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A Kronecker’s Limit Formula For Real Quadratic Number Fields

Abstract

Let K be a quadratic number field, the Dedekind zeta-function of K, (x(s) can be
written as a sum of partial zeta functions, ((s, A) where A runs over the ideal class
group of K and s a complex number. Then ((s, A) has an analytic continuation
as a meromorphic function of s with a simple pole at s = 1. Dirichlet proved that
the residue of ((s, A) is independent of the ideal class A chosen. For the constant
in the Laurent expansion of partial zeta function around s = 1 we will examine
Kronecker’s and Zagier’s results. Kronecker found the constant for the imaginary
quadratic case. Working with imaginary quadratic fields is much easier because of
the finiteness of unit group of the field. For real quadratic fields there are infinitely
many units and Zagier computed the constant for this case. Also we will include
continued fractions as Zagier used for the proof of the limit formula of zeta-function
for real quadratic number fields.
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IKINCI DERECEDEN GERCEL SAYILAR CISIMLERI ICIN
KRONECKER IN YAKINSAMA FORMULU

Ozet

K ikinci dereceden sayilar cismi olsun. s gercel olmayan bir say1 ve A da K
nin ideal simf grubundan bir ideal iken K’ nin Dedekind zeta-fonksiyonu (x(s)
i kismi zeta- fonksiyonlarin, (x (s, A) toplamiolarak yazabiliriz. O zaman ((s, A)
analitik surekliligi olan s = 1 de tanimsiz bir meromorphic fonksiyon olur. Zeta
fonksiyonunun residu su Dirichlet tarafindan hesaplanmig ve A ya bagiml olmadig
gosterilmistir. Kronecker zeta fonksiyonunun Laurent acilimindaki sabit sayiy1 gercel
olmayan ikinci dereceden sayilar cismi i¢in bulmug. Unit sayisi sonlu oldugundan bu
cisimlerde hesap yapmak, unit sayisinin sonsuz oldugu gergel sayilar cisminde hesap
yapmaktan daha kolaydir. Zagier sabit sayiy1 gercel sayilar cisminde hesaplamistir.
Biz de Kronecker ve Zagier in sonuclarini inceleyecegiz. Ayrica Zagier in teoreminde
kullandig stirekli kesirlerden bahsedecegiz.
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CHAPTER 1

Quadratic number Fields

Many mathematicians were interested in finding the solutions to algebraic equations
and this interest lied to different subjects in Mathematics, one of which is number
theory. In the process of finding the zeros of a polynomial f(z) over a field k, we
sometimes need a larger field, so we pass to a larger field K, K can be thought as the
union of k£ and the roots of the polynomial f(x). K is called a ” field of extension”
of k, denoted by K/k. For the special case k = Q and the irreducible polynomial
f(z) over k has degree 2, we call the field of extension of k, a quadratic number
field. We also give special names for the roots of f(x). For the case f(r) € Q[z]
roots are called algebraic numbers, and when f(x) € Z[z] and monic, then roots
are called algebraic integers. It can be shown that for an algebraic number « over
K, there exists a unique, monic, irreducible polynomial, p of minimal degree subject

to p(a) = 0, which is called the minimum polynomial of a over K.

Proposition 1.0.1. The quadratic fields are precisely those of the form Q(\/E) for
d a square free integer. If d > 0 we call it a real quadratic number field, if d <0

we call it an imaginary quadratic number field.

Proof: Firstly let us show that we can write K = Q(6) where 6 is an algebraic
integer.
Note that we have [K : Q] =2. Let § € K Q
Claim: {1,0} form a basis for K over Q, i.e K = Q(0).
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Proof: It is clear that Q(f) C K. Also it is enough to show that {1,6} is linearly
independent over Q since [K : Q] = 2. Consider a+bf = 0 with a,b € Q this implies
6 e QU

So there exists # € K/Q such that K = Q(f), i.e K = {m + nf|m,n € Q}.
Now 6? € K so 6? = m +nf with m,n € Q. This implies 6 is a root of the equation
t2 — nt —m, where m,n € Q. Multiplying with an appropriate integer we can clear
the denominators and get an equation in integers at? + bt + c¢. Note that 0 is still a
root of this equation.

Hence 0 = %@. Let b — 4ac = 7%d where 7,d € Z and d square free.

So f = ==Vd that is K = Q(F) = Q(v/d) O [7]

Now let us define the norm and trace functions of an algebraic number.

Definition 1.0.1. Let a be an element of K = Q(v/d).

Consider the mapping i, : K — K such that po(5) = aB. pe is a Q-linear map.
Choose a basis {wy, ws} of K/Q and let A be the matriz representing ji, with respect
to {wy,we}. A is a 2 X 2 matriz over Q. Then define

N(a) :=det A € Q and Tr(a)=tr A€ Q.

Note that from the definition of norm it follows that norm function is multi-
plicative, i.e N(af)=N(a)N(3), since jiqap) = fta © ttg 50 Ap = AqAg. Hence
multiplicative property follows from det(A,s))=det(A,) det(Ag).

Another important fact is that norm and trace functions of an algebraic integer

are integers.

Theorem 1.0.1. Let o € K be an algebraic integer and p(z) = x> + ax + b be the
manimal polynomial of o over Z. Then

(i)N(a) = b

(i) Tr(a) = —a

Proof: We have {1,a} basis for K(«)/Q. Consider 1,(1) = a and pq(a) =

0 —b
a? = —aa —b. So the matrix for this map is A = .SoN(a) =detA=1b
1 —a



and Tr(a)=trAd = —a O

One can be interested in finding the algebraic integers of Q(v/d). The following

theorem will enlighten this question in minds.

Theorem 1.0.2. Let d be a square free integer. Then the algebraic integers of
Q(\/E) are
1) Z+ Z(\/d) for d # 1 (mod4)

2) Z+ Z(*) ford=1 (mod 4)

Proof:

Let @ = a + bv/d ¢ Q(+/d) be an algebraic integer. Then N(a + bv/d) and
Tr(a + bv/d) € Z by Theorem (1.0.1).
To find the norm and trace of a consider the minimal polynomial of o which is
f(z) = (z = ((a + 0Wd)(z — (a — bWd) = 2> — 2az + (a> — b*d). So again by
Theorem (1.0.1), N(a + bv/d) = a® — b*d and Tr(a + bv/d) = 2a.
Consider 4(a? — b*d) — (2a)? which is an integer. 2a € Z so 4b?d € Z. Hence
(2b)%d € Z which implies 2b € Z since d is square free and if (2b)? has denominator
it will not be canceled by d, so it has no denominator. Now we have 2a and 2b
are integers. Write a = %’, b= %’ where o’ and b’ are integers. So o = %/ + (’2—/\/3,

a', b € Z and a” — b*d = 0 (mod 4) since a' = 2a,b’ = 2b. We look at two cases:

Casel: d = 2,3 (mod 4) = a"* = b"d (mod 4). Note that for any integer ¢ € Z we
have ¢2 = 0,1 (mod 4). So @’ = =0 (mod 2) Hence . % € Z = a € Z + Z+/d.

272
Conversely let o be an element of Z + Z+/d. Then one sees that it satisfies the
polynomial f(z) = 2? — 2ax + (a® — b*d) which is monic with integer coefficients,
hence it is an algebraic integer.

Case2: d = 1 (mod 4) = @? = V? (mod 4) = o = V' (mod 2) Hence a =
%/—I—(’Q—/\/E = %%—b’lz—ﬂ € Z+Z1+2—*/‘z. Conversely let a be an element 0fZ+Z1+2—‘/E,

a+bVd
2

ie a= where a = b (mod 2). Then one sees that it satisfies the polynomial

f(x) = 2% —ax + (%) which is monic with integer coefficients, hence it is an

algebraic integer. [



The set of algebraic integers of a quadratic number field form a ring. It is called
the ring of integers of K. For a quadratic number field we have 2 embeddings,
01,09 of K into C as oy is the identity map and oy sends a + bVd to a — bv/d where
a,b € Q. Now let {ay, a5} be a basis for Q(v/d)/Q. Then we define discriminant
of this basis as d(aq, a)= det(Tr(a;c;))= det(o;(c;))? Also {1, s} is called an
integral basis for Q(v/d) if it is a Z-basis for the ring of integers of Q(v/d), i.e
¥ = Zoy + Zavy, where ¥ is the ring of integers of Q(v/d). Then, discriminant of
Q(V/d) is the discriminant of the integral basis of Q(v/d).

Now let us examine the discriminant of Q(v/d).

Theorem 1.0.3. Let Q(\/a)/(@ be a quadratic number field with d a square free
integer. Then

(a) If d # 1 (mod 4) then Q(v/d) has an integral basis of the form {1,v/d} and
discriminant 4d.

(b) If d = 1 (mod 4) then Q(v/d) has an integral basis of the form {1,114}

2

and discriminant d.

Proof:
Case d = 2,3 (mod 4):
{1,4/d} is an integral basis for Q by Theorem (1.0.2). Discriminant of this basis is
Tr(1) Tr(Vd 2 0
d(1,+/d) = det M) V) _ det = 4d
Tr(v/d) Tr(d) 0 2d
Case d =1 (mod 4):

{1, 1*‘/3} is an integral basis for Q. Discriminant of this basis is

2

Tr(1 Tr(1+Vd 2 1

1(2 (12&) = det v =d0O
Tr(5%4) Tr((+54)?) 1 =

d({1, 2£Y9}) = det

2

1.1 Units in Quadratic Number Fields

After defining the ring of integers of a quadratic number field another question

arises, finding the units of a quadratic number field, namely units of the ring of

4



integers, which form a group. In this section we will explicitly find the units of an
imaginary quadratic number field and also mention Dirichlet’s Unit Theorem for a

real quadratic number field.

Definition 1.1.1. Let K = Q(v/d) and x be the ring of integers of K. Define
Uk ={e €V |3 € K,e = 1} to be the group of units of Vi . Define Wy = {( €
K |3m > 1,{™ =1} to be the roots of unity in Jr. Note that Wy is a subgroup of
Uk

One can say whether an element of K is a unit or not by looking at its norm.

Proposition 1.1.1. For a € K, the following are equivalent
(i)a € Uk
(ii)a € I and N(a) = +1.

Proof: Let us show (i) = (i7). We have a € Uk, hence a € Y. By the
definition of a unit there exists o’ € U such that o’ = 1.
Consider N(aa')=N(1) = 1 =N(«a)N(c/), note that N(a),N(a') € Z by Theorem
(1.0.1). Hence N(«r) = £1.
Now let us show (iz) = (i). Let f(z) = 2? + 17 + a9 € Z[z] be the minimal
polynomial of @. Then N(a) = ap by Theorem (1.1). We have N(a) = £1 = ao.
Also avis a root of f(z) s0 0 = a?+aja+ag = a(a+ar)+ag Let o/ = a+a; which

is in Y. Hence we have aod/ = £1 = a € Ug. O

Theorem 1.1.1. Let Q(v/d) be an imaginary quadratic number field.

If d # —1, -3, then Q(v/d) has ezactly two units {+1}. Also Q(v/—1) has ezactly
four units {£1,++/—1} and Q(v/—3) has ezactly siz units

[, (250, (250,

Proof: Let Q(v/d)/Q be an imaginary quadratic number field. Let a € Q(v/d)
be a unit.
Case 1: For d # 1 (mod 4) we write o = a + bv/d with a and b are integers. We
know that an algebraic number is a unit if and only if N(a) = +1. Since « is a unit

we have N(a) = a® — b*d = +1 and since we are considering the case of imaginary

3



quadratic number fields, d < 0 so N(a) > 0.

Hence we have N(a) = 1 = a® + b*(—d).

For d < —2 we have N(a) > a? 4+ 2b? if b # 0 then N(«) > 2 so a will not be a unit.
Hence b must be zero and a? = 1 which implies @ = %1 the only units we have for
the case d # 1 (mod 4) and d < —2. Suppose d = —1. Then N(a) = a®> +b* = 1.
The only integer solutions are a = £1,b = 0 or a = 0,b = £1. So for d = —1 we
have {+1, +i} as units.

Case 2: Now suppose d = 1 (mod 4). Let o be a unit in Q(v/d). Then a = “+g‘/a
with @ = b(mod 2) and N(a) = 1. So 1 =N(a) = W this implies

a? + b (—d) =4 (1.4)

For d < —7 and b # 0 we have a® + b*(—=d) > a®> + 70> > a®> +7 > 7 > 4. So we
should have b = 0 and so a®> = 4 = a = +2, so o = +1. Hence if d < —7 and
d =1 (mod 4) then units are +1.

Now for d > —7 and d = 1 (mod 4), we have only d = —3. Hence from equation
(1.4) we get a? + 3b*> = 4 so we should have b = +1 or b= 0. If b = 0 then a = +2
and we have o = +1. If b =1 then a = +1 and we have a = i(_l%‘/j‘n’) Ifb=-1
then a = £1 and we have a = i(%m) O

We found the units of an imaginary quadratic number field, how about real

quadratic number fields? Now let K be a real quadratic number field. Let 01,09 :
K < R be the real embeddings, such that o, is the identity and o is the map that
send an element to its conjugate, i.e oy(a + bvd) = a — bv/d. We have Dirichlet’s
Unit Theorem about units, using these embeddings. Before stating the theorem we
will need the definition of a lattice.
In general a lattice in R" is a subgroup [I' C R" with respect to addition, with the
following property: there exists eq,...,e, € I' which are linearly independent over
R, such that I' = Zei @ ... P Ze,. We call (eq,...,e,) a lattice basis of T' and
r =dim(T").

Theorem 1.1.2. (Dirichlet’s Unit Theorem for real quadratic number fields) Let



K = Q(\/E) be a real quadratic number field, where d is a square free positive
integer. Then Uy ~ Z/27 x Z. That is there is a fundamental unit ¢ € Uk such
that U = {*e* 1 k € Z}

Proof: Let K = Q(v/d), d € Z square free and d > 2.

Consider the map
f Uk = R

e = (loglou(e)])

We want to show (i) Ker(f) = Wk and (ii) Im(f) =T where T is a lattice in R
of dimension 1.

(i) Let us first show that Wy = {41} for real quadratic number fields.

By the definition of Wy there exists m > 1 such that £ = 1. Consider £ =
(a+ bv/d)™ = 1. Note that ¢ is a real number whose mth power is 1, the only real
numbers that are root of unity are £1. Hence Wy = {£1}.

Clearly Wi C Ker(f) = {e € Uk : |o1(e)| = 1}.

Let us show the other inclusion. So let ¢ € Ker(f). Then |oy(¢)| = |e] = 1. Also
note that |N(g)| = |o1(¢)||oa(e)| = 1. Hence |os(e)| = m = 1 Consider the
minimal polynomial of ¢ F.(z) = (z — 01(e))(z — 02(¢)) = 2* + a1z + ag € Zlx]
where a; = 01(¢€) + 09(e) and ag = —01(€)032(g). So |a1| < 2 and |ag| < 1. Therefore
there are only finitely £ that has |o;(¢)| = 1 for i = 1,2. That is € has finite order,
so there exists an integer n such that ¢” = 1. Hence ¢ € Wy. So Ker(f) C Wy
therefore Kerf = Wi.

(ii) Let I =Im( f) and consider the elements of I". Let Y be any bounded subset
of I'. Then for every y € Y there exists a real number M such that |y| < M that
is —M < log(|oi(g)]) < M, then e ™™ < |oi(e)] < €M, ie e ™ < |g| < eM. Also

1

IN(€)| = |o1(€)]|o2(€)| so we have |og(€)| = il < eM. Claim: There are only

finitely many o € Ux for which e ™ < |oy(a)] = |a] < eM and e™ < |oy(a)| < eM

for any positive real number M.



Proof of the Claim: Consider the characteristics polynomial of a;, which is by defi-
nition F,(z) = (z—0y(a))(z—03(a)) = 2?+a1x+ag € Z[z] where a; = 01(a)+03()
and ay = —oy(a)oz(a).

Note that |[N(a)| = |o1(@)||oz(a)| = 1, so |oa(a)| = m Hence |o;(a)| < eM for
i = 1,2, so we get |a;| < 2eM and |ag| < eM. Hence there are only finitely many
choices for ay and a;, which implies there are only finitely many such « [J

By our claim one can conclude that there are only finitely many such e satisfying
the above inequality. Hence any bounded subset of T is finite. In fact we call such
a set discrete. Now we need to show I is a lattice in R of dimension 1.

Claim: Any discrete subgroup of R is a lattice.

Proof of the claim: Let a be a nonzero element of ' and let A = {\ € R: Aa € T'}.
Since T is discrete the set {7y € I' : || < |a|} is finite. Then AN [—1,1] is finite and

contains a least positive element element 0 < 4 < 1. Let § = pa and suppose that

A €T, with A € R. Then

M—=B=A-[A)f= A= [A)ua el

by the minimality of ;1 we get A = [A],i.e, A € Z which implies that T = Zf is a
lattice of dimension 1. [J

So we can write Ux =Ker(f)®Im(f) = Z/2Z @ Z. This means that Ve € Ug can be
expressed uniquely as € = +€*. One can choose € in such a way that 1 < e. By this

condition € is uniquely determined, and it is called the fundamental unit of K.[]

1.2 Ideal Class Group

One may want to factorize elements of number fields in a unique way. However,
this is not possible all the time. For example, Q(v/—5) is not a unique factorization
domain. In that case we use different structures as our elements, namely, ideals of a
quadratic number field, K = Q(\/ E), to get the unique factorization. Furthermore
one can define equivalence relation between ideals and obtain ideal classes which

indeed form a group, as we will discuss below.



Firstly an 7deal in a ring R is an additive subgroup I C R such that

ra €l forallr € R, a € 1.

Definition 1.2.1. Fractional ideal of 9 is a finitely generated 9 -module, 0 #
A C K such that A C I for some 0 # a € Vg, that is [ = oA is an ideal in V.
Denote Ji be the group of fractional ideals of K that is group of fractional ideals of
Vg, where g is the ring of integers of K.

Hence Jx = {I | I is a fractional ideal }

Let Px = {(a) € Jx | 0 # a € K} C Jk be the group of principal ideals of K.
Hy = Jg | Pk is called the ideal class group of K. (class group of K).Let hy denote

the number of element of Hg.

Theorem 1.2.1. There are finitely many ideal classes in a number field, that is

hr < 0.

The importance of class number is that as the class number approaches to 1,
the number field gains the properties of a principal ideal domain. hx = 1 for the
number fields that are principal ideal domains.

Another definition we will encounter later will be narrow ideal class.

Definition 1.2.2. Let K be a real quadratic number field.
Define Py = {(a) : N(a) > 0} then the narrow ideal class is Ji /Py

For a real quadratic number field K containing a unit of negative norm, narrow
ideal class is the same as the ideal class we defined before, we can call it as general
ideal class. However for the real quadratic number field K with the property that
K contains no unit of negative norm, the narrow ideal class differs from the general
ideal class. For example for the real quadratic number fields with d = 3 (mod 4), a
unit has the form o = a + bv/d where a,b € Z and its norm is a2 — b?d. If this unit
has norm -1 then we have a? — 30 = —1 (mod 4). But this can not be possible so

we see that there is no unit of negative norm for the real number fields with d = 3



(mod 4)

In that case each ordinary ideal class A is the disjoint union of two narrow ideal
classes B and B* that is two ideals a, b are said to belong to the same narrow ideal
class if a = («)b for some principal ideal (o) with N(«) > 0; clearly B* = 6B, where

6 is the narrow ideal class of principal ideals (o) with N(a) < 0.

10



CHAPTER 2

Continued Fractions

In examining the Kronecker’s limit formula for the real quadratic number fields
we will need continued fractions, hence in this section we will define and examine
some properties of continued fractions. For a quadratic irrational number «, we will
examine two continued fraction expressions. One with plus signs and the other with

negative signs. [4]

Definition 2.0.3. (i) A finite continued fraction is an expression of the form

1
T

Qo +
a1+a2+...+

1
an71+am

where each a; € R and a; > 0 for 1 < i < m. We use the notation [ag, ay, ..., ap]
to denote the above expression.

(i1) [ag, a1, ..., am] is called a simple continued fraction if ag,ay, ..., an € Z

(i1i) The continued fraction Cy = [ag,a1,....,a5],0 < k < m, is called the

k' convergent of ag, ay, ..., Q).

Proposition 2.0.1. Consider the continued fraction [ag, ay, ..., an,]. Define the se-

GQUENCES Doy P1y ey Pm AN G0y 1y ---y G TECUTSIVElY 0S follOWS:

Po = ag q =1

p1 = apgay + 1 g =a

Pk = QkPr—1 + Pr—2 Gk = QpQr—1 + Qp—2 for k > 2.
Then

11



th ; _
(a) The k™ convergent is Cj = B

(b) D1 — Pr—1qr = (=1)", for k> 1.
(c) We have the identities
C’k—C’k_lz(qkqi_lfor1<k<mand
Cp— Cp_g =201 qkq — f0r2<k<m
(d) We have C; > C3 > Cs5 > ..., Cy < Cy < Cy < ...
and that every odd-numbered convergent Cory1, k > 0,15 greater than every even-

numbered convergent Cyy, k > 0.

Proof: (a) We want to show C}, = ” . Proof by induction:
— g — P
for k=0 Co=ag="2
for k=1 Cl:ao_‘_a:ao?zll—i—l :p_i
— _ 1
for k=2 C’Q = o+ a1+a2

Note that py = as(apqs + 1) + ap and ¢ = aga; + 1. Hence Cy = 22

L)

_ __ agaiaz+ag+as
= ap + a1a9+1 - aras+1

Assume it is true for k, i.e Cf = Z—: Using the recursive relations we get

(2‘1)pk+1 _ Ok+41Pk + Pr-1

Gk+1 k419K + Gr—1
Apt1(OkPE—1 + Pr—2) + Pk—1
k1 (ApQr—1 + Qr—2) + Qr—1
(ararsr + 1)pr—1 + arp1pp—2
(ararsr + 1)qe—1 + Gpy1qp—2

L where C, = a¢ + ! hence
1 a2+...+i
Q41 af

we have the term aj, + ﬁ and i in the same place respectively in Cy,; and Cj.

Note that C11 = ag + - s

ag+...+

ap+

So if we write a; + = @l 5 the place of ay, in Cf we will get Ciyr.

ak+1 Ak +1

Hence

apary1+1 )
Ap+1

Pk—1 + Pk—2

Cr1

agapy1+1

(F—
(Fat— . @1+ qx—2

(agars1 + 1)pr—1 + ap1Pr—2
(agars1 + 1)pr—1 + ap1Pr—2

Pyyq
qk+1

which is the same as equation (2.1) so we get Cyq =

12



(b) We compute

Prak—1 — Pk—1qk = (@rPr-1 + Pr—2)qk—1 — Pr—1(arqr—1 + Gr—2)
= Pr—24k-1 — Pk-14k-2
= —(Pr-1Gk2 — Pr2Gk 1)
= pr ok 1qk2+ qe3) — (A 1Pk 2+ Dk3)qk 2

= Pk—29k-3 — Pk—34k—2-

Repeating this process using the recursion after £ — 1 steps we will have

k—l[

Pr4k—-1 — Pk—14r = (—1) P1qo — pofh] = (_1)k_1[aoa1 +1- aofll] = (_1)k_1-

(c)From part (a) we have Cj = 2.
Consider

qk Gk—1 qrqr—1

Dk Pk—1 Prqk—-1 — Pk—19k
Cp—Cpq = =

from part (b) we get
(-1

qkqr—1

Cp—Cp1 =

For C}, — Cy_5 we have

Cp—Cpp = & _Dh2

qk qk—2

Dk Pk — QkPk—1

qk qk — Qkqr—1
—ag (kak—l - pk—le)

qkqr—2
_ _ak(_l)k—l
qrqk—2
_oa(=1)*
Q-2
(d)We want to show Cy < Cy < Cy < ...
In part (¢) we had
—1)k
Co—Cro= "0 < m
qkqk—2

13



For k=2,Cy — Cy = q;% = a2312+1 > 0 which implies Cy > C

For an even number k, say k = 2n, n € Z we have

aopn (—1)%" a
0277, - 0277,72 — Q’H( ) - 2n .
qonqon—2 42nqon—2

Since by the definition of continued fractions a; > 0, 0 < ¢ < m, ¢ is also positive.
Hence Csy,, — Cy, 5 is positive and we get Cy < Cy < Cy < ...
On the other hand, for an odd k, £k = 2n — 1,n € Z we have

agp—1(—1)*""" _ —aop1

qon—192n—3 qon—192n—3

C12n—1 - C1271—3 =

Since a; and g; are positive for 0 < 7 < m we have Cy,_1 — C5,_3 < 0. Hence we get
Cir>C3> ...
In addition to these to show every C} with an odd index is greater that C; with an

even index, consider Cy;41 — Cy; for j > 0. From part (c¢) we had Cyj11 — Cy =

(-1)* = 1 > 0. Hence CZj-i—l > ng which 1mp11es Cy > 03 > .. > C’Qk+1 >

q2j+192; q2j+192;

CQk>...>C4>CQ>C’(].|:|

Definition 2.0.4. We define the continued fraction [ag,ay,...] to be the limit as

k — oo of its k" convergent C), and write

[ag, a1, ...] = lim Cj.
k—o0

Proposition 2.0.2. Let {a;};>0 be an infinite sequence of integers with a; > 0 for

i >1 and let Cy = |ay,...,ar]. Then the sequence {Cy} converges.

Proof: From Proposition (2.0.1)(d) we know {Cy;41}32 is decreasing and bounded
from below, for example by Cy. Then it is convergent, say lim;_,o Coj11 = «
Also, Oy > Cy; for j = 1,.... So {Cy;}32, is bounded above and it is increasing.
So let lim;_, Cy; = . We want to show o = 3. In Proposition (2.0.1)(b) we had

_1\k
Ci — G 1 = - where gugx 1 = ayg}_, + gx 2gx 1 > 0
So it suffices to show that the denominator grows without bound. We will assume
a; > 1 for all # > 1. Then we have g9 = 1, ¢ = a; > 1, then by recurrence

relation we get ¢ = asa; + 1 > 2. We claim that ¢ > k for £ > 2. For k = 2

14



we see that this is true. Now assume this statement is true for £ and consider
Qri1 = Qpi1Qr + qx—1 > k + k — 1 for every k > 2. Since k£ > 2 it follows that
2k —1 > k + 1. Therefore qxqx_1 > k(k — 1) which implies

1 1
Coin1 — Oyl = < - ,—>0asj—>oo

The next proposition constructs a continued fraction expression for an irrational

number «, i.e it finds a sequence {a;}$2, such that [ag,ay,...] = a.

Proposition 2.0.3. Let a = «ag be an irrational real number greater than zero.
Define the sequence {a;}i>o recursively as follows, ay = Loy, g1 = —L_ Then

Qp—ag

a = [ag, ...] is a representation of a as a simple continued fraction.

Proof: Using aj1 =

we have a1y — agyiar, = 1 which gives ay =

Qp—ag
1
ap + anet
_ 1
Qo = Qg + o
Qo = ag + —>
0 0 a1+$
_ 1
Qo = o+ T
a2+...+ak+ﬁ
Therefore oy = [ag, . . ., ag, axy1]. We define Cy, = [ag, ..., ax] so we want to show

that limy_,o. Cr = o = o
From Proposition (2.0.2) we know that {C}}r>o converges and we have Cy < Cy <

. < Oy < O3 < . If we can show Uy, < av < Cygpyq for all k£ we will be done.

We have as = Law, 50 as < oy which gives a; + =~ > a1 + + and —+ < —
az Q2 al+@ al+£
Hence Cy = ay + —+— < a L _—a.
2= 00t n T St T

15



By repeating the same argument one can show

1
Co < a=ap+ T

a
1 a2+...4+agk 1+

1
a2k

for all k.
Now let us show Cyr 1 > . We have ay = Laga so we have a; < «q, this implies

C, = aﬁ—% < a0+al—1 = «. Also if we start with a3 < a3 we see that @—Fi > a2+aL3

and so C3 = ag + aQiL < ap+ afii = «. Applying the same argument one can
ag a3
show
1
Czk+12a:ao+a+ 1
1 a2+...+a2k+ﬁ

(Note that we started with ag1 < aggi1).
We have limy_, o, Cy = a since limy_,, Cor, = limy_, o Cop 1. O

Next we look at continued fraction expressions for quadratic irrational numbers.

Proposition 2.0.4. Let a be a positive quadratic irrational number. Then there

are integers Py, Qo,d such that o = POQLO‘/E with Qo|(d — PE). Recursively define

_ Py+Vd _ _ _ d—Plf 1 .
= 2 ap = Loy, P11 = apQr — Py and Qpy1 = Qk+ . Then [ag,aq,...] is

Qg
the simple continued fraction of a.

Proof: First let us show a can be written as POQLO‘/E where Py, (o, d are inte-
gers. So let a,b,c,d be integers where d’ is square free and o € Q(\/E). Then
a = “*”Cﬁ = etV ackVERd  Tot Py = ac,Qy = ¢ then Qo|(d — P?) where

d = c2b*d'

Next we want to show a = [ag, aq,...]. In Proposition (2.0.3) we showed that if

ar = Laga and oy = %ak then [ag,ai,...] = a, where « is an irrational real

ap
number. So it will be enough to show that ay,; =

Pry1+Vd
Qr41

definition of (), we have

ap—ag
Qk(Pk+1+\/E). By the

and Ppyy = apQr — Py 50 oy = CrOr it

We have aj. =

16



d— P? Poy1 +Vd
g, = Qk(d k_+}32 )
it 1
Qr
Vid— Piiy
Qr

\/E_aka+Pk
1

P+Vd .
Qk Ak
1

A — Qg

Qk+1 —

Hence we are done by Proposition (2.0.3). O

Definition 2.0.5. A simple continued fraction is called periodic with period k if

there exists positive integers N,k such that a, = a1 for alln > N. We denote

such a continued fraction by [ag,...,an _1,aN,aNy1, ..., an + k — 1]

Proposition 2.0.5. The simple continued fraction expansion of a positive quadratic

wrrational is periodic.

Proof: Let a be a positive quadratic irrational number. By Proposition (2.0.4),
we can write o = 1905_0\/3 where Qo|(P? — d) and Qq, Py,d € Z and o = [ag, a4, ..., ]
where a; = Loy as defined in Proposition (2.0.4). Now, from recursion definition

in Proposition (2.0.1)(a) we get

QPr—1 + Pr—2

a=——"—"""""" = Q@ 1+ aqQr 9 = QPr_1+ Pr_2
QpQr-1+ qQk—2

_ Pr—2 — 0Qx—2

> Qp =
adr—1 — Pk—1

Let o' be the Q-conjugate of a, i.e &/ = Poé;/g. Then

o — QPk—1 + Pr—2 NV (O/ — Ck2)

B %%—1 + Qk—2 ko Qp—1 \a! — Cr_q

al_Ck_Q
o' =Cr_y

Since Cj_1,Clr_2 — «a as k — oc we have limy_, ( ) =1= a; <0.
2vd

T for all sufficiently large k.

Also we know that a; > 0 so we get ay — o) =

17



From the recursive relations defined in Proposition (2.0.4) we have QyQy+1 = d —
P?.1 50 Qp < QrQps1 =d— P2, <dand P2, <d— Qp <d for sufficiently large
k. Thus there are only finitely many possible values for P, and we conclude that
there exists integers 7« < j such that P, = P;. Now let us show Q; = @);.

_p2
We have ); = Z_Pf and Q; = (gj—i Since P; = Pj we get Q;Q;—1 = Q;Q;-1 We also

i—

have P, < d— Q1 < d.

Now let us write this equation for ¢ and j.
PP<d—Q;<d
P?<d—Q;<d

Dividing these we get 1 < 5:8; < 1 which gives @); = @; implying that a; =
aj;, since a; are defined recursively depending on (); and P;. So we have a =

[a(], A1y ey Qj_1, gy ..., Clj_l]. [

Now define the "minus” continued fraction for a quadratic irrational a with

a > o as

ag—-

with a; € Z, for all + and a; > 2 for : = 1,2,.... First of all let us show that one
can have the "minus” continued fractions. First we need an analogy of Proposition

(2.0.1).

Proposition 2.0.6. Define py = ag g =1
p1 = apa; — 1 g1 = ay
Pr = QgPg—1 — Pk—2 qk = Okqr—1 — qk—2
and let Cp =0y — ——1—

Then (a)Cy = L&

18



(b)prar—1 — pquk = (—1) fork>1
(c)Cy — Cy1 = - and C, — Cy_p = ap(—1)

Qka qkqK—2

(d)C(] >Cy >0y >

Proof: (a)Proof by induction:
For k=0 C’gzaozf]’—g,

fOI'I{):l Clzag—i:—aoal_lz—lj

al q1
_ _ _ _ __a»  __ agaiaz—ag—az __ p2
for k=2 Cy = ag T = A0 = groig = AR =12
Assume it is true for k, i.e O} = 2 do we have O}, = Bit!
’ qk + qk+1
Note that Cy.1 = ag — L where C}, = ag —
+ P S—

a)—
1

a2—.—a —
k™ ap

al—

ag—1i—

1

1
ag

hence

we have the term aj — ﬁ and i in the same place respectively in Cy,; and C}.

. . apa -1
So if we write a — —— = %:%k41
Ak+1 Ak +1

Hence

apary1—1 )
Ak+1

Pk—1 — Pk—2

Ck+1 - akak+1—1)

(Ft—

( aps V=1 T Qb2
(akak+1 - 1)pk 1 — Qg4+1Pk—2
(akak+1 - 1)pk 1 — Qg4+1Pk—2
ak+1(akpk—1 - pk—Q) — Pk—1

1 (AR Qr—1 — Qk—2) — Qr—1
Pk+1

dk+1

(b) We have

PeQi-1 — Pk—1Qk = (@kPr—1 — Pr—2)qh—1 — Pk—1(Qkqr—1 — Qr—2)

= —Dk—2Qk-1 T Pr—1qk—2

Pk-149k—2 — Pk—2qk— 1)

(
(

= (—Pk—3Qk—2 + Pk—2Qk—3)
(

Prk—24k—3 — Pk—3Gk— 2)

(Clk 1Pk—2 — Pk— 3)Qk 2 — Dk— 2(ak 19k—2 — qk— 3))

in the place of a; in C} we will get C1.

Repeating this process using the recursion after k£ —1 steps we will have pyqy—poq: =

o1 — 1— (Cl()(ll) =-1

19



(c) we can compute

P Pk _ Pr4k—1 — 4kPk—1 (—1)

Cp = Cho1=—— =
qk qk—1 qkqk—1 qrqr—1
and
Cp—Choy = 2 D2
qk dk—2
_ Pr4k—2 — qkPr—2
9kqk—2
_ (akpkfl - pk72)Qk72 - (akaq - Qk72)pk72
qkqk—2
_ Qg (pk71Qk72 - Qkflpk72)
qrqk—2
qkqk—2

(d) We have C, — Cy_1 = =D also qrqe—1 > 0 for any k, hence C, — C_1 < 0

qkqk—1

therefore C, < C}_1 So we get what we want.[J

The next proposition tells us how to construct a ”minus” continued fraction for

a quadratic irrational c.

Proposition 2.0.7. Let a = oy be an irrational real number greater than 0. Define
{a;}i>o recursively as follows: a, = "oy, '=least integer greater that oy, so we have

ar > 2. Define a1 = ak+ Then o = [ag, - ..] is a representation of a as a simple

Qg :
continued fraction.

; _ ; _ 1 _
ap—ag Q. = Ak Qg1 Qo = do ai

Proof: We have oy, =

1 _
——— = oy = [ag, a1, - - -, A1, Q]

a2

ao—al

We want to show C; — a. Note that a; > ay, so ap_; — é > Qp_1 — aik which gives

g2 = ll_L > gy — II_L. By applying the same procedure we get
o oo
1 1
Cr.=ag — > a=aq T
ay — — ay — —
1 1
ay oy

Hence C}, > « for any k. So {Cy}, is a monotonicly decreasing and bounded

below by «, it is convergent. Now we have to show lim,_,., C} = a.
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We have C), = ’;—: = % and if we write oy, instead of a;, we will get a.. So

QkPr—1 — Pk—2 OpPr—1 — Pk—2

Ck—af = -

Qrqr—1 — qk—2 Opqr—1 — qk—2

(akpkfl - pkq)(oék(qu - (ka2) - (Clk(qu - Qk72)(05kpk71 - pk72)

(Clk(qu - Qk72)(aka71 - (ka2)

Qp — O
Qk(akafl - Qk72)

Note that 0 < a; — ap < 1. We will show that the denominator grows without
bound. First we will show ¢, > ¢, 1 + 1
We have ¢qo = 1 and ¢; = a; > 2 implies ¢; > g9 + 1. For k = 2 since a; > 2 we
have a9 > 1+ 5—1 SO aias > ay + 2 implying ajas — 1 > a; + 1. So ¢o = asa; — 1 >
G +1=a +1.

Now let us use induction, assume for k£ we have ¢, > qx_1 + 1, consider ¢z, =
k419 — qr—1 by induction hypothesis g_1 < gr — 1, 80 gr1 > app1qr — (p — 1) =
(ak+1 — 1)gr + 1. Note that (ag1 — 1) > 1 So g1 > ¢x + 1. Further more we can

show ¢, > k 4+ 1. This follows from the equation

> 1 +1>2q@g o0+2>...>2qp+k=1+k

Now consider (agqr_1 — qr—2) where g1 > qr_o + 1. Also ap > 1 since oy =

.
Ag—1—QFk—1

> 1. So apqr_1 > Q2+ 1,i.e apqe_1 — qr—o > 1. Hence

1

ap — O ‘
Qk(Othk—l - Qk—2)

Qk(Othk—l - Qk—2)

|Cy — a| = < 1‘—>Oask—>oo

‘1
k+

O

Proposition 2.0.8. Let a be a positive quadratic irrational. Then there are integers

Py, Qo, d such that o = POQLO‘/E with Qo|(d — P¢). Recursively define oy, = Butvd

Qk
P —d
— — _ k41 N N
ar = "o, Popr = ayQe — By Q1 = ~5—. Then [ag, a1, ...,] is the simple

continued fraction of a.

Proof: The proof of the first part is the same as Proposition (2.0.4).

Next we want to show a = [ag,ay,...]. In Proposition (2.0.7) we showed that if
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ap = "oy ' and agy; = —L_ then lag,ai,...] = a, where « is an quadratic irra-

A —Qp
tional. So it will be enough to show that oy, = r——
We have o = P’g%ﬁ and Py = apQr — Py therefore ay 1 = %}t:@. By the
definition of )5 we have
P, —d Qr(Pry1 + V)
Qe = —— = app =
+1 Qk +1 P]g—i—l —d
R )
Pe —Vd  apQp — Py —Vd
1 1

Pivd  ay —
ak_kQ—k ag (673

Hence we are done by Proposition (2.0.7).0

Proposition 2.0.9. a is a positive quadratic irratinal if and only if the simple

continued fraction of a is periodic.

Proof: Let a be a positive quadratic irrational number. Also we have a =

lag, ... ,ak,...] =|ag,...,ar_1,ak]. SO we can write
1

o =ay — ——

Ak+1 — 7

By Proposition (2.8), we can write a = POQLO‘/E where Qo|(P¢ — d) and Qq, Py,d € Z

and « = [ag, ay, ...,| where ay = "oy, as defined in Proposition (2.0.8). Now, from

recursion definition in Proposition (2.0.6) we get

OpPrk—1 — Pk—2

oO=—""" = QOkqk—1 — QQx—3 = OkPk—1 — Pk—2
Opdr—1 — qk—2

afr—92 — Pk—2

adr—1 — Pk-1

fr— Qp =

Let o' be the Q-conjugate of o, i.e &/ = POQ;O‘/E. Then

/
QpPg—1 — Pk-2
a/’ — _kPhml  PRe2 —

! k —
OpQp—1 — Q-2 qk—1

1 k-2 (O/ - Ck—2)
o — Ck—l
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Note that ¢ is increasing. One can show this by induction: we have ¢; = a; > 2
so assume for £ we have 1 = gy < ¢; < ... < qr. Then qxi1 = api1qr — Q1 > 2q >

Q. SO Z}’Z—*j < 1. Also Cy_1,Cy_9 — « as k — oo and C} is monotone decreasing so

O/—Ck_r_)
o' =Cp_1

tends to 1 from below. Thus we conclude that there exists N > 1 such that

1
A —1—Q—1

for all n > N we have 0 < o), < 1. Also a;, =

It follows that 0 < P"Q;k‘/a < 1 and P’“QLIC‘/E > 1. Since ay — o) = % > 0 implies

Qr > 0. So we get | P, — Q1| < v/d and hence can take only finitely many values for

> 1 since ap_1 = "ayp_q .

a given d. Thus we have d — (Q), — Px)? > 0 and this expression also can take only
finitely many values.

. . . o o 2 .
Using the recursive relation Py = a3 Q) — P and Qp41Qr = P, —d we can write

d— (P, —Qr)” = d— P! —Q; +2PQr = —QxQi—1 — Qf + 2P,Q
= Qr(—Qr1— Qr+2P)

Hence Qy|(d— (P, —Q4)?) this implies Qy takes only finitely many values and so does
Py. Therefore for some j # k a; = oy, that is a; = aj. Hence the continued fraction
of «v is periodic. Conversely, it is easily seen that if o has a periodic continued

fraction then it satisfies a polynomial of degree 2 with integer coefficients. [J [6]

Proposition 2.0.10. Let « be a real quadratic irrational with o > 1 and 0 < o/ < 1.
Such an « is called reduced if and only if the continued fraction of a reduced real
quadratic irrational, o = [ag, ay,...] is pure periodic, i.e a; = a;, for some period

r and for all j > 0.

Proof: Note that in Proposition (2.0.9) we showed for aj with o > 1 and
0 < aj, < 1 has a periodic continued fraction,i.e there exits j # k with a; = a,

aj+1 = g1 and so on. Now we will show it is in fact pure periodic, i.e we also

and of,, = ——. We claim that

have a;_; = ay—1. Now we have a;; = pa—

a;—ao;
0 <a;<1foralli>0. For i =0 we have 0 < aj = o’ < 1, assume this is true for
iso 0 < aj <1, then we get a; — o > 1 implying that 0 < o} ; < 1. We can write
j—y = i + a;_, and since a;_; < 1 we get a;_1 = '—i_‘. From this we can conclude

K3

that a; = a; implies a;_1 = ax_y. Conversely, if « is pure periodic, a = (a1, .-, a,)
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then a > 1 since a; > 2. We continue this periodic sequence by setting a; ., = a;

for all 7 € N. Then we can define

1
xi =
Ai—15 -« s Qj—p
Then - = a; — z; or z; = a; — ——. It follows that
Ti41 Ti41
1
T = ——
Apry ..., Q1
satisfies the equation
1
xl:(alaa2:"'7ar71:x1):al_ 1
as — ... — T

Qp—1—-—

which is the same as the quadratic equation that « satisfies, but 0 < x; < 1 and so

xq is different then a. Therefore z; = o/, so that 0 < o/ < 1. [.[6]

In this section we worked with quadratic number fields, which are the special
type of number fields. We call a field L a number field if [L : Q = n < oc.
In that case every element of L will be an algebraic number, that is the elements
will satisfy a corresponding polynomial of degree n over Q. For a number field of
degree n over Q, one has Dirichlet’s Unit Theorem which tells that the unit group
is finitely generated. We also have ideal class groups of number fields and for a
number field of degree n the class number is finite. For further information about
number fields, readers are suggested to read Marcus’ Number Fields or Neukirch’s

Algebraic Number Theory. [1],[3]
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CHAPTER 3

Zeta Functions

In this paper we will deal with zeta functions of quadratic number fields. Zeta func-
tions among other things play an important role in the calculation of class number
of a number field. However, we will not give formula for calculating class numbers
but mention important formulas that are crucial for finding the class numbers. Now

let us investigate the convergence of the Riemann’s zeta function.

Proposition 3.0.11. The Riemann’s zeta function is defined by
= 1
C(s) =) —
n
n=1
where s is a complex variable and Re(s)> 1. The series is absolutely and uniformly
convergent in the domain Re(s)> 1+ ¢ for every & > 0. It therefore represents an
analytic function in the half-plane Re(s)> 1. One has Euler’s identity

)= —

p 1__p7

Re(s) > 1 where p runs through the prime numbers.

Proof: To show that the Riemann’s zeta function is absolutely convergent con-

sider

EOIEDIEIED TR Bhv
n=1 n=1

n=1
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Note that s = o + it where 0, € R and | n® |= nf®*) = n?. Then we have

converges for Re(s) =0 > 1+ ¢ for every § > 0.

Now let us prove Euler’s identity. An infinite product [ -, a, of complex numbers
an is said to be convergent if the series Y -, log(a,) converges, where log denotes
the principal branch of the logarithm (| Image logz |< 7). The product is called
absolutely convergent if the series converges absolutely, that is the product converges

to the same limit after reordering of its terms. So let us examine the convergence

of Euler’s identity. Let us take the logarithm of Hp T . We get
~ npns
Now take the absolute value and get,
DI) PP ZZ|W|
p n=1 p n=1
S5 T
p n=l1 p n= 1
<

]' n
Ep:(}m)
1
< 2%:];

This converges absolutely for Re(s) > 1+ ¢ for every § > 0. This implies the

absolute convergence of [], T =exp(d_, >, Wlns) Now consider
1 1 1
=1+ - + s 4+ ...
L=p p* P

for all primes pq, po,...,p, < N, and obtain the equality

1 > 1 1
Hl_pfs: Z O ) L (3.1)

T
p<N V1,02 400ey Uy =0 (pl s Pr ) n

where Z’ denotes the sum over all natural numbers which are divisible only by prime

numbers p < N. Since the sum Z/ contains in particular the terms corresponding
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to all n < N, we can write

1 1 1
Hl_p_s:ZEﬂLZ;

p<N n<N n>N

Now from equation (1) and the definition of {(s) we get

1 1
Tl < 1Y
P n
p<N n>+N
pifm

1
> i
n>N
where the right hand side goes to zero as N — 0o because it is the remainder of a

convergent series which completes the proof.[]

The Riemann’s zeta function is associated with the field Q. It can be generalized
to a quadratic number field K as follows

Definition 3.0.6. The Dedekind zeta function of the quadratic number field K is
defined by the series

where a varies over the integral ideals of K, and N(a) = #(Uk : a) denotes their
absolute norm.

Remark: Dedekind’s zeta function can be defined for any arbitrary number field.
A good reference is Neukirch’s Algebraic Number Theory book, Chapter 5.

Now we can break up (x(s) into a finite sum

C(s) =) C(s,4)

where A runs over the ideal class group of K and

(s A) =3 @(Hds) > 1)

We will need Euler’s constant v later so let us examine it now. We have 7y

lim,, 0 (Df_; £ —Inn) by Whittaker and Watson. It is related to the Riemann zeta
function by v = lim,_,; [((s) 1 }

s—1
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Also let us define here

Liy(a) = — /1 log1 = 1)

t

which we will use latter in the proof of Zagier’s theorem.
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CHAPTER 4

A Kronecker Limit Formula for Real Quadratic Number Fields

The basic idea for studying ((s, A) is always the same, if one picks a fixed ideal
b belonging to the class A™! = {a € K|aA C Uk}, then the correspondence

1) : A — set of principal ideals () divisible by bi.e A € b

a— ab= (\)
is a bijection.
We have 1) is onto by construction also 1) is one-to-one, since for a;,a, € A with
a1b = asb. Fractional ideals forms a group [4], so we can cancel b from both sides of
the equation, we get a; = as.

On the other hand, two numbers A;, Ay € b define the same principal ideal if and
only if \; = €\, for some unit €, i.e iff they have the same image in b/Uy; where Uy
is the group of units in K.

If (A1) = (A2) then Ay = A\od also Ay = Aje = A\ = \jed = ¢d = 1 Hence ¢, d are
units.

Conversely, if A\j, Ay € b with A\; = el = (\;) = ()g) since for a € (\) = a =
Ac = €lgc € (Ag) and for b € (Ng) = b= Aad = e\id € (\y)

Now consider

B 1 N NE)®
(s A) =2 N(a)® ; N(a)’N(b)* ; N(ab)®

a€A
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but ab = (\) for A € b and (\;) = (\2) <= they have the same image in b/Ugk
Hence we get
s 1 s 1
(4.1)¢(s, A) = N(b) A%;]K N N(b) A@E/:UK OIE
the second summation omits the value 0. From now on our sums will omit the value
0.
By the Theorem (1.0.4) if K is an imaginary quadratic number field of discriminant
D < 0, then U is a finite group: of order 2,4, or 6. Hence
((s.4) = T NO)' Y
| Uk | N(A)?

A€Eb

(we can drop the absolute sign since N(\) = A\ =| A |?> 0.)

This formula is unchanged if we replace b by ab for @« € K — 0 so we can assume
b has a basis of the form {1,w}. We also suppose that this basis is oriented, i.e
Im(w) > 0 (here we have fixed an embedding of K in C). Now let us examine N(b).
By definition we have N(b)= #(Jk : b). Also (Jk : b) = Cy,, & Cyn, where Cp,.
is a cyclic group of order m;; by a well-known structure theorem for finite abelian
groups.t
Say Cp,, =< ay >,Cp, =< g >, with o; = b+ u; where {uy, us} generates Jx and
{myuy, maus} generates b.

Hence #(9k : b) = myma, also Vol(b) = mimaVol(9) so N(b) = VZ%%Z)‘ We have

{1, w} basis for b where w = z 4+ yv/d, 2,y € Q, so

ik
w—w
Volb) = | & yvd 0 | =—yVi=——
1 0 O
Also {1,5YP} is a basis for 9,50
D
— VD -
Volb)= | 3 ¥ o |=-%
1 0 0

!'Thomas W. Hungerford, Algebra, Theorem 2.1, page:76
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and

N(b) = C(w —‘E) -2 _ 2Im(w)
% VD D
For an element o = mw + n of b we have
N(mw+mn) = (mw+n)(mw+n) =n’>+nmw + nmw + m*wo
= n*+m?|w|* +nm(w + W)

= n*+m? | w|* +nm2Re(w)

Back to Dirichlet’s zeta function, we had ((s, A) = ]‘v(%{)‘ > ey T
with N(b)* = 2° | D |7 (Im(w))®.
For A € b we have A\ = n +mw, m,n € Z so N(\) = A\ =| X |>=| mw +n |?. Then
| D |7 26 Im(w)* < 1
s, A) =
S el 2T P

m,n€Z

=S

_ D i
- |UK| Z |mw+n|?

m,neZ ( 2Im(w) )S

Let

(4.2)  Q(m,n) = %

which is the binary form N(n + mw) and normalized to have discriminant -1.
Because Q(m,n) = mlwli2mne)in® = 0 4 /d, Re(w) =z, Im(w)

2Im(w)
y+/| d | discriminant of
2Re(w) \ 2 w |2

2Im(w) 2Im(w))?
_ Ax? — A4(2® — yPd)
B Ay? | d |
_ 4y2d _ 1
4y* | d |
since d < 0.
Hence we have
| D= 1
((s,A) =
| UK | m%;z Q(m:n)s



Theorem 4.0.1. (Kronecker)Let Q(z,y) = az® + bxy + ¢y, a,¢ > 0,0* — 4ac = —1
be any positive definite quadratic form of discriminant -1, and w be the solution with
positive imaginary part of the quadratic equation cw? — bw + a = 0, so that Q is

given as in Equation (4.2). Then the zeta-function of Q, defined by
=X Gy
2 Qi

if Re(s) > 1, can be extended meromorphically to a neighbourhood of s =1 and has

there a Laurent erpansion

Gols) = 2=+ C+0(s— 1)

S —

with residue independent of () and constant term given by
1
C = dr(y+ ;loge —log | n(w) |*)

Here vy denotes FEuler’s constant and

o0

1z H(l — XY Im(w) > 0

n(w) = e

n=1

15 Dedekind’s eta-function.

Proof: For Q(z,y) = ar® + bxy + cy? we can write

N[

a
A = ,

) C
so that Q(z,y) = X'AX. The matrix A is said to be positive definite quadratic

. . . 2 .
form, if A is symmetric and a > 0, ac — bz > 0. Now consider

o

Zan Zan Zan
mO m;é(]

When m = 0 Q(m,n) = cn?. So the first sum is

o

1 _ 1
Z (CTLQ)S = Z n2s
i i
L1 &
= [ ﬁﬂLZﬁ]
n—=—oo n=1

= ¢ °[¢(2s) + ((29)]-
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Hence

Co(s) =2¢°C 25+Z Zan

m=—o0 n=—oo

m#0

In order to evaluate the sum we write it as

REDY Zan +ZZan

M=—00 N=—00 m=1n=—oc
and the first sum will be unchanged by replacing m by —m.
Since Q(m,n) = am? + bmn + cn? we get

o o0

p 1
Co(s) =2¢ <(23)+Z[Z (am? — bmn + cn?)* + Z am2+bmn+cn2)]

m=1 n=—00 n=-—oo

o

o

- 1 1
Z Z (am? — bmn + cn?)? * (am? 4 bmn + cn2)s)

m=1n=—oc

Note that for n < 0, ! = . n > 0 therefore in the

(am2+bm(—n)+cn?)s (am2+bmn+cn?)s

summation two parts give the same value. So

o o

Col(s) = 28+22an

m=1n=—oo

Yy G = 3éals) — e C(2s)

m=1n=—o0

Let I(s) = [ ﬁ. This is clearly a holomorphic function of s for Re(s)> 3
Then
(4.3) C(2s—1)1 — 1(s)).
nlzlnzoo Q m, n ( S + 2:1 nzoo Q(m,n)s sz—l (S))

the last term in the above sum is

1 m o mdt
s 11 \8) = / Q (1,2)° /oo [m2Q(1,1)]*

Observing that m2Q(1,t) = am? + btm? + ct*m? = Q(m, mt), we make the substi-

m251 / me
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Writing

n=-—oo

we calculate

oo 1 1 B 00 ;_ n—l—ldiy
(49 2 [Q(m,n)s _mQS’ll(S)] - n:z_:oo[Q(man)s /n Q(m,y)s]

= [t 1 1
- > [ G~ o)
2. |, Qlmny ~ Qlmey)
By the mean value theorem for n <y <n -+ 1 we get
1 1 d 1 max(m,n)
- ey | L Lo meslmn)
Qe ~ Qumoy = st LGy 17 O\ e

where the constant implied in O() depends only on @ and on s uniformly in

latter for < s < 2. Therefore Equation (4.3) is O(-5) from which it follows that

the sum over m in Equation (4.3) is absolutely convergent for Re(s) > £ and that

lim(>" 3 G — (25— DI()

m=1n=—o0

exists and equals > °_ (D> m — %))
The Taylor expansion of I(s) around s = 1 is
I(s) =1(1) + (s — 1)I'(1) + %I"(l) + .... Also from the end of Chapter 3 we

have v = lim,_,; ((25—1)—3%1 :>C(25—1):s‘_i1+7+0(5—1)

Therefore
¢(25 - 1)I(s) = zlf(ll) +I(1) + %m) + (s =y’ (1) + Os — 1)
- %(11) + [71(1) + %1’(1)] +O0(s — 1)(4.5)

Now take limit as s — 1 of

o o 1




Consider (4.5) and we get

(4.6) limy mzln;oo QUm,n)° il_(ll)) = ﬂ(l)+%1’(1)+g::1(n:§;oo Q(TrlL,n) - [7(71))

It remains to evaluate I(1),I'(1) and the sum. We have from Equation (4.2)

mw +n |?
Q(m,n)—Q w—x—l—y\/_

2Im(w)
Then

1 _ 2Im(w) 1 im2Im(w)
Q(m,n)  |mw+nl|2  im|mw+n |2

B 1( mw — mw )

~im \(mw + n)(mw + n)

B 1( 1 1 )

Cdim\mw+n  mw+n

hence

1):/ dt :1/ ( 1 1 )dt 11gt+w
QM) i) \t+Tw t+w i Ct+wl-

We have log(t +w) =log | t + W | +iarg(t + w) and

log(t +w) =log | t +w | +iarg(t + w)

— ! log(t + w) — log(t + w)} iooo = % [z arg(t +w) —iarg(t + w)} iooo
= arg(t+w) — arg(t + w)‘io =27
Also
o0
HZOO Q m, n - % zo.; (m@l—k n mw1+ n) - %%(cotﬂmw - cotwmw)

s
tan T

where we used the standard expansion

Therefore (4.6) becomes

s T 1 .
4711m<z Z an 5—1) = 2my+ I’ +72560t”mw_2)

s—1
m=1n=— =1

oo
s 1 .
- = E — (cot mmw + 1)
i m
m=1

=y L —— (principal value)
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the series converge because, for Im(w) > 0, cot 7mw — —i and cot 7mw — i with
exponential rapidity as m — oc.

Now
1 em’mw + e—m’mw o o
—cot ™M = ——— = ] 4 22U 4 gp—dmmw
Z 671"”71’11) _ e*ﬂ"tmw

and so

—_

- Z E (cotmmw — i) = 2 Z — z; g Zmimnw

1
m

— _QZlog[l - 6727rimnﬁ]

Tiw
= 5 2logn(—w)

2 3 4

Note that Taylor series for log is log(1 +2) =2z — 5 + % — % +..., 50

00
Z i —27r'mw - IOg(l _ 6—2m‘nw)
m
m=1
Zlog(l _ 6727rz'nm) — log(H(l _ e2m‘n@))
n=1 n=1

Similarly the second sum in Equation (4.7) equals —i(™ — 2logn(w))

Now consider

igq(Z Z an —Sil):27w+%l'(1)+§mz::l(cot7rm@—i)

2._ 2.
T —27 log 77(—w)+7r !

Y on 10g77(w)>

T e 1 1
~I37 (et ) = 21y = I'(1 (—
Z,m:1m(co Tmw+1) g (1)+

Multiply by 2,

. 2C(2s 27 2w _
fim (Go(s) — 2282 - 2T g 1(1) - T i logn(-m)
2.
— Amlogn( )+7r§w
2._ 2.
= dry () - T ”?;“” +2¢(2)



Note that ((2) = 300 | 5 =T 50 2((2) = . Also L = »=7.

n=1 n2 6
Hence we get

2,07 2,07 2

7;” + W;UZ + e 47 log[n(w)n(w)]

lim (CQ(S) - 52—7T1) = dr + I'(1) —

s—1

2((2s)

CS

Notice that we could take limg_,; since ((2s) absolutely converges for Re(2s) >

w—w
1

1, i.e Re(s) > 1. Also we have the assumption + =

2T
-1

= lim (Co(s) = 577 ) = 4w+ (1) ~ dwlogla(@)n(w)]

Tiw

Now we have ez = ¢~ and n(w) = e [[°2,(1 — ™), (Im(w)> 0)

n(~=w) = e 2 [0, (1 — e 27 = p(w) = n(w)n(~w) =| n(w)

Hence we get

tim (Ga(s) =~ ) = 4y + I'(1) — 4 log | (w) P

s—1

To complete the proof of the theorem we have to calculate the value of I'(1). We

have to show:

]’(1) — > Wdt

o Q(1,1)

equals 27 log c.

This is easily checked by substituting x = 2¢(t+Rew) which gives

[ da r2s—1) .
]' — 225 1 s—1 J/p — 2 s—1
(5) S B = P TSP

Let us verify what we said above. First we will verify the expression for I'(1).
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We have I(s) = [ ﬁ.

. I(1+h)—1I(1)
! —
ray = Jim h
~ 1
— hm Q(l t)1+h Q(Lt) dt
h—0 J_ h
oo 1.¢)-A+h) _ 1.4)!
R R
oo h—0 h
o 1 !
- Ll
Q(1,1)°
* InQ(1,t
_ ey,
o Q11)
Now we will do the substituting z = 2¢(t+Re(w)) where w is the root of cw? — bw +
a=0,sow = b=Vl tac ”’;20’4“ remember that we had the assumption b? —4ac = —1. This
gives Re(w) = L. o = 2ct + b, dz = 2cdt, t = %, Also

_/°° dt
oo QLY ) (a+ bt + ct?)s

Now put t = £ = a + bt + ct? = 22 So

I(s) = / M) 4T e s / S —
oo (1+22)7 2¢ oo (1+22)°

_ ﬂ_F(QS B 1)(35_1
I(s)=2 o

Claim:

Proof of Claim: Since (1 + z?) is an even function we can write

/°° dz _2/00 dz
e (T422) Ty (1 +a?)

We will use the beta function which is defined as

['(p)T(q)
T(p+q)

00 ﬁpfl
L g

I'(s) :/ e Yyt ldy
0
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is the gamma function. Take p = %, q=5s— % and make the substitution 8 = 2.

Then the beta function gives

1 1 T'(3)T(s—3)
Bee=3) = —p
Y A (22) 7 2xdx
o (T+a2)s

Hence we get

where ['(3) = /7 So

1

s—1 s—1 F(S B E)F(S)
2°7 ¢ ﬁw

and by the Legendre duplication formula which is stated as follows

['(s— 1)F(s) = 2\/77{‘(25 —1)

o 925—1

I(s) becomes

.1 2n0(2s — 1)
_ s—1 _s—1
16) = 2 TGy
'2s—-1) ,,
7r ABE c

[0 To found the value I'(1) differentiate I(s) we found above,

I'(s) = 2w<log(6)csl% 45t 2I'(2s — 1)T(5)2 ;(3)1;(25 - 1)F(5)F(5)I>

and put s = 1 then we get I(1)" = 27 log(c).

4.0.1 Hecke’s Theorem

Now assume K is a real quadratic field, D > 0 be its discriminant. The difficulty in

working with real quadratic number fields is the existence of infinitely many units.
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Let € be a fundamental unit so that U = {+¢";n € Z}. The same argument as in

the beginning of Chapter 4 gives
bS
o) = PO
Let A =N(b)Dz. Then

1 N(b)*D3
(48)C(s 4) = 552 > (())| —Zm E

Ael Ael

Consider the integral c(s) = [~

—00 (ev+e v)s

Then by substituting ¢” = ¢¢e" for non

zero real numbers a, b we get

/°° dv _c(s)
. (a26v + b2671})s o | ab |s

indeed the integral depends only on the absolute values of a and b is homogenous of

degree —2s, and only depends on the product ab. The substitution a — Aa,b — %
corresponds v — v —2log A\. Multiplying the Equation (4.8) by 2°¢(s), then we have

s &0 d
2D A) = YA [ e

Aed

But replacing A by €"\ replaces A2 by €2"\2, M2 by ¢ 2"\? and this corresponds
to v — v + 2nloge that is, the action of € by multiplication on A corresponds to
an action on v by translation through 2loge. Therefore the right hand side of the

equation equals

3 /loge (2A)*dv

2. v 12 ,—v)S
b —loge ()\ € +)\ (& )

But now the summation and the integration can be interchanged and the sum
2/\66 /\zefﬁ\;‘? s is over the whole Z-module b of a Dirichlet series with a def-
inite quadratic form like the one in Kronecker’s formula. If we again assume

that b has a basis of the form {1,w} which as before we assume to be oriented

(this now means w > w' where w' = o0y9(w)) then writing A = mw + n we find
1 w . . .

A =w—w =det(o;(w;)) = [w is the conjugate of w]. Consider
1 o

Ae? + Ve = mPw?e” +we Y] + 2mnfwe’ + w'e ] + nle’ +e Y]
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So for Q,(m,n) = am?® + bmn + cn* and ¢ = “F5— we have

(mw + n)?e’ + (mw' + n)?e "’

Q’U(mi n) - 2A
has determinant -1, and we have
. loge
192 e(s)Dic(s.A) = [ o (o)
—loge

By the Kronecker’s limit formula,

27 1 el +e? w +w'e™?
o= 2 n vt g (S gy ()

2
-1
s—1 2 1+ e )+O(S )

Substituting this into Equation (4.9) and using easily calculated values c¢(1) =

7, (1) = —mlog2 we find res,—1((s, A) = kx/%6 and

. 2D_Tlloge
of4) = T (¢l 4) = = %)

2loge 1 1 /loge e’ + e
- —Zlog D +27) + —— (10 (7)
VD 3P p S\

w+iw'e v\ 4
- tog[n(S )| )

This formula is not as nice as Kronecker’s limit formula because it still involves an

integral to be evaluated.
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CHAPTER 5

Zagier’s Theorem

If {1,w} and {1,w;} are bases of fractional ideals in the same ideal class of an
quadratic number field K, i.e b = Z + Zw and by = Z + Zw, since they are in the

same ideal class we have b = ()b, so Z + Zw = oZ + Zow

« a b w
Qwq c d 1

cw~+d

= a=aw+baoaw =cw+d= w =
aw + b
) ) b a b
So w and w; are related by a Mobius transformation w; = ‘Clgj:d, €
c

SLy(Z)
For the case of a real quadratic field, we call a number w € K reduced if it
satisfies the inequalities

GHw>10<w <1

(always with respect to a fixed embedding K C R, eg v/D > 0)
Now the number w € K can (since we have fixed an embedding of K in R) be

expanded in a unique way as a continued fraction.

1
W=y = ———3—

a J—
1 as—1
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with a; € Z(alli), a; > 2 (i = 1,2,...). By the standard theory of continued frac-
tions, the fact that w satisfies a quadratic equation over Z implies that the sequence
{ag, a1,...} eventually becomes periodic, i.e a;., = a; for all i > iy; the smallest
such r is called the period of w, and the corresponding r-tuple ((a;,11,-- -, Gigsr))
the cycle associated to w.

If we choose a different number w with w > w' and b = Z1 + Zw then the pe-
riod is unchanged, moreover this is also true if we replace b by another ideal in the

same narrow ideal class B. Let us explain this statement. First consider the period

11 w
of w+1 = . Note that the continued fraction of w + 1 is the

0 1 1
same as w except the first entry. Hence they have the same period. Also consider

) 0 —1 w ) ) )
== , this has the continued fraction
1 0 1
1
ag — ! T

, so this also have the same period with w. If we take any ideal a from the same

narrow ideal class of b = Z + Zw, then a = (a)b = Za + Zwa = Z + 73 where

a b w 11 0 -1
B= atbw _ with ad — bec = 1. Since and

e d )\ 0 1 10
generates SLy(Z) we have ( has the same period with w.[5]

Thus to each such class B we have associated an integer r > 0 and a cycle
((by,...,b,)) of r integers > 2, where the double parenthesis indicate that the order
of the b; is only defined up to cyclic permutation. We denote the length r of the
cycle by £(B) and call it the length of the ideal class B. The length of B* is the
period of the continued fraction % The condition w being reduced is equivalent
to the condition that the continued fraction expression of w is pure periodic, i.e
satisfies a;1, = a; for all ¢ > 0. It follows that if B is a narrow ideal class of K with

length r = ¢(B) and cycle ((by,...,b,)) (b; € Z, b; > 2), then there are exactly r

numbers w € K which are reduced and for which {1,w} is a basis for some ideal in
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B. These are the numbers defined by

b1 — -

fork=1,2,....r

Before giving the proof of the theorem we will need some preliminaries.

We define wy, by Equation (5.2) for k = 1,...,r = ¢(B) and extend the definition
to all k& € Z by requiring wy to depend only on k(mod r). We also fix the ideal
b=7+ Zwy € B.

Now, define a sequence of numbers

0<... <A <A <A=1<A <A ,<...

by

Ae=ote (21)

AU - 1

A_k = WoW-1...W—-k+1 (k 2 1)
so that

(5.3)  App =

Wh+1

From the continued fraction expansion of wy in Equation (5.2) we have w; =

1 . A
by — TS and from Equation (5.3) we have wy; = Ak.kH'

Hence Wy = bk — Aflzl which implies Ak—l—l = bkAk — ’LUkAk and ’LUkAk = Ak—l- So

Appr = bpAp — Ap_y.

Lemma 5.0.1. ZAy, 1 +ZAy = ZAy+ZAg_1, i.e {Ax_1, Ax} form a basis for b for

each integer k.
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Proof: For this let a A, + bAy_1 € ZA, + ZA,_1 be any element.Then

aA, +bAL,_, = aA;+ b(bkAk — Ak+1)
= (a + bbk)Ak — bAk-H € LA, + ZAk+1

So ZAk + ZA[C,1 g ZAk + ZAk+1
Now let cAg1 + dAy € ZAy 1 + Z A, be any element. Then

CAk+1 +bA, = C(bkAk — Akfl) + d Ay
= (Cbk —+ d)Ak — CAL_ € LA, +ZA,_

s0 ZAy + LAy C LA, + LA, 4

Also note that we had fixed b = Z + Zwy.

For k = —1 we have ZAy 1 + ZAy = ZAy+ ZA_1 = Z + Zwy = b.
so {Ag_1, Ax} form a basis for b for any k.OJ

Moreover, the periodicity of the wj implies
Lemma 5.0.2. A, Ay = Ay, for all k € Z.

Proof: We have

This implies the following lemma
Lemma 5.0.3. A, is the fundamental unit of K.

Proof: Consider

A— A
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Clearly 1 respects addition and it is injective. Also since b = Z Ay, 1 + Z Ay,
from Lemma (5.1) and A, (aAy_ 1+ bAx) = aAkir 1+ bAgy, by Lemma (5.2) we see
that it is onto. Therefore, 1 is an automorphism of b. So there is an inverse mapping
which implies A, has an inverse and hence A, is a unit. Also remember that w was
reduced that is w > 1 and 0 < w' < 1 hence A, > 0 and A] = w,ll—w, > 0. Ina

quadratic number field the units are of the form +€™. Since € > 1 we have

A, = ¢ " for some n > 1 since 0 < A, < 1. (5.4)

It can be shown that n =10

Proposition 5.0.12. There is a one-to-one correspondence between {\ € b|A >> 0}
and {(k,p,q)|k,p,q € Z,p > 1,q > 0}. Moreover it is clear from (5.4)and (5.5)
that if X corresponds to the triple (k,p,q) then the triple corresponding to \e™ is
(k — nr,p,q); hence there is a one-to-one correspondence between principal ideals

(A) with A\ >> 0, € b and triples (k(mod r),p,q).

Proof: Now for any k£ € Z any number A € b can be written in the form
(55))\ = pAk,1 + qu

[since b = Z Ay + ZAg_1] with p,q € Z, and it is clear that if p,¢ > 0 and not both
are 0 then ) is totally positive.(i.e A > 0, > 0;we write A >> 0) Conversely; one
can show that if A € b is totally positive then A can always be written as pAy_;+¢Ay
with p,q > 0 for some k.

Moreover this representation is unique unless A = nA; (n € N) in which case we
take k=10, p=0,g=nork=1014+1,p=mn,q=0. Thus if we make the restriction
p > 1, then to each A € b is associated a triple (k, p, q) of integers with p > 1,4 > 0
and A as in Equation (5.5). O

Now we are ready to prove

Theorem 5.0.1. For Q(z,y) = ax®+bry+cy?, a,b,c > 0, b>*—4ac = 1 an indefinite
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binary quadratic form with positive real coefficients and discriminant 1, we define

=33 g

=1 ¢=0

then for the zeta-function of a narrow ideal class B of a real quadratic field of

discriminant D, we have the decomposition

D2((s,B~" ZZQk

where r = ((B) is the length of B and the quadratic form Qy are defined as

(5.6)  Qup,q) = g—or (¢ + pwi)(q + pwy),

wy being the elements of K whose continued fractions correspond to the various

cyclic permutations of the cycle ((b1,ba, ..., b)) associated to B.

Proof: Let A € b be totally positive. Then from Lemma (5.0.1) there are inte-

gers k,p, g such that A = pA;_; + gA;. We had wy, = Aj: (¢ + pwy) and

(5.7) N(A) = N(Ax)(q + pw)(q + pwy,).

Also, from wy = b, — ﬁﬂ we obtain

!
Wy — W, = —1 i L Wk — Wi
- W — / - '
W41 Wiy Wr4+1Wg 14

or

(wr — wi) Ap A}, = (W1 — Why1) Arr Al

Now take £ = 0 then we get
(wo — wy) Ag Ay = (wy — w)) A1 A} = ... = (wg — wy,) AR A}

= ApA} = 2= wo # Ao Ay Now using N(4g) = A A, in Equation (5.7) we get

wo — Wy
N(A) = M(Q+pwk)(Q+pw2)
k
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we have

(5.8) Qi(p, q) = o7 (a+ pwi)(q + pwy)
hence N()) becomes

N(A) = (wo — wy)Qk(p, q)
Now, let B be a narrow ideal class and b € B. Then there is a one-to-one correspon-

dence between a € B~! and ()\) € b totally positive given by ab = ()\). Therefore,

S S 1 S 1
D3((s,B™") = D= = D2N(b)?
2. N 2, N0
A>>0

oo o0 o0 1

= (wo—wp)’ Y D> > s
pr s N(pAg—1 + qAx)

-3y g

k=1 p=1 ¢=0 kP, 4

Notice that Qk(p, ¢) is an indefinite binary quadratic form with positive coefficients,

normalized to have discriminant 1. O

Next we will prove a theorem about the residue and the constant term of the

Laurent expansion of Zg(s) at s = 1. But first we need the following lemma.

Lemma 5.0.4. For Q(z,y) = ax® +bxy +cy?, a,b,c > 0, b?> —4ac = 1 an indefinite
binary quadratic form with positive real coefficients and discriminant 1, and w,w’

be the roots of the quadratic equation cw? —bw +a = 0, labelled so that w > w' > 0.

Define
< dt
1= /0 QL)
for Re(s) > 1. Then I(1) =log(%) and
/ 2 /
I'(1) = (log —)(log ———) — g(~)

with g defined by g(a) = fooo(:w%a - m—}rl) log((z + 1)(x + «))dz

Proof:

We have cw? — bw + a = 0, factoring out ¢ we get c(w? — 2w + %) = 0 so w and w’
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: : 2 b _ 1 _ 1 __ b
satisfy the equation t* — 2+ ¢ = 0 so ww’ = ¢ and w +w' = . Now

Q(z,y) = ax®+bry + cy® = cww'z® + (cw + cw')zy + cy®

= c(ww'zs® + (w +w')zy + 3*) = c(y + zw)(y + zw')

and
1

1 1 1( 1 1

Qlz,y)  cly+zw)(y+zw)  c¢\y+azw y+xw)z(w—w’)

Also b? — 4ac = 1 which implies
[e(w + w")]? — 4cPww’ =1
A(w? + 2ww' + w'?) — 4tww’ =1
Aw? + Aw'”? - 2ww’ =1

A(w? = 2ww’ +w?) =1

(w — w')?* = % since ¢ > 0 we get * = (w — w').

So we have

1 B 1( 1 1 )
Qz,y) x\y+aw y+aw
Therefore,

d

t
1) = /0 Q(1,1)
1

/ :
- [
o 4w t4w

t+w'

o0
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Now let us compute I'(1).

, L oologQ(l,t)d
! (1) B 0 Q(L t) !
B w? *log(Q(1,1) “’;;”’)
= —I(l)logw_wl—/0 Q1) dt
We had
11 1
QGJ)__(t+w’_t+w)
B w—w'
(4 w)(t+uw)

so Q(1,t)(w—w') = (t +w)(t +w')

If we substitute z = %t we get

w—w' 1 w'
Q(1,1) = :@(xw+w)(zw+w'):(:E+1)(:E—|—E)
and
dt 1 1
- . dt
Q(1,1) o —”
1 1
= ( - Jwdz
Tw +w w4+ w
1 1
= ( - — )dx
r+%  z+1
This yields
wl 2 wl
I'(1) = (log L)1 g
(1) = (1o )1og =) — ()
with ¢g defined by
(a)—/oo( L1 gl + 1)@ + a)lde
Y= o T+a wz+1 & '

Now we can state the main theorem.

Theorem 5.0.2. For Q(z,y) = ax®+bry+cy?, a,b,c > 0, b>*—4ac = 1 an indefinite
binary quadratic form with positive real coefficients and discriminant 1, and w,w'

be the roots of the quadratic equation cw? —bw +a = 0, labelled so that w > w' > 0.
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1
927

Then the function Zg(s) has an analytic continuation to the half-plane Re(s) >
with a single pole at s = 1, and its Laurent expansion there is

Log &
Zg(s) = % + P(w,w") +O(s — 1)

where P(x,y) is a universal function of two variables, given by

2
Yy, T x
Pla,y) = Fla) = F(y) + Lio(2) = T +10g (7 = 5 log(a — y) + 1og()
with © >y > 0 Here vy is the Euler’s constant and Lis(t) is the dilogarithm function
S L (0<t<1)and
=1 © 1 1
1 1 ); ( __>1 1— e )dt
nz:l - ( og(nz) /0 T 3 og(l —e ™)
Proof:
Consider
Z, —((2s—1)I(s) = [ — I(s }
o(s) = <( ) () ;;qu)s 2DQH()
Let us investigate the convergence of this series
Za(s) = s —1Gs)| < 3|30 o - —1r(o)
== Qg p¥
N 1 I(s)
< XX lgma s

—=1Qp,q)*! Ip»!

S5 e

~ = Qg p!
5 where s = o +it. Since ((s) has analytic
s 5, Zg(s) has

this absolutely converges for Re(s)>

continuation to the complex plane and I(s) is defined for Re(s) >

analytic continuation to Re(s) > 1. Also by Kronecker’s limit formula we have
! (1)>

51(1)]:71( )+ I’ +Z<ZQ(;,Q)_ p

(59)21—{% [ZQ( ) - s—1
p=1 ¢=0
Let us evaluate ) ° Q(p - From Equation (5.8) we have
S
S Qg pig\gtpw gtpw
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Let

1 ) I'(x)

+z/) T(z)

N—oxo

N
(z) = lim (logN— Z p
q=0

be the logarithmic derivative of the gamma-function. Then

) Pp— }prw) ()

= Qpq)
therefore,
— 1 I 1 ) bl — loa( Y
6NY gy~ = LU~ vl —loe()
=~ (0lpw) = loglpw)) — - (v(pu) ~ log(pu)
Now,
Yoo 1 1 1
z%qux - r z+1 z+ N
= (1+ .+i)+(i ! )— 1+ )+ -

Since (1 +...+ ) ~ log N we have

. 1 1
P(z) —logzr = ]Vlgo(logN— [logN+(7+...+ —logz—k;])—logz

N +1 z+ N
1 1 1
= — 4 ... — 2 =0(~).
N—I>I<I>O(N—i—1+ +x%—N) T (:E)

Therefore, both terms are O(I%) for p — oo So (5.9) can be summed over p. Putting

(5.9) into (5.8) we obtain

1 w
5108 4

W 1, ,
8_1)_7m%;+5un+F@g—Fm)

lim <ZQ(S) -

s—1

where F(x) is the function defined in the statement of the theorem. If we compare
this with the equation for P(z,y), we see that it remains to prove that

i 2
I'(1) = 2Liy(—) — =

w (1 w
E) 7T log —~ (— log i log(w — w'))

2
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Comparing this with the value of I'(1) from Lemma (5.0.4)we need to prove
i ! 2

w w
Yy~ )+l
9(->) (1) +log —~(log ——)
Cw' o w? w, w-—w 1 W,

Letting o = % we need to show

2
1
g(a) = 2Liy () + % —2logalog(l — a) — §(log a)?

We have

2
Liy(a) + Lig(1 — o) = % —logalog(1l — )

0<a<l)

so we need to prove

1
(5.10)g(cr) = 2Lig(1 — ) — 5(log a)?
0<a<l)
Two sides of Equation (5.10) agree for a = 1 (both plainly vanish) so it suffices

to prove (5.10) after differentiation, i.e to show

2loga loga

! = O<a<l1
gla)=1——-———(0<a<l)
since %Lig (t) = 220:1 tn: _ _log(:ft)'
We have
g/(a):—/oo lOg(([E—i—l)(fIT—I—Oz))dx_'_/oo( ! B : ) -
0 (z + a)? o eta zt+l/rta

Let us evaluate the first integral by integration by parts.

Let log((z + 1)(z + a)) = u then du = EXOE ) g0 and et

@) (2 ta) (:v-l—a) = dx then

—L_ — 4. Therefore

“logl(z + 1)(z + )] _
_/0 (x4 a)? v = log((x+1)(x+04))x+a0

B / x+a( x+a)dm

1 1
SRR "
T+« :L"+1 T+«
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Hence

vy loga o dz
9(0‘)__7_2/0 CECETD

Evaluating the second integral will finish the proof. Consider

1 A B
= + — Ar+Aa+Br+B=1
(z+D(z+a) z+1 zx+a

— A=-B,(1-a)B=1

Hence
1 I NS S S
(z+D(x+a) l1-a(@+1) l1-a(z+a)
SO
o0 1 1 o 1 1
/ dr = / ( — )dm
o (z+1)(z+a) l-a), \z4+a z+1
1 log(x + «)
1 —alog(z+1)
we get
log a 2 r+aj© —loga 2loga
g(a) =25 - log =52 255
@ 11—« @ 11—«

This proves Theorem (5.0.2)0

Now we can state Zagier’s theorem.

Theorem 5.0.3. (Zagier) Let B be a narrow ideal class in a real quadratic field of

discriminant D, and € > 1 the smallest unit of K of norm 1. Then

1
lim(D3((s, B) oge ZP W, W)

s—1 5—1

where the summation is over all w € K satisfying Equation (5.1) for which {1,w}

is a basis for some fractional ideal of B and P(x,y) is as in Theorem (5.0.2).

Proof:
Combining Theorems (5.0.1) and (5.0.2) we see that

D2((s, B~} ZZQk
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where r = ((B) and

I log(“k)
o = T o Plwg i) +O(s — 1)

. Then . "
. 2 los(Gr) ,
D2((s, B ):Z[ST+P(wk,wk)+O(s—l)]
k=1

The stated formula for the residue is deduced by noting that,

Al
Z log = log 1732 = log A_: = log(€?)
since A, = ¢ '. So
: L1y 32logle) ¢
D2((s,B7") = 25? + Zp(wk,w;) +0(s—1)

k=1

. Now taking the limit as s — 1 we get the result:

. s log
s n
£1£r% (D ((s, B~ ) E P(wg, wy,)
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