H.264 BASELINE VIDEO ENCODER IMPLEMENTATION AND OPTIMIZATION
ON TMS320DM642 DIGITAL SIGNAL PROCESSOR

by
MEHMET GUNEY

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfillment of
the requirements for the degree of
Master of Science

Sabanci University
Fall 2006

H.264 BASELINE VIDEO ENCODER IMPLEMENTATION AND OPTIMIZATION
ON TMS320DM642 DIGITAL SIGNAL PROCESSOR

APPROVED BY:

Assist. Prof. Dr. Ayhan Bozkurt ...

(Thesis Supervisor)

Assist. Prof. Dr. llker Hamzaoglu ...

Assist. Prof. Dr. Hasan Ates ..

Assist. Prof. Dr. Ahmet Onat ...

Assist. Prof. Dr. Mehmet Keskindz ~—coooiiiiiiiniini.

DATE OF APPROVAL: ...l

II

© Mehmet Giiney 2006
All Rights Reserved

I

ABSTRACT

Digital video encoding plays an important role in many applications such as
digital surveillance systems, video conference systems as well as digital TV. In this
thesis, a H.264 baseline encoder is implemented on Texas Instruments TMS320DM642

digital signal processor.

The TMS320DM642 is a high-performance digital media processor with 2-level
memory/cache hierarchy and very-long-instruction-word (VLIW) architecture. The
proposed encoder system consists of almost all parts of standard H.264 baseline encoder
except quarter-pel motion compensation and error resiliency tools such as Arbitrary
Slice Ordering (ASO) and Flexible Macroblok Order (FMO). Instead of quarter-pel
motion compensation, integer-pel motion estimation and compensation for both

Luminance and Chrominance samples is implemented.

The complete H.264 encoder system is verified to work on both computer and
DM642 EVM (Evaluation Module) platform. Basically, the encoder takes the input of a
QCIF video sequence (YUV) and converts it to the standard compressed H.264 AnnexB
file format. The encoder is fully compliant with the standard H.264 JM Decoder.

The reconstructed video, which is exactly the same with the output of the standard
JM H.264 decoder, is being displayed on a TV screen. In addition, by making use of the
TI development tools, performance of the complete encoder system is analyzed for real-

time applications.
Finally, memory optimization, code optimizations and compiler optimizations are

applied to the encoder for higher performance. The proposed H.264 encoder is able to
encode, display and store 26.7 QCIF frames per second.

v

OZET

Sayisal video kodlama sayisal gozetim, video konferans sistemleri ve sayisal
televizyon gibi birgok uygulamalarda 6énemli rol oynar. Bu tezde, H.264 taban profili
video kodlayic1 Texas Intruments TMS320DM642 Sayisal Sinyal Isleyici iizerinde

gerceklenmistir.

TMS320DM642 2-seviyeli hafiza/onbellek hiyerarsisine ve ¢ok uzun komut
kelimesi (VLIW) mimarisine sahip yliksek-performansli bir sayisal sinyal isleyicidir.
Burada sunulan kodlayici sistem, ceyrek piksel hareket dengeleme, rastgele dilim
siralayict1 ve esnek makro-blok siralayici gibi hata esnekligi araglar1 hari¢ standart
H.264 taban video kodlayicinin igerdigi hemen hemen tiim kisimlar1 igermektedir.
Ceyrek piksel hareket dengeleme yerine, hem 1siklilik hem de renklilik degerleri igin

tam say1 piksel hareket dengeleme ger¢ceklenmistir.

H.264 kodlayici sistemin tamaminin hem bilgisayar hem de DM642 EVM
(Degerlendirme Modiilii) tizerinde ¢alistig1 dogrulanmistir. Esas olarak, kodlayict QCIF
video serisini (YUV) alir ve onu sikistirilmis standart H.264 AnnexB dosya sekline

dontstiiriir. Kodlayici, kabul edilen H.264 JM ¢o6ziicii ile tamamen uyumludur.

Yeniden olusturulmus video, standart JM H.264 ¢oziiclisliniin ¢iktisiyla tamamen
aynidir ve bu video televizyon ekraninda goriintiilenir. Buna ek olarak, TI gelistirme
araclar1 kullanilarak, kodlayic1 sistemin biitiiniiniin performans1 ger¢ek-zamanl

uygulamalar i¢in analiz edilmistir.

Son olarak, daha yiiksek performans i¢in kodlayiciya hafiza iyilestirmeleri, kod
doniistimleri ve derleyici iyilestirmeleri uygulanmistir. Sunulan H.264 kodlayici
saniyede 26.7 adet QCIF cercevesini kodlayabilme, goriintileme ve kaydetme

yetenegindedir.

To my family...

VI

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Dr. Ayhan Bozkurt who gave me
the chance to join Sabanci University and participate in this project. I appreciate very

much for his valuable interest, continuous support and guidance.

Also I would like to thank Dr. Ilker Hamzaoglu and Dr. Hasan Ates for assisting
me during the H.264 project.

I would like to thank Dr. Ahmet Onat and Dr. Mehmet Keskinoz for participating
in my thesis jury.

I would also like to thank my partners in H.264 project: Sinan Yalcin, Ozgur
Tasdizen, Esra Sahin, and Mustafa Parlak.

Lastly, I would like to thank all my friends and my students at Sabanci University.

VII

TABLE OF CONTENTS

ABSTRACT v
OZET \Y
TABLE OF CONTENTS VIII
LIST OF FIGURES X
LIST OF TABLES X
ABBREVIATIONS XTI
CHAPTER 1 1
INTRODUCTION 1
1.1 IMPLEMENTATION COMPLEXITYuuuvvviiieeeieiiiiureeeeeeeeeiisreeeeeeeeesissereseseeesesssseseseessssisssesesessomsissssseseeen 2
1.2 LITERATURE SURVEYitittiieeeiiiiitteeeeeeeeeeiiseeeeeeeeeesisseseseseeesisssseseseeessitssseseseeemsssssesesessmmsisreseeeeen 3
1.3 ORGANIZATION OF THE THESISuvtiiiiieieieieeeeeeeeeeeeteeeeeeteeeeeesaeeeeeaeeeseteesseenaeeesenseeesensseeeennnneesennees 6
CHAPTER 2 8
H.264 OVERVIEW 8
2.1 THE SPECIFIC CODING PARTS OF H.264 ...ttt s 9
2.2 ENCODER COMPLEXITYvvtiiioutteeeeteeeeeeeeeeseeeteeeeeeeeeeseataeseaateesssaesessesseessanseeessssaeessasaseesaeseessnseeessans 11
2.3 COMPARISON OF H.264 WITH OTHER VIDEO CODING STANDARDS.......ccitouiieieiuiieeeineeeeeieeeeeeieeeeens 12
2.4 DESCRIPTION OF HL264coiieeieeeeeee ettt e e et e e e s e e e et e e e e e s enaaeessnaeeeeans

2.4.1 Network Abstraction Layer (INAL)cccoiiiiiiieiee et
2.4.2 Video Coding Layer (VCL)ooiieiieiee ettt sttt e
B W U Lo e g (=Ta o115) s WS PSR SRR
2.4.2.2 Inter Prediction...........ccceeveeerveeneecneeennen,
2.4.2.2.1 Hierarchical Three Step Search
2.4.2.2.2 Motion Vector PrediCtion.........cc.eveeieriieieniesieieeiesieeieie ettt seeesae st sbeseaesesseensesseensenneas
2.4.2.2.3 Transform and QUANTISAtIONcceiiuieirieeieeerieereectee et et e eereeeteeeereesteeeeseeeaseeeseeeseeeseeeseenns
2.4.2.2.4 Coded Block Pattern (CBP)
2.4.2.2.5 Entropy Coding........ccceeeeunenee.
2.4.2.2.6 DebloCKING FIILETciuiiiiiiiiiiiieieet ettt sttt sbe et saeene
CHAPTER 3 23
TEXAS INSTRUMENTS TMS320DM642 DSP 23
3.1 OVERVIEW OF DMO42 DSP COREcccuttiiiiiiiieniieeiieente ettt este ettt esete ettt esiteebteesanessbseenaneebaeenanesnnes 23
31,1 REISIET FIlES....uiiiiiiieiiieiiecieeeeeete ettt ettt s et e e be e b e e ssessaesaaesseessaesseenseessensaens 25
3.1.2 FUNCHONAL UNIESuviiiiiiiiii ettt eve e v e e ve e e b e e ebeeeareesaseeeabeeeasaesaseesaseenarens 25
3.1.3 Register File Pathscoouooiiiiiee ettt 25
3.1.4 Memory, Load and Store Pathscoooiiiiiiiie e 27
3.1.5 Additional Functional Unit Hardware.................coooviiioiiiiiiiieeeeeee e 28
3.1.6 DM642 Cache ATCRItECIUIEveiieeeeiieeeeiee et e et e e e eeaaeaeas 28
CHAPTER 4 31
SOFTWARE DEVELOPMENT AND DSP REALIZATION OF ENCODER 31
4.1 SOFTWARE DEVELOPMENTttiutiiiiteitienttestteeteesteesteesseessseesnseessseessseessseessseessseesseessseesnseessseesns 32
4.1.1 SOftware FIOW GIaphis..........c.cocieiierieiiieiieieeiest ettt ettt steete s esbeessessaessaessaesseensennnas 33

VIII

T R O U\, 11 SRS RP
4.1.1.2 STt SEQUETICEveueitieiterteeitet ettt ettt ettt ettt e bt e bt e it e st e eb e e bt eab et e ebt e beeab et e ebeebesasebesbeenbeeaee
T T R B O T4 (ST 1 o0 1o ¢SRS
4.1.1.4 Encode one Macroblock
4.1.1.5 Intra 4X4 MOAE DECISIONccuvevieeieieeietieiesieeiesteeeesteete bt esesteesee bt essesseesteseessensesseensesssensesnsensenses 39
4.1.1.6 Intra 16X16 MOA@ DECISIONc.veeuveiieiiiiieieieetesitete sttt et e ettt eae e eseebeesaesseesaeseensensesnsensennes 41
4.1.1.7 Motion Search
4.1.1.8 Partition MOtION SEAICH.......c..iiiiiiiiiieiiecie ettt ettt e et e et e e ta e st e e s aaeeteessaeebeessseensaesaseenseenssas
4.2 DSP REALIZATIONeeittiiteiteteite et sttenteenteeateeetesttesteenbeebeestesatesaeesaeesueenbeemteeenesesesunenbeenbeenseennesnnes
4.2.1. Design of Experimental Setup.........cecvvecvieienienieneenieeie e
4.2.1.1 TMS320DM642 Evaluation Module (EVM)........cccccvvverivennnee.
4.2.2 Code Generation using Code Composer Studio.....................
4.2.2.1 DSP/BIOS Real Time Kernel..........ccooeveeeviiecienenienieieieecnne.
4.2.2.2 Sychronized Communication (SCOM) Modulec...........
4.2.3 Testing and Verification...........ccocvevveriiecieecienieneeneene e
4.2.4 Performance Analysis and TUNINGcccoecuerierierieniieie ettt eve e srae e eseessesnnas

CHAPTER §
PERFORMANCE ANALYSIS AND OPTIMIZATION

5.1 TEST ENVIRONMENTceiittttiieeeeeeeeitttteeeeeeeeeittteeeeeeeeeaatreseeaeesasaasassesaeeeaaassraseesaeseaassssaseaeeeaannsssnnens
5.2 SOFTWARE OPTIMIZATION
5.2.1 Optimization without Algorithm/Memory Optimizations
5.2.2 Optimization with Algorithm/Memory OptimiZations...........ccceereereerrerienieneeneee e eee e
5.2.2.1 L2 Cache / Ram Partitioningccccuererieriieiienieeienieetesiesetesieeeesteseeesseesaesesseesesssessessesssessessesses
5.2.2.2 Improvements in Memory Access Pattern and Encoder Algorithm
5.2.2.2.1 Buffering MacrobloCK Data............ccuevirieriieieieiieie ettt ettt eaesteeeesseeaesseensesseensesseens
5.2.2.2.2 Improvements for Intra 4X4 PrediCtionccceeeveverienienienieeeeriesceie st see e seeens
5.2.2.2.3 Improvements for Intra 16x16 Prediction
5.2.2.2.4 Improvements for MOtion SEarch.........c..ccoeeieriiiiiiiniiiniieieseeeeseee et
5.2.2.3 Allocation of Compiler OULPUL SECLIONSeeueeriirieriiriieieiieie ettt ettt sttt e saeas
5.2.2.4 Code Optimizations........cc.cecvereeeruenveneenuenne
5.2.2.4.1 Fast Library Functions
5.2.2.4.2 Compiler Intrinsics............c..c......
5.2.2.4.3 Function Inlining...........ccccceeueenne
5.2.2.4.4 Changing Variable Types
5.2.2.5 Utilizing Compiler Options for OptimiZation...........cceecverierierieeieenierienieeiesieeeesiessessesseesseseessesses
5.2.2.5.1 File-Level Optimization (=03 OPHON) ...cccueeierierierierieiesieeiesieerte ettt sie et sbeearesaeene
5.2.2.5.2 Assuming No Bad Memory Alias Occurs (—mt option)....
5.2.2.6 Allocating Frequently Used Data in the Internal Memory.........ccccevevienienienenienenienenceieseeieaen
5.3 SUMMARY OF SOFTWARE OPTIMIZATIONccuiiiiiiiiiiiiieieiiientieie sttt st s ene s s
5.4 PSNR AND COMPRESSION RATE MEASUREMENTScocuiiiiiiiiiiniieiieiieiieiestesne st sae e s

CHAPTER 6 76
CONCLUSION AND FUTURE WORK 76

IX

LIST OF FIGURES

Figure 2.1: Coding parts of H.264 with respect to the profiles 9

Figure 2.2: The structure of a H.264 coded video sequence 14
Figure 2.3: Block diagram of H.264 encoder 15
Figure 2.4: Macroblock partitioning in inter prediction 18
Figure 2.5: Zig Zag scan order 22
Figure 3.1: TMS320C64x DSP Block Diagram 24
Figure 3.2: C64x Data Cross Paths 26
Figure 3.3: C64x Memory Load and Store Paths 27
Figure 3.4: DM642 L1/L2 Cache 29
Figure 3.5: Partitioning internal memory into L2 cache/ram 29
Figure 4.1: Flow graph of main 33
Figure 4.2: Flow graphs of start sequence 35
Figure 4.3: Flow graph code a picture 36
Figure 4.4: Flow graph of encode one macroblock 37
Figure 4.5: Flow graph of intra 4x4 mode decision 40
Figure 4.6: Flow graph of intra 16x16 mode decision 42
Figure 4.7: Flow graph of full search 44

Figure 4.8: Flow graph of partition motion search 45

Figure 4.9: A project development cycle using Code Composer Studio 46
Figure 4.10: The experimental setup 47

Figure 4.11: Block Diagram DM642 EVM 48

Figure 4.12: Project development on Code Compose Studio 49

Figure 4.13: Synchronized communication between encoder task and display task 51

Figure 4.14: Elecard stream eye’s output 52
Figure 5.1: MB Data read/write is performed on the 16x16 macroblock buffer 59
Figure 5.2: Buffers for intra 4x4 prediction 60
Figure 5.3: Buffer for intra 16x16 prediction 61

Figure 5.4: Search window array is created for motion search

Figure 5.5: Mixed Source/Assembly view of the function SATD
Figure 5.6: Original code and its transformation into library function
Figure 5.7: Original code and its transformation into library function
Figure 5.8 The array is aligned to double word boundary

Figure 5.9: Original code and its transformation by using intrinsics
Figure 5.10: Original code and its transformation by using intrinsics
Figure 5.11: The integer variables are replaced with short variables
Figure 5.12: Before software pipelining

Figure 5.13: After software pipelining

Figure 5.14: A basic vector sum function

Figure 5.15: Dependency graph of basic vector sum

Figure 5.16: Allocation of frequently accessed arrays to internal memory section

XI

62
65
66
66
66
67
67
68
70
70
70
71
72

LIST OF TABLES

Table 2.1: H.264 profiles and their application areas 8

Table 2.2: H.264 profiles with the coding parts they include 11
Table 2.3: 4x4 Luma block intra prediction modes 16
Table 2.4: 16x16 Luma block intra prediction modes 16
Table 2.5 Coding of intra 4x4 prediction modes 17
Table 2.6: Illustration of calculating cbp values for some coded blocks 21
Table 5.1 Performance of the un-optimized encoder 54
Table 5.2: Comparison of encode one macroblock with write_one macroblock 55
Table 5.3: Performance increase with software optimizations only 56

Table 5.4: Number of NOPs and CPU stalls after applying software optimizations 56
Table 5.5: Simulation results for different ram/cache partitioning 58

Table 5.6: Performance increase with algorithm/memory access improvements only 62

Table 5.7: Output sections of compiler 63
Table 5.8: Compiler Options for Higher Performance 69
Table 5.9: Total CPU cycle counts according to the performed optimization 73
Table 5.10: Compression efficieny of the encoder 75

XII

JVT
DSP

M
MPEG
ISO/IEC

AVC
VCEG
ITU-T

NAL
VCL
MB

CIF
QCIF
EDMA
UVLC
CABAC
CAVLC
RTP
UDP
IDR
PSNR
SAD
SATD
CBP
LSB
VLIW
SIMD
PCI
JTAG
/O
SCOM
CPU
CCS IDE
TI
EMIF
RBSP

ABBREVIATIONS

Joint Video Team

Digital Signal Processor

Joint Model

Motion Picture Experts Group

International Organization of Standardization, International
Electrotechnical Commission

Advanced Video Coding

Video Coding Experts Group

International Telecommunication Union, Telecommunications
Standardization Sector

Network Adaptation Layer

Video Coding Layer

Macroblock

Common Intermediate Format

Quarter Common Intermediate Format

Enhanced Direct Memory Access

Universal Variable Length Codeword

Context Based Adaptive Binary Arithmetic Coding
Context Based Adaptive Variable Length Coding
Real Time Transport Protocol

User Datagram Protocol

Instantaneous Decoding Refresh

Peak Signal to Noise Ratio

Sum of Absolute Differences

Sum of Total Absolute Differences

Coded Block Pattern

Least Significant Bit

Very Long Instruction Word

Single Instruction Multiple Data

Peripheral Communications Interface

Joint Test Access Group

Input Output

Synchronized Communication

Central Processing Unit

Code Composer Studio Integrated Development Environment
Texas Instruments

External Memory Interface

Raw Byte Sequence Payload

X1

CHAPTER 1

INTRODUCTION

The need for digital video compression is certain. An uncompressed CIF
(352x288) 4:2:0 video at 30 frames/sec requires 36.5Mbits/s, and 23.3 Gbytes to store
one 90-minute video[1]. Compression is inevitable in order to fit digital video into
affordable storages capacities and network bandwidths. H.264 is such a digital video
compression standard and is now the most popular and useful one. This emerging
standard offers major improvements and produces excellent picture quality with high
compression rates. The fact that H.264 is not backwards compatible with other coding
standards makes it a milestone in video compression technology.

H.264 provides significant improvement in digital video compression, but it also
requires much computation power. Also, implementation of digital compression
standards such as H.264 is not an easy task. The trend in implementing video and image
processing algorithms is towards using digital signal processors because DSPs are now
fast enough and they offer reprogrammable designs. The programmability feature is
especially important because it provides us with the ability to tailor video encoder for
application needs. One can make innovations in video processing by making use of
DSP’s flexibility. Moreover, software reuse enables video market to limit design costs.
Briefly, H.264 encoder and the design of H.264 especially on a programmable platform
is so valuable.

In this thesis, an implementation of H.264 Baseline Encoder on TMS320DM642
digital signal processor is presented. The proposed encoder system includes almost all
features of a standard H.264 baseline encoder and its conformance with the H.264
standard is verified by using the H.264 JM Reference Software[2]. For the motion
search, full search and hierarchical three step search algorithms are both implemented.

The performance results for QCIF video format have shown that real-time execution of

encoder with full search algorithm is possible. Therefore full search is selected for the
motion search part.

Besides the software development of H.264, software optimization is also
investigated in this thesis. Optimization techniques such as algorithm/system
optimization, refinements in memory access pattern, code optimizations and compiler
optimizations are experimented. Although the un-optimized encoder’s performance is
about 3.1 fps, it is shown that the performance can be increased to 26.7 fps for QCIF.

The work proposed in this thesis proved that the huge number of memory
accesses is the bottleneck in a video coding system. Unless the memory accesses are
optimized, it may not be possible to achieve a real time solution even other
optimizations are applied.

The proposed encoder is capable of compressing a QCIF video input into H.264
AnnexB file format. The complete encoder system is realized by using TMS320DM642
Evaluation Module(EVM)[3], a standard definition TV for displaying the reconstructed

frames and a desktop computer for storage of output bit-file.

1.1 Implementation Complexity

H.264/AVC is a new codec generation featuring an outstanding coding efficiency,
but its cost-effective realization is a big challenge. H.264/AVC leads to an average 40%
bit saving plus 1-2 PSNR gain compared to previous video coding standards. In this
way, it represents the enabling technology for the widespread diffusion of multimedia
communication over wired and wireless transmission networks such as xDSL, 3G
mobile phones and WLAN. However, this outstanding performance comes with an
implementation complexity increase of a factor of 2 for the decoder. At the encoder
side, the cost increase is larger than one order of magnitude. This represents a design
challenge for resource constrained multimedia systems such as wireless and/or wearable
devices and high-volume consumer electronics, particularly for conversational
applications (e.g., video telephony), where both the encoder and the decoder

functionalities must be integrated in the user’s terminal [4].

A single H.264/AVC configuration able to minimize algorithmic performance
while minimizing memory and computational burdens does not exist. However,
different configurations leading to several performance/cost trade-offs exist. To find
these optimal configurations, and hence to highlight the bottenecks of H.264/AVC a
good analysis is required. In this thesis, two motion search algorithms (full search and
three step hierarchical search) are implemented in order to explore the computational
complexity and performance of each. Performance results have shown that
computational burden of full search is higher than three step hierarchical search.
However, the performance of encoder with full search can be increased up to desired
value by applying software optimization techniques.

Data transfer and storage have a dominant impact on the cost-effective realization
of multimedia systems for both hardware and software-based platforms. Application
specific hardware implementations have the freedom to match the memory and
communication bus architectures to the application. An efficient hardware
implementation exploits this to reduce area and power. On the other hand,
programmable processors rely on the memory architecture that come with them.
Efficient use of these resources is crucial to obtain the required speeds as the
performance gap between the CPU and DRAM is growing every year [4].

The proposed implementation in this thesis achieves real time execution for QCIF
format. Therefore this implementation can be used in a real world application but at low
resolution applications. During this implementation at QCIF resolution, a deep
exploration of H.264 implementation is done. Therefore this exploration will help us to
implement H.264 at higher resolutions. Moreover, because of the flexibility and
programmability of dsp implementations this design may be easily adapted for higher
performance solutions. Based on this implementation, improvements to H.264 is also

possible.

1.2 Literature Survey

In the literature, there are examples of real time implementations of video coding
algorithms. In [5], optimization of a baseline H.263 encoder on TMS320C6000 is

presented. The work presented in that paper focuses on the optimization issue. They do

not write the software code but they use the University of Columbia’s (UBC) H.263
encoder software. Starting from a software code written for a desktop application they
obtain a real time implementation of H.263 encoder on TMS320C6701. They
demonstrated that memory accesses to external memory are a significant bottleneck in
the implementation of real-time embedded video systems. It is shown by simulation that
most of the time is spent in data access to external memory. Their optimizations resulted
in an overall speedup of 61 times over the un-optimized version. They performed
optimization in two steps: efficient use of on-chip data and program memory (memory
optimizations), and code optimizations of computationally intensive routines in C as
well as in assembly language. The total speedup obtained with memory optimizations
alone is about 29 times. With the code optimizations alone, a speedup of only 4 is
achieved. The affect of code optimizations without memory optimizations is low
because the effect of slow off-chip memory accesses becomes the dominant bottleneck
as the code becomes more efficient in performing computations. Combination of the
memory and code optimizations gives an improvement of 61 times. For the motion
estimation, the macroblock and the corresponding search window are copied into
internal data memory before the routine was called. In this thesis, I applied the same
approach and obtained very good performance. I also copied each macroblock and
neighboring pixels of the macroblock into internal data memory before the mode
decision, transform, quant routines are called.

The paper called “Parallelization of a H.263 Encoder for the TMS320C80 MVP”
[6] describes a real-time implementation on a multiprocessor system. Texas
Instruments” TMS320C80 MVP system contains four signal processors and one RISC-
processor. The main aspect of the work is parallelization of the encoder in order to
exploit the computational power of the multiprocessor system. They try to increase the
utilization of the processors to obtain real-time execution however their implementation
is below real-time. They concluded that assembler optimizations are necessary. Usually,
Implementation on parallel processor architecture gives better results but the
implementation becomes so difficult. Especially, the algorithm should be divided into
parts for parallel execution. Since the H.264 algorithm is a very complex one, dividing
H.264 into parallely executable parts is so difficult. Moreover, the technical paper [7]
shows that real-time realization of H.264 on TMS320DM642 digital signal processor is

possible.

There is another study related to memory optimizations called “Memory Centric
Design of an MPEG-4 Video Encoder” [8]. In this study, high-level memory
optimizations are presented. They observed that motion estimation routine repeatedly
access the same set of neighboring pixels. To reduce these accesses to frame size
memories, a memory hierarchy is introduced for the motion estimation. Heavily used
data is copied from large (frame size) to minimal intermediate memories. The solution
is more efficient as soon as the cost of extra memory transfers (due to copies) is
balanced by the advantage of using smaller memories.

The study called “Code Transformations for Data Transfer and Storage
Exploration Preprocessing in Multimedia Processors” [9] says that platform-
independent source code transformations can greatly help alleviate the data-transfer and
storage bottleneck. This article also covers code rewriting techniques to improve data
reuse. They claim that the code should expose maximal data reuse possibilities in order
to optimize data transfer and storage. This idea can be implemented in the
implementation of H.264 encoder because there is much data reuse in H.264 software.
Especially, during the prediction and filtering some pixels are used repeatedly. Instead
of accessing the same pixel from the frame memory, this pixel can be stored in a buffer.
In other words, we can create data reuse buffers for frequently accessed data. In my
H.264 implementation, I introduce buffers for intra 4x4 prediction, intra 16x16
prediction.

Finally, “Video Encoding Optimization on TMS320DM64x/C64x” summarizes
the optimization techniques for video encoders on TMS32320DM64x/C64x processors
[10]. These techniques include algorithm/system optimization, memory buffering
optimization, enhanced direct memory access (EDMA) and cache utilization
optimization. The algorithm/system optimization is performed by breaking the
algorithm into loops/modules that fits into L1P cache. In this way, they avoid the huge
cache miss penalty and CPU stalling. M macroblocks (MB strip) are processed at a time
in each loop instead of a single macroblock. Memory buffering optimization is realized
by transferring macroblock from the external memory to internal buffer. In this thesis, a
similar approach is used. The proposed encoder in this thesis introduces buffers not only
for macroblock data but also for intra prediction samples. The third optimization
technique that is experimented in this article is the EDMA usage. EDMA is preferred to
transfer code/data between L2 SRAM and off-chip memory. The last optimization

technique is improving the cache performance for video coding. With the help of TI’s

cache analysis tools, cache efficiency problem areas can be identified, visualized and
optimized.

These articles show that video coding applications includes much parallelism.
Optimization is possible with techniques such as code transformations, memory
optimizations, EDMA and optimizing compiler. Most of the studies show that the
bottleneck in video coding is the high number of memory accesses. In this thesis, I
experienced the same problem. First, I attempted to start directly with code
optimizations. However, code optimizations alone bring up to 10.4fps performance. In
order to achieve better performance, algorithmic optimizations and especially
improvements in memory access pattern is crucial. Thus, in the second attempt I started
with improvements in algorithm and created buffers to optimize memory access pattern.
After that, code optimizations and compiler optimizations gave better performance and I

achieved performance up to 26.7 fps.

1.3 Organization of the Thesis

The organization of the thesis is as follows:

Chapter 2 starts with an overview of H.264 algorithm and specific building blocks
of H.264. It also gives a comparison of H.264 with other video coding standards. The
description of the algorithm is also briefly explained in chapter 2.

Chapter 3 explains the DM642 digital signal processor core. Understanding the
architecture and features of this digital signal processor is necessary for achieving high
performance designs.

In chapter 4, the implementation details are explained. Software development
phase and software architecture is explained in this chapter. The proposed encoder is
presented with software flow graphs. The developed software is transported to DSP
environment. This process and the hardware setup for the encoder is also described
here.

Chapter 5 gives the performance results of the proposed encoder. Memory
optimizations, algorithmic transformations, code optimizations and compiler

optimizations for high performance are discussed in this chapter. The compression

efficiency of the proposed encoder with respect to the PSNR is also found in this
chapter.

Chapter 6 presents the conclusions and future work.

CHAPTER 2

H.264 OVERVIEW

In 1997, the ITU-T Video Coding Experts Group (VCEGQG) initiated the work on
the H.264 standard (formerly known as the H.26L standard). The main objective behind
the H.264 project was to develop a high-performance video coding standard by adopting
a “back to basics” approach using simple and straightforward design with well-known
building blocks. After observing the superiority of video quality offered by H.264-based
software over that achieved by the existing most optimized MPEG-4 based software,
ISO/IEC MPEG joined ITU-T VCEG by forming a Joint Video Team (JVT) that took
over the H.264 project of the ITU-T. The JVT objective was to create a single video
coding standard that would simultaneously result in a new part of the MPEG-4 standard
(MPEG-4 Part 10 Advanced Video Coding (AVC)) and a new ITU-T Recommendation
(H.264) [1]. To this date, 4 major profiles of H.264 have been released. These are
named as baseline, main, extended and high profiles. H.264 can be used in many

application areas ranging from video conferencing to digital cinema.

Table 2.1: H.264 profiles and their application areas

Profile Typical Applications

Baseline Video Conferencing and Mobile Applications
Main Digital Storage Media and Television Broadcasting
Extended Streaming and Mobile Video Applications

High Profile Studio Editing, Post Processing, Digital Cinema
(Fidelity Range Extensions)

2.1 The Specific Coding Parts of H.264

The common coding parts of H.264 profiles are listed as:

1. T slice (Intra-coded slice): The coded slice by using prediction only from
decoded samples within the same slice.

2. P slice (Predictive-coded slice): The coded slice by using inter prediction from
previously-decoded reference pictures, using at most one motion vector and reference
index to predict the sample values of each block.

3. Context-based Adaptive Variable Length Coding (CAVLC) for entropy

coding.

The baseline profile consists of these common coding parts plus some others. The

complete list of coding parts for baseline profile and their explanations are:

1. Common Parts: I slice, P slice, CAVLC

2. FMO (Flexible macroblock order): Macroblocks may not necessarily be in the
raster scan order. The map assigns macroblocks to a slice group.

3. ASO (Arbitrary Slice Order): The macroblock address of the first macroblock
of a slice of a picture may be smaller than the macroblock address of the first
macroblocks some other preceding slice of the same coded picture.

4. RS (Redundant Slice): This slice belongs to the redundant coded data obtained

by same or different coding rate, in comparison with previous coded data of same slice.

Error
Resilience
Suppart

Main Profile High Prafile

fm e — = Adaptive transform
Extended Profile i (4x4) or (BxE)

- T~

o HY'S weighting matrices

s .
s Data Partitioning B slice ~.

. residual color transfarm
Weighted prediction™,
e —— A

| slice

Sl slice predictive lossless coding

! SP slice

Arbitrary slice order

\ Flexihle macroblock arder ,' Error Resilience Tools

Redundant slice

Figure 2.1: Coding parts of H.264 with respect to the profiles.[1]

If a comparison between the profiles is done, baseline is the simplest one. The
main profile allows an additional reduction in bandwidth over the Baseline profile
through mainly Bi-directional prediction (B-pictures), Context Adaptive Binary
Arithmetic Coding (CABAC) and weighted prediction.

B-pictures provide a compression advantage as compared to P-pictures by
allowing a larger number of prediction modes for each macroblock. Specifically, bi-
predictive coding modes are available for each partition of the macroblock. Here, the
partition is formed by averaging the sample values in two reference blocks, generally,
but not necessarily using one reference block that is forward in time and one that is
backward in time with respect to the current picture. In addition, “Direct Mode”
prediction is supported, in which the motion vectors for the macroblock are interpolated
based on the motion vectors used for coding the co-located macroblock in a nearby
reference frame. Thus, no motion information is transmitted. By allowing so many
prediction modes, the prediction accuracy is improved, often reducing the bit rate by 5-
10%.

Weighted Prediction allows the modification of motion compensated sample
intensities using a global multiplier and a global offset. The multiplier and offset may be
explicitly send, or implicitly inferred. The use of the multiplier and the offset aims at
reducing the prediction residuals due, for example, to global changes in brightness, and
consequently, leads to enhanced coding efficiency for sequences with fades, lighting
changes, and other special effects.

Context Adaptive Binary Arithmetic Coding (CABAC) makes use of a probability
model at both the encoder and decoder for all the syntax elements (transform
coefficients, motion vectors, etc.). To increase the coding efficiency of arithmetic
coding, the underlying probability model is adapted to the changing statistics within a
video frame, though a process called context modeling.

The context modeling provides estimates of conditional probabilities of the coding
symbols. Utilizing suitable context models, given inter-symbol redundancy can be
exploited by switching between different probability models according to already coded
symbols in the neighborhood of the current symbol to encode. The context modeling is
responsible for most of CABAC’s 10% savings in bit rate over the Baseline entropy
coding method (universal and context adaptive VLC) [1].

The coding parts according to the profiles can be summarized as in table 2.2. The

baseline encoder proposed in this thesis includes all coding parts except error resiliency

10

tools and quarter-pel motion compensation. Quarter-pel motion compensation is

replaced with integer-pel. In the future, quarter-pel support will be added.

Table 2.2: H.264 profiles with the coding parts they include.

Main Extended High Baseline | Proposed

Baseline
Encoder

I Slices X X X X X

P Slices X X X X X

Deblocking Filter X X X X X

Variable Block Size X X X X X

Y4 Pel Motion Compensation X X X X

CAVLC/UVLC X X X X X

Error Resilience Tools X X

(Flexible MB Order, ASO,

Redundant Slices)

SP/SI Slices X X

B Slice X X X

Interlaced Coding X X X

CABAC X

Data Partitioning X

Weighted Prediction X X

2.2 Encoder Complexity

The H.264 standard is significantly more complex than any of the previous coding
standards [23]. Motion estimation, for instance, makes use of 7 block sizes from 16x16
to 4x4. Consequently, the H.264 encoder is expected to be significantly more
demanding in terms of computations and memory requirements. Moreover, the
development of an embedded encoder/decoder where the internal memory size is
limited is a challenging task. [10]

According to [7], in order to implement an H.264 Main profile encoder, multiple
DSP encoder architectures needed due to the high complexity. But designing a multiple
DSP encoder is not an easy task. Multiple processor architecture brings a couple of
problems such as the partitioning of the encoder. Partitioning may also have impact on
the quality of the encoder. Another issue to be considered in a multiple DSP design is

the handling of inter-DSP communication [7].

11

To summarize, the high complexity of the H.264 video coding standard makes it
difficult to implement but provides us with the video quality at low bit rates especially

when compared with previous compression standards.

2.3 Comparison of H.264 With Other Video Coding Standards

H.264 is not backward compatible with previous standards. The new compession
techniques used in H.264 bring great compression efficiency to it. H.264 offers up to 2x
compression compared with MPEG-4 simple profile.

An important concept of H.264 is the separation of the system into two layers: a
video coding layer (VCL), providing the high-compressed representation of data, and a
network abstraction layer(NAL), packaging the coded data in an appropriate manner
based on the characteristics of the transmission network [4]. H.264 gives superior error
resilience due to VCL and NAL layer enhancements and error resiliency tools. VCL
enables efficient transmission of video data on network by representing video content in
integer number of byte units. H.264 is very adaptive to different applications from
digital TV to video conferencing. It may operate with low delay constraints for real-
time applications or higher delay constraints for applications which require more
processing power, such as video content storage

The introduction of the switching mechanism enables fast random access for
video decoders. SP and SI frames may be used for switching from low bit rate to high
bit rate in the same video stream according to the available bandwidth.

The basic building blocks of the H.264 encoder are similar with the previous
standards’. The transform, quantization, motion estimation, motion compensation and
entropy coding are found on almost all video coding standards. However, there are
major improvements done inside these basic building blocks. For instance, H.264 uses
16x16 or 4x4 block sizes in the intra coding part. Another improvement in H.264 is the
addition of new intra prediction modes. For the inter prediction, there are 7 block types
changing from 16x16 to 4x4. Moreover, luma motion vectors have quarter pel
resolution whereas chrominance vectors have 1/8 pixel. This results in increased

precision of motion vectors. Context Adaptive Variable Length Coding (CAVLC) and

12

Context Based Adaptive Arithmetic Coding (CABAC) are also new. Lastly, in H.264

loop filter is introduced to reduce the blocking artifacts.

2.4 Description of H.264

H.264 has a layered structure. It has two different layers one of which is Network
Abstraction Layer (NAL) and the other is Video Coding Layer (VCL). The NAL layer
abstracts the VCL data. It includes the header information about the VCL format. NAL
is appropriate for conveyance by the transport layers or store media. NAL unit (NALU)
is a generic format which is used in both packet based and bit-streaming systems.
Second layer which is VCL is the core coding layer. VCL concentrates on attaining

maximum coding efficiency rather than the transportation.[21]

2.4.1 Network Abstraction Layer (NAL)

A coded H.264 video sequence consists of a series of Network Abstraction Units
(NALUs), each containing an RBSP (Raw Byte Sequence Payload). An example of a
typical sequence of RBSP units is shown in figure 2.2. Each of these units is transmitted
in a separate NAL unit. The header of the NAL unit (one byte) signals the type of RBSP
unit and the RBSP data makes up the rest of the NAL unit.

H.264 introduces the concept of parameter sets which contain information that can
be applied to a large number of coded pictures. A sequence parameter set contains
parameters which are applied to a complete video sequence. Similarly, a picture
parameter set contains parameters which are applied to one or more decoded pictures
within a sequence.

Parameters in the Sequence Parameter Set include an identifier, limits on frame
numbers and picture order count, the number of reference frames that may be used in
decoding, the decoded picture height and width and the choice of progressive or

interlaced (frame or field) coding.

13

MAL Symtax MAL Synax MAL Symax

Element Elernent Elernent
| | tAL Uni BREEAE | HAL Uit |
5PS - FBSP FPS - EBSP Shice Laver BBSE
L L | L] |
WAL Unit MAL rat MAL Unit \
Header Header Header
| Shice Header | Slice Data |
| ME|ME | MB| MB | p |
| | Residualdata | \ :
Sub macroblock | | Resirhual data |
prediction IvTacrohlock
prediction

Figure 2.2: The structure of a H.264 coded video sequence.

Each Picture Parameter Set includes an identifier, a selected sequence parameter
set id, a flag to select VLC or CABAC entropy coding mode, the of slice groups in use,
the number of reference pictures in list0 and list] that may be used for prediction, initial
quantizer parameters and a flag indicating whether the default deblocking filter
parameters are to be modified.

In a typical application, coded video is required to be transmitted or stored
together with associated audio tracks and side information. It is possible to use a range
of transport mechanisms to achieve this, such as Real Time Protocol and User Datagram
Protocol (RTP/UDP).

Earlier video coding standards such as MPEG-1, MPEG-2 and H.263 did not
explicitly define a format for storing compressed audiovisual data in a file. The MPEG-
4 file format and AVC File Format are designed to store MPEG-4 Audio Visual and
H.264 Video data respectively. Both formats are derived from the ISO Base Media File
Format, which in turn is based on Apple Computer’s Quick Time Format. In my
implementation, the encoder produces an output bitstream in Annex B byte stream file

format which is described in the ITU-T H.264 Recommendation [11].

14

2.4.2 Video Coding Layer (VCL)

Basically, the coding of a macroblock is obtained with the flow shown in the

figure 2.3.

Current) _)_'
input (== T | = Q |y Reorder 7| Entropy |, u;
frame decoder

ME
multiblock size
multiframe

P
l Motion vectors

reference

frame _MC) Inter
buffer multiblock size e
1 frame back multiframe

Choose intra mode /
& —

intra prediction Intra

Deblocking o~
2 e -1 -1 e
filter ~ T Q

Figure 2.3: Block diagram of H.264 encoder

2.4.2.1 Intra Prediction

Intra prediction process exploits the spatial redundancy between adjacent
macroblocks in a frame. Intra predicted frames usually have better PSNR than inter
coded frames; however they require much more bits to encode and decrease
compression rate. Therefore less number of frames of a video sequence is coded in intra
that in inter. During the encoding process, propagation errors occur due to the
successive inter-coded pictures. At that time, an intra-coded picture should be inserted
in order to reduce the propagation of errors to the next predictions. Subsequent inter
prediction is done based on this new intra picture. In other words, this intra-coded
picture refreshes the prediction and is therefore called Instantaneous Decoding Refresh
(IDR) picture. In my implementation, the IDR period can be determined by a parameter
inside the software. During the tests it is fixed at 20; meaning that every one frame out

of 20 is intra-coded.

15

The inputs of intra prediction process are previously reconstructed samples prior
to the deblocking filter process from neighboring macroblocks. A prediction block is
formed in this process and it is subtracted from the current block before encoding. For
the luma samples, prediction is formed for each 4x4 block or for a 16x16 macroblock.

The intra_4x4 mode is based on predicting each 4x4 luma block separately and is
well suited for coding parts of a picture with significant detail. The intra_16x16 mode
on the other hand, performs prediction of the whole 16x16 luma block and is more
suited for coding very smooth areas of a picture.

There are a total of nine optional prediction modes for intra 4x4 luma block, four

modes for intra_16x16 luma block.

Table 2.3: 4x4 Luma block intra prediction modes

Mode 0 : Vertical The upper samples are extrapolated vertically
Mode 1 : Horizontal The left samples are extrapolated horizontally
Mode 2: DC All samples are predicted by the mean of A, B, C, D, I, J, K, L

Mode 3 : Diagonal Down Left The samples are interpolated at a 45° angle between lower left and upper
samples.

Mode 4 : Diagonal Down Right | The samples are extrapolated at a 45° angle down and to the right.

Mode 5 : Vertical Right Extrapolation at an angle of approximately 26.6° to the left of vertical.

Mode 6 : Horizontal Down Extrapolation at an angle of approximately 26.6° below horizontal.

Mode 7 : Vertical Left Extrapolation (or intrapolation) at an angle of approximately 26.6° to the right of
vertical.

Mode 8 : Horizontal Up Interpolation at an angle of approximately 26.6° above horizontal

Table 2.4: 16x16 Luma block intra prediction modes

Mode 0 : Vertical The upper samples are extrapolated vertically.
Mode 1 : Horizontal The left samples are extrapolated horizontally.
Mode 2 : DC All samples are predicted by the mean of A, B, C, D, |, J, K, L.

A linear ‘plane’ function is fitted to the upper and left-hand samples. This

Mode 3 : Planar . . .
works well in smoothly varying luminance.

The four prediction modes of 8x8 intra chroma blocks are similar to the 16x16

luma block prediction modes, but only the numbering of the modes is different.(Mode

16

0: DC, Mode 1 : Horizontal, Mode 2 : Vertical, Mode 3 : Plane. Also it is noticeable
that both chroma components always use the same prediction mode.

In order to reduce the number of bits that comes from coding the choice of intra
prediction modes for each 4x4 blocks, a predictive coding mechanism is developed.
This mechanism exploits the correlation between intra 4x4 modes of neighboring
blocks. It takes the prediction modes of previously coded 4x4 blocks and finds a “most
probable mode” for the current block. If the current block’s mode is same as the “most
probable mode”, then the encoder send a flag with a value of 1 instead of sending the
prediction mode. Oppositely, if current block’s mode is different from “most probable
mode” then the flag is sent with a value of 0. The prediction mode is also sent but with

the following change:

— If the current mode is smaller than “most probable mode” it is sent without
any change.
— If the current mode is larger than “most probable mode” it is sent after being

decreased by one.

Table 2.5 Coding of intra 4x4 prediction modes

(most probable mode=2)

Current mode Description Code

Flag and mode is coded. Mode value is sent directly without any

! change (i.e. 1 is sent) 0-001

2 Only flag is coded since this mode is equal to the most probable 1
mode.

3 Flag and mode information is coded. Mode value is sent after being 0-010

decreased by 1 (i.e. 2 is sent)

2.4.2.2 Inter Prediction

Inter Prediction process exploits temporal redundancies in the video stream. In
other words, it uses the similarity between successive frames for the compression. Inter
prediction creates a prediction model from one or more previously encoded video

frames of fields at variable block sizes. H.264 supports a range of block sizes from

17

16x16 down to 4x4 and fine 1/4 sample motion vectors for luma as well as 1/8 sample
motion vectors for chroma component. Using multiple reference frames in inter
prediction results in better compression efficiency. In the proposed encoder
implementation only one reference frame is used but the design can be easily adapted to
support multiple number of reference frames.

A macroblock can be partitioned into 16x8, 8x16, 8x8 blocks or remain as 16x16.
If it is partitioned into 8x8 blocks, then these 8x8 blocks can be further partitioned into
sub-blocks of 8x4, 4x8, 4x4 or remain as 8x8. A macroblock partition can not be mixed
with sub-macroblock partition. That is to say, wen cannot have 16x8 and 4x8 partitions

inside a macroblock.

16 16 8 8 8 8
MB 8 0 g| o 1
Partition 16 0 16 0 1
8 1 B 2 3
8 8 4 4 4 4
T 4 0 4 0 1
u -
Partition L 8 g L
4 1 4 2 3

Figure 2.4: Macroblock partitioning in inter prediction.

The macroblock partitions and sub-macroblock partitions gives rise to a large
number of possible combinations within each macroblock. In an ideal encoder, a large
partition size should be selected for a homogeneous area whereas a small partition size
should be selected for a detailed area. Moreover, choosing a small partition size may
give better prediction but it results in increased number of motion vectors and reference
indexes since each block has its own vector and reference frame. Thus, small
partitioning does not only brings better prediction but also larger number of bits.
Finding the optimal partition size is one of the challenging tasks in an encoder.

A chroma motion vector is derived from the corresponding luma motion vector.
Since the accuracy of luma motion vectors is one-quarter sample and chroma has half
resolution compared to luma, the accuracy of chroma motion vectors is one-eight
sample. That is, a value of 1 for the chroma motion vector refers to one-eight sample

displacement. When the luma vector applies to 8x16 luma samples, the corresponding

18

chroma vector applies to 4x8 chroma samples and when the luma vector applies to 4x4
luma samples, the corresponding chroma vector applies to 2x2 chroma samples. The
horizontal and vertical components of each luma motion vector are halved when applied
to the chroma blocks.

The encoder developed in this thesis does not support quarter-pel motion
compensation. Instead, it is based on integer motion search and compensation. In order
to make the output bitstream decodable by the JM reference decoder[2], the resultant
motion vectors are multiplied by 4. In this way, the JM reference decoder[2] uses pixel
locations whose indexes are multiples of 4 (i.e. integer pixel locations) during the
motion compensation. The same is true for chroma motion compensation. In the near

future, I will make it to support quarter pel motion compensation.

2.4.2.2.1 Hierarchical Three Step Search

There are several motion search algorithms used for video compression. Among
these, the full search algorithm gives best PSNR but it is not an efficient solution since
it requires much computation. For real world implementations much intelligent
algorithms with lower computation requirements are desired. Hierarchical three step
search is such an algorithm which decreases the number of computations by 10
compared with full search [12].

According to hierarchical search, the search is done in three steps:

1-) Level2: At the first step, current frame and reference frame are averaged and
down-sampled by 4 and a full search with a search range of 4 is performed. For this full
search, we only use SAD of the current and reference blocks.

2-) Levell: The resultant vectors from level2 are passed to this step. The current
frame and reference frame are now averaged and down sampled by 2 and again a full
search with a search range of 4 is performed at the location shown by the vectors passed
from level2. For this full search, we only use SAD of the current and reference blocks.

3-) LevelO: At this final step, a final full search with a range of 4 is performed on
the original current and reference frames. However, for this search we do not only use
the SAD values but also A*R. More specifically, a cost is calculated for each search

mode and macroblock partition or sub-macroblock partition.

19

cost =SAD+ A e R{mv_ cand —mv_ pred}
The R function in the cost formula returns us the number of bits required to
transmit a vector with the given value. mv_cand is the candidate vector for that search

location and mv_pred is the vector predicted using motion vector prediction.

2.4.2.2.2 Motion Vector Prediction

Luminance motion vectors of neighboring blocks are highly correlated, so that
each motion vector is predicted from early previously coded blocks. After finding a
prediction vector, the difference between the current vector and the predicted vector is
transmitted to the decoder. In other words, not the original vector but its difference from
the prediction vector is coded in order to reduce the number of transmitted bits. At the
decoder side, the predicted vector is formed in the same way and added to the

transmitted motion vector difference in order to find current vector.

2.4.2.2.3 Transform and Quantisation

H.264 uses three transforms depending on the type of the data to be coded.

1. Hadamard transform for the 4x4 array of luma DC coefficients in macroblocks
with type intra 16x16.

2. Hadamard transform for the 2x2 array of chroma DC coefficients.

3. DCT based transform for all other 4x4 blocks in the residual data.

The transformation matrixes and other detailed information about transform and

quantization process can be found in [11].

2.4.2.2.4 Coded Block Pattern (CBP)

Coded block pattern is a parameter sent by the encoder to the decoder. It specifies
which 8x8 blocks in a macroblock are coded and which are not. According to the
coefficients coming out of transform and quant, 8x8 blocks which do not contain any

non-zero 4x4 blocks are determined and not coded. CBP is a value that tells the decoder

20

how many and which blocks are coded and transmitted. This information is hidden in
the binary equivalent of cbp value. The least significant bit of cbp represents the zeroth
8x8 luma block. If that block is coded than LSB is 1, else it is 0. Likewise, the next
three bits corresponds to other three 8x8 blocks. For instance, if all 8x8 luma blocks are
coded the least significant four bits of cbp is 1111. If second 8x8 luma block is not
coded then the least significant four bits of cbp is 1011. The leading 2 bits of cbp are for
chroma DC and chroma AC blocks. If only chroma DC is found in the bitstream then
leading 2 bits is 01; if both are found it is 10 and it is 00 when neither chroma DC nor
chroma AC is found. Some of the possible values of cbp and its explanation are given in

Table 2.6.

Table 2.6: Illustration of calculating cbp values for some coded blocks.

CBP Value (binary equivalent) | Coded Blocks
47 (101111) é}lllrgllllgaA 8Cx8 Blocks + Chroma DC +
43 (101011) Octllllr,olnsl‘z 3Arg Luma 8x8 Blocks + Chroma DC +
31 (011111) All Luma 8x8 Blocks + Chroma DC
15 (001111) All Luma 8x8 Blocks
7 (000111) Oth, 1st, 2nd Luma 8x8 Blocks

2.4.2.2.5 Entropy Coding

Entropy coding aims at compressing the generated bitstream so that fewer bits are
used for coding. It is uniquely decodable or in other words does not provide any error.
The generated syntax elements and residual data are entropy coded. Context Adaptive
Variable Length Coding (CAVLC) and Context Adaptive Binary Arithmetic Coding
(CABAC) are two entropy coding methods of H.264. In the proposed baseline H.264
encoder CAVLC is developed. Context Adaptive Variable Length Coding (CAVLC) is
found in all profiles whereas Context Based Adaptive Binary Arithmetic Coding
(CABAC) is found in main profile. Other details about entropy coding are listed as

follows:

21

All syntax elements other than residual transform coefficients are encoded by the
Exp-Golomb code (UVLC)

Zig-zag ordered, 4x4 (and 2x2) blocks of transform coefficients are encoded by
CAVLC.

Coefficients of residual data are scanned in zig-zag order.

m‘—l\d

/
e
S

NRY
NN

9 —» 10

Figure 2.5: Zig Zag scan order.

2.4.2.2.6 Deblocking Filter

This adaptive filter is designed to reduce the blocking artifacts in the block
boundary and prevent propagation of accumulated coded noise. Filtering is applied to
horizontal or vertical edges of 4x4 blocks in a macroblock adaptively. The filter
smoothens block edges, improving the appearance of decoded frames. The filtered
image is then used for motion-compensated prediction of future frames. The inter
prediction for a P-Slice following an I-Slice is carried out using the filtered version of
the I-Slice. However, the intra prediction inside the I-Slice is done using the previously
reconstructed but unfiltered macroblocks.

The inclusion of deblocking filter before motion compensated predition stage is
beneficial in terms of compression efficiency. Because the filtered image is much more
resembles the original image than a blocky, unfiltered image.

The main principle of this filter is that it adjusts the amount of filtering adaptively
according to the coding modes of neighbouring blocks and the gradient of image

samples across the boundary. More detail about deblocking filter can be found in [11].

22

CHAPTER 3

TEXAS INSTRUMENTS TMS320DM642 DSP

Programmable digital signal processors (DSPs) are increasingly important in a
wide range of video and imaging applications, such as machine vision, medical
imaging, security monitoring, digital cameras and printers, and a large number of
consumer applications driven by digital video processing including DVDs, digital TV,
video telephony and many others. The importance of multimedia technology, services
and applications is widely recognized by microprocessor designers. The number of
special-purpose multimedia processors such as the Trimedia processor from Philips,
Mitsubishi’s multimedia processor and digital media processors of Texas Instruments
are becoming more popular. These special purpose multimedia processors are being
used in low-cost embedded applications such as set-top boxes, wireless terminals,
digital TVs, DVDs and mobile applications.

Multimedia applications are characterized by requirements for processing
flexibility, sophisticated algorithms and high data rates. One of the processor
architectures to exploit parallelism of multimedia applications is the very long
instruction word (VLIW) architecture. VLIW processors can exploit instruction level
parallelism (ILP) in programs [13]. TMS320DM642 device is based on VLIW

architecture and it seems to be a perfect choice for H.264 encoder implementation.

3.1 Overview of DM642 DSP Core

The TMS320DM642 device is based on the high-performance, very-long-
instruction-word (VLIW) architecture VelociTI.2 [14] developed by Texas Instruments.

The key features of this device such as VLIW architecture, 2-level memory/cache

23

hierarchy, and EDMA engine makes it an excellent choice for computationally intensive

video/image applications such as video coding and analysis.

P L1P N i
" controller " L1F cache direct mapped
External +
a—s] METEY ! CPU core
nierface
[EMIF) Instructicn fetch Control registers
Instructicn dispatch ;
— e Inztruction decad In-gircuit emulation |5
- e Enhanced Sa n=truction decode 8
. N i DMA | 23 Data path 1 Chata path 2 &
Feripherals £3 e = e
—. controller oyt | A register file | | B register file | 3
(EDMA) E
-~ - £ - . - - £ -
L 4 L L | ¥ - L -
[L1][st|mi|p1|{p2|me]|s2]Le]
F 3 F
L ¥
4 - L1D ep| LID cache
controller 2-way set
Fower down logic | | Timers | SssonEIve

Figure 3.1: TMS320C64x DSP Block Diagram [14].

DM642 DSP core and essential features are listed as follows:

— The VelociTI.2 extensions in the eight functional units of DM642 include new
instructions which accelerate performance in video and imaging applications.

— Two general-purpose register files (A and B)

— Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1 and .D2)

— Two load-from-memory data paths (LD1 and LD2)

— Two store-to-memory data paths (ST1 and ST2)

— Two data address paths (DA1 and DA2)

— Two register file data cross paths (1X and 2X)

— It has a 16Kbytes direct mapped L1P program cache with 32-byte cache line
(8-cycle L1P cache miss penalty). The L1D cache is 16Kbytes 2-way set-
associative and has a 64-byte cache line. (6-cycle L1D cache miss penalty).

— 256Kbytes of internal memory can be mapped either RAM or cache (flexible
RAM/cache allocation, 8-cycle L2 cache miss penalty). L2 4-way set

associative cache has 128 byte cache line.

24

3.1.1 Register Files

There are two general purpose register files (A and B) in the C6000 data paths.
For the C64x each of these files contains 32 32-bit registers (A0-A31 for file A and BO-
B31 for file B). The general-purpose registers can be used for data; data address
pointers, or condition registers. On the C64x, registers A0, Al, A2, BO, B1 and B2 can
be used as condition registers. In all C6000 devices, registers A4-A7 and B4-B7 can be
used for circular addressing.

The Co64x register file supports data ranging in size from packed 8-bit data,
packed 16-bit data, through 40-bit fixed point, 64-bit fixed point and 64-bit floating
point data. Values larger than 32 bits, such as 40-bit long and 64-bit long quantities, are
stored in register pairs, with the 32LSBs of data placed in an even-numbered register
and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-
numbered register). Packed data types store either four 8-bit values or two 16-bit values

in a single 32-bit register or four 16-bit values in a 64-bit register pair.

3.1.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups
of four; each functional unit in one data path s almost identical to the corresponding unit
in the other data path. The C64x contain many 8-bit and 16-bit instructions to support

video and imaging applications.

3.1.3 Register File Paths

Each functional unit reads directly from and writes directly to the register file
within its own data path. That is, the .L1, .S1, .D1 and .M1 units write to register file A,
and the .L.2, .S2, .D2 and .M2 units write to the register file B.

Most data lines in the CPU support 32-bit operands, and some supporting long
(40-bit) and double word (64-bit) operands. Each functional unit has its own 32-bit

25

write port into a general-purpose register file. Each functional unit has two 32-bit read
ports for source operands srcl and src2. Four units (.L1, .L2, .S1 and .S2) have an extra
8-bit wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads.
Because each unit has its own 32-bit write port, all eight units can be used in parallel
with every cycle when performing 32 bit operations. Since each C64x multiplier can
return up to a 64-bit result, an extra write port has been added from the multipliers to
the register file.

The register files are also connected to the opposite-side register file’s functional
units via the 1X and 2X cross paths. These cross paths allow functional units from one
data path to access a 32-bit operand from the opposite side’s register file. The 1X cross
path allows functional units from data path A to read its source from register file B.
Similarly, the 2X cross path allows functional units from data path B to read its source
from register file A.

C84x data crose pathe

Regster Al-231 EKJ |_m Register BO-831 |
L [i 3

NIBIREIRRIRESNIINIE J

;%—'; L& J—IJ %—H 11 11
i 1] | ! ! ! I I
51 &2 D 351 52 I:IS‘I 52 I:I-S1 52 52 3D 52 51 D &2 5 D o 82 51

51 M1 D1 D2 M2 52 L2

DAl DAZ

(address] {addness)

Figure 3.2: C64x Data Cross Paths [14]

On the C64x, all eight of the functional units have access to the register file on the
opposite side via a cross path. The .M1, .M2, .S1, .S2, .D1 and .D2 units’ src2 inputs are
selectable between the cross path and the register file found on the same side. In the
case of the .LL1 and .L.2, both srcl and src2 inputs are also selectable between the cross
path and the same-side register file.

The C64x pipelines data cross path accesses allow multiple units per side to read
the same cross-path source simultaneously. The cross path operand for one side may be

used by up to two functional units on that side in an execute packet.

26

3.1.4 Memory, Load and Store Paths

The data address paths named DA1 and DA2 are each connected to the .D units in
both data paths. Load/Store instructions can use an address register from one register

file while loading to or storing from the other register file.

Register AD-A%1 || ister BO-B31 |
ix | 2%
B1 52 D DOLEL oLo&1 82| [ouoet 82| |{ost1 &2 52 51 o|| |82 51 oL o| |52 51 o ous ELOLD B2 5t
L1 51 M1 D1 D2 M2 52 L2
Lots — | % 5T LOia LOZa ETib 4+ | '— Loon
(hoad data) [siore daty) lcad daly (load cata) Czhore daly | load data)
3IMESD N ERQIH 32 LESs IILSEs 32 MSEsS d 32 MEBE
ET1a o ETZa
oA1 DAZ
isiore data) i 2 i = (store datal
3 LB aadne: address) 37 _5Es

Figure 3.3: C64x Memory Load and Store Paths [14]

The C64x device supports double-word loads and stores. There are four 32-bit
paths for loading data for memory to the register file. For side A, LD1a is the load path
for the 32 LSBs; LDI1b is the load path for the 32 MSBs. There are also four 32-bit
paths for storing register values to memory from each register file. ST1a is the write
path for the 32 LSBs on side A; ST1b is the write path for the 32MSBs for side A. For
side B, ST2a is the write path for the 32 LSBs and ST2b is the write path for the 32
MSBs. Wide loads are essential in sustaining processing throughput.

The C64x device can also access words and double words at any byte boundary
using non-aligned loads and stores. As a result, word and double-word data does not
always need alignment to 32-bit or 64-bit boundaries. This feature is particularly useful
in motion estimation and video filtering operations, where one may need access to data
from any arbitrary byte boundary in memory. Non-aligned loads and stores combined
with the pack and unpack instructions mean that the compiler does not have to format
the data to take advantage of the 8-bit and 16-bit hardware extensions. Without these
operations, significant effort would be needed to leverage the parallelism. C64x

provides a complete set of data flow operations to sustain the maximum performance

27

improvement made possible by the 8-bit and 16-bit extensions added to the C6000

architecture.

3.1.5 Additional Functional Unit Hardware

Additional hardware has been built into the eight functional units of the C64x.
Each .M unit can perform two 16x16 bit multiplies or four 8x8 bit multiplies every
clock cycle. Also, the .D units can access words and double words on any byte
boundary by using load and store instructions.

In addition, the .L units can perform byte shifts and the .M units can perform bi-
directional variable shifts in addition to the .S unit’s ability to do shifts. The .L units can
perform quad 8-bit subtracts with absolute value. This absolute difference instruction
greatly aids motion estimation algorithms.

It is important to note that the C64x provides a comprehensive set of data packing
and unpacking operations to allow sustained high performance for the quad 8-bit and
dual 16-bit hardware extensions. Unpack instructions prepare 8-bit data for parallel 16-
bit operations. Pack instructions return parallel results to output precision including

saturation support.

3.1.6 DM642 Cache Architecture

On DM642 devices, the CPU interfaces directly to dedicated level-one program
(L1P) and data (L1D) caches of 16Kbytes each. These caches operate at the full speed
of CPU access. A second level unified L2 program/data memory provides flexible
storage. Figure 3.5 depicts an example for different configurations of L2 cache with a
size of 256Kbytes. One configuration for L2 is entirely mapped SRAM. The other
configurations have both SRAM and a 4-way set associative cache of various sizes.
Mapped SRAM can be used for streaming video data and critical sections of code such
as interrupt service routines. Cache is useful for most of the program and data

structures.

28

L1 Cache

Figure 3.4: DM642 L1/L2 Cache [14].

224 Kiryles 152 Kbytes

Mapped Mapped
RAM RAM
i
Cacha
88 kryinm

A Wy
Cache
B4 Khytan

Figure 3.5: Partitioning internal memory into L2 cache/ram

The C64xx family of DSPs has a large byte addressable address space. Program
code and data can be placed anywhere in the unified address space. Addresses are
always 32-bits wide. Portions of internal memory can be remapped in software as L2
cache rather than fixed RAM.

There are two methods for transferring data from one part of the memory to
another, these methods are:

1. Byusing CPU
2. Byusing DMA

If a DMA is used then the CPU only needs to configure the DMA. While the
transfer is taking place, the CPU is free to perform other operations. The EDMA
controller handles all data transfers between the level-two (L2) cache/memory
controller and the device peripherals on the DM642 DSP. These data transfers include
cache servicing, user-programmed data transfers, and host accesses.

The EDMA provides us with the ability to transfer data with zero overhead. It is
clear that the EDMA and CPU operations can be independent. However, if the CPU and
EDMA both try to access the same memory location, arbitration will be performed by
the program memory controller. We should also take into account that the following

conditions may limit the performance:

29

1. EDMA stalls when there are multiple transfer requests on the same priority
level.
2. EDMA accesses to L2 SRAM with lower priority than the CPU.

Some basic concepts concerning memory/cache hierarchy and EDMA engine
need to be considered for an algorithm implementation. When code size is bigger than
the size of L1P, L1P cache misses can occur, CPU stalls until the required code is
fetched. Similarly, L1D cache misses and CPU stalls occur when the data do not fit in
the L1D. All L1P and L1D misses are serviced by L2 cache/SRAM. L2 cache misses
occur if the code and data size is bigger than the size of L2 cache. Cache friendly
program partitioning and data transfer handling (e.g. reducing L1/L2 misses) are two
critical factors to guarantee video encoder optimal performance [10].

To sum up, the DM642 digital signal processor addresses the needs of video and
imaging application developers. DM642 is based on the C64x CPU which includes
special instructions to accelerate the performance of video and imaging processing.
Also, the RISC-like instruction set and extensive use of pipelining in C64x allow many
instructions to be scheduled and executed in parallel. A high performance two-level
cache design allows the CPU to operate at the maximum rate. There are a number of
available C intrinsic functions that can be used to increase the efficiency of the code.

Finally, the existence of EDMA provides us to transfer data with zero overhead.

30

CHAPTER 4

SOFTWARE DEVELOPMENT AND DSP REALIZATION OF ENCODER

The design flow of complex multimedia systems such as video codecs typically
starts with an algorithmic development. Algorithmic development focuses on
algorithmic performance (peak signal-to-noise ratio (PSNR), visual appearance, and bit
rate). The algorithmic specification is typically released as a paper description plus a
software verification mode (as the H.264 JM Reference software [2]). Usually, the
software model is not optimized for a cost-effective realization since its scope is mainly
a functional algorithmic verification and the target platform is unknown. Moreover, in
the case of multimedia standards such as ITU-T and ISO/IEC video codecs, the
verification software models (up to 100.000 C-code lines) are written in different code
styles since they are the results of combined effort of multiple teams. Therefore it is a
must to rewrite the software code in order to realize an actual system [4].

At first, I started with analyzing the JM Reference Software [2]. Because the M
Software is not written for a real application purpose, its performance is very poor.
Even at the desktop computer its performance is low as 0.5 frames per second. The
source code is very huge and memory consuming so that it is almost impossible to run it
on an embedded processor. But JM software is very useful for studying the details of
H.264 algorithm. It is also very practical for the test and verification of a new developed
encoder. At many times, I referred to the JM software in order to extract the algorithm. I
also solved many bugs in my encoder software thanks to the JM reference software. In
the end, I obtained an encoder which is fully conformant with the JM. I observed this by
comparing the reconstructed frames of my encoder with the ones of the JM decoder
which is decoding the bit-stream formed by my encoder. I checked that these frames are

perfectly matched.

31

Most of the software is coded by me, but I also copied some parts of the JM. For
instance, the deblocking filter and boundary strength calculation functions are taken

from JM.

4.1 Software Development

All the source files are written in C programming language. The complete
software development process can be divided into two phases. In the first phase, the
encoder software is developed on a desktop computer using the Microsoft Visual Studio
development environment. In the second phase, this software is transferred from the
desktop computer to the embedded DSP platform and some additional coding for
embedded parts is done. Embedded software development to run the Philips SAA7105
encoder device which displays video output on TV, is such an additional coding. Texas
Instruments Code Composer IDE is used as the embedded development environment.
The embedded phase is much more difficult compared with the first one. At the desktop
computer, we have huge resources such as memory and computation power whereas
those are limited for the embedded devices. The DM642 digital signal processor’s clock
speed (i.e. 720MHz) is less than a Pentium processor, but it has high enough
computation power because of its parallel architecture. However, we have to make sure
that we make use of its parallel architecture and additional features efficiently. The
DM642 DSP is capable of executing eight instructions in parallel at the clock speed of
720 MHz. If we are able to utilize these execution units then we can benefit from its
processing power and obtain a high performance solution. Otherwise, the performance
may not be satisfactory. Providing a parallel execution for H.264 encoder at an
embedded DSP is not an easy task. To achieve this, one has to know both the H.264
encoder algorithm and the target processor architecture very well. Moreover, both the
algorithm and the software implementation of the algorithm should be analyzed in

depth.

32

4.1.1 Software Flow Graphs

In this section, I will briefly explain the software modules with their flow graphs

to understand the software architecture of the proposed H.264 encoder.

4.1.1.1 Main

The whole software starts with the function “main” and ends with the function
“terminate sequence”. I will explain all of the functions shown in the flow graph in

figure 4.1

Main | Generate Parameter Sets |

Init Bitstream

| Init Inter Search |

l

| Find Neighbours |

l

| Start Sequence |

Terminate
Sequence

| Determine | / P slices |

l

| Init Bitstream | | Code a Picture |

[

Figure 4.1: Flow graph of main

Generate Parameter Sets: This routine creates a sequence and a picture
parameter set and fill these structures with the necessary values. When calculating these
values, input variables such as the “profile type” or “number of frames to be encoded”

are used.

33

Init Bitstream: This function simply creates a stream to write the output of the
encoder. Also the first byte of the stream array is set to zero.

Init Inter Search: It simply sets the motion vector arrays to zero. This
initialization is necessary because the vector values are used by the vector predictor.

Find Neighbors: During the intra prediction and deblocking filter the neighboring
samples or blocks are needed. Calculation of the index of these samples or blocks is
very frequent and repeating. Therefore, redundant calculations should be eliminated.
This function is called for each macroblock and calculates the neighboring relations for
once. Other functions uses this information and do not recalculate it. This is a very good
example of algorithm/system level optimization. It decreases down the number of
operations and really improves the performance.

Start Sequence: This function is going to described in detail in section 4.1.2.2.

In the main function, there is loop which is iterated for total number of frames
times. The “number of frames” information is given by the user as an input.

Determination of I-P Slices: I defined a intra period which determines the
current slice as I or P. During the experiments shown in this thesis the intra period is
given as 20. This means that each 20" frame is assigned as intra, others as inter.

Code a Picture: : This function is going to described in detail in section 4.1.2.3.

Terminate Sequence: It simply closes the AnnexB output bit stream file.

4.1.1.2 Start Sequence
This section generates the sequence parameter set NALU and picture parameter

set NALU. These NALU’s are written to AnnexB byte stream. The output file is also

opened here. The flow graph of start sequence is given in figure 4.2

34

Start Sequence

| Open AnnexB File |

l

| Generate Sequence Parameter Set NALU |

| Write AnnexB NALU |

l

| Free NALU |

l

| Clear Bitstream |

l

| Generate Picture Parameter Set NALU |

!

| Write AnnexB NALU |

l

| Free NALU |

l

| Clear Bitstream |

Figure 4.2: Flow graphs of start sequence

4.1.1.3 Code a Picture

Code a picture function is the core of the program. Basically, this function takes a
frame, codes reconstructs the frame and filters it. The details of this function and the

explanation for its sub-functions are given in the flow graph in figure 4.3.

35

Code a Picture

| Yuv Reader |

| StartSlice |

i< total_MB
N

Y

| Encode one MB |

| Write one MB |

| DeBlock Frame |

v

| Terminate Slice |

v

| writeUnit |

Figure 4.3: Flow graph code a picture

Yuv Reader: It reads and stores a new frame as the input. Additionally, it adjusts
the pointers reference frame pointer and current frame pointer as required. When a new
frame is read, the current frame pointer is set to point to this frame. The reference frame
pointer is set to point to the previous frame. Instead of copying the frames to the
memory locations, only the pointers that points to these locations are swapped. This
approach is very important, because it avoids copying memory from one location to
antoher location and decreases the number of operations.

Start Slice: It calculates and writes a slice header.

In the code a picture function, there is a loop which is iterated for the total number
of macroblock times. Each macroblock in the frame is processed in raster scan order.

Encode One Macroblock: This function will be explained in section 4.1.1.4.

Write One Macroblock: The macroblock header, motion information, CBP,
luma coefficients and chroma coefficients are written to the output bit stream.

Deblock Frame: This function is copied from JM Reference Software and

adapted to my encoder after some modifications.

36

Terminate Slice: It puts a “1” bit after the end of a slice. The output bit stream
must be byte aligned. In other words, it must end at the byte boundary. If it does not end
at the byte boundary, then we fill the stream with zeros until the end of the byte.

Write Unit: Writes a NAL Unit of a slice to AnnexB byte stream.

4.1.1.4 Encode one Macroblock

When a new macroblock comes first of all we check whether it belongs to an I-

SLICE or a P-SLICE.

Encode one MB

|_SLICE P_SLICE

v

| Copy one MB | | Copy Search Area |

| Intra 4x4 Mode Degcision |

l ,

| Intra 16x16 Mode Decision | | Motion Search |

|

| Compare 14x4 & 116x16 |

116x16 chosen?

| Luma Residual Coding

| Intra 16x16 Coding |

l ,

| Store Modes and Reference Frames for all Blocks

l

| Chroma Residual Coding |

Figure 4.4: Flow graph of encode one macroblock

Copy One MB: This function is for copying the original macroblock from the
current frame. Instead of accessing the whole frame, I copy only a macroblock and
process that macroblock. Beforehand, I was not doing this and accessing the whole

frame to read and write macroblock data. However, I observed that this implementation

37

results in poor performance. If I copy the macroblock, then the data accesses to the
cache will result in more number of hits according to the principle of locality.
Furthermore, accessing the whole frame data requires complex calculations for
addressing.

Intra 4x4 Mode Decision: This function will be explained in section 4.1.1.5.

Intra 16x16 Mode Decision: This function will be explained in section 4.1.1.6.

Compare I14x4 and 116x16: After calculating the costs of both intra modes, one
has to make a choice between the two. This is done by simply comparing the cost of
intra 4x4 with that of intra 16x16. The 4x4 cost is calculated inside the Intra 4x4 Mode
Decision part. This cost is added with “24.A” before the comparison. The 16x16 cost
remains as it is found in the Intra 16x16 Mode Decision part.

Intra 16x16 Coding: If the 16x16 mode is chosen then luma residual coding is
executed. If intra 4x4 mode is chosen, luma residual coding is not called because luma
samples are already coded and reconstructed during the intra 4x4 mode decision. During
the intra 4x4 mode decision one has to do the luma residual coding for each 4x4 block
because the prediction of the next block depends on the reconstructed block of the
previous one. If that reconstructed block is stored at somewhere, there is no need to
repeat the luma residual coding. This implementation idea is important in terms of
performance.

Store Modes and Reference Frames: The selected mode for each 8x8 block is
stored in an array for future use. During the motion search the reference frame and
mode of the previous blocks and frames are used.

Chroma Residual Coding: This routine includes both intra chroma prediction
and chroma residual coding.

If the macroblock belongs to an I-SLICE, then 8x8 chroma prediction is done. For
each chroma prediction mode, the predicted block is subtracted from the original block
and hadamard based SATD is applied o find the cost. The costs of each prediction mode
are compared with each other and finally the best chroma intra prediction mode is
determined.

If the macroblock belongs to a P-SLICE, chroma motion vectors are extracted
from the luma motion vectors. Then chroma motion prediction is done by using those
vectors.

After finding the prediction for the chroma, residual is formed. Transform,

quantization, vlc and also the inverses of these are applied to the chroma residual in this

38

function. At the end of the function we get the reordered array for vlc and the
reconstructed chroma block.

Copy Search Area: For the inter-predicted frames, the motion search is called.
The search algorithm searches for the best location over a search window. The size of
the search window varies according to the given search step. This function creates a 2D
array as the search window and copies data to this array from the reference frame.
Instead of accessing the whole reference frame, I copy only a part of it and access only
to that portion during the motion search. The dimensions of the search window is as
follows:

search _window[16+2 e (search _ step)] (16 + 2 ¢ (search _ step)]

In the experiments presented here, the search step is taken as 4 so that a search
window of size 24 by 24 is used.

Motion Search: This function will be explained in section 4.1.1.7.

Luma Residual Coding: After the inter prediction is done and residual is formed,
this residual is coded using transform, quant, reorder. Inverse transform, inverse quant

processes are also performed and reconstructed macroblock is formed in this function.

4.1.1.5 Intra 4x4 Mode Decision

In the flow graph shown in figure XXX b8 stands for 8x8 blocks and b4 stands for
4x4 blocks inside the 8x8 ones. This means that Intra 4x4 mode decision is called for
each 4x4 block of a macroblock.

Initialize Intra Prediction Buffer: The intra prediction of a block is done by
looking at the neighboring samples of that block. For example, the vertical prediction
mode uses the samples above the block. Checking the availability of the neighboring
samples and reading the sample values is very time consuming. Because the intra 4x4
mode decision function is called so many times, this part of the software is a critical
part. Even a small improvement here may affect the overall system seriously. Therefore,
I introduce the prediction buffer which has one more column and row than the
macroblock has. That is to say, it is a two dimensional array of size 17 by 17. The
required neighboring samples are copied on these extra rows and columns, so that the
accesses to them become easier. If the neighboring samples are not available, then the

value 128 is written for those samples as is usual. This method results in the same

39

prediction and fortunately it eliminates the need for repeated checks for the
availabilities of neighbors. In other words, it does the same thing but makes it in an

efficient and shorter way.

Intra 4x4 Mode Decision l

Initialize Intra Prediction Buffer

N

Return CBP and e b8<A >

cost of MB

Y!

Find CBP and

N
~(b4<4 " cost_8x8
Y

| Find all 4x4 Prediction Blocks |
v
| Find Most Probable Mode |

TQand T-'Q" i N node<s
\Yl

| Calculate cost (SATD+ 4.1.R) |

| Best mode = mode Ii

Figure 4.5: Flow graph of intra 4x4 mode decision

Find all 4x4 Prediction Modes: Firstly, all 9 prediction modes for each 4x4
block are calculated. Also the most probable mode is predicted from the modes of
neighboring blocks. After that, the costs of all 9 modes are compared and the mode with
the least cost is assigned as the best mode. The cost calculation is done by using SATD
function which uses Hadamard transform. The details of the cost calculation are as
follows:

The SATD function takes the residual of the original block and the predicted
block.

For each 4x4 residual, hadamard ransform is applied and the absolute values of

transformed coefficients are summed up. This total is the SATD value.

40

SATD is added with 4.A.R where A is a constant and R is either O or 1. If the
current mode is most probable mode R parameter becomes 0, otherwise it is 1. This
total is the total cost for that mode.

By comparing the costs of all 9 modes, the mode with the minimum cost is chosen
as the best mode for one 4x4 block.

This procedure is repeated for all 4x4 blocks and the minimum costs of each 4x4
blocks are added to find the total minimum cost of the intra4x4 mode. This final cost is
going to be compared with the cost of intral 6x16 mode.

T-Q and T'-Q': When the comparison of the costs of 9 modes is finished, best
mode and the best prediction are determined. The best prediction is used to form the
residual. The residual goes through the transform and quantization steps. Also the
inverse transform and inverse quantization are applied to reconstruct the block. This
reconstructed block is going to be used for the next predictions of neighboring blocks.
When the intra 4x4 prediction is performed for all 4x4 blocks and they are reconstructed
the macroblock is also reconstructed.

Find CBP and cost_8x8: The coded block pattern for each 8x8 block is found in
this part. Also the 8x8 costs are calculated by adding up the costs of 4x4 sub-blocks of
that 8x8 block.

Return CBP and Cost of MB: The cost of intra 4x4 prediction is calculated at
the end of this function. This cost is passed to the function which will compare the intra
4x4 with intra 16x16. Also the CBP value is passed because it may be used if intra 4x4

mode is selected for the macroblock.

4.1.1.6 Intra 16x16 Mode Decision

Similar to the intra 4x4 mode decision, intra 16x16 starts with the initialization of
the buffers that store the neighboring samples.

Initialize Prediction Buffer: In the 16x16 mode, we use the left and up samples.
Before making the prediction, two buffers (one buffer for left samples and one buffer
for upper samples) are created and initialized with the necessary values. This is for
avoiding the repeated availability checking and address calculation for neighboring

samples. Neighbor samples are copied to these buffers if they are available. Then we do

41

not need to calculate the array index of a neighboring sample over the whole frame

array.

Intra 16x16 Mode Decision

| Initialize Prediction Buffer |

|

| Find all 16x16 Prediction Blocks |

Return best |, N)
intra16x16_cost
Y

Calculate total cost
and set best_mode

T

N Hadamard of
b8<4 DC Coefficients

<D<y

| Hadamard of 4x4 Blocks |—

Figure 4.6: Flow graph of intra 16x16 mode decision

After the initialization of the buffers, there is loop which runs for all intral6x16

modes (i.e. 4 times). For each prediction mode, a cost is calculated in the following

manner:

1.

The macroblock is divided into 4x4 blocks and the hadamard transform is
applied to these 4x4 blocks.

The DC coefficients of each transformed block is extracted and divided by 2.
These coefficients constitute a new 4x4 block.

The hadamard transform is applied to this DC block.

After all hadamard transformations, the absolute values of all AC and DC
coefficients are summed up. This total is the cost of that intral 6x16 mode.
This procedure is repeated for all modes and the mode with the minimum cost
is selected as the best mode. The cost of the best mode is also equal to the cost

of the intral6x16 mode.

4.1.1.7 Motion Search

This module runs the motion search algorithm, finds the partition mode and
motion vector with the minimum cost. The motion search algorithm is implemented in
this function. I implemented two algorithms for this part. First algorithm is three step
hierarchical motion search, other algorithm is the full search. I compared the results and
calculated performance results for both. Full search algorithm always gives the best
result in terms of picture quality. But it requires so many search and therefore
computation power. However, the performance of full search is not very low at DM642
DSP platform, because there are fast library functions at Texas Instruments’ Image
library [15]. These functions are fast enough to catch real time performance at small
frame sizes. Hierarchical three step search requires less number of search, but it requires
averaging and down sampling operations. At first, [implemented three step search on
the embedded DSP platform. During the optimization part, I noticed the library
functions of TI’s image library which can be used for full search. After that I
implemented the full search algorithm. As a result, the implementation of full search is
easy and satisfactory in terms of execution time if I use the TI’s image library. The
detailed performance results will be given in performance analysis section.

Due to time constraint, I am able to implement full search only for the 16x16,
16x8 and 8x16 partitions and not for sub partitions (8x8, 8x4, 4x8, 4x4). However, the
other implementation which is three step search supports all partitions. The support for
all sub-partitions will be added in the future. But I can say that the performance of the
whole system will not be much affected after adding this feature, because the search
algorithm is based on SAD reuse. In other words, it does not calculate the SAD for
every partition mode but reuse the SAD data that is already calculated. Before checking
the inter prediction modes the SAD array is calculated once for all search locations. The
motion search for each partition is done by making use of these SAD values. For
instance, in order to find the SAD of a 16x16 block the SAD’s of four 8x8 blocks are
added. The flow graph of the full search algorithm is show in figure 4.7.

43

Full Search l
| Find 8x8 SAD’s |

|

| 16x16 Partition Motion Search |

| best mode =1 |

| 16x8 Partition Motion Search |
'

cost<min_cost

Ly

| best mode=2 |‘—| min_cost = 16x8 cost

16x8 Partition Motion Search |

cost<min_cost

| min_cost = 16x8 cost | 1
Return min_cost
| best_mode=3 | and best_mode

Figure 4.7: Flow graph of full search

Find 8x8 SAD’s: This function is called once for each macroblock. It calculates
8x8 SAD’s for all search locations over a search window. For instance, if the search
step size is 4 there are totally 91 ((2*step_size+1)2) search locations. The SAD for each
8x8 block at these 91 search locations are calculated one by one and stored in an array

for further use.

4.1.1.8 Partition Motion Search

This function is called for each partition and it returns the best motion vector and
the minimum cost for that partition. Function starts with finding a prediction for the
motion vector (MVP). This prediction is performed by using the motion vector of

neighboring blocks. Detailed information about this process can be obtained from from

[11].

44

Partition Motion Search l
| Find MVP

mcost = SAD + mv_cost{current_mv} |

Y

best_mv = current_mv
min_cost = mcost

Return min_cost

Figure 4.8: Flow graph of partition motion search

In the flow graph (figure 4.8) max_1i is the maximum index of the search location
in the y-direction and max_j is the maximum index of the search location in the x-
direction. For example if search step size is 4, there are 9 locations in the x and y
directions and max_i and max_j are equal to 9. That is to say, each loop is executed for
9 times and motion search performed over 81 search locations.

Calculation of mcost: mcost is the cost of a partition for a specific search
location. At each location, the SAD is added to the motion cost. The motion cost is

calculated as follows:

mvy _cos t{currenl _mv_Xx,current _my _ y} =mv_X _CcOoSt+mv_y COSt

mvy_X _CcOSt=mv _ bits{current _mv_x—pred mv_ x}* lambda _motion

mv_y cost=mv_ bits{currenl _mv_y—pred mv_ y}* lambda motion
Where mv_bits{z} function returns the number of bits to code a motion vector of

z. pred mv_x and pred mv_y are the predicted motion vectors and lambda motion

parameter is a constant.

45

After comparing all search locations, the best motion vector for that specific
partition is found and the partition motion search function returns this motion vector

together with the cost.

4.2 DSP Realization

A typical embedded development project starts with the design of the hardware
setup and ends with tuning/optimization. Between these two, there are code generation
and debugging parts. Code Composer Studio Development environment provides us
with many tools for code generation, debugging and tuning. The project development

cycle using Code Composer Studio can be summarized with the graph in figure 4.9.

Design Code & Build Debug Analyze & Tune
Conceptual | | Create project, write | | Syntax checking, probe | || Profiler, optimizer,
Planning source code, points, breakpoints, instruction set
configuration file graphical analyzer, etc. simulator

Y

Figure 4.9: A project development cycle using Code Composer Studio

4.2.1. Design of Experimental Setup

I tried to simulate a real world embedded application for a H.264 encoder. A real
encoder basically takes a video input and outputs a bitstream after compressing the
video data. Moreover, the input video can be displayed on a display device for

visualization. I formed a hardware setup in order to realize this encoder system.

46

Digital Video Desktop PIC
SEqUEnCE (Code Composer Studio
{e.g foreman yuv) & Emulator)
L
) 4 k 4
PCl Interface | | ITAG
k
— TMS320 ,
(Totally 321E) Encoder
D642 EVATLTATION BOARD

Figure 4.10: The experimental setup

The hardware setup consists of the DM642 Evaluation Board, a desktop computer
for Code Composer tool and XDS 560 PCI emulator, a second computer for the transfer
of an input video sequence over PCI to SDRAM on the board and finally a television
for the display. DM 642 board uses a Philips SAA7105 video encoder in order to convert
digital video signal to analog video signal.

In a real video application the video data comes packet by packet from a hard-
disk, a video capture device or over the ethernet. To simulate this, I copy a small part of
a video sequence on the SDRAM of the DM642 EVM using the PCI interface. In this
way, there is no need to run file-read operation inside the program. A file I/O operation
spend computation power and is also slow because it requires communication between
the computer (where the file is stored) and target DSP over the JTAG connection. The
proposed implementation in this thesis avoids reading file but writes a file. The file
written is the compressed H.264 bitstream file which is the output of the encoder. I put
this file-write operation intentionally, because a real encoder must have this ability to

store the output.

4.2.1.1 TMS320DM642 Evaluation Module (EVM)

The DM642 EVM is an evaluation board that is designed by the company
Spectrum Digital. The EVM is designed to work with TI’s Code Composer Studio

47

development environment. Code Composer communicates with the board through an
external JTAG emulator. The EVM board comes with a variety of on board devices that
suit many application environments: [3]
1. A Texas Instruments TMS320DM642 DSP operating at 720 MHz.
Standalone or standard PCI computer slot operation
3 video ports with 2 on board decoders and 1 on board encoder
32 Mbytes of synchronous DRAM
On Screen display (OSD) via FPGA
4 Mbytes of non-volatile Flash memory
Ethernet interface

Software board configuration through registers implemented in FPGA

o »®» 2o kWD

Configurable boot load options
10. JTAG emulation through on-board external emulator interface

11. Expansion connectors for daughter card use

RS232 |
LeDs [IO0O00OO0N0-. PortA
FPGa
SwHs 4 OOHE || SDRAM | | SDRAM Flash g
oot 8 $§ MIC 1N
0SD s
FPGA i""”' EMIF Dual LINE OUT
FCl g UART
= Video [|LSenfa
Blus Paort 2
Output Video Port 0 V| wvideo [|emeMT
vid Vid P 1 = Decoder
ideo ideo Port1 ™ i’ 1 SVHS
encoder [~ 7~DM642 -
g 10 3.3V I
VGA! = Fc At GE -
RGE |]| : EEPROM Lo Video
k] =552 ! | vexo | | | aeu | FPGA 1 24 Becoder
2z s Sy A —_ - 2
i PCI/HPI FC Bus | p—
PHY
I I PCI Connector I |
Figure 1-1, Block Diagram DM&42 EVM

Figure 4.11: Block Diagram DM642 EVM

4.2.2 Code Generation using Code Composer Studio
During the embedded code generation, I worked on Code Composer Studio. Code

Composer Studio is designed for the Texas Instruments high performance

TMS320C6000 digital signal processor (DSP) platforms. It integrates all host and target

48

tools in a unified environment. It is a development environment that tightly integrates
the following components:

— Integrated development environment with editor, debugger, project manager,

profiler, probe points, break points.

— C Compiler, assembly optimizer and linker (Code Generation Tools)

— Instruction set simulator

— Real-Time kernel (DSP/BIOS)

— Real-Time data exchange between host and target (RTDX)

Target

Q|
[+]
[s]
Q2
[+]
(]
Q
s

000000060
|
|

ﬂ I
coDCOO0O0

|jeooocoad

Target hardware

Figure 4.12: Project development on Code Compose Studio

4.2.2.1 DSP/BIOS Real Time Kernel

DSP/BIOS is a real time operating system designed for applications that require
real time scheduling and synchronization, host-to-target communication or real time
instrumentation. DSP/BIOS provides preemptive multi-threading, hardware abstraction,

real-time analysis and configuration tools [24][25].

49

The threading model provides types of situations. Hardware interrupts, software
interrupts, tasks, idle functions are all supported. One can control the priorities and
blocking characteristics of threads. Additionally, structures to support communication
and synchronization between threads are provided. These include semaphores,
mailboxes and resource locks. Using the configuration tool, DSP/BIOS objects can be
pre-configured and bound into an executable program image.

To be able to display video on Television using Philips SAA7105 video encoder
chip, the device driver for that hardware unit must be included in the DSP/BIOS. Also
the tasks in the program must be created with their priorities in DSP/BIOS. The encoder
and display tasks are created with equal priorities. The memory space of the target
board is also specified in the DSP/BIOS configuration. The target board has 32Mbytes
SDRAM. However I configured the DSP/BIOS for 30Mbytes of memory. This is
because I download the input video sequence using PCI interface to this 2Mbytes

memory area.

4.2.2.2 Sychronized Communication (SCOM) Module

I add the SCOM module to achieve synchronous communication between the
encoder task and the display task. SCOM is a module for passing data-related messages
among threads. It is a generic inter-task message-passing system. Tasks exchange data
among themselves by making use of SCOM messages. A task can pass around an
SCOM message by placing it on SCOM queue, or taking it from SCOM queue.

I used the SCOM module in the following way: There are two tasks executing one
of which is the encoder task and other is the display task. As the program starts, both
tasks are created and started by the DSP/BIOS real time operating system. The display
task waits until the picture is ready for display operation. In other words, it waits for an
SCOM message from SCOM queue. Whenever the encoder task finishes the
reconstruction of a new frame, it sends a SCOM message which includes pointers to the
reconstructed frame. After that, display task gets out of the wait state and starts the
display operation. When display operation is finished, it sends a message back to
encoder task and starts to wait for the next frame. This SCOM usage is crucial because
both tasks are accessing the same memory area and without such a semaphore-based

module errors would occur.

50

Y N scomToDisplay N

FromEncode
Encoder _’D_' Display
Task <—<I Task

\ / scomToEncode \)

FromDisplay

Figure 4.13: Synchronized communication between encoder task and display task

4.2.3 Testing and Verification

Testing and verification is one of the most time consuming parts of such a big
software project. Code Composer tool provides us with very useful debugging features
such as software probe points and graphical analyzers. Because of the real time data
exchange feature of TI DSP platforms, one can debug the program without interrupting
the program execution. Another tool which is very useful is Elecard Stream Eye tool
[16]. This tool takes a H.264 coded bitstream as the input and visualizes the coding
parameters such as motion vectors, macroblock partitions, macroblock types, bit count
of each frame. In figure 4.14 we see the partitions and motion vectors of each partition
of a video sequence encoded by the proposed H.264 encoder. The output of the
proposed encoder is also decoded by JM Reference Decoder for verification purpose.
The reconstructed frames of JM Decoder is exactly same with the encoder so that it is

proven that the proposed encoder is compliant with the standard.

51

B A0
TH LA LA

Fgure 4.14: Elecard stream eye’s outpt

4.2.4 Performance Analysis and Tuning

At the end of the software development, one needs to analyze and tune the
program according to the application specifications. Tuning is almost as difficult as the
software development. For a H.264 encoder system at least 25-30 fps coding rate is
required. Hence, I aimed at developing an encoder with a speed between 25-30fps. For
performance measurements, Code Composer Studio has very accurate simulators and
analysis tools such as code coverage and exclusive profiler tool. The details of

performance analysis and optimization will be described in chapter 5.

52

CHAPTER 5

PERFORMANCE ANALYSIS AND OPTIMIZATION

5.1 Test Environment

The performance measurements and profiling are done using the Code Composer
3.1.0 DM642 device simulator. In order to obtain exclusive profile data, the Code
Coverage and Exclusive Profiler [17] feature is used. For the inclusive profile data, I
setup the CCS profiler for that specific inclusive profile data. The simulator runs on
Pentium-4 computer which has 4.2GHz clock speed and 2GBytes of SDRAM. The
simulator uses the memory of the computer and this memory size can be changed by
modifying the configuration file of the simulator. I assigned 1.6 GBytes memory of the
computer to the CCS simulator so that the simulations run faster. The performance
analysis and measurements are done using the “news.qcif” QCIF video sequence which
is 2 frames long. During the simulations the encoder is set to encode 2 frames, the first
frame as I and the second frame as P. The execution time per 1 frame is calculated by
dividing the execution time of 2 frames by 2. The quantization parameter of the encoder
is fixed at 28, search step size is 4, number of reference frames is 1. Two motion search
algorithms are implemented in the proposed encoder. One is hierarchical motion search
and other is full search. The performance analysis and optimization belongs to the
encoder which implements full search. The clock speed of the processor is 720Mhz. The
encoder speed (frames per second) is calculated by dividing the 720MHz by the total

cycles consumed for the execution of the program.

Clock Speed(720MHz)
Total Cycles

encoder _speed(fps) =

53

5.2 Software Optimization

Software optimization is the process of manipulating software code to achieve
faster execution time and smaller code size. Before starting the optimization process we
should first decide which parts of the encoder needs optimization and what kind of
optimization is needed. Trying to optimize the whole source code is not an efficient
way. Instead, we must concentrate on the frequently executed and time consuming parts
of the code. The small modifications in important code sections will result in high
performance increase whereas modifications in unimportant sections may even not
affect the overall performance. As a result, before directly starting with software
optimization, one must first profile the software program and make a good analysis for
optimizations.

When I first run the program on the DSP, the performance was very poor. Without
any optimization and tuning, the initial code can encode only 3.31 frames per second

(table 5.1). This performance is very far from our target performance which is 25 fps.

Table 5.1 Performance of the un-optimized encoder.

Type of Frame Total Cycles | Speed(fps)
Coding an I-Frame 1.75x 108 4.11
Coding a P-Frame 2.65x 108 2.71
Average Coding for one frame 2.17 x 108 3.31

Also it is found out that the write_one macroblock function has little effect on the
overall performance. Because the dominant function is the encode one macroblock
function, the optimization operations should focus on this function. The execution times

of encoding and writing functions are shown in table 5.2.

54

Table 5.2: Comparison of encode one macroblock with write one macroblock

Sub-functions Inside “code a picture” Function Percentage
encode_one_macroblock 96%
write_one_macroblock 3%

Others 1%

The optimization process that is applied in this thesis can be divided into two:

— Applying optimization techniques before improving the algorithm and
memory access pattern.

— Applying optimization techniques after improving the algorithm and memory

access pattern.

5.2.1 Optimization without Algorithm/Memory Optimizations

After getting the initial performance results and the profile data, I directly started
to apply software optimization techniques. In this approach, only software optimizations
are applied but algorithm or memory access optimizations are not any considered. The
applied software optimization techniques are:

1. Using functions from TI’s Image and DSP libraries.

2. Using compiler intrinsics.

3. Utilizing optimizing compiler.

4. Partitioning the on-chip memory into different L2 Ram/Cache sizes and

allocating program data on the on-chip memory.

The details of these optimization techniques are not going to be discussed here but
a more detailed explanation about these techniques will be given in the next section.
The important thing in this optimization approach is that it could not achieve the real-
time performance. The total execution cycle count is about 6.92x10” so the encoder
speed is about 10.4 frames per second. Even though these optimizations are very useful,

the performance is still beyond the desired value of 251ps.

55

Table 5.3: Performance increase with software optimizations only

Total Cycles Speed(fps)
Before Optimization 2,17 x 108 3.31
After Optimization 6,92 x 107 10.4

Table 5.4: Number of NOPs and CPU stalls after applying software optimizations

NOPs CPU Stall Cycles Due to Memory Total Cycles
21.280.882 11.330.520 69.200.866

In order to find out the reason, a further analysis on the program is performed.
The results have shown that the number of NOPs and CPU stalls are very high with
respect to the total cycles. Almost the half of the total cycles is spent by NOPs and CPU
stalls due to memory accesses. It is obvious that CPU stalls because of cache misses.
When a cache miss occurs the missed data is read from or written to the upper memory
level. The CPU has to wait until this data transfer between memory levels is finished.
The characteristic of the H.264 encoder is that there are many memory accesses inside
the program. These memory accesses cause CPU to stall. When I investigated why there
are many NOPs I found out that NOPs are also due to the memory accesses. Because of
the high number of load and store instructions, other instructions can not be scheduled
efficiently. There are operations which use the data that is loaded by the load operation.
Such operations have to wait for the completion of the load operation. Therefore NOPs
are introduced between load operations and those operations that use the loaded data.
The same is also true for store operations. As a result, there are many NOPs due to the
high number of loads and stores.

It is remarkable that after software optimizations the total cycle value is decreased
to 6.92x10” but the percentage of NOPs and stalls with respect to the total cycles
becomes very high. Nearly half of the execution time is consumed by NOPs and CPU
stalls due to memory. In other words, after the optimization memory accesses become
the bottleneck and limit the performance. Even though we applied very useful
optimization techniques, without improving the memory accesses we always get a

limited performance. This result has shown that before applying software optimization

56

one has to first improve the memory access pattern. Therefore I will go to the next step

which studies optimizations with memory optimizations.

5.2.2 Optimization with Algorithm/Memory Optimizations

The results obtained in the previous section have shown that we have to first

optimize the memory accesses and then apply the software optimizations. Memory

optimization can be achieved by either modifying the algorithm in order to reduce the

number of memory accesses or by creating buffers to obtain fast memory accesses.

Modifications in the algorithm can reduce the number of loads and stores but is can also

eliminate the redundant functions that cause memory accesses. Creating buffers

obviously increases the cache hit rate, but it can also reduce the number of computations

necessary for memory addressing. In this section, the optimization starts with memory

optimizations and software optimizations similar to the previous section are applied

afterwards.

The whole optimization process can be divided into six steps:

1.

First of all, I simulated different L2 ram/cache partitioning and chose the best
one.

Secondly, the memory access pattern is improved. This is achieved by the
modifications in the algorithm and the creation of buffers for data storage and
reuse. This approach also simplified the address calculation mechanism.

Third, the allocation of compiler output sections are analyzed and the best
allocation is determined.

Fourth, code optimizations such as replacing some parts of the software with
library functions, using intrinsics, function inlining and changing variable
types are investigated.

Fifth, the optimizing compiler is utilized with different optimization options.
Lastly, the frequently accessed data arrays such as macroblock array or search

window array are allocated on the on-chip memory.

57

The order of these optimizations is important since each method affects the
results of other methods. These optimization steps are going to be discussed in the

following section:

5.2.2.1 L2 Cache / Ram Partitioning

First of all, the memory configuration of the system should be designed. All other
simulations will run on this configuration. The DM642 DSP is composed of a
ram/cache flexible on-chip memory of 256Kbytes. 256 Kbytes of on-chip memory can
be partitioned either as L2 cache or as internal memory ISRAM. The L2 cache is a 4
way set associative cache and its size can be configured as 0, 32, 64, 128 and 256
Kbytes. In the DSP/BIOS configuration file, the DSP’s memory model is configured.
In order to obtain the best configuration, I profile the program with different L2
ram/cache partitioning. The summary of these profiling is shown in table 5.5. These

results are obtained for the full execution of the program.

Table 5.5: Simulation results for different ram/cache partitioning

Parameter L2 Cache size (4 way set associative)
32Kbytes | 128Kbytes 256K Bytes

L2 cache access (Total) 2.219.732 | 2.220.257 2.219.775

L2 cache hit summary (Total) 2.078.786 | 2.079.203 2.078.821

First of all, the existence of L.2 cache is important because the number of L2 cache
accesses is very high. This is due to the fact that the number of loads and stores in a
typical video processing application is very high. Without L2 cache we have to pay for
larger miss penalty for L1D and L1P misses. Whenever a L1D or L1P cache miss
occurs the data requested will be transferred from external memory. The access time of
the external memory is obviously larger than L2 cache so that the performance of the
system is degraded much. Therefore using a two level cache hierarchy seems better than
just using L1 cache. Secondly, results show that the values are very close to each other.
This means that all three configurations give nearly the same performance. Since all
three results are close to each other, choosing the smallest L2 size of 32Kbytes does not

degrade the performance. If we choose the smallest L2 cache size then we have larger

58

space for the internal memory (ISRAM). As a result, I decide that L.2 cache with a size
of 32KBytes is optimal for this system. The remaining part of the internal memory
which is 224Kbytes is mapped as ISRAM. By creating such a ISRAM memory, we gain
the flexibility to allocate some critical code or data sections on the on-chip memory. All
following simulations are done based on this cache/ram configuration. (i.e. 32Kbytes L2

cache and 224Kbytes ISRAM).

5.2.2.2 Improvements in Memory Access Pattern and Encoder Algorithm

Time consuming and memory accessing parts of the program are determined and
improved. Mainly, macroblock reading/writing functions, intra 4x4, intra 16x16 and

motion search sections are improved.

5.2.2.2.1 Buffering Macroblock Data

In the initial program, the macroblock data and neighboring samples were all read
from the array that stores the whole frame. Since the frame array is large, we cannot
store it on the on-chip memory. Therefore accesses to the frame may result in L1 and L2
data misses. Moreover, reading from the whole frame makes the address calculation
very complex. In order to calculate the address of a neighboring sample, one has to first
calculate the current macroblock’s address and then add an offset in order to reach the
neighbor sample. As a result, reading the samples from the whole frame is not efficient.
Instead, those samples can be copied into a buffer which is stored on internal memory.
This improves the performance in two ways:

— Address calculation becomes much easier.

— Because of locality, the cache misses will decrease.

59

Data read

176x144 >
16x16 Data write

Figure 5.1: MB Data read/write is performed on the 16x16 macroblock buffer.

Copying the macroblock data into a smaller array requires extra operations.
However, we copy the MB only for once at the beginning of the encode one MB
function and we copy back the reconstructed MB to the frame array at the end of same

function.

5.2.2.2.2 Improvements for Intra 4x4 Prediction

Intra 4x4 prediction algorithm uses the samples that are neighbors of the 4x4
block. The samples that are at the top, left and up-right of a macroblock are used during
the intra4x4 prediction. The first version of the software was searching for each of these
samples over the frame. It was first checking the availability of that sample. If it is
available then the address of that sample was being calculated. In the new version, an
array of size 17x17 is created and neighbor samples are copied to the first row and
column. For the up-right neighbors another array of size 1x4 is created. In case of non-
availability of a sample, the value 128 is copied to the array. After that intrad4x4
prediction and reconstruction is started. When a 4x4 block is reconstructed it is also
copied into this 17x17 array so that the following predictions for neighbor blocks can
make use of these reconstructed samples. This method not only improves the memory
access but also it decreases the number of operations. In this method, the repeated
checks for the availability of the samples are eliminated. Also the address calculation
for all samples is very easy. It gives exactly the same result with the previous

implementation, but the performance is obviously better.

60

Figure 5.2: Buffers for intra 4x4 prediction

5.2.2.2.3 Improvements for Intra 16x16 Prediction

Similar to the intra 4x4 prediction, intra 16x16 prediction also uses the neighbor
samples of the macroblock. The same idea therefore can be applied to intra 16x16
prediction. However, it is noticeable that we do not need the macroblock array itself
since we have already created a buffer for the macroblock. What we need for the intra
16x16 prediction is only the upper and left samples. Therefore, we only need two arrays

of size 1x16.

Upper neighbors
HEEEEEEEEEEEEEEEN

L] Left nelghpors HEEE

Figure 5.3: Buffer for intra 16x16 prediction

5.2.2.2.4 Improvements for Motion Search

For the motion search two algorithms are implemented. One of them is full search
and other three step hierarchical full search. Both of them are based on calculation of
SAD between the current macroblock partition and the reference frame. In the initial
software implementation, the SAD was being calculated by reading the reference blocks
directly from the reference frame. This method is not efficient since it increases the

cache misses and makes the address calculation complex. Therefore, before SAD

61

calculation a 2D array is created as the search window. The size of this array depends
on the search_size. The samples of the search window are copied from the reference
frame. Afterwards, the SAD calculation between the macroblock partition and search
window is performed. It is important to say that the algorithm is based on SAD reuse. In
other words, the SADs of larger blocks are found by adding up the SADs of small

blocks. SAD reuse method eliminates unnecessary SAD calculations.

16 + 2xSearch_size

176x144 —> «

16 + 2xSearch_size

Figure 5.4: Search window array is created for motion search

Table 5.6: Performance increase with algorithm/memory access improvements only

Total Speed(fps)
Cycles
Before Memory Optimizations 2.17x108 3.31

After Memory Optimizations only 1.94x107 3.71

The introduction of these improvements in memory access pattern increases the
performance. After these improvements, code optimizations and compiler optimizations
can achieve better results because the address generation becomes simple. Also the
memory loads and stores can execute in parallel since the memory accesses are

organized in a better way.

5.2.2.3 Allocation of Compiler Output Sections

The compiler creates output sections after the compilation operation. The

allocation of these output sections in memory is important in terms of performance. The

62

sections that are frequently accessed should be allocated in fast memory. For example,
“.text” section is the program code and should be allocated in fast on-chip memory
(ISRAM) if possible. On the other hand, table of constructors to be called at start-up is
necessary only at the beginning of the program and is better allocated in slow off-chip

memory (SDRAM).

Table 5.7: Output sections of compiler

Name Contents
.cinit Tables for explicitly initialized global and static variables
.const Global and static const variables that are explicitly initialized

and contain string literals

.pinit Table of constructors to be called at start-up
.switch Jump tables for large switch statements
text Executable code and constraints

.bss Global and static variables

far Global and static variables declared far
.stack Stack

.sysmem Memory for malloc functions (heap)

I have tried to allocate executable code (i.e. “.text” section) in SRAM. At first
trial, it does not fit into the SRAM because of its large size. Initially, when I transferred
the source code from desktop computer to the embedded platform it was very long and
inefficient. Hence the executable code was also large. But allocating program memory
on the on-chip memory is very important because the processor will read each
instruction from the program memory. If we allocate it on the off-chip memory the CPU
will access the external memory at each instruction execution. In order to reduce the
executable code I modified the source code much. I eliminated all redundant functions,
redundant variables and routines. At the end I was able to fit the program code into the
on-chip memory (ISRAM). Other output sections of the compiler such as “.switch”,

“bss”, “.const”, “.data” and “.cio” are all allocated in external memory (SDRAM).

63

5.2.2.4 Code Optimizations

During the software development phase, I considered that this piece of software
will run on embedded platform and wrote the code accordingly. For instance, I avoided
dynamic memory allocations because memory operations in embedded platform slow
down the system. Especially, memory allocations on the off-chip memory takes much
time and should be avoided at time critical applications. Additionally, I declared some
variables as global in order to avoid excessive use of parameter passing. | also tried to
limit the number of functions as far as possible in order to decrease the number of
function calls.

Static variables are created at the beginning of a program and remains until the
end. If constant variables such as matrix elements are declared as static they are
initialized with first values at the start-up and remains forever. If we use static global
variables we eliminate recreation and re-initialization of constant variables at each
function call.

Time consuming code sections can be further analyzed using the mixed
source/assembly view feature of CCS IDE. The assembly instructions that are
counterpart of C source code are shown in this view. With the help of this feature one
can decide upon what kind of optimization is suitable for a critical code section. In
figure 5.5 both C and assembly code of the SATD critical code section is shown. The

instructions that are tied with the pipe symbols are executed in the same execution

‘C’ |“
packet. Up to 8 instructions can be found in an execution packet since there are 8
functional units in the DM642 architecture. From figure 5.5 it is seen that the biggest
execution packet includes only two instructions. This tells that this part of the code is

not parallelized enough. Moreover the assembly code includes NOPs.

64

1 = d[0] + d[12

m[4] = d[41 + d[8];

Figure 5.5: Mixed Source/Assembly view of the function SATD

The critical parts of the code must be parallelized as much as possible, so that
we can benefit from the dsp’s parallel processing capability and obtain high enough
performance. As we analyze the critical functions of the encoder, we see that four type
of code optimizations are suitable for these critical code sections of the encoder

software. These optimizations are “library functions”, intrinsics”, ’function inlining”

and “type conversion of variables”.

5.2.2.4.1 Fast Library Functions

Texas Instruments libraries include C-callable functions (ANSI-C language
compatible) for general-purpose imaging functions that include compression, video
processing or general mathematic operations. DSP library and Image library are such
useful libraries for video and imaging applications and they are optimized for TI’s
C6000 DSP architecture. In the H.264 encoder algorithm there are a lot of matrix
multiplication operations. The integer transform, hadamard transform and hadamard
based SATD calculation are examples of functions that use matrix operations. These
can be replaced with a matrix multiplication function from TI’s DSP library[18], called
“DSP_mat_mul”.

void DSP_mat_mul(short *x, int r1, int c1, short *y, int c2, short *r, int qs):

— X [r1*c1]: Pointer to input matrix of size rl1*cl.

— rl: Number of rows in matrix X.

— cl: Number of columns in matrix x. Also number of rows in y.

65

— y[c1*c2]: Pointer to input matrix of size c1*c2.
— ¢2: Number of columns in matrix y.
— r[r1*c2]: Pointer to output matrix of size rl1*c2.

— gs: Final right—shift to apply to the result.

= hadamard transform =/ // had is the hadamard matrix
m[0] = diff] 0] + diff[12];
m[4] = diff] 4] + diff] 8]; // res is the result matrix
short res[16];
diff[14] = m[14] + m[15]; DSP_mat_mul(diff,4,4,had,4,res,0);
diff[15] =m[15] - m[14];

Figure 5.6: Original code and its transformation into library function

The sad calculation function from TI’s Image library is also very usefull for the
motion search. This function return the SAD between a reference frame and a original
block.

IMG_sad_8x8(unsigned char *srclmg, unsigned char *reflmg, int pitch):
— srclmg[64]: 8x8 source block. Must be double-word aligned.
— reflmg[]: Reference image.

— pitch: Width of reference image.

for(i=0; i<8; i++)
for(j=0; j<8; j++) sad=IMG_sad_8x8(org, ref,size);
sad +=abs(org[i][j]-reflil[i]);

Figure 5.7: Original code and its transformation into library function

The source block “org” must be double word aligned. If it is not aligned to
double word then the library function IMG sad 8x8 does not function correctly. Data

alignment can be done by using the pragma directive “DATA_ALIGN”.

/[double word alignment of orgEE array
#pragma DATA_ALIGN(org,sizeof(long));
unsigned char org[64];

Figure 5.8 The array is aligned to double word boundary

66

In this section, the whole source code is analyzed and all of the matrix
operations are replaced with the library function DSP_mat mul and sad calculation is

replaced with IMG sad 8x8.

5.2.2.4.2 Compiler Intrinsics

The C64x compiler provides intrinsics, special functions that map directly to
inlined C64x instructions to optimize C code quickly[19][20]. Intrinsics are specified
with a leading underscore () and are accessed by calling them as you call a function
inside the C source code. Intrinsics allows us the use of C variables instead of hardware

registers and also schedules the instructions to maximize performance.

for(k=0; k<16; k++) for(k=0; k<16 ; k++)
{ {

satd += (res[k] < 0 ? —res[k] : res[k]); satd += _abs(res[k]);
h h

Figure 5.9: Original code and its transformation by using intrinsics

X = min(a,b); X =_min2(a,b);
y = max(a,b); y = _max2(a,b);

Figure 5.10: Original code and its transformation by using intrinsics

5.2.2.4.3 Function Inlining

The function calls may decrease the performance since each function call requires
passing some parameters between functions. If a function is called so many times then
many cycles may be consumed during these parameter passing operations. For instance,
the function called “sign” in the proposed encoder is such a function. It is called inside
the transform-quant routines for great many times. Therefore even a small gain in cycle

count may improve the overall performance [5]. The “sign” function is composed of

67

only an “if” loop and an absolute value calculation routine. Since it is a small function,
inlining that function may not increase the code size much. As a result, “sign” function

is inlined so that the calls to the function are eliminated.

5.2.2.4.4 Changing Variable Types

In software project developers usually use integer variables. However, in an
embedded software project the type of variables used may affect the performance. On
the TMS320 platform, integer type is 4 bytes, short is 2 bytes and char is 1 one byte.
Using short instead of integer may speed up the program execution because load/store
of 2 byte variables is faster than load/store of 4 bytes. If the execution of the program is
not affected with such type changes then we should better replace large variables with

5

smaller ones. The change of “int” variables to “short” improves the performance
because read/write operations on short variables are faster. When the read/write
operations becomes faster, the CPU stalls due to memory are also decreased.

In the proposed encoder the integer data arrays are replaced with short arrays if
possible. Especially, this conversion should be done for frequently used data array.
Some examples of the frequently used arrays in the proposed encoder are orgSS(the
original macroblock), recSS(the reconstructed macroblock), predFF(prediction for a 4x4
block), diffF(4x4 residual). All these arrays’ types are converted from integer to short.

The simulation results show that this conversion is very useful in terms of performance.

Therefore the conversion is done at several part of the source code.

int recSS [16][16]; short recSS [16][16];
int orgSS [16][16]; short orgSS [16][16];

|nt predFF[4][4]; > .s.flwort predFF[4][4];
int diffFF[4][4]; short diffFF[4][4];

Figure 5.11: The integer variables are replaced with short variables

68

5.2.2.5 Utilizing Compiler Options for Optimization

The C64x optimizing C compiler can perform optimization currently up-to about
80% compared with a hand-scheduled assembly [9]. If someone has the knowledge of
all optimization methods and makes a good analysis on the program, achieving this
level of optimization is possible.

The optimizing compiler can be invoked from the CCS screen with many
optimizing options. Table 5.8 explains some of the important compiler options for
optimizations. Among all these options, I found out that —o3 (file level optimization),
-mt(no bad memory alias occurs) options are useful for the proposed encoder. I tried
almost all options during the optimization phase, but most of them did not affect the

performance. Therefore I mention only the three options that increase the performance.

Table 5.8: Compiler Options for Higher Performance

Option Description

-mh Allows speculative execution. But the appropriate amount of padding must be
available in data memory to insure correct execution.

-03 Represents the highest level of optimization available Various loop optimizations are
performed, such as software pipelining, unrolling, and SIMD.

-pm Combines source files to perform program-level optimization

-mii Describes the interrupt threshold to the compiler. If you know that NO interrupts will
occur in your code, the compiler can avoid enabling and disabling interrupts
before and after software pipelined loops for a code size and performance
improvement. In addition, there is potential for performance improment where
interrupt registers may be utilized in high register pressure loops.

-mt Enables the compiler to use assumptions that allow it to be more aggressive with
certain optimizations. For example it assumes that no memory ambiguation will
occur and makes optimizations accordingly. However, if this assumption is
wrong the program will not function properly.

5.2.2.5.1 File-Level Optimization (—03 Option)

The —o03 option instructs the compiler to perform file-level optimization [20]. This
option can be used alone to perform general file-level optimization, it can be combined
with other options to perform more specific optimizations. Various kind of

optimizations are performed with this compiler option. For instance, software pipelining

69

is implemented by this compiler option.[22] Software pipelining creates highly-
optimized loop-code by:

— Putting several instructions in parallel.

— Filling delay slots with useful code.

— Maximizes functional units.

Cycle DL D2 Cycle

1 e 1 M2 11 L2 .81 .s2 1 mm ML M2 L1 L2 .81 .82
: : |2 B B
3 =

3 [Jan [14n PEE ikl
1 mm 4 Idn fidr solel
= — ol s
6 s EIEmEE e
" ¢ i
: 7
°

Figure 5.12: Before software pipelining Figure 5.13: After software pipelining

5.2.2.5.2 Assuming No Bad Memory Alias Occurs (—mt option)

This option allows the compiler to use assumptions that can eliminate memory
dependency paths. To maximize the efficiency of the code, the C64x compiler
schedules as many instructions as possible in parallel. To schedule instructions in
parallel, the compiler must determine the relationships, or dependencies between
instructions. Because only independent instructions can execute in parallel,
dependencies inhibit parallelism.

— If the compiler can not determine that two instructions are independent, it
assumes a dependency and schedules the two instructions sequentially.
— If the compiler can determine that two instructions are independent of one

another, it can schedule them in parallel.

To analyze the memory dependencies, the C code and its dependency graph for a

basic vector sum is given in figures 5.14 and 5.15 respectively.

70

void vecsum(short *sum, short *inl, short *in2, unsigned int N)

{
int i;
for(i=0 ; i <N ; i++)

{
}

sum[i] = in1[i] + in2[i];

}

Figure 5.14: A basic vector sum function

The dependency graph of this source code (figure 5.15) says that:

The paths from sum][i] back to inl[i] and in2[i] indicate that writing to sum

may have affect on the memory pointed to by either inl or in2.

A read from inl or in2 cannot begin until the write to sum finishes, which

creates an aliasing problem. Aliasing occurs when two pointers can point to

the same location.

.. Load Load
YN

(inpi) [in2m |
_-"/

—~

. L ______——."‘_ 5 5).-"f |
Mumber of cycles required T add elaments 1l
to complete an instruction —— w1 . f
| ___< |'

| sumfl] | Jf-'

|
5\ e /’ /
\/ 1 _/
Store to
T memory
[mem \:I
_—-""/

Figure 5.15: Dependency graph of basic vector sum.

If —mt option is used, then the compiler uses the assumption that inl and in2 do
not alias memory pointed to by sum. Therefore it eliminates memory dependencies

among the instructions. However, if your code does not satisfy this assumption, you can

get incorrect results.

71

5.2.2.6 Allocating Frequently Used Data in the Internal Memory

The pragma directive “DATA SECTION” allocates space for a symbol in the
memory section named “mysection”. This directive can be used for allocating
frequently used symbols such as macroblock data in the fast memory partition. After
allocating such symbols in the on-chip memory (SRAM), an access request to that data
results in a L2 hit. In this way, the program does not have to read this data from external

memory.

#pragma DATA_SECTION(recSS,".mysect");
short recSS [16][16];

#pragma DATA_SECTION(orgSS,".mysect");
short orgSS [16][16];

#pragma DATA_SECTION(orgFFA,".mysect");
short orgFFA[16][4][4];

#pragma DATA_SECTION(predFF,".mysect");
short predFF[9][4][4];

#pragma DATA_SECTION(diffFF,".mysect");
short diffFF[4][4];

#pragma DATA_SECTION(all_pred_mv,".mysect");
char all_pred_mv[9][36][44][2];

#pragma DATA_SECTION(all_mv,".mysect");
char all_mv[9][36][44][2];

#pragma DATA_SECTION(sadEEA,".mysect");
short sadEEA[2][2][SRCH_9][SRCH_9];

#pragma DATA_SECTION(spadFEFE,".mysect");
unsigned char spadFEFE[SRCH_24][SRCH_24];

Figure 5.16: Allocation of frequently accessed arrays to internal memory section

The proposed H.264 encoder makes use of global variables that are used several
times during the execution of the program. For instance, macroblock data, prediction
data and residual data are frequently used parts of the source code. When I applied this
allocation method to such critical data arrays, I obtained a slight increase in the
performance. This increase is not very satisfactory in terms of overall performance.

As a result, using memory space in an efficient and effective way in video

encoder design is crucial. Allocating the frequently accessed data on the on chip

72

memory increases the data read/write hits. Therefore, the CPU does not stall because of

memory read/write operations.

5.3 Summary of Software Optimization

Starting with the un-optimized program which can process only 3.31 frames per
second, I obtained an optimized encoder which can process 26.7 frames per second. As
it is stated at the beginning of this chapter, these values are measured for the news.qcif
video sequence which is 2 frames long. The first frame is coded as I-Frame and second
one as P-Frame. The total cycle count to process 1 frame is calculated by averaging the
cycle count for 2-frames. The speed of the encoder (in fps units) is calculated using the

clock speed of the DSP (i.e.720 MHz).

Table 5.9: Total CPU cycle counts according to the performed optimization.

STEPS 1 frame Speed
(average) (fps)
1-) Unoptimized Code 217.914.368 3.31
2-) L2 Ram/Cache Partitioning 217.904.555 3.31
3-) Improvement in Memory Access Pattern 194.314.544 3.71
4-) Code Optimizations(library functions, intrinsics, function 29.679.631 24.25
inlining) and Compiler Optimizations
5-) Change of variables’ types (integer to short) 27.365.153 26.31
6-) Frequently accessed data arrays are allocated in internal 27.282.428 26.40
memory
Average speed of the final encoder over 20 frames 26.70

The unoptimized code performs very poor but it is proved that optimization on
this code is possible. Several kinds of optimizations can be applied on the algorithm but
the most important ones for this program are the Improvements in Memory Access
Pattern, Code Optimizations and Compiler Optimizations. Memory Access Pattern

refinement decreases the number memory accesses and simplifies the memory address

73

generation. In this way, it reduces the number of CPU stalls due to memory. Before
implementing the memory access pattern refinement, code optimizations and compiler
optimization can not increase the performance much because those optimizations also
depend on memory accesses. Software optimizations alone are not able to increase the
speed beyond 10.4 fps since the memory access pattern becomes the bottleneck and
limit the performance. After experimenting this, I decided to refine the memory
accesses and I obtained a real time solution. Thanks to code optimizations, the software
is transformed into a much efficient and parallel executable code. Compiler
optimizations are inevitable since they provide a software program to better utilize the
hardware resources and execution units of the DSP. During the memory access pattern
improvement, the software structure changed much. Both the number of memory
accesses and the number of operations are decreased.

The final performance of the encoder is good enough for a real time application.
Encoder speeds above 25 fps are considered as real time so this implementation can be
used for a real world application. The average speed of the encoder is about 26.7 fps.

This value is measured by encoding a 20 frames long video sequence.

5.4 PSNR and Compression Rate Measurements

The PSNR values are average values for a video sequence of 30 frames, first
frame being I-Frame, others P-Frame. Quantization parameter is fixed at 28, number of
reference frames is one, and compression ratio is defined as the ratio of the original
“.yuv “file to the compressed “.264” file. Average PSNR shows that the picture quality
of the encoder is good enough. Compression ratios change with the video sequences.
Compression ratio of above 100 is possible; however this ratio also decreases to 30.
Depending on the video sequence the algorithm decides which block size, mode and
vector to use. The fact that mother & daughter video sequence is encoded with more
bits is because the residual luma/chroma coefficients contain many non-zero
components and they have to be coded. For a better compressing encoder a rate control
mechanism should be added. Such a rate control mechanism may change the
quantization parameter to decrease the number of coded blocks. In the future such a

mechanism may be added for rate distortion optimization.

74

Table 5.10: Compression efficieny of the encoder

Average PSNR

Compression Ratio

News (QCIF) 39.739 63.3
Claire (QCIF) 41.481 102.2
Container (QCIF) 40.380 734
Highway (QCIF) 38.210 52.3
Carphone (QCIF) 40.278 32.2
Mother & Daughter (QCIF) | 39.382 47.85
Waterfall (CIF) 36.288 35.4
Foreman (CIF) 38.899 41.0

75

CHAPTER 6

CONCLUSION AND FUTURE WORK

The proposed H.264 encoder is verified to work on both computer and TI DM642
EVM platform. The fact that the encoder is fully compliant with the standard H.264
decoder is very important. The output bit stream file can be decoded by the JM standard
decoder. PSNR measurements of the encoded and decoded videos show that the picture
quality is good enough for QCIF and CIF frame sizes.

For the optimization of this encoder on DM642 platform many optimization steps
are experienced. Different L2 ram/cache partitioning is experimented to find the optimal
partitioning. The memory access pattern is improved. This is achieved by the
modifications in the algorithm and the creation of buffers for data storage and reuse.
The allocation of compiler output sections are analyzed program data is allocated in the
on-chip memory. Code optimizations such as replacing function with fast library
functions, using intrinsics, function inlining and changing variable types are
investigated. Optimizing compiler is utilized with different optimization options to
achieve the best compiler optimizations. Lastly, the frequently accessed data arrays such
as macroblock array or search window array are allocated on the fast on-chip memory.

After all optimizations the performance of the complete system increased by
almost 8. This proves that there is much potential or parallelism in a video processing
system. It is understood that code optimizations provide us with increased performance
but memory management is a key issue in the optimization of a video encoder. It is
shown that the source code can be parallelized with some modifications. However, the
memory accesses limit the performance. We can overcome the computation complexity
of the baseline encoder by applying suitable software and compiler optimization
methods because the processor is fast enough to make fast computations. But in order to

reach the performance of a real-time application the memory access pattern of encoder

76

must be improved. This improvement may include modifications in the flow of the
encoder algorithm or memory access pattern of the complete encoder system.

The proposed encoder system is verified to work at 26.7 fps for a QCIF video
sequence after optimizations. Before the optimizations the performance was about 3.31
fps. The applied optimizations enhanced the speed of the whole encoder system by 8.

For the future work, the proposed encoder can be improved by adding quarter-
pel motion compensation support, error resilience tools. Moreover, other motion
estimation algorithms can be integrated into the system. The current encoder achieves
real-time execution for QCIF. In the future, I will implement a real-time encoder for
CIF and higher resolution video formats. Encoding at higher resolution video formats
requires extra optimization effort. For this purpose, EDMA can be used. Also using

parallel instructions with packing/unpacking operations will increase the performance.

77

[5]

[6]

[10]

REFERENCES

Overview of H.264 / MPEG-4 Part10, Soon-kak Kwon, A. Tamhankar, K. R. Rao.
Dongeui University, T-Mobile, University of Texas at Arlington, 2005.

Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Joint Model (JM)
Reference Software Version 8.4, http://iphome.hhi.de/suehring/tml

Spectrum Digital, “TMS320DM642 Evaluation Module Technical Reference”,
August 2003.

Saponara,Denolf,Lafruit,Blanch,Bormans, “Performance and Complexity Co-
evaluation of the Advanced Video Coding Standard for Cost-Effective
Multimedia Communications”, EURASIP Journal on Applied Signal Processing
2004:2, 220-235, 2004.

Hamid R. Sheikh, Serene Banerjee, Brian L. Evans, and Alan C. Bovik,
Optimization of a Baseline H.263 Video Encoder on the TMS320C6000”.

Texas Instruments, “Parallelization of a H.263 Encoder for the TMS320C80
MVP” literature number:spra339

Darek Blasiak, Broadcast Quality H.264 Encoding and Transcoding, TI Developer
Conference, 2005.

Denolf, Vleeschouwer, Turney, Lafruit, Bormans, “Memory Centric Design of an
MPEG-4 Video Encoder”, IEEE Transactions on Circuits and Systems for Video
Technology, Vol.15 No.5, May 2005.

Cathoor, Dutt, Danckaert, Wuytack, “Code Transformations for Data Transfer and
Storage Exploration Preprocessing in Multimedia Processors, IEEE Design &
Test of Computers, 2001.

Cheng Peng, “Video Encoding Optimization on TMS320DM64x/C64x”, Texas
Instruments Application Report, Literature Number: SPRAA63, October 2004.

78

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft ITU-T
Rcommendation and Final Draft International Standard of Joint Video
Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003.

Sinan Yalcin, Hasan Ates, and Ilker Hamzaoglu, "A High Performance Hardware
Architecture for an SAD Reuse based Hierarchical Motion Estimation Algorithm
for H.264 Video Coding", Proc. Int. Conf. on Field Programmable Logic and
Applications, August 2005.

Deependra Talla, Lizy K. John, Viktor Lapinskii, and Brian L. Evans, "Evaluating
Signal Processing and Multimedia Applications on SIMD, VLIW and Superscalar
Architectures".

Vishal Markandey, Dipa Rao, Texas Instruments, “TMS320DM642 Technical
Overview”, Application Report LiteratureNumber: SPRU615, September 2002.
Texas Instruments, “TMS320C64x Image/Video Processing Library
Programmer’s Reference”, Literature Number: SPRU023A, April 2002.

www.elecard.com

John Stevenson, Texas Instruments Code Composer Studio IDE v3 White Paper,
Application Report, Literature Number: SPRAAO0S - July 2004.

Texas Instruments, “TMS320C64x DSP Library Programmer’s Reference”,
Literature Number: SPRUS65A, April 2002.

Texas Instruments, “TMS320C6000 CPU and Instruction Set”. Literature
Number: SPRU189F, October 2000.

Texas Instruments, “TMS320C60000ptimizing Compiler User’s Guide
Literature Number: SPRU187L”, May 2004.

lain E. G. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.
Rulph Chassaing , DSP Applications using C and the TMS320C6x DSK, Wiley,
2002.

UbVideo, “UBLive-264MP: An H.264-Based Solution on the DM642 for Video
Boadcast Applications”, www.ubvideo.com, whitepaper, 2002.

Texas Instruments, TMS320C6000 DSP/BIOS Application Programming Interface
(API) Reference Guide, Literature Number: SPRU403G, April 2004.

Texas Instruments,TMS320 DSP/BIOS User’s Guide, Literature Number:
SPRU423D, April 2004.

79

