ A(U")

if and only if K has a Runge neighborhood in () and moreover K is strongly plurireg-

ular, where U™ is the unit disc in C".
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Necessity follows from Theorem 32. For sufficiency, the isomorphism may be
obtained by means of the basis from Theorem 35 constructed for the pair (K , f)) ,

where D is some Runge neighborhood of K such that its envelope of holomorphy D

is pluriregular.
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