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Abstract 

 
The trend demand for towards interactive multimedia services has forced the 

development of new wireless systems that has greater bandwidths. The evolution of 

current wireless communication systems has been very rapid. The main goal has been 

small-size and low-cost transceivers that can be designed for different applications. 

  

Data communication systems in compliant with IEEE 802.11a wireless local area 

network (WLAN) standard has found widespread use, meeting the market demands, for 

the last few years. Next generation WLAN operates in the 5-6 GHz frequency range. A 

front-end receiver capable of operating within this frequency range is essential to meet 

the current and future of products. One of the critical components, allowing the common 

use of the technology can be attributed to the high performance Low Noise Amplifiers 

(LNA) in the receiver chain of the 802.11a transceivers. In IEEE 802.11a, there are three 

frequency bands; 5.15GHz - 5.25GHz, 5.25GHz - 5.35GHz and 5.725GHz - 5.825GHz. 

 

In this thesis, we designed and fabricated a single-stage cascode amplifier with emitter 

inductive degeneration using 0.35 μm-SiGe BiCMOS process for IEEE 802.11a receivers. 

The electromagnetic (EM) simulations of the passive components are performed by using 

Agilent MOMENTUM® tool and all the parasitic components are extracted and 

compensated, a crucial step for optimizing the performance parameters of the LNA. The 

simulation results are very similar to measurement results, confirming the effectiveness 

of design methodology provided in this work.  
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Özet 
Günümüzde, çoklu ortam iletişim uygulamalarına olan ilginin artması sonucunda, yeni 

telsiz iletişim sistemlerine olan araştırma eğilimi giderek artmaktadır. Bu sistemlerin 

sahip olduğu yüksek bant genişliği, bu alana olan yönelimin en önemli sebebidir. Yeni 

kuşak telsiz yerel alan ağı (WLAN) uygulamalarının çalışma frekans aralığı, 5–6 GHz 

frekans bandı olarak belirlenmiştir. Bir ön-uç alıcı yapısının sahip olması gereken 

özellikler, bu alıcının çalışacağı protokol tarafından belirlenmektedir. Alıcının, belirli 

olan bu protokolde çalışabilmesi için, protokol tarafından belirlenen bir takım özelliklere  

sahip olması gerekmektedir. Düşük gürültülü kuvvetlendirici (LNA) bloğu, WLAN 

uygulamalarından biri olan IEEE 802.11a protokolünde çalışması gereken bir alıcının, 

içerdiği bloklar içerisinde en önemli olanlardan biridir. IEEE 802.11a standardında üç 

tane frekans bandı kullanılmaktadır;  5.15GHz - 5.25GHz, 5.25GHz - 5.35GHz ve 

5.725GHz - 5.825GHz. Genellikle, telsiz iletişiminde alıcı için her zaman birincil öneme 

sahip özellik, düşük gürültü olması değil, taşınabilirlik açısından daha düşük güç tüketimi 

olmaktadır.  

 

Bu makalede, Austria Micro Systems (AMS) 0.35μm SiGe BiCMOS teknolojisi 

kullanılarak 5–6 GHz bandındaki WLAN uygulamalarına uyumlu, düşük güç tüketimi ve 

düşük gürültü sayısına sahip olan LNA tasarımı ve ölçüm sonuçları sunulmaktadır. LNA 

tasarımı için tek katlı, kaskot, endüktif emetör dejenerasyonuna sahip kuvvetlendirici 

topolojisi kullanılmıştır. Kırmık-içi endüktans tasarımının zorluğu ve günümüz 

teknolojilerinde gerçeklenen endüktans yapılarının performanslarının yeterli olmamasına 

çözüm olarak, RF-MEMS teknolojisi kullanılarak alternatif daha yüksek performanslı 

devreler oluşturulabileceği gösterilmiştir. Ayrıca, bu devre ile uyumlu, RF-MEM 

endüktör, tasarlanmış ve üretilmiştir. Ölçümler sonucunda, tüm pasif elemanları kırmık 

içerisinde olan, 14 dB kazancı ve giriş-çıkış dönüş kaybı -15 dB den daha düşük olan 

LNA bloğu, 10.6 mW güç harcaması ile elde edilmiştir. Gürültü ölçümleri ve RFMEMS 

endüktörlerle olan birleşim işlemleri ise devam etmektedir.  
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IINNTTRROODDUUCCTTIIOONN  

1.1 Motivation and Research Goals 

 

The trend demand for towards interactive multimedia services has forced the 

development of new wireless systems that has greater bandwidths. The evolution of 

current wireless communication systems has been very rapid. The main goal has been 

small-size and low-cost transceivers that can be programmed for different applications. 

Future communications systems will offer new wireless services for devices such as 

laptops and PDAs as well as increase on the existing wireless capabilities of devices such 

as cellular telephones and pagers. These applications include internet accessing services, 

video teleconferencing, high-fidelity audio transmission, and other high-speed services. 

 

Wireless connectivity is not limited to only portable devices. It can also be used for 

applications including local area networks (LANs) and local loop applications such as 

Integrated Services Digital Network (ISDN) and Digital Subscriber Line (DSL), both of 

which rely on copper twisted pair, as well as cable applications, which rely on a 

combination of fiber optic and coaxial cables. Bluetooth is one example of a wireless 

standard which is targeted at applications which currently rely on wires. Emerging 
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wireless solutions for LAN applications include the IEEE 802.11a and 802.11b standards 

at 5 GHz and 2.4 GHz, respectively, in the United States as well as the ETSI HIPERLAN 

standards in Europe [1].  

 

The performance of these systems will depend closely on their ability to provide high 

capacity while maintaining low cost, small form factor, and low power consumption in 

the portable units.  However, many existing commercial transceivers are expensive, 

consist of a large number of discrete components, and exhibit moderate to high levels of 

power consumption. To increase the performance of the transceiver architectures, 

designers started to find a new ways to perform it. One popular way for improving the 

performance of Radio Frequency Integrated Circuits (RFICs) is using the Micro Electro 

Mechanical System (MEMS) technology. Using MEM devices, it can be possible to 

realize the transceiver on a single chip which includes the RF front-end and intermediate 

frequency blocks.  

 

One of the most challenging building blocks in multi-mode receivers is the low-noise 

amplifier (LNA). In order to increase the overall performance of the receiver, LNA 

should be designed carefully. The tricky part to improve the performance of the LNA is 

passive components that are used in the input and output matching networks.  Achieving 

high performance passive components is not possible in typical BiCMOS processes. In 

this work, a low noise amplifier (LNA) is designed and fabricated using Austria Micro 

Systems (AMS) 0.35 µm SiGe BiCMOS process. Some test structures are also fabricated 

to integrate the MEM Inductors which are fabricated in Sabanci University Clean-Room. 

The main goal is improving the performance of LNA using MEM passive structures. The 

measurement of LNA and fabrication of inductors are finished and will be presented in 

this thesis. The measurement and integration of MEM inductors to LNA block is assigned 

to future work.   
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1.2 Organization of the Thesis 

In Chapter 2, an introduction to the RF fundamentals is given. These fundamentals 

include noise and linearity background, the system specifications, and receiver 

architectures. Therefore, it is important to understand the basic concepts and limitations. 

Furthermore, this helps the designer in implementing and combining multiple systems on 

a single chip because of the effects of the one stage to another. 

  

Chapter 3 describes the LNA design and concentrates on the important design challenges. 

The main emphasis is on justifying why an inductively-degenerated LNA is chosen as the 

basis and the advantages of this topology. The LNAs in this thesis are targeted on 

heterodyne transceiver type. Thus, the design aspect of the LNA-filter interface is also 

considered in this chapter and the output of the LNA is matched to 50 Ω. The design of 

low-value inductor also explained in this chapter. At the end of the chapter, the measured 

results are given and they are compared to simulated ones.  

 

Chapter 4 gives a general theory about planar inductors and concentrates on the design of 

MEM inductor. This chapter also explains the Above-IC concept and gives the process 

steps of this technology. The design and fabrication of MEM inductors are included in 

this chapter. The measurements of these inductors are still on going and with the 

integration of these inductors to LNA work is also assigned to future work of this thesis.  

 

Finally the last chapter contains a summary and some suggestions for future work.  
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RRFF  FFUUNNDDAAMMEENNTTAALLSS  

2.1 Introduction 

The goal of this chapter is to provide the important definitions about RF circuit design. 

These definitions are the basic concepts that have to be known before trying to 

understand the RF electronics.  The design of RF circuits strongly requires a background 

in these topics. Hence, the following chapters are related to the basic concepts of RF 

electronics which can be sorted as noise, sensitivity, linearity, interference and impedance 

matching parts.  

2.2 Issues in RF Design 

2.2.1 Noise 

Noise can be determined as a result of random fluctuations in current flow and it limits all 

the sensitivity of all radio systems. In universe, any matter above 0 K contains thermal 

energy and it moves atoms and electrons around in a random way, leading to random 

currents in circuits. These types of noises are generated by the circuits but some other 

sources also generate noise to the environment. Radio antennas, microwave ovens also 
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generate noise and affect the operating of nearby devices [2]. Noise can be summarized 

as a simple example; any level of signal power could be transmitted if there were no 

noise in environment but in fact that the signal will be competing with an ever present 

environment of random signals or noise.  

 

Electrical noise can take several forms including f/1  (Flicker) noise, thermal noise and 

shot noise. 1/f noise can be determined as the noise that decreases with ascending 

frequency. In RF front-end circuits, generally the interest of frequency is high and f/1  

noise is not the main concern. But some frequency generating/converting circuits, such as 

voltage control oscillators and mixers, f/1  noise comes to a critical design consideration.  

2.2.2 Linearity and Distortion 

The receiver must be able to detect the desired signal in the presence of other interfering 

signals. The signal powers at the receiver input may vary from -110dBm to 0dBm. These 

signals are partially filtered out by the pre-select filter, but the signals at the reception 

band pass through the filter. Besides that, the transmitter signal and other signals used in 

the transceiver may leak to the LNA input. In the worst case, these signals and their 

mixing products can corrupt the reception of the desired signal by desensitizing some 

particular receiver block [3]. 

 

This is due to the non-linear property of active devices. Ideally, the input-output 

relationship of a linear, time-invariant system can be modeled as: 

   
 )()( 1 txaty =  (2.1) 

 

where x(t) and y(t) are the input and output of the non-linear system. But, due to non-

linearity, the system input-output relationship is modified to be as following: 

  

 ...)()()()( 3
3

2
21 +++= txatxatxaty  (2.2) 
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The coefficients a2, a3 provide information on the non-linearity of a device or a circuit. 

When a sinusoidal signal wtAcos  is applied to the system in  (2.2), the output y(t) 

would be: 

  

wt
Aa

wt
Aa

wtA
Aa

a
Aa

ty 3cos
4

2cos
2

cos
4

3
2

)(
3

3
2

2
2

3
1

2
2 ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++=  (2.3) 

 

From (2.3), the output contains not only the fundamental frequency term. It also contain 

many higher order harmonics caused by x2(t) and x3(t). Typically, high-order terms are 

negligible. However as the input amplitude becomes large enough, their effect become to 

affect the output significant. If the circuit is implemented in fully-differential architecture, 

the even-order harmonics can usually be neglected. Among the high-order harmonics, the 

most troublesome harmonic is the third-order. Usually, the linearity of the receiver is 

characterized using the gain compression and third-order input intercept point (IIP3) [4].  

 

The gain compression determines how large an input signal can be accepted at the 

receiver input. This can easily be determined with a single-tone analysis. As the power is 

increased, the gain of most circuits decreases, as shown in Figure 2-1. 

 

The gain compression can be calculated using the  (2.2) and (2.3).  It can be seen that 

the term at the frequency of interest also depends on the third-order term. Thus, the 

output signal is decreased when α3 has an opposite sign to α1. In RF circuits, the gain 

compression is defined as the “-1dB compression point”, which is the point where the 

gain is decreased by 1dB from the gain at small signal levels. In receivers, the 

compression point is usually defined at the input (ICP) and in transmitters at the output 

(OCP).  
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Figure 2-1: Compression of Output Power 

 

The characterization of the RF circuits with harmonic distortion is not practical, since RF 

circuits are usually frequency-dependent and the harmonic components fall far away at 

the stop-band of the circuit. A more useful characterization for RF circuits is to use the 

intermodulation products. Instead of using the single-tone input in the system defined in 

(2.1), two signals at different frequencies ( ) ( )( )twBtwA 21 coscos +  are used as input 

signals. Thus it can be calculated that the following signals appear at the system output: 
 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )twwABtwwBA

twwABtwwBA

twwABtwwAB

twBtwA

twBtwA

twBABtwB

twABAtwA

BAty

12
2

321
2

3

12
2

321
2

3

212212

2
3

31
3

3

2
2

21
2

2

2
23

321

1
23

311

22
2

2cos
4
32cos

4
3

2cos
4
32cos

4
3

coscos

3cos
4
13cos

4
1

2cos
2
12cos

2
1

cos
2
3

4
3cos

cos
2
3

4
3cos

2
1

++++

−+−+

++−+

++

++

⎟
⎠
⎞

⎜
⎝
⎛ +++

⎟
⎠
⎞

⎜
⎝
⎛ +++

+=

αα

αα

αα

αα

αα

αα

αα

α

 (2.4) 



 8

 

 
Figure 2-2: Behavior of fundamental and third-order components  

 

Hence, the output signals include the signal, harmonics, and intermodulation components. 

The most harmful intermodulation products in LNA design are at the frequencies 2f2-f1 

and 2f1-f2. It should be taken into account to control the power of the third-harmonic.  

 

The receiver linearity for these signals can now be specified using the third-order 

intercept point. Again, in receivers, the intercept point is usually referred to the input 

(IIP3) and in transmitters to the output (OIP3). The intercept point is determined as the 

crossing point where the fundamental and third-order terms have equal power, as 

illustrated in Figure 2-2 . The third-order intercept point IP3 must be defined when the 

device is operating in a weakly nonlinear area [5]. As illustrated in Figure 2-2, the 

fundamental and third-order terms have different slopes at higher input power levels. 

2.2.3 Impedance Matching 

To achieve maximum power transfer, impedance matching between the load and the 

source is the essential requirement. Usually this matching is accomplished by passive 
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networks connected between the source and the load. These matching networks works 

not only are designed to achieve minimum power loss between the load and the source, 

but also are based on minimizing noise influence, maximize power handling capability 

and linearizing the frequency response [6]. 

 

Maximum power will be transferred from the source to the load if the load resistance 

equals the source resistance. However in the case of AC or time-varying wave forms, this 

theorem states that the maximum power transfer occurs when the load impedance is equal 

to the complex conjugate of the source impedance [7]. If the source impedance is 

described, by ZS= R + jX, then the load impedance should be ZL = R - jX, its complex 

conjugate.  

 

Transistor, transmission lines, LNAs, mixers, antenna systems and all the other active or 

passive components has an input or output impedance of complex because devices 

contain some reactive components. Therefore it is very important to know how to handle 

these reactive components. There are two different ways to handle these. One is the 

analytical method and the other is the graphical method using the Smith chart. The first 

approach yields very precise results but is complicated. The second approach is more 

intuitive, easier, and fast because it does not require complicated computation. In this 

thesis, all the matching circuits are realized using smith chart and all the filter 

characteristics and other parameters are calculated using Agilent ADS® simulator.  

2.3 Receiver Architectures 

Two metrics which are used to evaluate receiver performance are sensitivity and 

selectivity. A receiver with high sensitivity can correctly process a very weak desired 

signal whereas a receiver with high selectivity can correctly process a desired signal in 

the presence of very strong interferers at adjacent frequencies. The required sensitivity 

and selectivity of a receiver are highly dependent on the specifications of the underlying 

communications system. In order to meet the sensitivity and selectivity requirements of a 
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particular system while facilitating a highly-integrated, low-power implementation and 

the architecture used for the receiver must be carefully considered. 

2.3.1 Heterodyne Architecture 

This topology is well known as its superior selectivity and sensitivity, and it is still 

widely used in different applications. The heterodyne architecture is probably the most 

commonly used architecture in current commercial receiver implementations [8].  

 

To filter a narrow band signal that is centered at high frequencies requires very high Q–

factors. In fact, in heterodyne architectures, the signal band is translated to much lower 

frequencies by mixing operation; as a result, the Q required to filter the narrow–band 

signal is more relaxed. 

 

The block diagram of a superheterodyne receiver, with one intermediate frequency (IF) is 

shown in Figure 2-3. In a superheterodyne receiver, the signal passes through the LNA, 

which is usually connected and matched to filters at both sides. The pre-select filter 

preceding the LNA passes the whole reception band for the desired system and attenuates 

signals outside this band. The following filter is required for image noise filtering 

because the LNA frequency response is not usually selective enough to suppress the 

noise at the image band. Hence, without this filter, the mixer would downconvert the 

noise from the image to the first IF. In addition, this filter may be used to filter out 

possible out-of-band tones that could corrupt reception. As an alternative, this filter can 

be replaced with an image-reject down-converter [3]. However, this requires additional 

hardware and good matching between different components in order to achieve high 

image suppression. After down-conversion, a channel-select filter limits the spectrum for 

the following stages to the desired signal by attenuating those signals which are out-of-

channel. Hence, the linearity of the following stages is relaxed. The channel-select filter 

is usually an external passive surface acoustic wave (SAW) filter, which is not an 

adjustable filter. Therefore, the first VCO must have a frequency which is adjustable for 

the whole reception band. Furthermore, the first IF must be higher than half of the  
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Figure 2-3: Heterodyne architecture block diagram 

 

reception bandwidth. Hence, the image is then always outside the reception band. The 

channel-select filter is followed by a variable-gain amplifier and demodulator, which 

divides the signal into I and Q branches. 

 

A second IF stage may be used, which performs part of the channel filtering and 

interference cancellation. However, the use of a second IF may increase costs, and, 

because of the third LO, frequency planning becomes more difficult. Obviously, the 

channel filtering and gain may be distributed among different blocks in order to achieve 

an adequate performance. This  

 

distribution of gain and filtering is the reason why this architecture gives a good 

performance. The main reason why this architecture is currently starts to unpopular is that 

it requires expensive external components [9]. The pre-select, image, and channel-select 

filters cannot be integrated with current technologies. Thus, the size and cost of the 

receiver increase. Therefore, other architectures, which can be integrated on a single chip, 

have been widely explored.  

 

Although transceivers based on superheterodyne architectures are actually realized and 

commercialized, they present more problems to the integration because it is difficult or 

impractical to realize at high frequency, as an integrated CMOS solution, the high–Q 

typical of discrete components. In particular the integration of the receive path requires 

the elimination of the external image–rejection filter and IF filter [9]. 
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Another drawback in the superheterodyne architecture consists in the fact that if the IR 

filter is realized as a passive external component, the integrated LNA has to be designed 

to drive 50 Ω input impedance of this external filter. And this constraint limits NF, IIP3 

and gain performances of the LNA [6]. The RF and IF filters are typically implemented 

using ceramic filter technology while the IR filter is typically implemented using surface 

acoustic wave (SAW) technology. In this thesis, the filter that follows the LNA assumed 

as an external filter so the output of the LNA matched to 50 Ω which is the input 

impedance of the external filter.  

2.3.2 Direct-Conversion (Homodyne) Architecture 

This architecture, which is also known as zero-IF or homodyne, converts the center of the 

desired RF signal directly to DC in the first mixers which is shown in Figure 2-4. The 

direct-conversion receiver (DCR) suffers from special problems that do not appear in 

superheterodyne receivers.  

 

A typical DCR includes a pre-select filter, an LNA, and quadrature mixers, followed by 

channel-select filters, variable-gain amplifiers, and A/D converters as shown in Figure 

2-4. The pre-select filter is required prior to the LNA in order to attenuate out-of-band 

signals, as in the superheterodyne receiver, because of poor front-end selectivity. The 

image filter after the LNA is not required because the desired signal is on both side bands. 

Obviously, this relaxes the design of the LNA-Mixer interface because there is no need to 

drive external impedance, for example, 50Ω. The quadrature I and Q channels are 

necessary while receiving typical phase- and frequency modulated signals, because the 

two sidebands of the RF spectrum contain different information and result in irreversible 

corruption if they overlap each other without being separated into two phases. Channel 

filtering in DCRs is performed with low-pass filters, which can be implemented with on-

chip active circuits. The amplification and channel filtering can be distributed across the 

baseband chain to improve the performance of the receiver [10]. 
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Figure 2-4: Direct-Conversion Receiver Architecture 

 

DC offset is present above all because there is not perfect isolation between the LO port 

and the input of the LNA and of the mixer; in fact very strong LO signals (at frequency 

fLO=fC) can be transferred to the LNA and mixer inputs by capacitive or substrate 

coupling. This leakage signal is then mixed and downconverted to DC, producing a DC 

component at the output of the low–pass filter (self–mixing). This problem is exacerbated 

by the fact that the effects of LO leakage can be a function of the impedance seen at the 

antenna [11]; this DC offset can also be time varying, making very hard the possibility of 

eliminate this kind of problem, in particular in frequency hopping receivers. These are the 

reasons for choosing the heterodyne architecture to design the LNA in this thesis.  
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3 
CChhaapptteerr  33    

  
  DDEESSIIGGNN  AANNDD    

IIMMPPLLEEMMEENNTTAATTIIOONN  OOFF  LLNNAA  

3.1 Introduction 

Data communication systems in compliant with IEEE 802.11a wireless local area 

network (WLAN) standard has found widespread use, meeting the market demands, for 

the last few years. Next generation WLAN operates in the 5-6 GHz frequency range. A 

front-end receiver capable of operating within this frequency range is essential to meet 

the current and future of products. One of the critical components, allowing the common 

use of the technology can be attributed to the high performance Low Noise Amplifiers 

(LNA) in the receiver chain of the 802.11a transceivers.  

 

In IEEE 802.11a, there are three frequency bands; 5.15GHz - 5.25GHz, 5.25GHz - 

5.35GHz and 5.725GHz - 5.825GHz. A well-designed LNA should not only supply 

sufficient gain to suppress the overall noise figure but also have adequate bandwidth to 

cover all three frequency bands. Recently, many LNAs have been implemented using 

various semiconductor technologies with excellent low noise figures (NFs) [12-16]. 

These low noise figures are achieved at the expense of very high dc power consumption, 

or other trade-offs such as high input/output return loss, low linearity, or unsatisfactory 

dynamic ranges. The compensation of the trade-offs depends on applications as such ultra 
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low noise may not be priority because of the need for low power dissipation, longer 

battery lifetime of portable communication systems. For such portable systems, the total 

power consumption could be as low as 15 mW, acceptable to be called as a low power 

consumption [17]. It is also possible to achieve low noise together with low power 

consumption by using GaAs technologies or by using off-chip matching components. 

However, these solutions also come at high technology cost. There has been increasing 

effort toward the realization of low-cost, on-chip high-Q inductors to keep the cost lower.  

 

One of the key design criteria of LNA covering the specified frequency range is to 

provide sufficient gain to overcome the noise contributed by its subsequent stages. To 

achieve this criterion LNA has to add a minimum noise to the overall system that could 

be lower than 3 dB. In addition, as the antenna is generally designed for 50-Ω 

terminations, and the image-reject filter that follows the LNA in heterodyne transceiver 

architectures, input and output impedance of the LNA should also be matched to 50-Ω. 

This design, simulation and optimization procedures will be outlined and detailed further 

in following parts of this chapter.  

3.2 Survey of Previous LNAs 

Since the field of RFIC research is a much applied topic, it is not surprising that market 

forces have driven the research focus. New and current wireless standards (AMPS, PCS, 

3GHz cellular, Bluetooth, 802.11a, 802.11b, HiperLAN2, WiMAX, etc.) are usually the 

application targets for published research. As a result, most previously published RFIC 

LNAs have been designed to operate in the 900 MHz, 1.8 GHz, 2.4 GHz, and 5 GHz 

frequency bands. Very few published LNAs operating above the 5 GHz band have been 

implemented in standard CMOS or SiGe BiCMOS. 

The majority of published RFIC LNAs operating at or above 5 GHz have been 

implemented with bipolar or hetero-junction-bipolar transistors. The fabrication 

technology was either silicon BJT, or silicon germanium HBT. These technologies have a 

noise figure advantage over CMOS for a given frequency of operation and level of power 

consumption. 
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Low noise amplifier schematics are generally quite simple; they employ minimal 

numbers of transistors and passive components. Although a single transistor in common-

emitter configuration can be used for amplification [18], a two-transistor cascode 

architecture is often preferred because of increased stability, reduced reverse path leakage, 

and reduced input capacitance [19]. Inductive degeneration is very commonly used to 

provide real 50 input impedance. Noise matching the input involves optimizing the 

transistor geometry and bias current. However, due to the rapid pace of RFIC research, 

most RFIC-LNA design accomplishments are reported in conference proceedings as 

opposed to journal articles, and lack detailed discussion on these optimization strategies 

[19]. Output matching can be performed through on-chip passives, or through an emitter-

follower buffer [20]. 

 

Table 3-1 presents a summary of previously published LNAs operating around 5 GHz. As 

mentioned before, most LNAs at these frequencies are implemented in SiGe processes. 

Operating at higher frequencies yields higher noise figures. Also, for a given operating 

frequency, LNAs implemented in higher fT processes had lower noise figures. This can 

be seen by comparing [20] and [21] in rows 2 and 3 of Table 3-1.  
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Table 3-1: Previously published LNAs operating at 5 GHz 

Source Technology fT 

(GHz) 

Freq. 

(GHz) 

S11 

(dB) 

Gain 

(dB) 

NF 

(dB) 

Implementation 

[22] SiGe:C HBT 50 5.3 - 15 1.6 Cascode 

[20] Si BJT 53 5.6 - 26 1.8 Cascode with E-
F 

[21] Si BJT 25 5.8 -10 7 4.2 Cascode 

[23] CMOS 0.35 
µm 

50 5.8 -11 7 3.2 Two-stage C-S 

[24] SiGe HBT 40 5.8 - 12 1.8 C-E 

[19] SiGe HBT 80 6 -12 16 1.9 Cascode 

[20] SiGe HBT 54 6.2 - 31 1.3 Cascode with E-

F 

[25] 0.18 μm 

CMOS 
90 5 -5 56 6.5 Cascode with E-

F 

[26] 0.18 μm 

CMOS 
90 5.2 - 11 2.9 Cascode with E-

F 

[27] 0.35 μm SOI 60 5.2 - 8 2.3 Cascode 

[28] 0.25 μm 

CMOS 
80 5.8 -35 11 2.2 Two-stage C-S 

[29] 0.25 μm SiGe 100 5 -14 13 2.2 Cascode 

[30] 0.35 μm SiGe 

BiCMOS 
40 5.4 - 20 1.6 Cascode 

E-F = Emitter-Follower, C-E = Common-Emitter, C-S = Common-Source 

3.3 LNA Design 

In LNA circuits, gain can be achieved by a three terminal single transistor. One of the 

terminal serve as an input while the rest are allocated for output and ac ground. Using 

different connection possibilities, different modes of operation can be obtained; 

Common-Emitter (CE), Common-Collector (CC) and Common-Base (CB). The CE 
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operating mode is most often used as a driver for an LNA.  The CC stage has high input 

impedance and low output impedance, a good candidate for buffer stages. The CB is 

generally used as a cascode in combination with the common-emitter driver stage, most 

often used topology in LNA applications for achieving high gain at RF frequencies. The 

loads of the topologies can be made by using resistor for broadband applications or by 

using tuned resonators for narrow-band applications. The decision procedure of choosing 

input-matching network is similar to load choice procedure. An LNA with resistive input-

matching has high noise figures due to the resistances in the input of the circuit, generally 

not preferred for low-noise applications.  This problem can be solved by using inductors 

for simultaneous input and noise matching. In this work, our topology of choice is 

“emitter-degenerated cascode“, as detailed in the next subsections.  

3.3.1 Topology of the Circuit and Detailed Description 

Figure 3-1 illustrates the schematic of a cascode-connected, common-emitter LNA with 

inductive emitter degeneration. The cascode amplifier has the advantage of having high 

gain, low noise and stability, provided by large isolation. The transistor Q1 provides the 

gain of the amplifier and must be chosen out of the technology library carefully.  As will 

be discussed in following section, the designer is only allowed to change the emitter 

length, hence change the effective emitter area of the Q1. Emitter length directly changes 

the Cbe capacitance and the input impedance of the transistor. The latter one carries more 

importance because; Cbe can be compensated by tuning the value of Le. As the emitter 

length of the transistor increases, the input impedance of the transistor Q1 decreases, 

becoming more difficult to match to the source impedance. Same problem occurs when 

the length is chosen as a small value, making the input impedance large. Therefore, the 

emitter length of the transistor must be chosen large to achieve the desired gain and for 

impedance match as well. The typical application for achieving large area transistors is 

connecting them in parallel. This becomes necessary as the maximum length of the 

transistors is restricted by the manufacturer to 32-µm for the specific transistors and 

technology of our choice.  
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Figure 3-1: Cascode LNA circuit 

 

The transistor Q2 is a common-base amplifier and provides the reverse isolation by 

reducing the Miller capacitance between its input and output. The cascode transistor 

reduces the feedback of Cµ1, resulting in an increased high-frequency gain. The 

dimensions of Q2 largely affect the output impedance of the LNA at the frequency of our 

interest. Also, the parasitic capacitances, having a value of a few hundred fF in our 

technology, can extremely change the output impedance of the circuit at our operating 

frequency of 5 GHz. Hence, the dimensions of the Q2 obtained by adjusting the parasitic 

capacitance of Q2.  Using cascode transistor has a disadvantage of decreasing the output 

swing of the circuit when compared to a single transistor LNA counter parts, because of 

the need for an extra voltage drop across the cascode transistor. The inductor Ld is used 

for biasing, loading and output matching purposes. Ld must be chosen as large enough to 

block the flow of ac signal to Vdd and also to increase the load of the circuit while 

keeping in mind that Ld is also a part of output matching circuit. Co1 is used for both 

loading and matching the output of the circuit to 50-Ω source impedance by decreasing 

the inductive part of the output impedance. Also it is used for dc blocking of output of the 

circuit. The Ccp capacitor at the input is used for the purposes of both dc-blocking and 
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input-matching. Lg and degeneration inductance Le are used to provide both the power 

and noise matching.  Also for broadband applications, a resistor can be used instead of Le 

but this is not suitable for low-noise and narrowband applications. In the frequency range 

of 5 GHz, typical values for Le is about 200-500 pH. These are the values that the 

technology libraries don’t have. Design and sizing the Le and Lb will be studied in the 

input and noise matching sections.   

3.3.2 Low-Noise Transistor Design 

One of the main efforts during the LNA design is given into optimizing the bias currents 

and geometries of the transistors for obtaining low noise figure. In bipolar transistors, the 

major noise contributors are thermal and shot noises, arising from the base resistance rb 

and collector current IC, respectively. Using multi-emitter transistors or placing a large 

number of transistors in parallel decreases rb while increasing the base-collector 

capacitance Cµ, hence placing a limitation on the minimum achievable value of noise 

figure [31]. Also, minimum achievable noise figure (NFmin) can be decreased by 

increasing IC with increased power consumption. For a given technology, the attainable 

noise figure is basically dependent on the operating current density. 

 

The main limitation of the NF of the overall circuit is the minimum noise figure of the 

driver transistor, Q1 in Fig. 1. NFmin can be achieved by matching to its optimum source 

impedance. It can be expresses as [32]: 
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where JC is dc collector current density, VT is thermal voltage, f0 is operating frequency, fT 

is unity current gain frequency (transition frequency), β is dc collector-base current gain, 

n is junction grading factor and ( )ueb rr +  are the base and emitter ohmic resistances of a 

unit device, respectively.  
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In (3.1), all the parameters, including fT, are bias dependent.  Hence, it is useful to plot the 

minimum achievable noise figure to initiate the noise optimization for a given process 

technology and frequency.  

 

The geometry of a bipolar transistor is defined by the emitter stripe width (We) and the 

emitter length (Le), discussed later. In general, some common approaches can be said to 

find the optimum geometries for a given transistor; the We in a SiGe HBT BiCMOS 

process is typically proportional to the minimum feature size and improves when the 

emitter width decreases. Therefore the noise performance of SiGe HBTs will improve 

with lateral scaling. The suitable choice of emitter width is the minimum allowable 

feature size for improving NFmin. The appropriate choice of emitter length is relatively 

easier in a way that the minimum emitter length should be used for achieving the NFmin. 

The problem, with use of the minimum emitter length is the optimum source impedance 

having too small value, required for the minimum noise figure. This means that the input 

impedance of the circuit is too far away from the 50-Ω source impedance and is difficult 

to match. Complex matching circuits also add noise to the overall noise of the circuit. 

Hence, appropriate emitter length must be chosen which is small and close to 50-Ω 

source impedance. 

 

In general, design specific technological details of the process data are not available for 

interested frequency range. For finding the JCopt of the unit device, the simulated or 

measured data could be used. We have started the LNA design from simulations of the 

available transistors in AMS library to obtain the noise characteristics of transistors with 

respect to bias points and emitter areas. The transistor, circuit simulations are performed 

by using Agilent Design System (ADS®) and Cadence® design tools. In AMS 0.35μm 

SiGe HBT technology, there are seven different high-speed HBT transistors, in different 

from each other with number of contacts at each terminal [33]. The number of contacts at 

each terminal determines the contact resistances, hence the resulting noise response of the 

transistors. For example, the symbol npn232, the numbers 2, 3, and 2 refer to the number 

of contacts of collector, base and emitter terminals, respectively. Of the seven transistors  
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Figure 3-2: NFmin versus IC curve for npn232 transistor 

 

simulated at their optimum bias points (minimum NF), npn232 has shown the lowest 

noise figure, hence chosen to be used in our LNA circuit. The noise figure of a transistor 

depends on collector current density (Ic/Area) instead of only collector current (Ic). The 

noise figure versus collector current curves of npn232 transistor at 5.2 GHz are shown in 

Figure 3-2 for the unit device area.  

 

As seen in Figure 3-2, 80 - 125 µA of collector current range provides the lowest noise 

figure and is suitable for the npn232 transistor with unit device area for the 5.2 GHz 

frequency band. Other collector currents increase the NFmin of single transistor, directly 

increasing the overall NF of the LNA.  

 

The next step in the design process is to find the corresponding Rn (Noise Resistance) and 

to adjust this resistance to 50-Ω for input matching. By using Y-parameters of two-port 

noise model of a single HBT transistor [32] as seen in Figure 3-3, noise resistance can be 

specified as: 
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Figure 3-3: Equivalent Circuit of the single HBT 

 

 mbn grR
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1

+=  (3.2) 

 

(3.2) indicates that Rn is directly proportional to the rb (base resistance), and is thus 

independent of frequency at a given bias point. Generally rb is large enough for 

neglecting the 
2
1 gm. The result of noise resistance analysis is presented in Figure 3-4. 

Here the device input noise resistance is simulated for different areas of the device over 

the frequency range of our interest. As seen in Figure 3-4, the 50-Ω of Rn resistance is 

provided by A=15µm and Ic =2mA, hence selected as optimum area and DC bias point, 

respectively.  

3.3.3 Simultaneous Input and Noise Matching 

In LNAs, gain versus noise figure trade-off is well-known issue [34]. Gain and noise 

figure circles are easy way of finding the optimum impedances which give the maximum 

gain and maximum NF respectively. Typically, gain-circle centers and noise figure-circle 

centers don’t intercept at the same point in the smith chart. So, this shows the difficulty to 

match the input and noise simultaneously. There is also input matching versus noise 

figure trade-off exists in the LNAs. The latter is more important one since the gain is not 

the priority in LNAs. There are several methodologies present that can be applied to 

obtain a very low noise figure at the same time a good input matching. In this work we  
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Figure 3-4: Frequency curves with different areas for npn232 

 

will use the smith chart to deal with this trade-off because the desired impedances can be 

obtained simultaneously on the same smith chart. Hence a designer can easily choose 

where the circuit should operate.   

 

According to linear noise theory, one can model the noise of a noisy two-port system 

with the two equivalent input noise generators [35], as seen in Figure 3-5, by a series 

voltage source and a shunt current source. 

 

The two noise sources are related by the correlation admittance. The noise factor, F, is 

described as: 

 

 
2

min optS
S

n YY
G
RFF −+=  (3.3) 

 

where Rn is the equivalent noise resistance of the noisy two-port. Ys is the source 

admittance and Ys = Gs + jBs, Yopt is the optimum source admittance and Yopt = Gopt + 

jBopt, and Fmin is the minimum noise factor which is a function of source admittance, Ys. 

Thus one can plot the noise factor contour on the source admittance Smith chart, which 

also represents the noise circles of the circuit. When YS = Yopt, the center of the noise  
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Figure 3-5: Two-port Noise Theory 

 

factor contour corresponds to Fmin. In another words, if the source admittance is equal to 

Yopt, one can achieve the minimum noise figure and eliminate the second term in (3.3). 

One can move the center of the source admittance Smith chart, Yopt, by changing 

transistor dimensions, bias current and/or input matching network design. A wise choice 

is to move the center of the noise circles to the center of the Smith chart so that Yopt = Rs. 

By doing this, an input matching is also provided since LNA input must be matched to 

50-Ω source impedance, located to the center of the smith chart. We performed noise-

matching by designing the input-matching network so that the center of the LNA’s noise 

circles (NC) moves to the center of the source admittance Smith chart, presented in 

Figure 3-6. However, in order to maximize the available gain at the frequency of interest, 

we also moved the center of the available gain circle (GAC) to the center of the source 

admittance Smith chart.  This can be done by tuning the output matching of the circuit, 

also presented later in the paper.  

 

Since the LNA is the first component in the receiver chain, the input must be matched to 

50-Ω that is the output impedance of the previous stage. Many methods for matching 

have been presented and depend on bandwidth and degrees of complexity of the circuit 

being implemented. The most convenient method requires two inductors to provide the 

power and noise match for the LNA. This matching topology can be seen in Figure 3-7.  
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Figure 3-6: Noise Circles of LNA 

 

Here in Figure 3-7 the inductors Lb and Le are designed to be on-chip, as all the other 

passives in this circuit.  

 

As the circuit topology is cascode, the effects of Miller capacitance and πr  resistance can 

be ignored while the calculating the input impedance for the sake of simplicity. Hence, 

the input impedance for this transistor can be written as: 
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For input matching, the real part of the input impedance in (3.4) must be equal to source 

resistance (50-Ω). That is, 
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Figure 3-7: LNA Driver Transistor with two Inductors 

 

Also, the imaginary part of the input impedance must be equal to zero to obtain the value 

for Lb as: 
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We have also used an additional Cbe capacitance for input matching. Without the use of 

additional Cbe, the transistor size can also be adjusted (to larger size), resulting an 

increase in the internal capacitance πC  of the transistor. However, an increase in the 

transistor size will cause an increase in the minimum noise figure or power consumption 

of the overall system. The S11 data before and after input matching are shown on smith 

charts in Figure 3-8.   

 

As one can see in Figure 3-8, before the matching, input of the circuit is capacitive due to 

the πC  capacitance of the input transistor. Le in Figure 3-1 tunes the real part of the input 

impedance and Lb in Figure 3-1 tunes the imaginary part of the input impedance. As a 

result, final input impedance is near the center of the smith chart, providing pure real 50-

Ω input impedance, as seen in Figure 3-8.  As discussed in the following section, the 

center of the smith chart also provides the optimum source impedance, giving us the 

maximum achievable NFmin of this circuit.  
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Figure 3-8: S11 Curve before and after Input Matching (100MHz-20 GHz) 

3.3.4 Design of a Low-value Integrated Inductor 

Inductors store magnetic energy and as a result of magnetic induction they are capable of 

producing voltage across its terminals. Inductors are circular or spiral in shape to achieve 

a large inductance in a small area. For all frequencies, ideal passive components show 

constant values with constant phase. But all non-ideal components exhibit change in 

value with frequency due to their non-linear loss factors such as series resistances or 

parasitic capacitances.  

 

Typically, standard inductor designs enabling on CMOS and SiGe technologies result in 

a Q value of 6-12 at 2-6 GHz frequency range due to high resistivity of silicon substrate 

and high-resistance interconnect with aluminum/poly-silicon [36]. The substrates used 

today have a relatively high resistivity (10-2000 ohm-cm), thereby reducing the eddy 

current losses underneath the inductor. These losses are strongly limiting the performance 

of the voltage-controlled oscillators (VCOs), power or low-noise amplifiers when 
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compared to designs using off-chip passive components [37]. The use of off-chip 

components increases the complexity and cost while also degrading performance 

parameters such as dynamic-range and power-dissipation of the design, hence not 

preferred to be used in conjunction with single chip ICs.  

 

The inductors are integrated on the top metal layer using a thick metal layer, separated 

from the silicon substrate by using 2 to 6-µm-thick oxide layers [38]. Oxide layers reduce 

the parasitic capacitances to the substrate and they allow the integration of large value 

inductors without having problems with the inductor resonant frequency.  

 

For planar inductors, the problem is the parasitic capacitance between the inductor and 

the ground plane. These parasitic components decrease the quality factor (Q) of the 

inductors and make a self-resonance frequency that limits the maximum frequency of 

operation, making the devices insufficient for high frequency RF communication system 

applications. For high frequencies, special interest must be given for designing low value 

inductors. 

 

Generally, due to fabrication limitations, on-chip inductors were made as square spirals 

as shown in Figure 3-9. For calculating the inductance of on-chip square inductors as the 

one in Figure 3-9, we can use the expression [39] 
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where is the number of turns and 0μ is the permeability of free space, avgd  is given by   
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and ψ  is given by   
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Figure 3-9: A Single-Ended Inductor Layout 

The quality factor of a passive component can be defined as 
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(3.10) indicates that, as the resistive part of the coil decreases, the quality factor increases 

and the inductor behaves more ideal. At low frequencies, the Q tends to increase with 

increasing frequency because the resistive part of the coil is relatively constant while the 

imaginary part starts to increase. Beyond a specific frequency with respect to the 

geometry, the resistive part of the coil extremely increases because of the magnetic 

effects and skin effect. The optimization of the inductor should be performed to ensure 

that the inductor has peak performance at the frequency of our interest. The optimization 

can be performed by using simulators such as ASITIC (Analysis and Simulation of 

Inductors and Transformers for Integrated Circuits [40]) or three-dimensional EM 

solvers. In this paper, we used ASITIC to extract the parasitic components of passive 

elements but also used 2.5-D EM solver MOMENTUM® to improve the accuracy of the 



 31

simulations. ASITIC provides a sufficient model behavior for our design and decreases 

the simulation time, hence used to optimize the inductor geometry for the highest 

inductance and lowest associated series resistance. ASITIC can be used for modeling the 

electrical and magnetic behavior of passive metal structures residing above lossy 

conductive substrates. ASITIC works with a technology file [41] that describe the 

substrate and metal layers residing in the technology. We described the substrate and 

metal layers according to AMS 0.35 µm SiGe BiCMOS process.  

 

ASITIC uses “ Π  model” for modeling the inductor, as shown in Figure 3-10 [41], 

including designed inductor and parasitic components. All the values belong to an 

inductor value of 200 pH at 5 GHz and extracted from ASITIC. In Figure 3-10, R models 

the series resistance of the metal lines, used to form the inductor. This series resistance 

will increase at higher frequencies due to skin effect. CC1 and CC2 model the capacitance 

from the lines to substrate. These capacitors are parallel-plate capacitors between the 

inductor metal and the substrate. RS1 and RS2 model the losses due to magnetic effects and 

conductance of the substrate. The model that we use is suitable for non-symmetric 

inductance topologies. For the differential-inductor, small signal model is different from 

the one in Figure 3-10. These differential-inductor models are commonly used for RF 

circuits like voltage-controlled oscillators (VCOs). 

 

We can get the Q of the inductor from “Π  model” by using  

 

 
R
LQ ω

=  (3.11) 

 

The simulated Q factor of the inductor in the frequency range of 10 MHz to 20 GHz is 

given in Figure 3-11. 
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Figure 3-10: The “п” model of the inductor 

 

One can observe in Figure 3-11 that the quality factor increases with frequency, meaning 

that we are away from the self-resonance frequency of the inductor and the quality factor 

is only limited by ohmic losses in the metallization. Further seen in Figure 3-11, it is 

possible to get high quality factor of silicon substrates if the self-resonance frequency of 

the inductor can be designed high enough. Another critical part of the inductor design, 

besides the modeling, is generating the layout. Due to self-generated magnetic forces, the 

inductor must be isolated from the other parts of the circuit. Typically, a ring of substrate 

contacts is added around each inductor to prevent the coupling the substrate. Generally, 

three to five line widths away from the inductor is suitable for these substrate contacts. 

 

Magnetic coupling is also another limiting factor for IC-based high-Q inductors. In a 

dynamic inductor behavior, capacitive and magnetic coupling currents are induced in to 

the substrate. Generally, capacitive coupling is more dominant over magnetic one. One 

approach to limit this is to generate a ground plane above the substrate to prevent the 

currents from entering into the substrate [42]. However, this will also increase magnetic 

currents hence causing reduction of the inductance. To eliminate this reduction in the 

inductance, the ground plane is specifically patterned so that magnetically generated 

currents are blocked from flowing. This method also comes with a disadvantage of 

increasing the coupling capacitance to the ground hence  
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Figure 3-11: Quality Factor (Q) of the inductor 

 

decreasing the self-resonance frequency. Because of this, the shielding must be 

implemented far away from the inductor to decrease the coupling capacitance and remain 

above the substrate. In this paper, the inductor shielding is made by using the poly-silicon 

layer.  Figure 3-12 presents the designed 200 pH inductor layout with isolating substrate 

contacts and pattern ground shields.  

 

 
Figure 3-12: Layout of a low value inductor 
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3.4 Simulation Results 

In this section, the simulation results of 5-6 GHz wideband single-stage cascode LNA are 

presented. All the simulations are performed using Agilent Design System (ADS) and 

Cadence® design tools with AMS 0.35μm SiGe HBT technology. This technology has a 

peak Tf value of 50 GHz. Figure 13 presents the result of gain simulation of the 

frequency range of our interest. As seen in Figure 3-13, the cascode feedback LNA 

achieves a power gain of above 15 dB in the 5-6 frequency range.  The flatness of gain 

within 0.2 dB in this frequency range covers all the three band of 802.11a standard; 5. 15 

GHz-5.25 GHz, 5.25 GHz-5.35 GHz and 5.725 GHz -5.825 GHz.  

 

It is not a coincidence that the maximum gain is achieved in the desired frequency range 

of 5-6 GHz. Where the maximum gain is achieved can also be analyzed by using 

available gain circles (GAC) of the circuit. The GAC of our circuit is shown in Figure 

3-14. In Figure 3-14, 50-Ω source impedance can be seen and our circuit gives the 

maximum available gain close to 50-Ω output impedance, also satisfying the desired 

output impedance for the output matching of the circuit.   

 

 
Figure 3-13: Gain Curve of the LNA (S21) 
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Figure 3-14: Gain Circles of LNA 

 

NFmin and NF curves of our LNA circuit are shown in Fig. 15. A noise matching at the 

desired frequency range (5-6 GHz) and change of NF of 2.8 dB in 5-6 GHz band can be 

observed in Figure 3-15. In literature, noise simulations generally don’t include the 

inductors and series resistances of wires.  

 

 
Figure 3-15: NFmin and NF analysis of the LNA 
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Figure 3-16: Optimum Noise Reflection Coefficient of LNA vs frequency Curve 

 

As seen in Figure 3-15, NF of the circuit is nearly same to the NFmin of the circuit which 

is highly desired. Also observed in Figure 3-17, the input impedance of the circuit gives 

the best value in the same frequency range with NF. Figure 3-16 provides further details 

on why the two specifications (NFmin and input matching) give the best result in the 

frequency range of interest, presenting the optimum noise reflection coefficient (ONRC). 

ONRC provides the best S11, resulting the NFmin. As observed in Figure 3-16, for 5.2 

GHz, the ONRC of the circuit is very close to the 50-Ω source impedance, indicating the 

best result for input matching. This is also expected because, as explained in noise 

matching part, it has provided in Figure 3-6 that the NC curves gives the minimum noise 

for the impedance value of the same in ONRC curve.  

 

The input matching of our circuit is also adequate for WLAN applications. Figure 3-17 

illustrates a good input impedance match of 50-Ω. S11 of the circuit is below -15 dB at the 

frequency of interest. This also shows us that simultaneous input and noise matching is 

obtained.  
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Figure 3-17: Input Matching of the LNA (S11) 

 

Impedance matching at the input is always required while at the output it is only 

necessary with the LNA driving an external image-reject filter, placed between the LNA 

and mixer. On the other hand, direct on-chip connection between the LNA and mixer 

provides better linearity and saves the power consumption. But more stringent 

performance specifications of the image-reject filter are required to avoid noise-figure 

degradation. In this work, output is also matched to 50-Ω source impedance. The S22 

result of the circuit is presented in Figure 3-18. In the frequency of interest, S22 is smaller 

than -10dB which is enough for heterodyne transceiver architectures [3].  

 

Due to cascode nature of our circuit, a reverse isolation (S12) of below -63dB is obtained 

and shown in Figure 3-19, is also a good result [3]. Figure 3-20 indicates that our circuit 

is unconditionally stable all over the interested frequency range.  



 38

 
Figure 3-18: Output Matching of the LNA (S22) 

 

 
Figure 3-19: Reverse Isolation of LNA (S12) 
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Figure 3-20: Stability Factor of LNA 

3.5 Layout Issues 

The complete LNA layout, including bias circuitry, is presented in Figure 3-21. All 

components are on-chip, including the dc blocking and by-pass capacitors. The LNA 

under study was designed and simulated with a standard 0.35 µm SiGe BiCMOS 

technology on a p-type substrate. There are four metal layers in this technology and top 

metal layer has a thickness of 3µm [33], ideally suited for realizing inductors . 

 

Analog circuits usually include resistors for current limiting or voltage division and 

general biasing circuits. Most processes offer a choice of several different resistor 

structures utilizing different materials. One type of resistor that can be used in IC is well-

resistors. Most important feature of well resistors is the relative high sheet resistance, on 

the order of 1 to 10 kilo-ohms per square. The disadvantages of well resistors are high 

temperature coefficients, voltage dependency, and large parasitic capacitances to ground 

since the well is located close to the substrate. Also another important point for well 

resistors is, when laying out well resistors, the width should be at least twice as large as 

the depth of the well. Otherwise the resistor does not achieve full junction depth and the 

sheet resistance becomes much higher than the values reported by the foundry data sheets 
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[43]. Metal layer for creating a resistance is sometimes the best choice when small 

resistances are desired. Sheet resistance of the different metal layers (especially first and 

second) is typically in the range 20 to 40mΩ/sq. The advantages of metal resistors are 

low parasitic coupling to the substrate, low-voltage dependency, and low TCs but can 

give really small values. Also, diffused resistors can be realized in a CMOS process by 

making contacts to each side of an implanted region Resistors made this way exhibit 

sheet resistance in the range 20 to 50Ω/sq if silicide blocks are used. Hence, using this 

resistor type may add extra cost to the manufacturing. This resistor type is not often used, 

since most CMOS processes offer poly resistors that have equal or greater sheet 

resistances which has better performance to optimize. Poly-silicon is used in all modern 

CMOS processes for producing the gate of the MOS transistors. After deposition, the 

poly is heavily doped to improve conductivity for obtaining high-speed operation of the 

MOS transistors. The sheet resistance of heavily doped poly lies in the range of 1 to 20 

Ω/sq [44]. At en extra cost, a mask can be manufactured that stops heavy poly doping at 

regions where resistors are desired. As a result, lightly doped poly can be produced with 

sheet resistance varying between 20 to 1000 Ω/sq [44]. The TC of poly resistors can have 

both positive and negative values depending on the doping density and the type of doping 

atoms used. In general, the absolute value of the TC increases with the sheet resistance. 

For al these reasons, poly capacitors are chosen for realizing the entire resistor in LNA 

circuit.  

 

In LNA circuit, there are also capacitors in the matching circuits. Also capacitors are used 

for blocking the DC current. The capacitor choice is also important due to the using area 

of capacitor. There are two general ways to realize a capacitor in IC circuits. Both plates 

of a poly-insulator-poly (or simply poly-poly) capacitor are made of deposited poly-

silicon that is doped to keep the resistivity low. The bottom plate is usually implemented 

using the same layer as the poly gate of MOSFETs. The other plate must be supported by 

a second poly layer.  

 

There are extra processing steps involved in poly-poly capacitors since the insulator is 

unique to this structure. Of course, the shielding is not perfect and there is a parasitic 
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capacitance connected between the bottom plate and the substrate. The capacitance per 

unit area of poly-poly capacitors changes from one technology generation to the next 

because both vertical and lateral dimensions are scaled. Hence, it is not possible to 

provide a number that can be universally applied. For example, at the 0.5-μm technology 

node, the capacitance per unit area was around 1 fF/μm2. There is a voltage modulation of 

poly-poly capacitors caused by poly-depletion since the conductivity of the poly-silicon 

plates is finite. Usually, the voltage dependency can be modeled using a second-order 

polynomial, which shows the non-linearity of poly-poly capacitors. If the linearity of 

poly-poly capacitors is not sufficient, metal-insulator-metal capacitors should be used. 

The drawback of such capacitors is the low capacitance per unit area (typically 0.05 

fF/μm2) [33] since the oxide used between metal layers is quite thick. Such capacitors 

will not be further discussed here. In modern state-of-the-art processes, MIM capacitors 

are replacing poly-poly capacitors owing to their improved linearity and mismatch 

characteristics since the conductivity of the metal plates is higher than that for the 

corresponding poly-silicon plate. Usually, the MIM capacitor is realized using one of the 

conventional metal layers as the bottom plate and a dedicated thin metal layer placed 

between two conventional metal layers to realize the top plate as in the AMS process that 

we use for fabrication of the designed LNA. Also, in MIM capacitances, the plates of the 

capacitor are made of metal, reduces the ohmic resistance resulting in a higher quality 

factor value. All the capacitors used in this design are MIM capacitors due to their 

linearity. The unit capacitance of the process used for fabrication of the LNA is ~1 

fF/µm2 which is close to the poly-poly capacitor value. In RF circuits, sometimes huge 

DC blocking capacitors are required. In this case, poly-poly capacitors give large values 

with small area which suitable for DC blocking. But in this thesis, there is no need to 

large capacitance because all the blocking are performed using the series capacitance of 

input and output matching networks.  

 

At a 5 GHz of operating frequency, all the paths will have parasitic capacitances, 

resistances and also inductances. Typical simulators can extract RC parasitic components 

but inductance extraction is a very much interesting topic for today’s RF and Microwave 

research/company communities. Inductance extraction can also be performed by using 
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EM solvers but it takes very long simulation time and processor power. Therefore, in this 

work all the parasitic inductances are extracted by using ASITIC tool. It is a very typical 

example that some thin paths in layout have an inductance of a few pH. This value is 

comparable with the emitter inductor of the LNA. Lastly, all the paths in input part of the 

LNA are realized by using the top metal layer because of the reduction of series 

resistance. These series resistances are directly adds noise and increase the overall noise 

performance of the system. LNA circuit occupies an area of 595 × 925 µm2. It is operated 

with 3.3 V supply voltage for increasing the output swing of the LNA. It only consumes 

10.6 mW power, very low as compared to similar bipolar LNAs [12-16].  
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Figure 3-21: Layout of the LNA (595 × 925 µm2) 
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Figure 3-22: Die Photograph of the LNA 

3.6 Experimental Results 

The LNA has been fabricated using 0.35µm-SiGe BiCMOS technology. Figure 3-22 

shows a photograph of the die with an active area of 595×925µm2 and labeled circuit.  

The circuit operates with a 3.3 V supply voltage. The measurements are taken by using 

Agilent 8719ES Network Analyzer, integrated into a Karl-Suss PM5 RF Probe Station.  

 

The measurement result for input return loss of the LNA is given in Figure 3-23. it can be 

seen that the resonance frequency quite shifts to 6 GHz. But, at 5 GHz the return loss is 

still under -10 dB.  
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Figure 3-23: Measurement result of S11 

 

The power gain measurement result of the LNA is shown in Figure 3-24. the gain of the 

amplifier is not expected value of 15 dB. There is a 1-2 dB loss shown in Figure 3-24. It 

cam be occur due to some voltage drop with substrate and the ground of the circuit. But 

also the calibration of the measurement systems also affects the measurement results. 

Gain simulations also performed using new calibration kits and different measuring 

setups (with signal generator and spectrum analyzer).  
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Figure 3-24: Measurement result of S21 

 

The output return loss of the circuit is quite better than expected and shown in Figure 

3-25. It can be clearly seen that the output of the circuit resonates at 5-6 GHz frequency 

range. Also the reverse isolation of the circuit is above 25 dB which is enough for 

heterodyne receiver architectures [3]. The measurement result of S12 is shown in Figure 

3-26. 
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Figure 3-25: Measurement result of S22 

 

 
Figure 3-26: Measurement result of S12 
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Figure 3-27: Comparison of Measured and Simulated S-parameters 

 

A comparison of simulated and measured S-parameters of the LNA in the 5-6 GHz range 

is provided in Figure 3-27. These simulations were performed using Agilent Design 

System (ADS)® and Cadence® design environments. As seen in Figure 3-27, the 

measured data is very close to simulated data, evidence of good parasitic extraction and 

compensation process performed for the circuit. Since above 5 GHz of operating 

frequency, the extraction of inductance becomes very difficult using the conventional 

circuit simulators, EM solvers, such as  MOMENTUM®,HFSS® or MOMENTUM®  

should be used to extract the parasitic inductances. 

 

The measurement results show that power gain of the LNA deviates by 2-dB from the 

simulated value of 14-dB.  Figure 3-27 also illustrates a good input impedance match of 

50-Ω. S11 of the circuit is below -10 dB at the frequency of interest. However, the 

resonance frequency slightly shifts to 6 GHz, instead of the designed/simulated value of 

5.5 GHz, due to an unexpected drop of the value of emitter inductor. Impedance 
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matching at the input is always required while, at the output, it is only necessary if/when 

the LNA driving an external image-reject filter, placed between the LNA and mixer. In 

this work, the output of the LNA is also matched to 50-Ω source impedance.  

 

The noise figure of the LNA is still being measured and not available for reporting at the 

time of submitting the thesis. The simulation setup is created and early noise figure 

results are taken in the range of 3-4 dB levels but the calibration and measurements are 

still on going. Noise figure of the circuit is measuring using Y-method which is 

performed by applying a specified noise with noise sources and observing the total noise 

level at the output of the LNA with spectrum analyzer. The Agilent E4407B spectrum 

analyzer has a noise figure module which make easy to measure the noise figure and 

phase noise of RF circuits.   
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4 
CChhaapptteerr  44    

  
SSPPIIRRAALL  IINNDDUUCCTTOORRSS  AANNDD  

RRFFMMEEMMSS  TTEECCHHNNOOLLOOGGYY  

4.1 Introduction 

One of the critical limitations on integrating high performance LNAs on chip are spiral 

inductors. Unlike resistors and capacitors, whose their values are well estimated except 

for variations due to the process (around 10%), on-chip spirals are still not well optimized 

in terms of shape, metal width, metal spacing, quality factor and value. Modern CMOS 

process usually consists of a heavily doped epi layer which is highly conductive; eddy 

current induced by the magnetic field of the inductor onto the substrate degrades the 

inductor performance. 

 

For all frequencies, an ideal passive component must show constant values with constant 

phase. But all non-ideal components exhibit change in value with frequency. For an 

inductor, self-resonance frequency is important because beyond this frequency the 

element becomes capacitive and the quality factor is practically zero [45]. 
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4.2 Problems in IC Technology 

Typically, standard inductor designs on CMOS and SiGe substrates have resulted in a Q 

of 12-18 at 2 GHz and 16-22 at 6 GHz. Now, we can use electromagnetic simulation 

software like HPADS MOMENTUM, ASITIC to optimize the inductor geometry for the 

highest inductance and lowest associated series resistance. Also, the substrates used today 

have a relatively high resistivity, reducing the eddy current losses underneath the inductor. 

 

The inductors are integrated on the top metal layer using a 3-um-thick conductive layer 

and separated from the silicon substrate by using 2 to 6-um-thick oxide layers. The 

parasitic capacitances to the substrate are reduced by oxide layers and they allow the 

integration of large value inductors without having problems with the inductor resonant 

frequency. But the main problems in the BiCMOS processes are;  

 

 Thickness of the metal line is thin; therefore the sheet resistance is high. For 

example, the process that that used in this project is AMS 0.35 SiGe BiCMOS 

process and the thickness of the last metal layer is typically 2,5 µm. This gives 

only 15 m-ohm/square sheet resistance. This is high sheet resistance for inductor 

design and therefore the quality factor are generally limited about 10-12 [33].  

 

 The other problem is the coupling capacitance between coil and the substrate. 

Because the k value of the material between the coil and substrate is not small 

enough, the capacitance between them is not too small. Generally the oxide layer 

is about 6 to 10 µm between the substrate and the last metal layer. This parasitic 

capacitance resonates with the inductance of the coil and determines the self-

resonance frequency of the coil. In AMS process, the self-resonance frequencies 

of the inductors are about 6-8 GHz, which is very low for high frequency 

applications.  
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Figure 4-1: Spiral Inductor Model 

4.3 Theory of the Planar Type Spiral Inductors 

A general model of a spiral inductor is shown in Figure 4-1. Ls is the low frequency 

inductance, Rs is the series resistance of the coil, Cs is the capacitance between the 

different windings of the inductor and includes the fields in air and in the supporting 

dielectric layers, C1 is the capacitance in the oxide (or polyamide) layer between the coil 

and the silicon substrate, Cp is the capacitance between the coil and the ground through 

the silicon substrate, and Rp is the eddy current losses in the substrate. This model is the 

most frequently used small signal model by industry and academic labs because it fits 

very well with Y and S-parameter measurements of planar inductors.  

4.4 Frequency Response of Planar Inductors 

The low frequency value of planar inductors is generally obtained by using Greenhouse 

formulas but an accurate equivalent model of a planar inductor can be obtained using a 

full-wave electromagnetic simulator such as ADS-Momentum, ASITIC or other EM 

programs. The simulated S-parameters are typically converted to Z or Y parameters and 

then fitted to obtain accurate values for Ls, Cs, Cp and Rs. In general, Ls and Rs are fitted 

using low-frequency simulations, while Cp and Cs are fitted around the resonant 

frequency of the planar inductor [41]. At low frequencies, the impedance of the inductor 

model is: 



 53

 

 ss jwLRZ +=  (4.1) 

 

However, at high frequencies, the capacitances must be taken to account. Generally, Rp 

can be neglected and C1 and Cp1 are lumped together. This means the model can be 

simplified by ignoring the coupling capacitances of the windings and the capacitance 

between the coil and the ground through the silicon substrate. This model is also used in 

the electromagnetic simulation tool “ASITIC” and shown in Figure 4-2 [41].  

4.5 Q of the Planar Inductors 

At low frequencies, and for medium values of Ls resulting in X=jwLs=25 to 70 ohm, the 

capacitances can be neglected and the model simplifies to a series Ls, Rs circuit. The 

inductor Q is defined as  
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This definition is not accurate around the resonant frequency of the inductor. The 

resonance occurs due to the effect of the parasitic capacitances, and it is unavoidable in 

inductors unless capacitance is reduced to zero.  
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Figure 4-2: Inductor Model used for ASITIC Simulations 

4.6 Effect of the Metallization Thickness 

Increasing the conductor thickness since it reduces the series resistance can enhance the 

Q value of spiral inductors. Series resistance is the most important parameter that reduces 

the Q value of the inductor below 3 GHz [39]. Even though the thick metallization is a 

non-standard IC processing, it could be achieved after the standard IC processing for the 

rest of the circuit. Above 5-µm thickness of copper, electroplating technique is adequate. 

It is experimentally observed that enhancing the thickness of the metallization from 4.5 

µm to 9 µm and placing inductors on top of a 10 µm polyimide (or BCB) layer improves 

the Q factor by 93%, compared with standard inductors fabricated in silicon substrate 

[46]. It is important to note that in the case of planar inductors, there is an additional 

resistance that is given by the induced eddy currents within the coil itself. A reduction in 

the series resistance greatly increases the Q at low to medium frequencies, but has 

virtually no effect on the reactance or the resonant frequency of the planar inductor.  

4.7 Effect of the Parasitic Capacitance 

The parasitic capacitance in the substrate is the dominant capacitance for medium to large 

value inductors, and the inductor resonant frequency is given using the circuit of Figure 

4-2. 
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In general, Cs<<Cp and can be neglected in the resonant frequency calculations [39]. 

However, for micro-machined inductors with a very low parasitic capacitance and a high 

resonant frequency, Cs must be taken into account in the circuit model. In this case, the 

resonant frequency becomes: 
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A reduction in the parasitic capacitance not only makes the resonant frequency higher but 

also results a large-reactance, high-Q inductor at high frequencies. The reason is that the 

reactance is proportional to f , while the series resistance is approximately proportional 

to f .  

 

In this project, the solution for improving the performance of the LNA is, using high-Q 

MEMS inductors. The approach is fabricating the MEMS inductors using in-house 

capabilities of Sabanci University clean-room and performing the integration of these 

inductors to fabricated LNA die. For this, the modeling of the inductors and the 

fabrication steps of MEMS inductors are given in following part of this chapter. 

4.8 RF MEMS Inductors 

Extensive research is being conducted in the area of wireless front-end circuitry aiming at 

the construction of efficient passive components such as inductors. Inductors are found 

e.g. in filters, impedance matching networks and voltage controlled oscillators. The 

performance of both transceivers and receivers depends heavily on this component.  
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MEMS inductors aim to increase the performance of on chip inductors in terms of quality 

factor “Q” and resonant frequency. MEMS inductors try to achieve higher Q than the off 

chip discrete inductors. Two methods are used for this purpose in the MEMS structures: 

Bulk micromachining and surface micromachining [47]. In bulk micromachining the 

wafer is been processed and the substrate has been eliminated from underneath the spiral 

trace. In Surface micromachining, layers are deposited on the substrate and solenoid-like 

inductors are created above the substrate [48].  

 

Micromachined inductors will therefore be used for high-Q applications (Q>30) in low 

noise oscillators, high-gain amplifiers, on-chip matching networks, and integrated LC 

filters. Currently, thick metal layer and substrate etching are additional fabrication 

processes and increased cost [49]. 

 

MEMS fabrication procedures are still not well-suit for typical BiCMOS IC processes 

and increase the cost of the product. A new post process called Above-IC is very 

compatible for post-processing of the typical IC processes [50]. In this thesis, suspended 

micro-machined inductors and inductors that are formed using Above-IC technology are 

fabricated. The goal of the fabrication is produce high-Q inductors and increasing the 

performance of the LNA.  
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Design Example 
 

The inductor models can be designed with 3 masks in this project. The important 

parameters for an inductor are width, thickness, number of turns, outer diameter, inter 

diameter and air gap thickness. The inductance of the coil is not related with the process. 

So, the inductance of the coil can be achieved for specified lengths and spacing as [51]: 
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Where n: the number of turns, 
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D0 and Di are the outer and inner diameters of the rectangular inductor. For the 30u width, 

30u spacing, 500u outer diameter, 200u inner diameter and 3 number of turns; 
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And the inductance is; 
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Figure 4-3: Coil of the Inductor 

 

The inductor mainly consist of the coil part which is spiral, the contacts (in and out ports) 

and the via part which connects the contact part and the coil. The spiral is 3 turns, 30um 

in width, has 30um spacing and its outer diameter is 500um. The simulations of the 

designed inductors are performed using simulators such as Coventor® (MemHenry 

Module), ASITIC, and Agilent MOMENTUM®. A typical design and simulation 

procedure using Coventor MemHenry environment is given below: 

 

The coil mask is shown in Figure 4-3. Vias have the size of 30 µm-30 µm. And the 

contacts have the size of 120 µm -120 µm. This is large because, while measuring the 

inductor, we need to large contacts.  

Inductor fabrication is a 4 layer and 3 mask process. Copper used as the material of 

inductor for simulation. First a dielectric nitride layer of 0.5 µm thickness is deposited on 

to the silicon wafer. Then the sacrificial layer PSG of 40 µm thickness is deposited on to 

the nitride. The contact holes are filled with copper and then it is etched with the contact 

mask. Then the sacrificial layer of 40 µm thickness is deposited on to the copper contacts 

and it is etched with via mask negatively to open holes for vias like we did for the  
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Figure 4-4: Process flow of Inductors 

 

contacts. Then copper is deposited on to the sacrificial layer planar type and it is etched 

with via mask. Then 30 µm thick copper is deposited and it is etched with the coil mask. 

The process flow is shown in Figure 4-4.  Finally we etch the sacrificial layers and get 

out final structure shown in Figure 4-5.  

 

In order to make analyses first we have to create meshed structure. Meshing is very 

important for the sensitivity of the simulation. Meshed structure is shown in Figure 4-6. 

 

 
Figure 4-5: Final view of simulated inductors 
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Figure 4-6: Meshed structure of inductor 

 

Memhenry® module is the most suitable simulator for analyzing the inductor. The 

Memhenry® module computes the frequency-dependent resistance and inductance 

matrices for the set of conductors. In this project, we can only simulate the inductor at the 

frequency of 5GHz. There are a lot of different topologies simulated and the inductance-

resistance values are listed in Table 4-1. (All of the values are find at the frequency of 5 

GHz) 

 

Table 4-1 includes the inductance values from 1 nH to 8 nH which is the suitable range 

for IC design. These simulations give an idea of the MEM inductor topologies and the Q 

values that are elegant for RFIC design. The most important part of the designing 

inductors is creating the substrate files for simulators. Coventor defines the material 

properties and do not need any substrate file. But this is not the case in other simulators 

like ASITIC or Agilent MOMENTUM®.  

 

All these simulations are performed under ideal cases but fabricating these inductors is 

not an easy step. Fabrication description and the problems occurs during fabrication are 

given in next part of this chapter.  
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Table 4-1: Inductor Simulation Results 

Width of 

the coil 

(µm) 

Spacing 

(µm) 

Outer 

Diameter 

(µm) 

Air Gap 

Thickness 

(µm) 

Thickness of 

the coil 

(µm) 

Number of 

turns 

L 

(nH) 

R 

(Ω) 

Q 

20 10 500 40 20 1 1.1 0.8 40 

20 10 500 40 20 2 3.3 2.4 42 

20 10 500 40 20 3 5.8 4.6 39 

20 10 500 40 20 4 8.2 7.4 34 

20 20 500 40 20 1 1.1 0.8 41 

20 20 500 40 20 2 3 2.2 43 

20 20 500 40 20 3 5 3.9 40 

20 20 500 40 20 4 6.5 5.8 35 

20 30 500 40 20 1 1.1 0.8 41 

20 30 500 40 20 2 2.8 2.0 44 

20 30 500 40 20 3 4.3 3.4 39 

20 30 500 40 20 4 5.2 4.8 34 

30 10 500 40 20 1 1 0.5 56 

30 10 500 40 20 2 2.7 1.3 63 

30 30 500 40 20 1 1 0.5 54 

30 30 500 40 20 2 2.3 1.1 65 

30 30 500 40 20 3 3.3 1.6 65 

30 30 500 40 20 4 3.6 1.9 60 

4.9 Fabrication of Suspended Inductors 

4.9.1 Fabrication Steps of Suspended Inductors 

Mainly the process steps of the inductors include four layers and three masks. The 

process starts with the deposition of Si3N4 that is used for insulation. Then copper layer is 

deposited on to nitride layer and patterned to form the bottom electrodes. Following this 

step, sacrificial layer, which is AZ5214 photoresist in our case, is coated that directly  
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Table 4-2: Si3N4 RF sputtering parameters 

Type  RF magnetron sputtering 

Target Si3N4 

Temperature 250 oC 

Cleaning 10min 

RF power 150 W 

Ar flow 35 sccm 

Chamber Pressure 2x10-2 mbar (GV5 position 650) 

Deposition time 60 min 

 

defines the spacing of the inductor from the ground plate. Then openings for anchors is 

opened on the sacrificial layer and copper is deposited to fill these openings and in 

parallel to form the top metal layer. Next step is to pattern the top layer and form the 

inductor. Finally the sacrificial layer is released and our inductor is created. 

 

 Deposition of Nitride 

 

After the p doped 100 oriented silicon wafer is cleaned with general cleaning recipe 0.3 

µm thick Si3N4 layer is deposited using RF magnetron sputtering from a high purity Si3N4 

target. The chamber is heated up to 250 oC and then plasma cleaning is applied to Si3N4 

target with 120 W RF power, 35 sccm argon (Ar) flow and 2x10-2mbar chamber pressure 

for 10 minutes. After that deposition step is started with 150 W RF power, 35 sccm Ar 

flow and 2X10-2mbar chamber pressure for 60 minutes resulting ~300nm of oxide. The 

parameters are given in Table 4-2. 

 

 

 Deposition of Aluminum 

 

The aluminum deposition started directly following the nitride deposition. Al deposition 

is made by DC magnetron sputtering using high purity Al target. As a first step target  
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Table 4-3: Al DC sputtering parameters 

Type  DC magnetron sputtering 

Target Al 

Temperature 150 oC 

Cleaning 3min 

DC power 200 W 

Ar flow 35 sccm 

Chamber Pressure 2x10-2 mbar (GV5 position 500) 

Deposition time 20 min 

 

cleaning is carried out with 150W DC power, 35 sccm Ar plasma and main chamber 

pressure of 2x10-2 mbar for 3 minutes in order to clean the residues on the target which 

can be affect the deposition quality. After that the DC power adjusted to 200W and with 

the same plasma (35 sccm Ar and 2x10-2 mbar chamber pressure) the deposition is carried 

out at 1500C for 20 minutes resulting in 300 nm Al layer. The parameters are given in the 

Table 4-3. 

 

 Patterning and Etching of Aluminum 

 

Following aluminum deposition, the wafer is taken to wet bench in order to pattern the 

metal contacts.  Shipley’s S1813 positive tone photoresist (PR) is used for 

photolithography step. First the sample is spin coated with PR using spinner. The 

program is selected as 500 rpm for 5 seconds to spread the PR, then 2000 rpm for 10 

seconds and finally 4500 rpm for 45 seconds which results in 1.3µm uniform PR layer. 

Then 35 sec. of soft bake applied on hot plate with 950C temperature. Then the sample is 

taken to contact aligner and exposed to UV light for 35 seconds using bottom contacts 

mask. After that step, sample is directly put in the Shipley’s MF 319 developer for 

approximately 45 sec. to remove the photoresist from the parts that is not covered with 

mask. The develop time is directly related to hard bake and exposure time. Sometimes the 

duration of the develop time is increased to 1 minute because of the quality of  
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Table 4-4: S1813 Photolithography parameters 

Spinning 500rpm-5sec./2000rpm-10sec./4500rpm-45sec. 
Soft Bake 95oC Hot Plate 35 sec. 
Expose 35 sec.  
Develop 40-60 sec. 
Hard Bake 105oC Hot Plate 60 sec. 

 

transparency masks such that the light areas of the mask do not passes the light as much 

as glass masks. This time is optimized for each mask by repeating this step and inspecting 

it under optic microscope. After we have good patterns the sample is put on the hot plate 

again for hard baking at 105oC temperature for 60 seconds. Hard bake step hardens the 

PR in order to make it unaffected from wet etching. All these parameters are listed in 

Table 4-4. 

 

Last step in the forming process of bottom electrodes is wet etching of the Al layer that 

has PR patterns on it. Wet etching is chosen for patterning process because of it is easy 

and fast process. . Al etchant is selected as 16.H3PO4-1.CH2COOH-1.HNO3-1.H2O with 

an etch rate given as 2600-6600 A0/min [52]. The wet etching takes about 1 minutes 

approximately and finally print our mask to the metal layer [52]. Finally the remaining 

PR is removed with acetone rinse for 2 minutes and isopropanol rinse for 2 minutes. Also 

2 min O2 plasma descum is applied to remove the PR completely. Resulting bottom 

contact is illustrated in Figure 4-7. 
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Figure 4-7: Bottom contacts (Al) of the fabricated inductor 

 

    Coating and Patterning of Sacrificial Layer 

 

After the electrodes are patterned, dual tone photoresist AZ 5214 is spin deposited in 

order to form the sacrificial layer. Photoresist is used as sacrificial because it is easy to 

deposit and made the process simpler and also it is easier to release it than other 

sacrificial layers. PR is spin coated at 500 rpm for 5 sec., 2000 rpm for 10 sec. and 4500 

rpm for 45 sec. resulting in a thickness of 1.4 μm. Then the sample is soft baked on the 

hotplate of 95oC for 1 min. Next step is to expose the coated PR under UV light with the 

anchor opening mask for 20 second. Then the sample is again put onto hot plate at 110 oC 

for 30 second and once mode the sample is flood exposed with no mask that inverts the 

mask. Developer step follows this, for 40 sec. with AZ 726 developer. Summary of the 

AZ5214 negative tone photolithography steps are given in Table 4-5. Resulting structures 

are shown in Figure 4-8 and Figure 4-9. 

 

 

 



 66

Table 4-5: AZ5214 Photolithography parameters 

Spinning 500rpm-5sec./2000rpm-10sec./4500rpm-45sec. 
Soft Bake 95oC Hot Plate 60 sec. 
1st Expose 20 sec.  
2nd Bake 110oC Hot Plate 30 sec. 
Flood Expose 60 sec. 
Develop 40 sec. 
Hard Bake 105oC Hot Plate 60 sec. 

 

 
Figure 4-8: Sacrificial layer coated and patterned on bottom electrodes 

 

 

 
Figure 4-9: Closer view of the via openings in sacrificial layer 
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 Top Copper Layer Deposition and Patterning 

 

This top layer deposition of copper is one of the most crucial steps in process flow. The 

copper layer has to fill the anchor openings and connect well to the coil. This step is 

repeated for a few times because most of the times when releasing the photoresist 

sacrificial layer, the top coil part is corrupted. Deposition time finally increase to 60 min 

resulting in 2.5 μm that fill the anchor openings well as well as the anchor parts stick to 

the coil part better.  

Copper deposition is made by DC magnetron sputtering using high purity Cu target. As a 

first step target cleaning is carried out with 150W DC power, 35 sccm Ar plasma and 

main chamber pressure of 2x10-2 mbar for 5 minutes in order to clean the residues on the 

target which can be affect the deposition quality. After that the DC power adjusted to 

200W and with the same plasma (35 sccm Ar and 2x10-2 mbar chamber pressure) the 

deposition is carried out below 1000C for 60 minutes resulting in 2.5 µm Cu layer. The 

temperature is kept low in order not to harden the PR sacrificial layer which will be 

problem in releasing it. The parameters are given in the Table 4-6.  

 

Following that the sample is patterned again using PR with parameters in Table 4-4. 

After that the Cu layer is patterned the uncovered parts are removed using the Cu etchant. 

Cu etchant is selected as 4% HNO3 (nitric acid) with an etch rate of 40nm/sec. is used to 

pattern the top metal and the etchant is applied for around 60 second.  

 

 Releasing of Sacrificial Photoresist 

 

Acetone is used to release the underlying photoresist sacrificial layer. As seen as an easy 

step this part is the most problematic part of the inductor fabrication steps. Because the 

photoresist sticks to copper very well, when rinsed with acetone, in some parts the 

underlying photoresist are not released. In some parts, acetone removes the photoresist, 

however; it also removes the top part of the inductors. One other problem is when 

acetone is exposed to photoresist; it cannot completely remove the photoresist such that 

some parts stick to coil. There are techniques such as super critical carbon dioxide drying  
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Table 4-6: Cu DC sputtering parameters 

Type  DC magnetron sputtering 

Target Cu 

Temperature <100 oC 

Cleaning 5min 

DC power 200 W 

Ar flow 35 sccm 

Chamber Pressure 2x10-2 mbar (GV5 position 500) 

Deposition time 60 min 

 

and isotropic dry etching that helps to remove the remaining photoresist. Using dendritic 

material as a dry-release sacrificial layer to create micro-scale gaps is another solution to 

this problem. Dentric material is released with no remaining when they are exposed to 

temperatures like 500 oC. These are left for future work. There are images of some 

inductors after photoresist release shown in Figure 4-10, Figure 4-11. 

 

 
Figure 4-10: Final structure of 1.5 turn square spiral inductor 

 



 69

 
Figure 4-11: Final structure of 1.5 turn spiral inductor 

4.10 Above-IC Process 

4.10.1 Description of the Above-IC Process 

The passive components can be built using an IC-compatible process that is called 

“Above-IC” [53]. The main advantage of this fabrication technique is the ability to build 

the inductors and varactors directly over the electronic circuit. The performance of 

ordinary coils fabricated using standard IC process is usually poor. The main reason for 

the degradation of the performance of a coil is the presence of a resistive substrate. 

Another key issue is the intrinsic resistance of the coil, mainly determined by the nature 

of the metal and its cross-section. Thus, the use of a thick metal layer greatly improves 

the performance of the coil. The process described here allows us to fabricate high-

performance passives in a simple deposit and pattern technology, without the need for 

complex steps. At the same time this optimizes the isolation from the resistive substrate 

and the coil resistance.  
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Below is the process flow of the Above-IC process and Figure 4-12 illustrates this 

process flow; 

 

(A) Starting wafer with the top metal level and the openings in the passivation 

(B) Deposition of the low-k dielectric 

(C) Opening of vias to the top metal layer 

(D) Deposition of the seed metallic layer 

(E) Deposition and patterning of the thick photo-resist 

(F) Electro-deposition of the thick coil layer 

(G) Removal of photo-resist.  

(H) Removal of the seed metal layer 

(I) Thick low-k dielectric deposition as the passivation layer or; 

 

Above the normal IC-passivation, a thick low-k dielectric layer is deposited. The 

passivation layer should have clearances in the location where the inductor will be 

connected to the IC-circuitry. The vias needed to contact the underlying metal 

connections are then patterned. The vias ensure the electrical connection between the last 

IC metal layer and the inductor. A thick electroplated copper layer is realized in order to 

create the coil. In order to protect the coil, a passivation layer can be deposited as the last 

step. This fabrication flow is carried out below 250 °C, which is suitable for post-IC 

processing [54].  

4.10.2 Fabrication of Above-IC Inductors 

Like MEM inductors, Above-IC type inductors also have high Q values. The thick BCB 

layer decreases the parasitic capacitance to the substrate. The main reason is low k value 

of the BCB material. This is the way that to achieve high Q values in inductors.  
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Figure 4-12: Above-IC Process Flow 
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Figure 4-13 Cross-view of Above-IC Process 

 

Decreasing the parasitic capacitive effect is important but another important thing that 

increase Q value is decreasing the sheet resistance. This is accomplished by using thick 

copper layer. Thick copper cannot be achieved by using thin film deposition methods like 

sputtering. The method that used widely for thick copper layer is electroplating method. 

By using this method, thickness of above 15 µm can be achieved. Also we start to 

generate the setup of copper electroplating and achieved copper layer thickness above 10 

µm by using in house capabilities. Also by using the electroplating method, the quality of 

the copper is better than the sputtering method. This is directly affects the sheet resistance 

of the coil. All the thickness values can be seen in the Figure 4-13. 

 

Micromachined-inductors at different geometries/values (1 – 8nH) designed and 

simulated using electromagnetic (EM) simulation tools such as ASITIC® and 

MOMENTUM®. Additionally, full EM simulations of the selected geometries are carried 

out using HFSS®. BCB (Benzocyclobutene) is chosen in this work as the passivation 

layer because it allows thick layers (13.8µm at 1000rpm) and low-k value of 2.65 [55]. 

Different spiral inductor types with different turns ranging from 0.5 to 3 and with 3µm 

thickness were fabricated over 10 µm BCB layer. Figure 4-14 shows the cross-section of 

one of the fabricated inductors. Figure 4-15 and Figure 4-16 shows the fabricated  
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Figure 4-14: Cross-Section of the fabricated inductor above the BCB layer 

 

inductors, designed for 1-nH and 1.58-nH, respectively. These values are suitable for the 

integration of fabricated LNA which improves the noise performance of the LNA. Next 

part includes the approach for integration of the RFMEMS inductor with fabricated SiGe 

BiCMOS LNA.   

 

 
Figure 4-15: Fabricated 1 nH inductor 
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Figure 4-16: Fabricated 1.58 nH inductor 

4.11 Measurement of MEM Inductors 

The last step of our work is measuring the fabricated inductor values. For this 

measurement we must consider the Z parameters of these inductors. A typical set of test 

structures for measuring an inductor in a pad frame is shown in Figure 4-17.  

 

High-frequency ground-signal-ground probes will be landed on these pads so that the S 

parameters of the structure can be measured. However, while measuring the inductor, the 

pads themselves will also be measured, and therefore two additional de-embedding 

structures will be required. Once the S parameters have been measured for all three 

structures, a simple calculation can be performed to remove the unwanted parasitics [51]. 

The dummy open and dummy short are used to account for parallel and series parasitic 

effects, respectively. The first step is to measure the three structures, the device as YDUT, 

the dummy open as Ydummy-open, and the dummy short as Ydummy-short. Then the parallel 

parasitic effects represented by Ydummy-open are removed, leaving the partially corrected 

device admittance as Y’
DUT and corrected value for the dummy short as Y’

dummy-short. 

 

Y’
DUT = YDUT - Ydummy-open 

Y’
dummy-short = Ydummy-short- Ydummy-open 

 

The final step for measuring the inductor is to subtract the series parasitics by making use 

of the dummy short. Once this is done, this leaves only Zdevice, the device itself.  
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Zdevice = Z’
DUT – Z’

dummy-short 

 

Where Z’
DUT is equal to 1/ Y’

DUT and Z’
dummy-short is equal to 1/ Y’

dummy-short. 

 

The measurements of the fabricated inductors are still on-going. The inductance values of 

interest are very low which makes measurement process harder because of the parasitic 

effects. Also the calibration of the measurement devices is being optimized to achieve 

more realistic results. This work is also defined as the future work of the thesis.  

 

 
Figure 4-17: Test structures for measuring the inductor 
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4.12 Performance Improvement of High-Q   RFMEMS 
Inductors: LNA Example 

The receiver block mainly specifies the sensitivity of the overall transceiver architecture, 

whose major block is the LNA, specifying overall NF.  In low noise applications, most 

common topology is the cascode-connected, common-emitter LNA with inductive 

emitter degeneration, shown in Figure 4-18 and fabricated using 0.35 µm SiGe-BiCMOS 

process.  

Based on the analysis that we have performed on this circuit shows the noise generate by 

L1 affects the noise figure performance of the circuit up to %20. This effect is simulated 

for quality factors, ranging from 5 to 100, and plotted in Figure 4-19.  
 
It is illustrated that quality factors higher than 30 improve the NF of the LNA from 2.8dB 

to 1.8dB. All the noise contributors to the NF of the circuit are shown in Tab. 1.  For an 

example, addition of series resistance of Lb, increases the noise figure from 2.1 dB to 2.8 

dB.  

 

 
Figure 4-18: Inductive degenerated cascode LNA 
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Figure 4-19: NF of the LNA for different Qs of L1 

 

The fabricated RFMEMS inductors will be integrated to the LNA test structure which is 

shown in Figure 4-20. In this test structure, the LNA was fabricated without the L1 

inductor and this inductor will be formed using RFMEMS inductors via bond-wire 

integration. Also, the post processing of the test structures will be performed using 

Above-IC process and will also be mentioned in future work part.  

 

Table 4-7: Noise Contributors 

Source of the Noise Contribution to Overall NF (%) 

RF Port (RS) 48 

Transistors 28 

Parasitic components of Lb 21 

Others 3 
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Figure 4-20: Test structures for RFMEMS inductor Integration 
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5 
CChhaapptteerr  55    

  
  

CCOONNCCLLUUSSIIOONN  AANNDD  FFUUTTUURREE  
WWOORRKK    

This thesis presented a study on designing low noise amplifier for IEEE 802.11a WLAN 

applications. It began with an explanation of the background and the fundamental 

principles of designing RFICs at high frequencies. It then briefly explained the design 

techniques of amplifier circuits and making this amplifier has a low noise. As the 

frequency increases, it can be realized that the parasitic components starts to dominate the 

some parts of the circuit. The important parts started related to this concern which takes 

the most time of the thesis. Electrical simulators can extract parasitic resistances and 

capacitances easily but inductance extraction is quite different from other extractions. 

Especially in high frequency circuits, mutual inductances of the close inductors should be 

taken into account. These are all related to how the layout is drawn. The extraction of the 

inductors started using some 3D EM solvers like HFSS or Coventor. But the extraction of 

simple inductor takes to much time if the desired accuracy is high. ASITIC extraction 

tool is used for all extraction of simple lines for finding the effective inductance of these 

lines. Some parasitic inductance values was extracted which are extremely affects the 

performance of the circuit. So, it can be clearly said that, the parasitic inductances of 

paths should be taken into account for accurate simulation results. Also if the inductors 

are not far away from each other, the mutual inductance extraction should be performed. 
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In this thesis, three inductors are not close to each other and the distance between them is 

minimum ten times of the width of anyone which the case that mutual inductance could 

be ignored. However, critical paths are extracted and the specified values of inductors are 

added to extracted view of the circuit which is already includes the parasitic resistance 

and capacitances.  

 

The designed LNA is fabricated using 0.35 SiGe technology and the measured results are 

close to simulated results as formerly supposed to be.  Due to the measured results, the 

LNA gives up to 14 dB power gain in the frequency range of 5.1 - 5.4 GHz which is 

generally enough for typical heterodyne receivers. The input and the output matching 

circuits works properly at the interested frequencies. The challenging part of this work is 

the noise figure of the LNA but the measured results are not performed yet. Because it is 

suppose to be the minimum noise figure of the circuit could occur at the interested 

frequencies and it should be below 3 dB. 1-dB compression point of LNA is nearly -13 

dBm which is input referred. The power consumption of the LNA is also the challenging 

one and has a value of 10.6 mW.  

 

In parallel to LNA design, RFMEM inductor design and fabrication are also 

accomplished. The desired value of inductor are targeted and fabricated. As the inductor 

fabrication steps are not so complicated, the suspended type inductor fabrication has a lot 

of problems which are given in Chapter 4. After the effort on optimizing the devices and 

chemicals, the suspended and Above-IC type inductors are fabricated. Other difficult part 

is the measurement of this inductors. As the values of the indutors are below 2 nH, 

calibrating the measurement results and canceling the parasitic effects are so important 

and not easy to performed. There are lots of measurements are performed on fabricated 

inductors however, still the stability can not be achieved but very close to end. 

Furthermore, not only the measurement devices, but also the test structures are important 

for measuring inductors which should have the open and short circuits to de-embedding 

the unwanted path parasitics.  
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The future work of this thesis can be defined as measuring the noise figure of the LNA. 

Also, two-tone test measurements should be done for finding the IIP3 point of LNA. On 

the other hand, measurements of fabricated inductors will be done. After measuring the 

inductors and finding the desired value of inductor, the integration of the RFMEM 

inductor to LNA test chip will be performed via bond-wire technique. Finally, the 

comparison of the simple LNA and inductor integrated LNA will give the amount of 

performance improvement on noise figure of the circuit which will make it possible to 

high performance single chip transceivers.  
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