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Abstract

Following the attacks of September 11,2001 in the United States, concerns over
terrorist attacks have sharpened. The attacks highlighted that public water distribution systems
are inherently vulnerable to accidental or intentional water contamination because of their
geographical distribution, relative isolation and possible impact to public health. There is an
ongoing and fertile research environment aiming to prevent such threats in water distribution
systems. One of the key problems arising in the field is to identify sensor locations that
minimize the impacts (e.g. detection time, population exposure, contaminated volume
consumed) of a terrorist attack aiming the water distribution systems.

In this thesis, we present a model of the sensor placement problem in municipal water
networks. In our formulation, we focus to the sensor configuration that minimizes the
expected time to detection and the expected population exposed. The first objective ensures
that all such attacks should be detected in a very short time. We formulate these problems as
binary nonlinear objectives, and propose a solution methodology framework based on meta-
heuristics, namely, simulated annealing and tabu search. Two different neighborhoods
generation mechanisms are utilized in the heuristics. We simulated the contaminant transport
in EPANET in order to derive flow and velocity information. A novel approach is introduced
in order to handle different flow patterns occurring during the day. In order to ensure the full
detection probability, a new concept of restricted sensors that is located at the isolated node in
the network is commenced. In the proposed framework, the close relation between clustering
and location problems is exploited in the sense that the initial solutions of the meta-heuristics
are generated with a k-medoids clustering algorithm.
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Ozet

11 Eyliil 2001, Amerika Birlesik Devletleri saldirisina takiben, terdrist saldirilarina olan
ilgi artt1. Saldirilar, cografi dagilimdan, goreceli tenhaliktan ve halk sagligina miimkiin
etkisinden dolayi, kazara ya da kasitli olan su kirliligi, halk suyu dagitim sistemlerinin
savunmasizligin1 6ne c¢ikardi. Su dagitim sistemlerinde ki bu gibi tehditleri engellemeyi
amaglayan, gelismekte olan ve zengin bir aragtirma konusu vardir. Bu alandaki anahtar
problemlerden biri, su dagitim sistemlerindeki saldirilarinin etkilerini (6rn: tespit zamani,
maruz kalan niifus, tiiketilen kirli su hacmi) asgariye indirmeyi amaglayan, sensor yerlerinin
belirlenmesidir.

Bu tezde, igme suyu aglarindaki sensor yerlestirme problem modelini sunduk.
Formiilasyonumuzda, beklenen tespit zamani ve beklenen maruz kalan niifusu asgariye
indiren sensor konfigiirasyonuna odaklandik. ilk hedef, tiim bu gibi saldirilar1 iyi bir ¢dziimle
bulmayi saglamalidir. Bu problemleri, ikili diizlemsel olmayan hedefler olarak ve yapay zeka
optimizasyon algoritmalar1 yani, yapay 1sil islem ve tabu arastirma algoritmalarina dayali,
¢oziim yolunu kesin ve agik olarak anlattik. Yapay zeka optimizasyonunda kullanilan iki
degisik komsu yaratma mekanizmasi kullandik. Akis ve hiz verilerini tliretmek icin
EPANET den kirliligin taginimina benzetim yaptik. Giin boyunca meydana gelen degisik akis
modelleriyle basa ¢ikmak i¢in yeni bir yontem tanitildi. Tam tespiti saglamak i¢in, sebekedeki
olii noktalara yerlestiren kisith sensérler fikri ortaya konuldu. Onerilen ¢oziimde, siniflama ve
yerlestirme problemleri arasinda dyle bir yakin iligski ortaya koyduk ki yapak zeka problemi
icin olan baslangi¢ ¢6ziim k-medoids siniflandirma yontemiyle yaratildi.
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1 INTRODUCTION

Water distribution systems are organized for delivering water to consumers. Under
normal operating conditions, complex networks of pumps, pipes, and storage tanks provide
high quality treated water to consumers. Water distribution systems are composed of
sources, pipes and hydraulic control elements such as; valves, tanks, and reservoirs. Figure
1.1 depicts an overview of a generic water distribution system. Fresh water is pulled from a
reservoir, treated and stored in a series of holding tanks and pumping stations. Water is then

distributed via a network of underground pipes [9].

Chemical storage

| reatment
storage

Residential 3 <z ol
area e

Figure 1.1 Representative Drinking Water Distribution System [9]



A distribution system of pipelines, pipes, pumps, storage tanks, and the
appurtenances such as various types of valves, meters, and so on offers the greatest
opportunity for terrorism because it is expensive, relatively unprotected, accessible and

often isolated.

There are four types of threats in water distribution systems; cyber threats such as
attacks on central control system to create simultaneous failures, physical threats such as
destroying part of the network, chemical threats such as introducing nerve agents, blister
agents, cyanides, arsenic, mercury, and so on, and biological threats such as putting in

pathogens.

Water distribution systems are spatially varied and many of the system components
such as tanks and pumps are located in isolated locations. Water distribution systems,
therefore, have a natural potential to be vulnerable to a variety of threats- physical,
chemical, and biological- that may jeopardize the systems reliability of delivering safe
water. Particularly, the raw water source (surface or groundwater), raw water channels and
pipelines, raw water reservoirs, treatment facilities, connections to the distribution system,
pump stations, valves and finished water tanks and reservoirs are vulnerable to terrorist

activities.

The ability of a water distribution system to provide water to its customers can be
cooperated by destroying or disrupting key physical elements of the water system. The
most important elements include raw water facilities (dams, reservoirs, pipes, and
channels), treatment facilities, and distribution system elements (transmission lines and
pump stations). Physical disruption may result in significant economic cost, problem, and

loss of confidence by customers, but has limited direct threat to human health.

Contamination is usually pointed out as the most serious potential terrorist threat to
water systems. Chemical or biological agents could extend throughout a distribution system

and result in sickness or death among the consumers. It is not feasible to identify all



possible contaminants but it can be classified into various categories such as; biological
weapons, chemical weapons, biotoxins, viruses, parasites, pesticides, toxic chemicals. The
attack scenarios are unpredictable and patterns of water supply and consumer demand

change every day, which further complicates the prevention of such attacks [19].

The need to predict the distribution of pollutants in water systems and to monitor
their concentrations at various system locations is major concerns in order to maintain the
safety of water supplied to the public. Tracking pollutant movement and concentrations
within a water distribution system is not an easy task. It requires a mathematical quantity
and quality model for conducting an accurate extended period hydraulic water quantity and

quality simulation and the ability to monitor real-time pollutants’ concentrations.

Various water quality and early warning detection systems models are proposed in
the literature. The aim of water quality models is to maintain water quality in a desired
level. Water quality in a distribution system deteriorates basically because of two main
reasons; a decay or growth of nonconservative components that takes place during the
transport process and an accidental or targeted intrusion of pollutants as we discussed
above. The behavior of nonconservative components can be predicted using dynamic water
quality simulation models like EPANET [28]. There are several other models also available
for modeling both the hydraulics and water quality in drinking water distribution system.
However, most effective and widely used one is the EPANET, which is developed by U.S.
Environmental Protection Agency. EPANET is an extended period hydraulic water quality
and quantity simulation model, and simulates the fate of the water, as well as the possible
contaminants, within the water distribution system, given the structural parameters such as
the pipe sizes, pump locations, and so on, the demand conditions at different time periods
and the parameters of the contaminant intrusion. The EPANET provides an output of the
hydraulic simulation. The output includes the time history of the flow velocities for each
pipe in the network in order to calculate contamination timing in the network for each

possible number of attack scenarios.



In case of external intrusion of contaminants, monitoring stations should be
designed to provide alarm signal within acceptable time limit. Early Warning Systems
(EWS) concept is introduced to avoid and immediately mitigate the impacts of a
contaminant such as death, illnesses among the consumers in the water distribution system.
An effective EWS should consider the following; exhibits warning in sufficient time for
action, provides affordable cost, requires low skills and trainings, covers all the potential

threats, identifies the source, allows remote operation [12].

There are four key elements in EWS: 1) Alarm level is needed to identify the
concentrations at which the agents pose a threat to human health so that alarms can be
activated. The response started by an alarm is a notice to public to stop using the water. 2)
Fate and transport of pathogens and chemicals. Chemicals and microbiological agents can
act in a variety of ways as they migrate through a water system. In water distribution
systems the control of pathogens and chemicals is typically accomplished by incorporating
disinfection agents, at the supply source. Free chlorine is one of the most widely used
disinfectants. Free chlorine levels are usually maintained between minimum and maximum
level. A target agent is known to chemically degrade at a certain rate in the presence of free
chlorine. It may be possible to use a hydraulic/chemical model of the distribution system,
like EPANET, to determine the fate and transport of the agent concentration through the
system.3) Sensor Locations; the location and density of sensors in a warning system is
impacted by the result of the system characterization, vulnerability assessment and threat
analysis. Placement of sensors in distribution system must be suitable because it is one of
the most vulnerable points in a water system. However, even if sensors can be optimally
located within a distribution system, there would be probably not enough time to prevent
exposure of a part of the public to contaminated water. Monitoring conducted within the
distribution system provides time to limit exposure, isolate the contaminated water, and
initiate mitigation/remediation actions 4) Responding to a contamination threat once a
contamination event has been recognized and described. The determination of the fate of
the contaminant in the system is crucial for an effective response. This requires both

locating various sensors at different positions in the system and understanding of the



hydraulic behavior of the water in the distribution system. The last step is to wash out the
contaminant from the system and confirm that the contaminant is no longer present.
Therefore an EWS is a necessity for designing a secure water distribution system

particularly in post-9/11 era [19].

To sum up, there has been increased interest in development of sensor networks to
detect accidental and deliberate contamination events in water distribution systems and so
facilitate corrective action or notification. Optimization models and algorithms have been
developed using various metrics to locate a limited number of sensors that minimize the
impact of such contamination events. These optimization models are usually based on
simplifying assumptions about design objectives, network contaminant transport, sensor
response, event detection, emergency response, and installation and maintenance costs.
Therefore, their real life performances are unknown. Furthermore, the problem can be

computationally complex to solve for large networks.

In this thesis we are aiming to propose a methodology, which might be utilized in
order to determine sensor locations in the water distribution systems. We consider two
objective functions; namely, the expected time to detection and expected population
exposed. We propose two techniques based on local search heuristics; namely, simulating
annealing and tabu search, and test their performances in various experimental conditions.
We also test the effectiveness of determination of the initial sensor locations with
clustering. Other than the solution methodology, the contributions of this study are: 1)
introducing a restricted sensor concept in a way that all contaminant intrusion is detected
and 2) simulating the flows, which are obtained from EPANET on the time dimensions
more realistically than the existing techniques 3) presenting the new methodology for the

sensor placement problem in water distribution networks.

In the following part, we introduce a detailed literature review and discuss various
optimization problems related with the efficient water distribution systems. Solution
techniques for locating on-line contamination monitoring stations, sensor placement in

distribution water networks are discussed. Next, problem definitions, the assumptions of



the model and methodology are detailed and coupled with a methodology pinpointing the
major issues that should be considered while designing the system and during the
implementation phase of the study. In the same section, we introduce the proposed
algorithms for the solution of the problem. Next part is dedicated for the experimental
results and the discussion of the major findings. We conclude the thesis with our final

remarks and future works.



2 LITERATURE REVIEW

The analysis of water quality in water distribution network systems is relatively new.
In 1990, Environmental Protection Agency (EPA) introduced new regulations, which
require water quality standards must be met at the consumer taps rather than at the source
treatment plants. This initiated the need for water quality modeling and raised other

problems and research needs.

More recently, concerns over terrorist attacks have been sharpened following the
September 11,2001 attacks in the United States. Terrorist activities are potentially tragic,
and the existence of such threats affects public confidence in water supplies. So 9-11
attacks highlighted that public water distribution systems are inherently vulnerable to

accidental or intentional water contamination because of their geography.

Both the change in water quality regulations and concerns over terrorist activities
catalyzed the research on the topic. In addition to other problems, the optimal placement of
the sensors draws relatively high attention. The current literature can be categorized into
two groups: 1) Location of on-line water quality monitoring stations 2) Sensor placement in
municipal water networks. In the existing literature, studies related with location of on-line
water quality monitoring stations were undertaken before the security era and monitor the
quality of the water. The water quality in distribution systems deteriorates because of two
reasons: The first one is self-decay or growth of water quality constituents, the other one is
an external pollution intrusion. Locations of on-line water quality monitoring stations
concepts started up because of the need for dealing with water quality decrease with time
and distance from the source. For this problem, the aim is to keep water quality within

acceptable limits.



When the focus of interest is external pollution, in which detection time is most
critical, in the case of terrorist activities, the second category of sensor placement in
municipal water networks are discussed in the literature. A number of algorithms have been
developed to solve the problem of placing a limited number of sensors in a water
distribution system so that health protection from accidental or targeted contaminant
intrusions is maximized. Our problem shows the similarity with the concept of sensor
placement in municipal water networks. Since, in the case of external contamination
intrusion, we have dealt with how locating the sensors throughout the water distribution
networks minimize the impacts of such an attack, now, we will discuss the existing

literature on these two problems.

First problem is related to the location of on-line contamination monitoring stations.
Efficient water quality monitoring is one of the most vital tools to guarantee a reliable
water supply to consumers of drinking water distribution systems. A decrease in pressure at
one or more system nodes can reduce quantities supplied to consumers, while the
accidental entry of contaminants or self-deterioration of the water quality within the
network itself can damage public health [8]. The control of pressure is usually attained by
booster pumps and pressure reducing valves, while water quality can be controlled by
booster chlorine injections [6, 24, 31], and by monitoring. The problem of booster chlorine
injections is to add a minimum amount of disinfectant at different system locations at
different times, while retaining a minimum threshold disinfectant concentration level at

each of the consumers’ nodes.

Because the injection process does not affect water flow, Boccelli et al. [6] showed that
if chlorine decay follows a first order reaction, then the response at a node follows a linear

reaction corresponds to an injection at booster location.

Here, the choice becomes the location of boosters and their injection rates. Boccelli et
al. [31] directed their attention to the problem of locating disinfectant booster stations that

minimize the dosage required to maintain residuals throughout the supply network, and



introduced a useful parameterization for disinfectant source types by building on the
previous work. The same problem is formulated and explained as a location problem and is

solved by a mixed integer linear programming problem by Pool [25].

In the literature, EPA regulations require that samples be taken at locations represents
the water quality in the systems. Because of this reason, several approaches were developed

to define the Representative Concept.

In addition, Lee et al. [18] presented an integer programming formulation for the
location problem of on-line monitoring stations in order to maximize the quality of the
representativeness water samples. In their methodology the best set of stations is proposed
to be one that maximizes the total demand coverage. The demand coverage is defined as the
percentage of the demand monitored by a set of monitoring stations. Furthermore, with
some degree of belief, one can also infer the water quality of the upstream nodes that feed
the node where monitoring station is located. According to Lee et al., an upstream node
(i.e. coverage of an upstream node) can be measured as the fraction of the water monitored
at the downstream node, where the station is located and water is passed through it. Lee et
al. solved that problem as an integer programming method. Next, Kumar et al. [15]
developed an algorithm for the same problem based on a heuristic which eliminates the use
of the computationally cumbersome integer programming. But in this model, no proof of
global optimality was shown. In contrast, Al-Zahrani, et al. [2] proposed a genetic
algorithm to solve the problem, which is the identification of the water quality monitoring

stations in a water distribution system.

From an engineering point of view, the demand coverage method [2, 15, 18] has some
restrictions. First, it only considers steady-state water quality conditions that are usually not
accomplished. Next, the method does not consider the residence time that water spends in
the system and sequential variation of the water quality. Lastly, information is only
considered in the upstream direction and coverage does not extend in the downstream

direction.



In order to solve these limitations, Harmant et al. [11] adapted the objective function to
introduce time dependence and water quality into the demand coverage model in order to

recognize nodes with lower water quality.

Moreover, Woo et al. [34] further modified the same objective function by applying
weights at each term by normalizing the concentrations by the source values. Similar to the
previous research, only the water quantity was considered as a factor of monitoring
importance. Even if the water quality as well as the water quantity was considered, the
retention times in the system were used to estimate the water quality at the network nodes.

Thus nodes with lower quality received higher weights in the objective function.

All of the mentioned models claim that if the downstream water quality is acceptable
then the water supplied before reaching that node should be acceptable. So, the solution
methodology involves an installation of monitoring stations at downstream locations. This
is the same idea for the sensor placement models except installing monitors at a node will
delay or miss the detection intrusions until many consumers have been affected by the

contaminant.

A variety of approaches have been developed for sensor-placement problems in water
networks. Firstly, Ostfeld et al. [21] introduced a service level constraint for detecting
random accidental contaminant intrusions. They defined the level of service provided to the
consumers before the maximum volume of consumed polluted water prior to detection.
Their methodology involves the establishment of an auxiliary network that represents all
possible flow directions for a typical demand cycle and finding the shortest paths between
the nodes, a pollution matrix to represent the domains of detection and coverage for each
node and a set covering algorithm to optimally allocate the monitoring stations. The nodes
of the auxiliary network are the original nodes and directed edges are placed between two
nodes if there is a direct flow (i.e. pipe) between them. The length of the edges is equal to
the average travel time between the nodes. The flows between the nodes and the velocity of

the flow during a day under different demand conditions are determined by the EPANET.

10



The calculation of flow pattern has several limitations in this paper [21]. The
representative flow pattern is calculated according to formula that replaces the flow of one
pipe by flow of two parallel pipes. Then the pipes are represented on the network by two
undirectional and parallel pipes. Note that different demand patterns occur at different time
points in a day. Residential areas usually consume more water in the evenings; on the other
hand business neighborhoods demand more water during the daytime. These different
demand patterns yield different flows during 24-hours. The difference can be so drastic that
at different time points even the direction of the flow in a pipe changes depending on the
time point. Ostfeld’s et al. approach averages the flows that occur in a pipe throughout 24-
hours. However this approach yields misleading conclusions. For example, if a pipe from
node i to node j has a flow from node i1 to node j, between 8 AM and 4 PM, but the
direction of the flow changes afterwards, Ostfeld’s et al. approach assumes that there is a
certain (average) flow at both directions throughout the day. Based on this assumption a
contaminant introduced from node i can be determined at node j (given that a sensor is
located at node j) within an acceptable time determined by the average flow. On the other
hand, in reality if the flow direction changes after 4 PM, an intrusion cannot be detected
until the direction of the flow changes. Therefore, the calculations based on the averaging
technique of Ostfeld et al. are misleading and should be corrected. In this study, the
calculation of flow patterns showed diversity from the Ostfeld’s et al. proposed flow

scenario. The used flow pattern is detailed in Chapter 3.

Next, Kumar et al. [16] examined Ostfeld et al. [21] paper in a discussion note. They
argue to use a time-based service level constraint rather then the volume-based service level
constraint as proposed by the authors. Ostfeld et al. disagree with Kumar’s et al. suggestion
that the contamination node determination algorithm, but it referred to the fact that the
calculations were based on averages, hence the study would not represent reality, therefore,
would yield inaccurate results. Note that this discussion note is one of the first references

mentioning the contaminant node determination problem.

11



Ostfeld et al. extended their previous work [21] through explicitly considering the
deterioration and dilution of water quality as distributed with flow, and by taking into
account the monitoring equipment capabilities to detect pollutant concentrations [22]. In
their previous paper, the water dilution and water quality decay properties of the
contaminant were not taken into consideration. In the follow up paper, a minimum hazard
level (MHL) was introduced and a node was considered contaminated only if the
concentration of the contamination was over the MHL. The proposed methodology is the

same as the methodology proposed in their earlier paper [22].

All of the aforementioned models assume single injections of contaminant. But,
Ostfeld et al. [23] included multiple random injections to the previous proposed model.
Also they constructed the pollution matrix by genetic algorithm, which is a different

construction method than given in the previous one [21].

Laird et al. [17] also used the multiple injection term. But the difference from the
Ostfeld et al. [23] is that they introduced unknown, time dependent injection terms at every
node in the network and formulated this as a quadratic program to solve for the time
profiles of the injections. Ostfeld’s injections term introduced not at every node in the
network, also the sources of injections are assumed known. The approach was able to
identify unique solutions and find good solutions with a minimum number of injection
locations. Until, the source is determined, many consumers may die until that time because

of not considering the detection time.

Berry et al. [3] presented an optimal sensor configuration that minimizes the
expected fraction of the population at risk. The likelihood of a contamination is modeled as
a fixed probability distribution across junctions in the network, which can be used to model
the likelihood of either accidental or intentional attacks. This paper differs from the others
via sensor placement, since it is assumed that sensors are placed at only edges of the

network. Also the service level aspect is taken into the objective function and the sensors

12



are added to the constraints. However, the extended simulation hydraulic equations were

used in this study, Berry et al. derived only the flow direction from EPANET.

On the contrary, Uber et al. [32] showed that junction placement is superior to edge
placement. Also, they presented a new integer-programming formulation for sensor
placement in municipal water systems. In contrast to the Berry et al. [3] this model assumed
that consumers are protected only if a sensor guards every path from a contaminant
introduction site in order to avoid explicit references to time. The proposed model also
assumed that flow within the pipes was reasonably swift, if not quantified, so that flow
patterns will not shift before a contaminant is detected. Contaminant transportation is
decoupled from sensor placement decisions and explicitly considers time. Because of the
fact that EPANET is expensive in terms of computation, EPANET’s hydraulic equations
are simplified. Discrete-event simulation is used, via velocity information derived from
EPANET, to calculate contamination timing in the network for each of possible number of
attack scenarios. An integer program is used to select a set of sensor locations that
minimizes the expected amount of contaminant delivered to consumers across all these

attack scenarios.

Similar to Uber et al., we assumed that sensors are placed at only junctions in our

methodology. Also we have considered the EPANET hydraulic simulation.

Watson et al. [33] differ from the literature in a way that they compared several
different objectives: population exposed, time to detection, volume consumed, number of
failed detections, and extent of contamination. They investigated the relationship between
optimal placements obtained under different design objectives. Also they compared the
sensor located edges and nodes, and they developed the mixed-integer linear programming

models for the sensor placement problem over a range of design objectives.

However the related works include set-covering models that are solved by utilizing
genetic algorithm or integer linear programming, Uber et al. [32] described a general

formulation and a greedy heuristic solution methodology for the sensor location problem.
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The aim of this work is to illustrate heuristic (non-optimal) solutions for large
network, under uncertainty in threat scenario characteristics, and transport within the

network.

Another associated paper, Berry et al. [5] categorized all of the mentioned sensor
placement problems as static and dynamic. In static formulation, there are key assumptions
such as contaminant dilution, concentration level and mode of attack is not modeled, and
assumes identical contaminant and water flow dynamics. They claimed that these
assumptions are not realistic, so they proposed a dynamic formulation that precisely
characterizes the impact of an attack at a given network junction on the rest of the network.
Because of the dynamic formulations require extensive computations, they proposed a
heuristic solution, namely, GRASP (Greedy Randomized Adaptive Search Procedure) in

order to generate quick solutions for larger networks.

There are similarities between our solution methodology and Berry et al. [5]. We
use dynamic formulation, and in order to solve sensor location problems, we have proposed
meta-heuristics instead of GRASP. However they solved the problem under minimum
population exposed condition, we have tried to find the solution near the optimal according

to both population exposure and time to detection objectives.

An additional paper, which are used the unsteady hydraulic conditions, is given by
Propato et al. [26]. They formed nonlinear objectives with respect to population exposed,
contaminant volume consumed, and time to detection. They proposed a polynomial
programming formulation to detect random intrusions occurring at network nodes under the
unsteady flow conditions in order to reduce nonlinear formulation to a mixed integer linear
program. Compared to previous published works, this methodology aims to merge the
simplicity of the problem formulations of two earlier studies, Berry et al. [3] and Watson et
al. [33], both of which investigated the difficulty of solving some sensor-placement integer

program on various computing stages.
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Another issue that should be taken into consideration involves the uncertainties of
the problem. While dealing with uncertainties in the sensor placement problem, Carr et al.
[7] study’s is a good starting point. They introduced two sensor placement objectives; one
of them is minimize the expected population exposed and the other is to minimize the
expected portion of the network that becomes contaminated as exactly we have. The paper
considers the robust formulations for sensor placement that directly account for some
uncertainties such as attack scenarios, water demands and the variability in the population
density. In this paper, uncertainties are expressed as a random variable and deterministic

MILP is used to minimize expected performance measure.

From the literature, obviously, in the case of external pollution, the time-to detection is
the most important and should be considered in the design process. The second important
issue is the minimization of the population exposure. Thereby, in this study the expected
time to detection and expected population exposure are considered when presenting the
optimal sensor location. The proposed methodology for finding the optimal solutions under
various objectives shows important differences. The most crucial difference is the
EPANET flow pattern. We illustrate a more realistic dynamic flow pattern than the already
existing one in the literature. Another contribution is that literature does not consider the
isolated nodes in the network. Isolated nodes are significant junctions, since if no sensors
are located at those points, there is no chance to understand whether isolated nodes are
contaminated or not. Due to this, we have located sensors at those kinds of nodes
automatically, and we call those sensors as restricted sensors. Next, we have implemented a
new meta-heuristics, which minimizes the expected detection time, and population
exposure. Lastly, we have tried to show how the clustering affects the sensor location

problem with proposed meta-heuristics.
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3 SENSOR PLACEMENT IN WATER DISTRIBUTION SYSTEMS

In the literature, generally, the objective in a sensor placement optimization problem is
the same: to place a limited number of sensors in water distributions network so that the
impact of public health due to the accidental or targeted injection of contaminant is
minimized. Commonly most important difference among the literature is how to design this
impact parameter. Designing an impact parameter differs the objective functions according

to the following five objectives proposed by Watson [33]:

v Population Exposed: The number of people that consumed contaminated water
before detection.

Time to Detection: The time between the attack and the detection.

Volume Consumed: The amount of contaminated water that is consumed.

Number of Failed Detection: The proportion of attacks that is undetected.

N X

Extent of Contamination: The length of pipe contaminated.

Apparently, sensor placement problem can be formulated as a location problem.
Ostfeld et al. [21] solved detecting accidental contamination in municipal water networks
problem by formulating it as a set-covering problem, which is closely related to location

problems.

Moreover, we are inspired by the formulation of the problem presented by Berry et
al. [4]. Note that Berry et al. [4] allow placement of at most p sensors and the objective
function of the Berry et al. formulation is the minimization of the total consumption over
all attacks with an optimal sensor configuration. A water network is modeled as a graph
G=(V, E); E is the set of edge representing pipes; V is the set of vertices (or nodes) where

pipe meets. Mathematical programming formulation of the problem is as follows:
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where L ¢ V' x E is the set of possible sensor locations and L, € V' x E is the set of

network locations contaminated by attack a. A is the set of attacks. Parameters in the

objective functions; «, is the probability of an attack and w, (weight) the amount of

contaminated water consumed at all vertices from an attack a to detection location i.

Decision variable is s, for each potential sensor location i€ L. This variable is 1 if we place

a sensor at location i ; 0 otherwise. The set of constraints (1) enforces that there is exactly
one best sensor for each attack scenario. The set of constraints (2) indicates the condition

that detection can only occur at v, if a sensor is placed there. The set of constraint (3) limits

the total number of sensors to be placed (S, ) [4].

3.1 Problem Definition

In this thesis, we decide to minimize expected time to detect and expected population
exposed, since they are considered to be the most relevant and widely accepted in the
literature. We also treated our problem as a location problem. Different from some of the
literature, we assume that the probability of not detecting an attack equals to zero. For this
purpose, we define restricted sensor locations. If the node is isolated, i.e., only inflow
occurs to the node, we put sensors called restricted sensors to such special nodes. On the
other hand, we also assume like most of the literature that the nodes are the possible
sources of terrorist attacks. The mathematical formulations of the studied problems can be

given as follows:
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1) The first objective is the minimization of the expected time to detect;

Minimize 1/n () C;)

i=1

st. C,=min{d,; X, =1, (1)
;A4
2 X, =p, )
j=1
X, e, 3)

where, the decision variable, X, denotes whether a sensor is located at node j or
not. The parameter d, is the shortest path in time units between the attack node i and node

Jj,» n is the total number of nodes in the network, p is the total number of sensors to be
located, and 1 is the attack node. In this formulation, the objective function corresponds to
minimizing the expected time to detect. Constraint (1) gives the minimum distance if the
sensor is located at node j. Constraint (2) shows that exactly p sensors are available or there

should be located. Constraint (3) ensures that whether sensor is located or not at node j.

2) The second objective is the minimization of the expected population exposed;

Minimize 1/n () C;)

st C, =wminld,; X, =1f, (1)
J

Y X, =p. &
X, {1, 3)

where parameter w, is the demand at node i. In this formulation, the difference from

the first objective is to multiply the objective function with the demand at node i. The aim
is to minimize the population exposure with the same constraints of the first problem.
Since, both of the models likely to be NP-hard, we limit our attention to heuristic solution

methodologies.
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3.2 Design Assumptions

For the sake of argument, the development of the methodology for an optimal detection
system is based on the following concepts and assumptions. These assumptions do not
change the nature of the problem, however they simplify the problem domain and ease of

handling.

a. All quantities affecting the network model water quality predictions are assumed to be
known and deterministic. The contaminant is stable after injection in finished drinking
water. Each attack scenario involves a single injection location, which may occur at
any network node and begin at any time with equal probability.

b. The systems are subjected to a 24-hour representative demand cycle. Pipe length, pipe
diameter, tank elevation, tank diameter, initial, maximum and minimum water levels in
the tanks are known.

c. For the purpose of calculating the expected population affected prior to detection,
demand for each node and average travel time between nodes are known.

d. Sensors instantly detect any non-zero contaminant concentration and an action is taken
to eliminate further exposure without delay.

e. EPANET inputs and networks to be studied are given.

f. EPANET version 2.00 is the standard model used to simulate the contaminant
transport.

g. Regardless of pollutant concentrations, all the water that passes through contaminated
water is assumed polluted.

h. Pollutant velocity is assumed to be the same velocity as the water velocity.

i. Contamination is made in a continuous mode.

j-  Only one node becomes as source of pollution at a time.

k. Contaminant dilution within the water is neglected.

1. Sensors are only placed on nodes.

m. Without sensors in the network, a population at a node is exposed if contaminant can

reach that point in a given flow period.
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n. All the sensors in the network are identical.

All these stated assumptions on optimal sensor location problem are similar with the
literature. Behind the problem definition and assumptions, now we provide the details of

our methodology.

3.3 Design Methodology

Before presenting the details of the methodology, we have to discuss certain issues of

the problem that require further attention and explanation.

1) Demand patterns usually change during 24-hours depending on the time of the
day. During the daytime, business districts of the cities usually consume more water than
the evening and midnight periods. On the other hand the residential neighborhoods usually
demand more water during the evenings when the residents return to their homes after
work. In the literature, this phenomenon is handled by dividing a 24-hour daily period into
smaller time periods with different demand patterns. For example Ostfeld et al. proposed to
work with three periods of 8-hours and different demand patterns associated with each time
period at each node [21]. This assumption is reasonable and reflects the reality. However, it
comes with a price in terms of computations. In order to minimize the computational cost,
approximations can be done at different levels. In such an approximation effort, Ostfeld et
al [21] proposed an auxiliary flow, termed representative flow pattern and explained it as

follows:

Contamination due to an external intrusion is propagated by the flow pattern. Since
an intrusion can occur at any given time and place, its propagation is possible by an infinite
number of flow combinations. In order to handle this uncertainty, a single hypothetical flow
pattern is created. This pattern, called a representative flow pattern is described by the time-
averaged flow in each pipe and flow direction. The difference between flow directions is
made on a network, where each pipe of alternated flow direction is substituted by two
parallel pipes. For instance, suppose a 24-hour flow cycle of three different situations, 8
hour each, with corresponding flows at a specific pipe with the velocity of +1000, -700, and
+1500 units. The pipe is represented on the network by two unidirectional and parallel

pipes. The first pipe, appointed with a positive flow velocity of (1000%8/24)+
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(1500*8/24)=833.3 units. The second pipe, assigned with a negative flow direction velocity
of (700*8/24)=233.3 units. The contaminant propagation is so made possible in both flow
directions, each with its corresponding time-averaged flow value [21]. If pipe length is
assumed 1000 units, average time to travel is calculated as (1000/833.3)=1.20 units in
positive direction and (1000/233.3)=4.30 units in negative direction. The resulting

representative flow pattern is depicted in Figure 3.1

O

Figure 3.1 Representative Flow Pattern [21]

However, this approach has certain flaws while assuming bidirectional flow in the
pipe at the same time. If a snapshot of the network is taken, evidently water flows
unidirectional through the pipe. The approach adopted by Ostfeld et al. [21] creates
nonexistent flows. Since, the representative flow pattern is calculated so that each pipe of
alternated flow direction is replaced by two parallel pipes, one in each direction. Then the
pipes are represented on the network by two undirectional and parallel pipes. Moreover,
Ostfeld et al. [21] approach averages the flows that occur in a pipe throughout 24-hours.
However this approach yields misleading conclusions. For example, if a pipe from node A
to node B has a flow direction from node A to node B, between 8 AM and 4 PM time
period, but the direction of the flow changes from node B to node A after 4 PM. Ostfeld’s
et al. [21] approach assumes that there is a certain (average) flow at both directions
throughout the day. Based on this assumption a contaminant introduced from node A can
be determined at node B (given that a sensor is located at node B) within an acceptable time

determined by the average flow. On the other hand, in reality if the flow direction changes
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after 4 PM, an intrusion cannot be detected until the direction of the flow changes.
Therefore, the calculations based on the averaging technique of Ostfeld et al. [21] are
misleading and should be corrected. In this study, calculation of the flow patterns is
different than the calculations in Ostfeld et al. [21]. Briefly speaking, this nonexistent flow
misleads the calculations and claims detection of certain attacks much earlier than what it

would take in reality.

To overcome this issue, we propose to handle the flow patterns separately. For the
above problem provided by Ostfeld, the corresponding flows’ velocity are +1000 at 0-8
hour period, -700 at 8-16 hour period, and 1500 units at 16-24 hour period. And we have
divided the flows’ velocity to the pipe length in order to get the average travel time. If the
pipe length is a 1000 unit, the average travel times for this particular pipe are
(1000/1000)=1.00 unit at 0-8 hour period, (1000/700)=1.43 unit (negative direction) at 8-16
hour period, and (1000/1500)=0.67 unit at 16-24 hour period. The resulting flows with this

approach is illustrated below in Figure 3.2

0 8

143 s (-

16 24
0.67 s (+)

Figure 3.2 Proposed Flow Pattern

22



Handling the flows separately is a better approximation however requires further
computation. For the above example, in order to estimate the travel time of the contaminant
injected at node A, contaminant flows A through B in 1.00 hour between time period 0-8
hour. If the contaminant is injected in 8-16 time period, contaminant flows 4.67 hour.
Since, injected contaminant at 8-16 time period has to wait the 16-24 time period which the
flow turns out to be a positive direction. Assuming equal attack probability within the
period, average weighting time of the contaminant in the node is half of the period, which
is 4 hours. So, the time for the attack reaches to the node B is (4+0.67) =4.67 in the time
period 8-16. Also, contaminant flows A through B in 0.67 hour between 16-24 time period.

(Note that units are taken to be hours in order to represent the time)

2) While estimating the detection time of the contaminant, we have to first identify
the nearest node with a sensor, which is in the reachability set of the attacked node. The
reachability set of a particular node is the set of downstream nodes that the contaminant
would flow through. The determination of the time to detect problem in that sense is
associated with the shortest path problem. Note that in order to estimate the total
consumption of the contaminated water before the contaminant is detected also requires the
shortest path information among the nodes. The path with minimum length between two
nodes on the auxiliary network is the shortest path. By realizing that each arc length equals
to its averaged travel time (the pipe’s physical length divided by its average velocity), the
minimum propagation time from a source of pollution to any other node is equal to the

shortest path between the source and the corresponding node.

3) Recall that we assumed that the probability of detection is assumed to be equal to
1. That is to say, every node in the network should be covered by at least one sensor. For
this purpose we introduce a restricted sensors placement concept in our methodology. The
restricted sensors placement is considered for inflow-only nodes, i.e., the nodes in which
the flow occurs only into the node but not out (sink nodes). A contamination intrusion at

such nodes can only be detected by a sensor that is placed at that node. We refer to these
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SeNnsors as restricted sensors.

4) A contaminant can be introduced to the network from any node. We assume that
the source node for such an attack is distributed equally likely among the nodes of the
network. Therefore, the estimation of the objective function values must consider all
possible attack scenarios. Each node in the network is represented (covered) by its nearest
sensor, which has the minimum average travel time to the nodes. For a given network, after
determining possible contaminant intrusion scenarios, the calculation for the expected time
to detection is done by summing the minimum average travel time to detect contamination
for every possible node in the network to the nearest sensor and then dividing the total

number of nodes in the network.

5) For the expected population exposure, the same procedure is followed. But in
this case demand of a node is taken into consideration. In order to calculate how much
contaminated water is consumed, demand of a node and minimum average travel time to
pass detecting contamination by a sensor is multiplied. For the expected value of this, again

this multiplication is divided into total number of nodes in the network.

Now we can provide the details of the proposed methodology.
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3.4 Proposed Methodology

A methodology for finding the best set of sensor locations, subjected to a given

number of sensors presented in this section. The flow of the methodology is depicted in

Figure 3.3.
3.4.1 The Flow of the Methodology
Demand, demand pattern, pipe length, pipe diameter, tank elevation,
tank diameter, initial, minimum and maximum water level of tank,
pump curve, operation of pump, reservoir
Step 1 Epanet
L Flows
Step 2 Floyd - Warshall
Algorithm
l Shortest Path Matrix
Step 3 [ Clustering ]
Initial Solutions
Step 4 Simulated Tabu Search
Annealing

\/

Sensor Locations
Objective Function Value

Figure 3.3 The Flow of the Methodology
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3.4.2 Step1

The proposed solution starts with a demand, pipe length, pipe diameter, tank
elevations and levels, definition of pump curves and reservoirs input data which are water
distribution systems elements data composed of sources, pipes and hydraulic control
elements such as valves, tanks, and reservoirs. In order to identify the mechanic of the
problem network that is mainly flows and velocities, we used EPANET introduced by
Rosmann [28], which is designed to be a tool for improving our understanding of the

movement and fate of drinking water constituents within distribution systems.

EPANET gives a solid background for the extended-period simulation of the water
distribution network. A network consists of pipes, nodes (pipe junctions), pumps, valves
and storage tanks or reservoirs. EPANET tracks the flow and velocity of water in each pipe,
the pressure at each node, the height of water in each tank, and the concentration of a
chemicals throughout the network during a simulation period included of multiple time
steps. The simulation covers a typical demand cycle, usually one-day or one week. The
output of the hydraulic simulation to be used comprises the time history of the flow

velocities for each pipe in the network.

3.43 Step2

After we identify the flows via EPANET for the given demand pattern and the
network structure, next step is determining the shortest path distances between the nodes.
For this purpose we utilized Floyd-Warshall [1] algorithm. Before presenting the details of
the Floyd-Warshall algorithm we will briefly introduce the shortest path problem and the

associated terminology.
Note that, the flows obtained from the EPANET, assists us to generate a directed

graph representation of the water distribution network, which is composed of a set of nodes

and a set of directed arc. The set of nodes equals to the network’s original set of nodes. The
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set of arc is allocated, based on the simulation results, as follows. A directed arc e (i, j) is
assigned if there exists a pipe between node i and node j and if flow occurs only from node

ito node j.

The length of an arc corresponds to the average travel time along the arc, which is

equal to the physical length of the corresponding arc divided by its average flow velocity.

Assuming that the pollutant moves with a velocity equal to the flow velocity, the
time of the pollutant’s propagation from node i to node j is equal to the minimum travel
time between these two nodes. Hence, the solution to the all-shortest paths problem
identifies the propagation times from any given source of pollution to all other nodes.
Based on the average travel time data of each arc obtained from EPANET, Floyd Warshall
[1] algorithm was implemented in order to identify the all-shortest paths in the network.

Therefore, distance matrix is formed for the next step.

344 Step3

After we determine the shortest path, we apply a clustering algorithm in order to
identify a good initial solution. Note that, a good starting solution usually leads to better
solutions while working with local search heuristics such as Tabu Search and Simulated

Annealing.

Clustering is grouping of data objects with high degree of similarity in the same
cluster while placing those that are dissimilar to other clusters. The goal of clustering is to

determine the intrinsic grouping in a set of unlabeled data.
In this study, k-medoids clustering algorithm is implemented in order to get initial

solution for the sensor placement. The two dimensional distance matrix formed by Floyd

Warshall algorithm [1] is utilized for this purpose.
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The k-medoids algorithm is based on the search for k representative objects or
medoids among the observations of the dataset. These observations should represent the
structure of the data, that is to say, they should be the prototypes of the corresponding
clusters. After finding a set of k medoids, k clusters are formed by assigning each

observation to the nearest medoid.

The aim of the algorithm is to find k representative cluster center, which minimize
the sum of the dissimilarities of the observations to their closest representative cluster
center. By default, when medoids are not specified, the algorithm first looks for a good
initial set of medoids that is cluster centers. Then it finds a local minimum for the objective

function that will decrease the objective called the swapping [14].

In this study, we utilized R project tool [27] developed at Bell Laboratories
(formerly AT&T, now Lucent Technologies) by John Chambers and colleagues for
clustering in order to get medoids. Next, the medoids are accepted as the initial sensor

locations for our problem.

In R project, the k-medoids routine performs k-medoids clustering on a given input,
using the distance matrix and the number of clusters passed by the user. Multiple passes are
being made in order to find the optimal clustering solution, each time starting from a
different initial clustering. The following illustrative figure shows how the kmedoids

technique works.
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Figure 3.4 A Representative Example for the kmedoids Technique
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3.4.5 Step4

After obtaining the initial sensor locations, metaheuristics are utilized in order to
solve the problem. We propose two metaheuristics, namely simulated annealing and tabu

search at this step.

3.4.5.1 Simulated Annealing

Metropolis et al. [20] first introduced Simulated Annealing (SA) also known as
Monte Carlo annealing in 1953. Simulated annealing method initiated from the Annealing
process of thermodynamics, where a solid achieves thermal equilibrium after being frozen
slowly under gradually decreasing temperatures. The crucial advantage of simulated

annealing is its ability to escape local optimum.

The Annealing, is a process for obtaining low energy states of the substance. That
means substance rose to higher energy levels by melting, then it slowly cooled until it
becomes solid. The aim of this process is to get the minimal energy state of the substance

[13].

Simulated annealing is a widely recognized optimization tool. According to Juraj
Hromkovic [31] SA is successful because; 1) It is based on a simple idea and can be
implemented easily 2) Very robust and can be applied to a wide range of optimization
problems 3) The randomness included in the mechanism allows it to outperform local

search.
Evidently, the choice of parameters of the simulated annealing design (the
neighborhood and the cooling schedule) is among the key elements assisting the success of

the application of the simulated annealing algorithm.

Simulated Annealing proceeds by perturbing a possible solution or state by moving

to another state in its neighborhood. The objective function is calculated for the latest state
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and compared to the objective function of the earlier state. In minimization, if the latest
state has a lower objective function than its predecessor, the latest state is accepted
replacing accordingly the older one, and mainly a step downwards is taken towards the
global or local minimum. In contrast, if the latest state’s performance is worse than its
predecessor, simulated annealing may still accept the new worse state based on a

probabilistic model, that is a step upwards may be permitted in a minimization problem.

The simulated annealing requires an initial temperature T, in order to begin with
and a cooling schedule. The initial value T has to be huge enough to let moves to be
accepted, because it should correspond to heating the solid until all particles are arbitrarily
arranged in the liquid stage. While choosing the temperature reduction, the typical method
for the temperature reduction is to multiply T by some constant r, 0.8 <r <0.99. Using
this reduction one works a constant number k of iterative steps with a fixed T, and after k

steps T =rxT.

In this thesis, we propose two different neighborhood generation methods and
compare their performance both in terms of objective function values and computational
requirements. In the first method, the initial sensor configuration is selected among the
network nodes, and at each subsequent step, a candidate solution is constructed randomly,
that is to say the neighborhood generation is random. If certain conditions are met, the
candidate solution becomes the new current solution and repeats the same procedure until a
termination criterion is met. We refer to this scheme as Randomized Simulated Annealing.
Note that this method is basically a random search algorithm with a Simulated Annealing

flavor during the new current solution selection process.

The second neighborhood generation method is a more conventional approach, in
which a set of candidate solutions is created with respect to a more structured neighborhood
generation criterion. We refer to this neighborhood search mechanism as Structured
Simulated Annealing. In this research we adopt a one-swap neighborhood generation
approach. In this approach, we select a node from the set of nodes in which a sensor is

placed at the current solution and swap it with a node, which is adjacent (has a direct arc in-
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between) to it. All possible swaps lead to a set of candidate solutions, which are defined to
be the neighbors of the current solution.

The objective function is utilized as the fitness function and selection criteria during
evaluating the performance of the candidate solutions. If the fitness function value of the
candidate state is better than the current solution, the candidate solution is accepted as the
new current solution apart from the temperature value. On the other hand if the
performance of the candidate solution is worse than its predecessor, first a random number
p denoting a random probability is calculated from a uniform random distribution on the
interval [0, 1]. Then the following Metropolis criterion is checked choosing whether to

accept the new state or not;

—AE
—, T
p=e

where T represents the actual temperature and AE represents the difference between

the fitness value of the candidate solution and the current solution:
AE = Fitness (Candidate Solution) — Fitness (Current Solution)
It is easily seen that, in the case of a minimization problem, a state is better than

another state if its fitness value is lower than the other state’s fitness value. The algorithm

illustrates a basic simulated annealing process of a minimization problem.
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algorithm Simulated Annealing

Initialize Temperature 7, where 7, >0

Select an Initial Solution /,

Set k=land T, =T,

Set Current Solution as an Initial Solution CS, = I
While Stopping Criterion > T,

Repeat Until the Termination Criteria is met (e.g., for a certain number of iterations N)

Select a new point in the neighborhood of the, CS, namely NS,
Evaluate AE = AE ; —AE,,

If AE <0 thenset CS, = NS,

_AE
Else set CS, = NS, with a probability of e "
Set k=k+1
Set 7, = 1T,_,
End

Figure 3.5 Algorithm for the Simulated Annealing Technique

In this thesis a second meta-heuristic, namely the Tabu Search Algorithm is also
implemented for the sensor placement problem. Next we provide the details of the

proposed Tabu Search Algorithm.
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3.4.5.2 Tabu Search

Tabu search is a heuristic based on local search. It is a relatively new technique first
proposed in 1977 by Glover [10]. The major advantage of Tabu Search is its ability to
escape indefinite cycling conditions. The idea behind this ability is that, there is no
possibility of accepting a bad solution or step except it is going to assist to escape the
cycling situations by preventing a path already visited. Thus, tabu search techniques require
an internal memory, which grasps the paths already visited, i.e., tabu list. Note that,
simulated annealing and local search algorithms are memoryless, that is to say moving to a
candidate solution depends solely on the current solution. However, tabu list allows

utilizing certain number of previous solutions to be effective in the selection process [13].

The Tabu list, usually executed as an array, which forbids some paths, most likely
the previously visited ones, which eventually gets rid of the risk of oscillation or cycling.
And this is the idea of the tabu search: to store some information about a sequence of the
last feasible solutions generated and to use this information when generating the next

feasible solution.

Tabu search algorithm is also a neighborhood search algorithm, thus requires a
neighborhood generation mechanism. In this study, the two neighborhood generations

methods discussed above are utilized.

While designing a Tabu search algorithm the Tabu list, its organization, its length
and implementation should have been taken into consideration. The Tabu list’s length
should be cautiously considered, as an incorrect choice of the list’s length may yield an
ineffective algorithm. It is discussed that the list length between 7 and 15 is generally

appropriate for a wide range of applications [30].
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algorithm Tabu Search
Identify initial Solution
Create empty TabulList
Set BestSolution =Solution
Define TerminationConditions
Done=false
Repeat
If Value of Solution > Value of BestSolution Then
BestSolution=Solution
If no TerminationConditions have been met yet
Then
Generate all neighbors and select the best one
Select best non Tabu neighbor as next solution
Add Solution to TabuList
If TabuList is full then
Delete oldest entry from TabuList
If no non tabu neighbor solution was found OR
If no improved has been achieved on best objective value
Then
Done=True
Else
Assign NewSolution as a neighboring
If New Solution not on Tabu List Then
Solution = New Solution

End

Figure 3.6 Tabu Search Pseudocode

35



4 COMPUTATIONAL RESULTS and EXPERIMENTAL ANALYSIS

In this chapter, we provide the details of the experimental design and compare the
performances of the proposed algorithms both in terms of the objective function values and
computational requirements. The proposed algorithms are coded in C++ language using

Microsoft Visual Studio 6.0.

We first provide the details of the experimental analysis. Later we provide the results
of the analysis. In this research we compared the performances of the proposed algorithms
both in terms of the objective function values and computational costs. We also analyzed
the performance of the algorithms under various parameter settings and subroutines such as
the two neighborhood generation mechanisms discussed in the previous chapter and
utilizing or skipping the k-medoids clustering algorithm while generating the initial

solution.

4.1 Experimental Conditions

There five experimental factors that can affect the efficiency of the proposed
algorithms.
These factors are listed as follows:
1. Size of the water distribution networks

2. Number of Sensors located

In this thesis we utilized four water distribution networks that are available in the
literature as benchmark problems. The first one is a small network with only 9 nodes. The
second and third networks are medium sized with 33 and 92 nodes respectively. The fourth
water distribution network is a representative of large networks with 1192 nodes. (Table

4.1)
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We also considered three different density levels in terms of the number of sensors
that would be located. These three levels will be referred to as low density, medium
density and high density. Note that, the number of sensors to be located not only
depends on how dense the network would be but also to the size of the network and
number of restricted nodes in the network. Therefore we came up with the following

table, which illustrates the number of sensors for each density category and network

size.

Table 4.1 Size of the Network and Density Category of Sensors

Number of Nodes in the Distribution
Network
(Size of the Network)
DC # of Nodes 9 33 92 1129
LD # of sensors 2 7 19 334
MD # of sensors 3 10 27 422
HD # of sensors 4 13 35 510

* DC: Density Category
* LD: Low density, MD: Medium Density, HD: High Density

4.2 Variations in the Algorithm

We also investigated the performance of the algorithms with respect to some

variations in the methodology. These variations are listed as follows;

1. Neighborhood Generation Mechanism: Structured or Randomized

2. Selecting the initial solution based on clustering or not
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Recall that the Structured Neighborhood generation corresponds to selecting a node
from the set of nodes in which a sensor is placed at the current solution and swap it with a
node, which is adjacent (has a direct arc in-between) to it. On the other hand, in
Randomized Neighborhood generation, at each subsequent step, a candidate solution is

constructed randomly.

The performance of the local search algorithms usually improves if the search starts
from a good initial solution. In order to determine the effects of such a strategy, we decided
to include a clustering stage, which can provide a good initial solution to the meta-

heuristics.

4.3 Parameters of the Algorithm

One of the major disadvantages of meta-heuristics is the number of parameters that
should be tuned for a good solution. Both simulated annealing and tabu search algorithms
have relatively low number of parameters compared to other meta-heuristics such as
genetic algorithms. Now we discuss the parameter selection process implemented in this

research.

4.3.1 For the Simulated Annealing (SA)

In this thesis, we set the initial temperature of the SA as the initial objective
function value, which is large enough for initial temperature. The cooling parameter r is
chosen as 0.99, because of the nature of the problem [29]. Third parameter that should be
decided is the termination criterion. We adapted an approach, which checks two conditions.
First condition implies to terminate the algorithm as soon as the temperature drops below a
certain level. We compare 5 different levels according to their performances. Note that as
the level decreases, the computational time increases. The terminating temperature levels
for experimental analysis are chosen as 0.1, 0.01, 0.001, 0.0001, and 0.00001. The second

condition is a conventional no changes for some time then stop criterion. That is to say, the
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algorithm terminates when the objective function value does not improve for the last 50

iterations.

4.3.2 For the Tabu Search

Among the parameters for the Tabu Search, tabu list is the most significant one.
Therefore, we opt to analyze the performance of the Tabu search algorithm with various
tabu list sizes. We set of the size of the tabu list to 5, 7, 10 and 15, and compared the
performance of the Tabu Search algorithm [30]. Note that, if the size of the tabu list is too
large, one can not generate neighbors, that is to say the intensification objective of a local
search algorithm suffers. On the other hand, a short tabu list may prohibit a diverse search.
For the TS algorithm, we utilize a termination criterion similar to the latter condition
adopted in simulated annealing. According to this termination criterion, the algorithm stops
if the objective function value does not change for the last 10 iterations.

After introducing the experimental conditions and parameters of the problem, next we

present and discuss the results.

4.4 Results

In Table 4.2, the expected times to detect values are presented for the SA algorithm
with clustering and SA algorithm without clustering with respect to the structured
neighborhood search. In the same table, the objective function values corresponding to
different temperature level parameters also presented. It seems that as the size of the
network increases both the effect of clustering and the temperature level parameter

becomes more significant.
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Table 4.2 Expected Time to Detect with Structured Neighborhood Search for SA

SASC without Clustering SASC with Clustering

A B 0.1 0.01 0.001| 0.0001] 0.00001 0.1 0.01] 0.0001] 0.00001] 0.000001

2 3.94 3.94 3.94 3.94] 3.94 3.94 3.94 3.94] 3.94 3.94

3 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51

9 4 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

7 7.64 7.64 7.64 7.64] 7.64 8.23 7.64 7.64] 7.64 7.64

10 5.44 4.47 4.47| 4.47| 4.47] 5.44 4.31 4.31 4.31 4.31

33 13 3.47 2.32 2.32 2.32 2.32 4.51 3.92 3.53] 3.53 3.53
19 2.88 2.17 1.86 1.86) 1.86 2.67 2.14 1.88] 1.88 1.88

27 1.64 1.26 0.96 0.96 0.96 1.61 1.34 1.00) 1.00 1.00

92 35 1.06 0.65 0.52 0.52 0.52 1.10 0.83] 0.61 0.61 0.61
334 | 2269.30 2217.83] 2073.47| 1914.06| 1890.02| 1854.54] 1854.54| 1836.15| 1616.90| 1616.90

422 | 1792.28] 1792.28] 1496.19] 1278.26] 1122.37[ 1522.70] 1522.70] 1504.09] 1302.09[ 1273.29

1129 510 | 1325.07| 1296.71| 1166.63| 891.68 761.97| 1108.08 1108.08| 1070.42] 871.10] 786.89

* SASC: Simulated Annealing Stopping Criteria

From the tabulated results, as easily can be seen that if the density of the sensors
increase the stopping criteria play an important role for the results. Moreover, in small
sized networks, we could not observe significant change under the different stopping

criteria both for the clustering and without clustering cases.

On the other hand, in the large network, all the parameters of stopping criteria alter
the results. And we may conclude that clustering is a good alternative for large networks in
simulated annealing with structured neighborhood search in order to minimize the expected

time to detect.

In Table 4.3, the expected population exposure values are presented for the SA
algorithm with clustering and SA algorithm without clustering with respect to the
structured neighborhood search. In the same table, the objective function values

corresponding to different temperature level parameters also presented.
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Table 4.3 Expected Population Exposed with Structured Neighborhood Search for SA

SASC without Clustering SASC with Clustering
A B 0.1 0.01 0.001] 0.0001] 0.00001 0.1 0.01] 0.0001] 0.00001/0.000001
2 958.15 958.15 958.15 958.15 958.15 958.15 958.15( 958.15 958.15 958.15
3 400.25 400.25] 400.25 400.25 400.25 400.25 400.25 400.25 400.25 400.25
9 4 192.96] 192.96] 192.96] 192.96] 192.96) 192.96[ 192.96] 192.96] 192.96] 192.96

7 174.66) 174.66] 174.66] 174.66| 174.66] 164.42] 164.42] 164.42] 164.42] 164.42
10 102.76) 69.76] 69.76] 69.76] 69.76] 97.90] 78.62 78.62] 78.62 78.62
33| 13 59.14| 3458 34.58| 34.58 3458 61.39 38.04 33.58 33.58 33.58
19 24422 137.30] 123.02] 123.02] 123.02| 479.76] 350.32 118.73] 118.73] 118.73
27 154.56] 53.55| 29.83] 29.83] 29.83 163.81] 102.73] 42.29] 37.90 37.90
92| 35 52.27] 2188 1235 1235 12.35 79.06] 59.95 31.86] 28.47| 28.47
334 145536.90142179.50[37345.90128776.10[24295.60130556.30[30556.30[30556.30[27614.00[26430.10
422 |28184.40126128.10[20474.10/15676.00{11718.10[27393.10]27393.10[24881.30[21852.60[20522.60
1129 510 [16810.50115472.70/12549.30[10136.20| 6352.22/18299.90[18299.9016689.50[14062.70[12765.90

Here, one can easily realize that without clustering superior to clustering. While
implementing clustering, in the minimization of the expected population exposed, we have
only considered the distance matrix. On the other hand, both distance matrix and demand

patterns should have been taken into consideration.
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In Table 4.4, the expected times to detect values are presented for the Tabu Search
algorithm with clustering and Tabu Search algorithm without clustering with respect to the
structured neighborhood search. In the same table, the objective function values
corresponding to different tabu size parameters also presented. We have realized that as the
size of the tabu list increases, objective values does not change. So we have concluded that

size of the tabu list does not have significant affect on the solution.

Table 4.4 Expected Time to Detect with Structured Neighborhood Search for Tabu

TSP without Clustering TSP with Clustering
A B 5 7 10 15 5 7 10 15
2 3.94 3.94 3.94 3.94 3.94 3.94 3.94 3.94
3 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51
9 4 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
7 7.64 7.64 7.64] 7.64] 7.64] 7.64] 7.64 7.64
10 4.47 4.47 4.47 4.47 5.04 5.04 3.89 5.10
33 13 2.50 2.37 2.50 2.50 3.90 3.90 3.95 2.56
19 1.86 1.86 1.86) 1.86] 2.02 1.84 1.89 1.78
27 0.94 0.93 0.88 0.88 1.07] 1.14 0.92 0.94
92 35 0.47] 0.48 0.44 0.44 0.47] 0.47 0.47 0.47
334 1770.60f 1770.60f 1770.17] 1766.74] 1567.17| 1565.00 1551.04] 1548.81
422 1175.63 1175.63| 1165.68 1128.16] 1186.53] 1185.88] 1183.23 1182.87
1129 510 699.24] 699.24 698.97] 694.20| 789.90] 789.61 787.44  787.44]

*TSP: Tabu Search Parameter

Tables are tabulated in order to investigate the relationship between tabu size and
our objectives. In the small networks, we have shown that length of the tabu size does not
affect the results so much. In moderate sized network, the tabu size length could be 7 to 10.

In the large network, it is proper to take the tabu size length as 15.
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In Table 4.5, the expected population exposed values are presented for the Tabu
Search algorithm with clustering and Tabu Search algorithm without clustering with respect
to the structured neighborhood search. In the same table, the objective function values
corresponding to different tabu size parameters also presented. In fact as the size of the
network increases, there is not much considerable change both the effect of clustering and

the tabu size length.

Table 4.5 Expected Population Exposed with Structured Neighborhood Search for Tabu

TSP without Clustering TSP with Clustering
A B 5 7| 10, 15 5 7] 10 15
2 958.15 958.15 958.15 958.15 958.15 958.15 958.15 958.15
3 567.99 567.99 567.99 567.99 646.52 646.52 646.52 646.52
9 4 213.05 213.05 213.05 213.05 213.05 213.05 213.05 213.05
7 383.52 383.52 383.52 383.52 368.70 368.70 376.01 383.74
10 108.32 108.32 108.32 108.32 305.75 305.75 305.75 305.75
33 13 63.79 63.79 63.79 63.79 251.88 251.88 257.05 258.15
19 660.20 660.20 660.20 660.20 528.07 528.07 546.92 769.02
27 48.38 48.38] 48.38 48.38 113.27 110.20) 110.20, 108.95]
92 35 21.54] 21.70, 21.95 22.61 44.75 45.44 44.75 43.13
334 35039.00] 35039.00] 35039.00 35039.70] 27072.60] 27072.60 27071.70[ 27056.80)
422 21442.00 21442.00 21442.00] 21442.00, 22061.10 22061.10| 22116.90] 22117.20]
1129 510 9958.68 9958.68| 9958.68 9909.59 15258.70| 15258.70| 15219.20] 15204.20
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In Table 4.6, the expected time to detect values is tabulated for the SA algorithm
with clustering and SA algorithm without clustering with respect to the randomized
neighborhood search. In the same table, the objective function values corresponding to

different temperature level parameters also presented.

Table 4.6 Expected Time to Detect with Randomized Neighborhood Search for SA

SASC without Clustering SASC with Clustering
A B 0.1 0.01 0.001] 0.0001] 0.00001 0.1 0.01  0.001] 0.0001] 0.00001
2 3.94 3.94 3.94] 3.94 3.94 3.94 3.94 3.94] 3.94 3.94
3 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51
9 4 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
7 7.73 7.64 7.64] 7.64 7.64 7.73 7.64 7.64] 7.64 7.64
10 4.96 3.91 3.91 3.91 3.91 5.75 3.91 3.91 3.91 3.91
33 13 2.76 2.37] 2.37] 2.37] 2.37 4.08] 2.56] 2.37] 2.37 2.37]
19 2.33 1.77 1.72 1.72 1.72 2.45 1.99 1.77, 1.77 1.77
27 1.54] 1.08] 0.99 0.99 0.99 1.60) 1.22 1.05) 1.05 1.05
92 35 1.05 0.67| 0.53 0.53 0.53 1.06 0.53] 0.51 0.51 0.51
334 |2049.67| 2049.67| 1539.36) 1300.00] 1300.00] 1855.12] 1855.12| 1518.86| 1352.61| 1352.61
422 | 1611.39] 1565.41| 1247.31] 844.35] 824.49| 1518.32| 1475.91| 1265.36] 888.48| 888.48]
1129 510 | 1120.70] 1120.70] 1009.41| 643.67| 542.65| 1110.27| 1110.27| 838.90] 548.34| 548.34]

As in the case of SA with structured neighboring, in small sized networks, we could
not observe significant change under the different stopping criteria both for the clustering
and without clustering cases. However, stopping criteria is a significant parameter in the
large network. We have observed that for large networks if we allow more iteration,

clustering is better than without clustering.
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In Table 4.7 the expected population exposed values are depicted for the SA
algorithm with clustering and SA algorithm without clustering with respect to the
randomized neighborhood search. In the same table, the objective function values

corresponding to different temperature level parameters also presented.

Table 4.7 Expected Population Exposed with Randomized Neighborhood Search for SA

SASC without Clustering SASC with Clustering

0.1 0.01]  0.001) 0.0001[ 0.00001 0.1 0.01 0.001] 0.0001| 0.00001

958.15 958.15 958.15 958.15 958.15 958.15 958.15 958.15 958.15 958.15

192.96| 192.96] 192.96| 192.96| 192.96) 192.96] 192.96) 192.96] 192.96] 192.96

B
2
3 400.25 400.25 400.25 400.25 400.25 400.25 400.25 400.25 400.25 400.25
4
7

174.68 164.59] 164.59] 164.59 164.59) 164.42| 164.42] 164.42] 164.42] 164.42

10 83.50 7235 69.76] 69.76) 69.76| 97.35 71.31 69.76] 69.76 69.76

33 13 63.04f 37.84 37.84| 37.84 37.84 59.17| 48.62 33.29] 33.29 33.29

19 236.49| 122.74| 122.74] 122.74) 122.74] 287.40| 197.67| 147.84] 147.84] 147.84

27 95.37]| 59.02] 31.60 31.60 31.60] 108.89] 85.91 32.69 32.69  32.69

92 35 4287, 17.54 11.91 11.91 11.91 56.000 21.11 13,52 13.52 13.52

334 [34951.00128327.40[20074.50[15384.40/15384.40[30556.30[30556.30[18654.40{15196.40/15196.40

422 [22900.40/18423.10[11275.10] 7555.76| 7441.0520543.90|17531.30[13073.10] 7626.86 7369.08

1129 510 [13518.50111717.40] 8202.62] 5020.96| 3987.20[13051.70|11124.90| 7946.28| 5078.10] 4176.89

For all of the discussions about simulated annealing with or without clustering,
randomized or structured neighboring search, we might generalize that results between the
stopping conditions for the small, moderate as almost the same as different parameters. But

in the large network, we can realize the effect of parameters.
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In tabulated results, the expected time to detect and expected population exposed
values are illustrated for the Tabu Search algorithm with clustering and Tabu Search

algorithm without clustering with respect to the randomized neighborhood search.

Table 4.8 Expected Time to Detect with Randomized Neighborhood Search for Tabu

TSP without Clustering TSP with Clustering
A B 5 7| 10, 15 5 7| 10 15
2 3.94 3.94 3.94 3.94 3.94] 3.94 3.94 3.94
3 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51
9 4 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62
7 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64
10 3.89 3.89 3.89 3.89 3.89 3.89 3.89 3.89
33 13 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
19 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72
27 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
92 35 0.44 0.44 0.44 0.44 0.44 0.44] 0.44 0.44]

Table 4.9 Expected Population Exposed with Randomized Neighborhood Search for Tabu

TSP without Clustering TSP with Clustering
A B 5 7| 10, 15 5 7| 10 15
2 958.15 958.15 958.15 958.15 958.15 958.15| 958.15 958.15
3 400.25] 400.25 400.25] 400.25 400.25 400.25 400.25 400.25
9 4 192.96] 192.96( 192.96] 192.96] 192.96 192.96| 192.96] 192.96
7 164.42] 164.42] 164.42] 164.42| 164.42 164.42] 164.42] 164.42
10 69.76)] 69.76) 69.76] 69.76] 69.76] 69.76| 69.76] 69.76
33 13 32.88] 32.88) 32.88) 32.88 32.88 32.88 32.88 32.88
19 106.48] 106.48 106.48] 106.48] 106.48 106.48 106.48 106.48
27 28.63] 28.63] 28.63] 28.63 28.87] 28.63] 28.63 28.63
92 35 10.61 10.61 10.61 10.61 10.61 10.61 10.61 10.61

The results show that randomized search in different Tabu size length does not
affect the solution. Also, the large network solutions could not get, because of the high
computational time of randomized neighborhood search. Since, in the randomized search
case, the algorithm search for the all neighbors apart from current node. Because of this

reason, tabu search with randomized neighborhood search is not efficient for large network.
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In order to realize which techniques, stopping criteria (1,2,3,4,5) that is (0.1, 0.01,
0.001, 0.0001, 0.00001) or length of tabu size (1,2,3,4) that is (5, 7, 10, 15) are superior, we
have analyzed the results. The following figures illustrate the best-expected time to detect
and population exposed values for the different parameters in design case 3 with 27 sensors

located through the network.

1. Experiment for the Structured Neighborhood Search for the SA vs Tabu
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Figure 4.1 ETD for Structured Neighborhood without Clustering
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Figure 4.2 ETD for Structured Neighborhood with Clustering
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Tabu noticed the solution that is nearer to best solution at the first iteration, however
the simulated annealing should iterate at least 2 times in order to reach the closer result.
Also, Length of tabu size does not have significant affect on the best solution for the
minimum expected time to detect. In the clustered case, again the conclusion is same as the

other parameters.
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Figure 4.2 EPE for Structured Neighborhood without Clustering
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Figure 4.4 EPE for Structured Neighborhood with Clustering
For the expected population exposed, simulated annealing gives better solution than

tabu search and SA reaches the best solution at the third stopping criterion. Also, it is easily

say that the results for the different tabu size length are the same.
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2. Experiment for the Randomized Neighborhood Search SA versus Tabu
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Figure 4.5 ETD for Randomized Neighborhood without Clustering
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Figure 4.6 ETD for Randomized Neighborhood with Clustering

For the Randomized neighborhood search tabu search presents a better solution than

simulated annealing. Also, tabu size doesn’t influence the solution for the randomized case.
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Figure 4.7 EPE for Randomized Neighborhood without Clustering
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Figure 4.8 EPE for Randomized Neighborhood with Clustering

For the expected population exposed tabu provide a better solution than simulated

annealing. From the depicted figures, the length of tabu size does not influence the solution.
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3. Experiment in the Structured Neighborhood Search, Time vs Performance in
Tabu

Computational Time vs Tabu Size
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Figure 4.9 Computational Time vs Tabu Size ETD
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Figure 4.10 Computational Time vs Tabu Size EPE

As the figures illustrate that clustering in tabu search with structured neighborhood

is superior to without clustering case with respect to computational time.
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4. Experiment for the Randomized Neighborhood Search vs Time in Tabu
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Figure 4.11 Computational Time vs Tabu Size ETD
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Figure 4.12 Computational Time vs Tabu Size EPE

Obviously, tabu search with randomized neighborhood search with clustering is
more rapid than the case for without clustering. On the other hand, if we analyze the
randomized versus structured neighborhood search with respect to their times, structured

one depicts the fewer times for both of the clustering case.
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5. Large network (1129 nodes) with 510 sensors located throughout the network is
utilized for demonstrating the time versus performance with simulated annealing algorithm.
Since we couldn’t realize the exact difference for the solution with simulated annealing in

moderate sized network with 92 nodes. We have illustrated the time versus performance

relation for the structured neighborhood search.
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Figure 4.13 Computational Time vs SA Stopping Criteria ETD
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Figure 4.14 Computational Time vs SA Stopping Criteria EPE

There is no superior difference with respect to computational time in simulated
annealing with structured neighborhood search according to expected time to detect and

expected population exposed with and without clustering.
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6. 1129 nodes with 510 sensors with Randomized Neighborhood Search in

simulated annealing corresponding to a time versus performance figures.
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Figure 4.15 Computational Time vs SA Stopping Criteria ETD
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Figure 4.16 Computational Time vs SA Stopping Criteria EPE

As in the previous case, we could not say that with clustered or without clustered
case improve the results. As in the both cases simulated annealing gives no difference

between clustered or no clustered with respect to computational time.

On the other hand, it is easy to show that structured neighborhood search for the

simulated annealing is relatively shorter computational time than the randomized

neighborhood search.
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7. Below figures depict the iterations number with respect to the expected time to
detect and expected population exposed objective values in Simulated Annealing with
stopping criterion 5 which is less than or equal to 10~ . The experimentation is made with

large network 1129 nodes with 422 sensors.
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Figure 4.17 Expected Time to Detect vs Iteration no
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Figure 4.18 Expected Population Exposed vs Iteration no
From the figures, we can conclude that clustering gives better solution with smaller
iteration numbers. As the iteration numbers increases, both cases (with or without

clustering) present near solutions.
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S CONCLUSION

In this chapter, we provide a brief summary of the contributions done in this thesis and
address of some of the future research directions. In this thesis, we have studied optimal
sensors location in water distribution networks and concentrated mainly on two objectives:
expected time to detect and expected population exposed. We proposed a new methodology
to solve the binary nonlinear objectives. The solution procedures that are proposed are a
meta-heuristics: simulated annealing and tabu search based on the two neighboring

generation.

5.1 Contributions

First of all, we have introduced a novel approach so that the different flow patterns

during a day can be cope with.

Secondly, we have considered an important feature of the problem domain that is not
considered by the algorithms in the literature. That is the restricted sensor concept. In order
to guarantee the full protection in the network, i.e. detection probability of an attack is

equal 1; restricted sensors should be placed at the isolated node in the network.

Thirdly, in the proposed framework, we have realized the relationship among
clustering and location problems in a way that the initial solutions of the meta-heuristics are

produced with a k-medoids clustering algorithm.

Then we have presented the performance of the proposed algorithms that are affected
by size of the networks and the number of sensors to be placed. Evidently, we showed that
as the size of the network increases both the effect of clustering and the temperature level

parameter becomes more significant especially in the large networks.
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We also explored the competency of the algorithms with respect to some variations in
the methodology with respect to the neighborhood generation mechanism: structured or

randomized and selecting the initial solution based on clustering or not.

We also examined three different density levels: low, medium, and high in terms of

the number of sensors that would be located.

We have accomplished that structured neighborhood search depicts the fewer

computational times for with or without clustering case than the randomized one.

5.2 Future Research directions

There are several future research directions originated from this research study as follows:

1. In this research, we assumed that there is an equal probability of being a source
of pollution node. This assumption may be relaxed by performing the unequal
node probabilities for becoming a pollution node may be explored.

2. It is necessary to examine the multiple contaminant injection case.

3. In the case of sensors failure, no analysis has been made.

4. In this study, intrusion will occur only at nodes. In a more realistic case,
contamination injections may be considered both along the pipe (edge) and at

nodes. Hence, sensor placement at edges as well as at nodes could be examined.
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