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ABSTRACT 

In many of today’s mechanical systems, high precision motion has become a necessity. 

As performance requirements become more stringent, classical industrial controllers 

such as PID can no longer provide satisfactory results.  Although many control 

approaches have been proposed in the literature, control problems related to plant 

parameter uncertainties, disturbances and high-order dynamics remain as big challenges 

for control engineers.  

Theory of Sliding Mode Control provides a systematic approach to controller design 

while allowing stability in the presence of parametric uncertainties and external 

disturbances. In this thesis a brief study of the concepts behind Sliding Mode Control 

will be shown. Description of Sliding Mode Control in discrete-time systems and the 

continuous Sliding Mode Control will be shown. The description will be supported with 

the design and robustness analysis of Sliding Mode Control for discrete-time systems.  

In this thesis a simplified methodology based on discrete-time Sliding Mode Control 

will be presented. The main issues that this thesis aims to solve are friction and internal 

nonlinearities. The thesis can be outlined as follows: 

•  Implementation of discrete-time Sliding Mode Control to systems with 

nonlinearities and friction. Systems include; piezoelectric actuators that are known 

to suffer from nonlinear hysteresis behavior and ball-screw drives that suffer from 

high friction. Finally, the controller will be implemented on a 6-dof Stewart 

platform which is a system of higher complexity. 

•  It will also be shown that performance can be enhanced with the aid of disturbance 

compensation based on a nominal plant disturbance observer.    
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ÖZET 

Günümüzde kullanılan mekanik sistemlerde yüksek hassasiyetli hareket iletimi bir 

gereksinim haline gelmiştir. Performans gereksinimlerinin daha sıkılaşmasıyla birlikte, 

PID gibi klasik kontrol yöntemleri tatmin edici sonuçlar verememektedir. Literatürde 

birçok kontrol yaklaşımı önerilmesine rağmen sistem parametrelerindeki belirsizlikler, 

bozucu etkenler ve yüksek dereceli sistem dinamiği içeren kontrol problemleri, 

mühendisler için hala büyük bir sorun teşkil etmektedir. 

Kayma Kipli Kontrol teorisi, parametrik belirsizliklere ve dışarıdan gelen bozucu 

etkenlere karşı kararlılık sağlayarak kontrolör tasarımında sistematik bir yaklaşım 

sunmaktadır. Bu tezde Kayma Kipli Kontrol’ün arkaplanındaki kavramlar kısaca 

gösterilecektir. Ayrık zamanlı Kayma Kipli Kontrol ve sürekli Kayma Kipli Kontrol 

tanımları gösterilecektir. Bu tanımlar ayrık zamanlı Kayma Kipli Kontrol tasarımı ve 

dayanıklılık analizi ile desteklenecektir.  

Bu tezde ayrık zamanlı Kayma Kipli Kontrol üzerine kurulan basitleştirilmiş bir 

metodoloji sunulacaktır. Bu tezin çözümlemeyi amaçladığı ana noktalar sürtünme  ve 

sisteme ait doğrusal olmayan özelliklerdir. Bu tezin anahatları aşağıdaki gibi 

özetlenebilir: 

•  İçinde sürtünme ve doğrusal olmayan özellikler barındıran sistemlere ayrık zamanlı 

Kayma Kipli Kontrol’ün uygulanması. Bu sistemler şu bileşenleri içerir; doğrusal 

olmayan histerezis davranışı sergileyen kumanda aygıtları ve yüksek sürtünme 

kuvvetiyle karşı karşıya olan vida mekanizması. Son olarak kontrolör, yüksek 

oranda karmaşıklığa sahip olan altı serbestlik dereceli bir Stewart platformuna 

uygulanacaktır.  

•  Ayrıca, nominal sistem bozucu etken gözlemleyicisi üzerine kurulu bozucu etken 

kompanzasyonu yöntemi yardımı ile performansın iyileştirildiği gösterilecektir. 
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ABSTRACT 

In many of today’s mechanical systems, high precision motion has become a necessity. 

As performance requirements become more stringent, classical industrial controllers 

such as PID can no longer provide satisfactory results.  Although many control 

approaches have been proposed in the literature, control problems related to plant 

parameter uncertainties, disturbances and high-order dynamics remain as big challenges 

for control engineers.  

Theory of Sliding Mode Control provides a systematic approach to controller design 

while allowing stability in the presence of parametric uncertainties and external 

disturbances. In this thesis a brief study of the concepts behind Sliding Mode Control 

will be shown. Description of Sliding Mode Control in discrete-time systems and the 

continuous Sliding Mode Control will be shown. The description will be supported with 

the design and robustness analysis of Sliding Mode Control for discrete-time systems.  

In this thesis a simplified methodology based on discrete-time Sliding Mode Control 

will be presented. The main issues that this thesis aims to solve are friction and internal 

nonlinearities. The thesis can be outlined as follows: 

•  Implementation of discrete-time Sliding Mode Control to systems with 

nonlinearities and friction. Systems include; piezoelectric actuators that are known 

to suffer from nonlinear hysteresis behavior and ball-screw drives that suffer from 

high friction. Finally, the controller will be implemented on a 6-dof Stewart 

platform which is a system of higher complexity. 

•  It will also be shown that performance can be enhanced with the aid of disturbance 

compensation based on a nominal plant disturbance observer.    
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ÖZET 

Günümüzde kullanılan mekanik sistemlerde yüksek hassasiyetli hareket iletimi bir 

gereksinim haline gelmiştir. Performans gereksinimlerinin daha sıkılaşmasıyla birlikte, 

PID gibi klasik kontrol yöntemleri tatmin edici sonuçlar verememektedir. Literatürde 

birçok kontrol yaklaşımı önerilmesine rağmen sistem parametrelerindeki belirsizlikler, 

bozucu etkenler ve yüksek dereceli sistem dinamiği içeren kontrol problemleri, 

mühendisler için hala büyük bir sorun teşkil etmektedir. 

Kayma Kipli Kontrol teorisi, parametrik belirsizliklere ve dışarıdan gelen bozucu 

etkenlere karşı kararlılık sağlayarak kontrolör tasarımında sistematik bir yaklaşım 

sunmaktadır. Bu tezde Kayma Kipli Kontrol’ün arkaplanındaki kavramlar kısaca 

gösterilecektir. Ayrık zamanlı Kayma Kipli Kontrol ve sürekli Kayma Kipli Kontrol 

tanımları gösterilecektir. Bu tanımlar ayrık zamanlı Kayma Kipli Kontrol tasarımı ve 

dayanıklılık analizi ile desteklenecektir.  

Bu tezde ayrık zamanlı Kayma Kipli Kontrol üzerine kurulan basitleştirilmiş bir 

metodoloji sunulacaktır. Bu tezin çözümlemeyi amaçladığı ana noktalar sürtünme  ve 

sisteme ait doğrusal olmayan özelliklerdir. Bu tezin anahatları aşağıdaki gibi 

özetlenebilir: 

•  İçinde sürtünme ve doğrusal olmayan özellikler barındıran sistemlere ayrık zamanlı 

Kayma Kipli Kontrol’ün uygulanması. Bu sistemler şu bileşenleri içerir; doğrusal 

olmayan histerezis davranışı sergileyen kumanda aygıtları ve yüksek sürtünme 

kuvvetiyle karşı karşıya olan vida mekanizması. Son olarak kontrolör, yüksek 

oranda karmaşıklığa sahip olan altı serbestlik dereceli bir Stewart platformuna 

uygulanacaktır.  

•  Ayrıca, nominal sistem bozucu etken gözlemleyicisi üzerine kurulu bozucu etken 

kompanzasyonu yöntemi yardımı ile performansın iyileştirildiği gösterilecektir. 
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1. INTRODUCTION 

1.1 Objective 

High precision motion control has become an essential requirement in today’s 

advanced manufacturing systems such as machine tools, micro-manipulators, surface 

mounting robots, etc. As performance requirements become more stringent, classical 

controllers such as the PID controller, which has been the most favored controller and 

widely used in industry for generations, can no longer provide satisfactory results. 

Although various approaches to the design of better controllers have been proposed in 

the literature, control problems associated with system uncertainties, presence of high-

order dynamics and system inherent nonlinearities remain big challenges for control 

engineers. 

High precision motion control is first challenged by the presence of friction. 

Friction, as a highly complex, nonlinear phenomenon exists in almost every mechanical 

system involving relative motion between parts. Different characteristics of friction can 

appear in different types of contacting surfaces and the magnitude of friction depends on 

the physical properties of the interacting surfaces as well as the load. The problems 

caused by friction primarily result in unacceptable tracking/positioning errors which can 

not simply be eliminated by introducing an integral action in the controller. Particularly, 

when low-speed small-amplitude motion tasks are required, nonlinear friction in 

combination with integral action typically leads to so called stick-slip limit cycles. 

In addition, other uncertainties which may also be regarded as parasitic effects are 

often present in real-world systems. These effects include: 

•  Parametric uncertainty, such as parameter changes due to, for example, 

different operating conditions and load changes. 
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•  Actuator/sensor nonlinearities, such as hysteresis, dead-zone, saturation, 

input-output slope changes in operating ranges as well as the nonlinearity of 

quantization when using AD converters for digital-computer control 

•  Backlash and compliance in gear-trains 

•  Time delays 

The research goal of this thesis is to develop a simplified control methodology for 

implementation into real systems that are required to have very high-precision motion. 

The main efforts are concentrated on handling internal nonlinear disturbances and 

friction of mechanical systems. The thesis focuses more on actual implementation than 

theoretical analysis. 

1.2 Mechatronic Microsystems 

Nowadays, novel trends can be seen in mechatronic systems technology: Micro 

mechatronic systems are being increasingly developed into stand-alone devices for 

multi-purpose applications, and these do not necessarily comprise of sensor elements 

but can also interact mechanically with the aid of micro actuators with their 

surroundings.  

With dimensions of a few millimeters, piezo-driven valves and membrane pumps 

overcome fluid pressures up to 1000hPa. Electromagnetic motors generate torques of 7 

to 100µm which are multiplied by adapted micro gears. Gear motors serve as a key unit 

for high force micro positioning systems or micro gear pumps which are first examples 

for the device level. 

With the integration of electronics and optics the actuator performance can be 

considerably increased by establishing a feedback control and the systems really 

become mechatronic devices. Additionally, interface components such as electrical and 

fiber-optic connectors with pitches as small as 250µm, special gears and miniaturized 

clamping structures enable the implementation of complex optical fiber networks, micro 

robots or chemical micro reactors from these mechatronic devices in a construction kit.  

Microsystems are widely used in all domains of our daily life but are hardly 

recognized. This is due to the fact that most of theses devices are integrated into mass-

products and specialized for the one application they are developed for. Airbag sensors 
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in passenger vehicles or laser heads in CD players illuminate that fact impressively. 

Another example are print heads of ink jet printers which only work in the specified 

printers and use only one type of fluid -ink. On the other hand ink printer heads are at 

least stand-alone micro devices in the geometrical sense. Printer heads interact, like 

more and more modern microsystems do, with their surroundings. The mechanical or 

fluidic interaction is executed by small but powerful actuators.  

A promising actuation principle for application in microsystems is based on 

piezoelectricity. Piezoelectricity is a fundamental process in electromechanical energy 

conversion. It relates electric polarization to stress/strain in piezoelectric materials. 

Under the direct piezoelectric effect, an electric charge can be observed when the 

material is deformed. The inverse, or the reciprocal piezoelectric effect, is when the 

application of an electric field can cause mechanical stress/strain in the piezoelectric 

materials. There are numerous piezoelectric materials available today, including PZT 

(lead zirconate titanate), PLZT (lanthanum modified lead zirconate titanate), and PVDF 

(piezoelectric polymeric polyvinylidene flouride) to name a few. 

Piezoelectric structures are widely used in applications that require electrical to 

mechanical energy conversion coupled with size limitations, precision, and speed of 

operation. Typical examples are microsensors, micropositioners, speakers, medical 

diagnostics, shutters and impact print hammers. In most applications bimorph or stack 

piezoelectric structures are used because of the relatively high stress/stain to input 

electric field ratio. These structures are mostly fabricated in a hybrid concept by 

combining advanced 3D micro fabrication methods with assembly and interconnection 

techniques. 

1.2.1 Piezoelectric Actuator Driven Micromanipulators 

Micromanipulation technology is one of the most important key issues nowadays. 

The field of micromanipulation, which deals with objects from a few microns to 

hundreds of microns in size, places unique demands on the design of a manipulator. 

First, the dynamics of micro objects are different from that of conventional macro 

objects; in the micro world, surface forces such as surface tension, electrostatic force 

and viscous friction forces are dominant rather than inertial force. Second, the 

mechanism should be designed so that small actuator displacements can generate as 
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large workspace as possible. Furthermore, joint types and actuation methods which can 

be easily realized on miniature scale are required. In Figure 1.1, an example of a 

commercially available piezoelectric actuator driven system is shown. 

1.2.2 Models of the Piezoelectric Actuator 

In this section some models of the piezoelectric actuator that were encountered 

during this study are briefly described.  

1.2.2.1 Continuous Model 

The most widely recognized description of piezoelectric ceramic behavior 

published by a standards committee of the IEEE Ultrasonics, Ferroelectrics and 

Frequency Control Society originally in 1966 and most recently revised in 1987 [1]. 

This committee formulated linearized constitutive relations describing piezoelectric 

continua which form the basis of piezoelectric behavior that is presently in general use. 

The linearized relations are typically represented in a compressed matrix notation as 

follows: 

kkpq
E
pqp EdTsS +=  (1.1)

k
T
ikqiq

E
i EεTdD +=  (1.2)

 

 

Figure 1.1. 3-Axis nanopositioning system, PI Gmbh 
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Here S represents the strain tensor, sE is the elastic compliance matrix when subjected to  

constant electric field, T represents the stress tensor, d is a matrix of piezoelectric 

material constants, E is the electric field vector, DE is the electric displacement vector, 

and εT the permittivity measured at a constant stress. The compressed notation 

eliminates redundant terms by representing the symmetric stress and strain with single 

column vectors that incorporate elements representing both the diagonal and off-

diagonal tensor terms. These equations essentially state that the material strain and 

electrical displacement exhibited by the PZT are both linearly affected by the 

mechanical stress and the electrical field to which ceramic is subjected. Aside from the 

awkward notation and the obvious difficulty in implementing these in real-time 

applications these relations fail to explicitly describe the nonlinearities that are present 

in all piezoelectric ceramics. Additionally, the derivation assumes a purely conservative 

energy field, and thus fails to describe the dissipative nature of these ceramics.  

1.2.2.2 Preisach Model of Hysteresis 

Preisach model was originally developed in the area of Magnetics. However, 

recently it has been increasingly used to model piezoelectric continua. The classical 

Preisach model equation relating piezoelectric expansion x(t) and input voltage uin(t) is 

( ) ( )[ ]∫∫
≥

=
βα

αβ βαγβαµ ddtutx in,)(  (1.3)

where [ ])(tuinαβγ  are elementary hysteresis operators whose values are determined by 

the input voltage signal uin(t) (Figure 2). α and β are extrema values of the input signal. 

They are defined such that α corresponds to the maximum value of the input extrema 

and β corresponds to the minimum value of the input extrema. The function µ(α,β) is an 

arbitrary weighting function and is called the Preisach function (Mayergoyz, 1991). For 

stack actuators the piezoelectric hysteresis loop is only defined in the first quadrant of 

the u-x plane. So the values of the hysteresis operator [ ])(tuinαβγ  are selected as 

switching between 0 and 1 (see Figure 1.2). Knowing what the maximum and minimum 

values of the input are, the condition βα ≥  leads to a limiting triangle To on the α-β 

plane (Figure 1.3) which is defined such that the function µ(α,β) is equal to zero outside 
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To. On the α-β ha1f-plane, there is a one-to-one correspondence between operators 

[ ])(tuinαβγ  and points (α, β) which implies that each pair of values (α, β) defines a 

unique operator [ ].αβγ  with switching values α and β. At each instant of time and as a 

result of applying an input ui(t), the limiting triangle in the ha1f-plane can be divided 

into two areas, )(tSi
+  and )(tSi

−  (Figure 1.3). All operators [ ])(tuinαβγ  that belong to 

)(tSi
+ are equal to 1 and those that belong to )(tSi

− are equal to 0.  

The solution of the Preisach model requires implementation of a cumbersome 

numerical technique in order to decide the weighing functions. Thus, it is not so 

favorable in this application in which high sampling rate would not allow 

implementation of such a numerical technique. 

 
Figure 1.2. Hysteresis operator [ ])(tuαβγ  

 
Figure 1.3. Monotonically increasing input u1(t) 
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1.3 Control Techniques 

Numerous control techniques exist in the literature that can be implemented for 

the control of the piezoelectric actuators. But, one must keep in mind the high non-

linearity that is inherent in these actuators. Thus, only control techniques found in the 

literature that were implemented on piezoelectric actuators will be mentioned. 

1.3.1 H∞ Almost Disturbance Decoupling Controller 

This technique was implemented in the work of Chen [13]. The basic almost 

disturbance decoupling problem is to find an output feedback control law such that in 

the closed-loop system the disturbances are eliminated up to any specified degree of 

accuracy while maintaining internal stability. Such a problem was originally formulated 

by Willems [13] and termed almost disturbance decoupling problem with measurement 

feedback and internal stability.  

For a system defined in the state-space form below  

HwBuAxx ++=&  

wDxCy 11 +=  

xCz 2=  

(1.4)

Here z is the double integration of the error and w is the disturbance. The H∞ almost 

disturbance decoupling problem is to design a parameterized proper controller of the 

form where subscript c stands for controller 

yBxAx ),(),( 2121 εεεε cccc +=&  

yDxCu ),(),( 2121 εεεε ccc +=  
(1.5)

That has the following properties 

•  Internal Stability: There exists scalars 0*
1 >ε and 0*

2 >ε such that for all *
110 εε <<  

and *
220 εε << , the closed-loop system comprising (1.4) and (1.5) is asymptotically 

stable. That is for all *
110 εε <<  and *

220 εε <<  the following matrix:  
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






 +
=

),(),(
),(),(

),(
21121

21121
21 εεεε

εεεε
εε

cc

cc
CL ACB

BCCBDA
A  (1.6)

Has all eigenvalues in the open left-half of the complex plane. 

•  Disturbance Rejection: The H∞-norm of the closed-loop transfer function matrix 

from the disturbance input w to the output controlled z, say ),,( 21 szw εεG , 

satisfying  

0),,( 21 →∞szw εεG as 01 →ε and 02 →ε  (1.7)

In this technique the implementation requires the knowledge of some system 

parameters that are not possible to estimate and according to the results found in the 

literature, [13], it was not successful in producing very high precision motion as would 

be expected from piezoelectric actuators. Furthermore, disturbance rejection was done 

based on a hysteresis model which is impractical. 

1.3.2 Neural Networks Based Controller 

The main premise here is to take advantage of the capability of neural networks to 

model non-linear functions and model the hysteresis non-linearity of the piezoelectric 

actuator. Introducing closed-loop control in addition to neural networks model should 

result in achieving the necessary requirements.  

Model of the hysteresis using neural networks is constructed from extensive 

measurements of the piezoelectric actuator dynamics. The resulting model is inverted 

allowing overall linearization of the system. The closed-loop control is added to 

compensate modeling errors. The overall control strategy is depicted in Figure 1.4. 

This technique is cumbersome as it requires a lot of testing to fit the neural 

network to the hysteresis. 

 

Figure 1.4. Closed-loop neural network controller 
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1.4 Motivation behind using Sliding-Mode Control 

There is no unique solution to different control problems. Some methods may be 

more attractive for certain control problems, while others may also be acceptable. As far 

as internal hysteresis or friction compensation is concerned, the effectiveness of model 

based compensation has been proved in many reports, of which some will be mentioned 

below. The used models include both advanced dynamic models and simple static 

models. It is known that both hysteresis and friction identification is usually a tough and 

time consuming work. Moreover, using more complicated models may not always lead 

to better compensation results than just using a simple model, e.g., the model of 

Coulomb friction, since the quality of compensation depends not only on the model, but 

also on the implementation constraints. As already mentioned, how accurate the 

parameters can be identified and how accurate the system state variables, such as 

velocity, can be measured or estimated are also key factors. Small error in velocity may 

possibly result in very inaccurate compensation both in magnitude and direction, which 

in turn seriously deteriorates the performance. This is another reason that the dynamic 

friction models so far have mostly been applied only in simulation analysis and at 

laboratory stages, [4]. 

It is concluded that a more effective but applicable compensation method must be 

developed. Note that even in the same type of series manufactured machines, 

differences in parameters among individual machines are present uncertainties, e.g., 

uncertainty in friction parameters due to time-varying friction characteristics, operating 

condition changes, load changes, etc. It is highly desired that the same control settings 

should meet the control specification for all machines of the same type, i.e., without 

individual tuning. However, this goal is difficult to fulfill with the existing 

compensation techniques, due to the limitations related to both fixed model based and 

on-line identification based compensation. This difficulty leads to the necessity of 

finding a methodology that produces a robust controller that can be designed by 

considering only nominal process parameters. At the same time, the designed controller 

should have good disturbance rejection such that high precision motion can be achieved 

without calling for complicated modeling and identification methods. Furthermore, 
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unmodeled dynamics should also be appropriately handled to avoid causing serious 

performance degradation. 

The theory of variable structure systems (VSS) opened up a wide new area of 

development for control designers, [4]. Variable structure control (VSC), which is 

frequently known as sliding mode control (SMC), is characterized by a discontinuous 

control action which changes structure upon reaching a set of predetermined switching 

surfaces. This kind of control may result in a very robust system and thus provides a 

possibility for achieving the previously stated goals. 

1.5 Stewart Platform for Flexible Six-dof Motion 

Parallel manipulators were first introduced by Gough and Whitewall in tire testing 

equipment, [23]. Later, Stewart, [23], proposed to use a parallel mechanism as a motion 

base for a flight simulator. The rationale for the use of this kind of manipulator was its 

high stiffness and dexterity required to impart large accelerations to a heavy load with 

six degrees of freedom. This architecture soon gained popularity and can now be found 

in virtually all modern flight simulators. The use of these mechanisms has also extended 

to other applications such as precision machining, vibration isolation and precision 

pointing.  

 

Figure 1.5. Six-dof Stewart platform, PI Gmbh 
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Figure 1.6. Experimental Stewart platform 

Because of the unique architecture of a Stewart Platform it offers the following 

advantages over serial manipulators: 

•  The load capacity is high: Indeed the load on the platform is supported by all the 

legs and furthermore the stress in the leg is only tension or compression and not 

bending as in serial manipulators. This explains the reason why such mechanisms 

are used for tasks that involve motion of heavy loads. 

•  The positioning accuracy is good: Indeed the errors on the positioning of the 

platform are only in some sense an average of the errors on the measurement of the 

leg lengths. 

•  They are easily scalable: A Stewart Platform may be used as a huge flight simulator 

or as a device performing motion in the range of a few micrometers or even 

nanometers. 

These advantages make the use of these manipulators in applications that require 

precision positioning and force control very suitable. 
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2. SLIDING-MODE VARIABLE STRUCTURE CONTROL 

2.1 Introduction 

Variable structure systems (VSS) first appeared in the late fifties in Russia, as a 

special class of nonlinear systems. At the very beginning, VSS were studied for solving 

several specific control tasks in second-order liner and nonlinear systems (Utkin, [3]). 

The most distinguishing property of VSS is that the closed loop system is completely 

insensitive to system uncertainties and external disturbances. However, VSS did not 

receive wide acceptance among engineering professionals until the first survey paper 

was published by Utkin, [24]. Since then, and especially during later 80’s, the control 

research community has shown significant interest in VSS. This increased interest is 

explained by the fact that robustness has become a major requirement in modern control 

applications. A great deal of efforts has been put on establishing both theoretical VSS 

concepts and practical applications. Some of the concepts and theoretical advances of 

VSS are covered in, e.g., DeCarlo, et al. [25], Slotine & Li [26], Utkin [3], Hung, et al. 

[27] and Zinober [28]. Due to its excellent invariance and robustness properties, 

variable structure control has been developed into a general design method and 

extended to a wide range of system types including multivariable, large-scale, infinite-

dimensional and stochastic systems. The applications include control of aircraft and 

spacecraft flight, control of flexible structures, robot manipulators, electrical drives, 

electrical power converters and chemical engineering systems. 
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2.2 Sliding-Mode in Variable Structure Systems 

Sliding mode control (SMC), which is sometimes known as variable structure 

control (VSC), is characterized by a discontinuous control action which changes 

structure upon reaching a set of predetermined switching surfaces. This kind of control 

may result in a very robust system and thus provides a possibility for achieving the 

goals of high-precision and fast response. Some promising features of SMC are listed 

below: 

•  The order of the motion can be reduced 

•  The motion equation of the sliding mode can be designed linear and homogenous, 

despite that the original system may be governed by non-linear equations. 

•  The sliding mode does not depend on the process dynamics, but is determined by 

parameters selected by the designer. 

•  Once the sliding motion occurs, the system has invariant properties which make the 

motion independent of certain system parameter variations and disturbances. Thus 

the system performance can be completely determined by the dynamics of the 

sliding manifold. 

Consider the system defined below 

),(),(),( ttt xuxBxfx +=& , nℜ∈x , mℜ∈u  (2.1)

here f(x,t) and B(x,t) are assumed continuous and bounded and the rank of B(x,t) is m. 

The discontinuous control is given by  







<
>= −

+

0)(),(
0)(),(

xσxu
xσxuu

ift
ift  

{ })(,),(),()( 21 xxxxσ m
T σσσ L= , ( )xxGxσ −= r)(  

(2.2)

here ),( txu+ , ),( txu−  and )(xσ  are continuous functions. Since u(x,t) undergoes 

discontinuity on the surfaces 0)( =xiσ , 0)( =xiσ  is called the switching surface or the 

switching hyperplane.  

Let 0)( == xσxS be a switching surface that includes the origin 0=x . If, for any x0 

in S, x(t) is in S for all 0tt > , then x(t) is a sliding mode of the system and the switching 
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surface S is called a sliding surface or sliding manifold. A sliding mode exists, if in the 

vicinity of the switching surface S, the tangent or the velocity vectors of the state 

trajectory always point towards the switching surface.     

Existence of a sliding mode requires stability of the state trajectory towards the 

sliding surface 0)( == xσxS  at least in the neighborhood of S, i.e., the representative 

point must approach the sliding surface at least asymptotically. This sufficient condition 

for sliding mode is called reaching condition and state trajectory under the reaching 

condition is called the reaching mode or reaching phase. The largest neighborhood of S 

for which the reaching condition is satisfied is called the region of attraction.  

In order to guarantee desired behavior of the closed-loop system, the sliding mode 

controller requires infinitely fast switching mechanism. However, due to physical 

limitations in real-world systems, directly applying the above control will always lead to 

some oscillations in some vicinity of the sliding surface, i.e., the so called chattering 

problem. The main limitations come from the implementation of controllers in digital 

computers which work on discrete-time principles and cannot allow infinitely fast 

switching. Since modern controllers are most likely implemented in digital computers, it 

is unavoidable to approach a practical SMC design in discrete-time.     

2.3 Sliding-Mode Controller Design and Realization of Discrete-time Control 

The VSS theory was originally developed from a continuous time perspective. It 

has been realized that directly applying the continuous-time SMC algorithms to 

discrete-time systems will lead to some unconquerable problems, such as the limited 

sampling frequency, sample/hold effects and discretization errors. Since the switching 

frequency in sampled-data systems can not exceed the sampling frequency, a 

discontinuous control does not enable generation of motion in an arbitrary manifold in 

discrete-time systems. This leads to chattering along the designed sliding surface, or 

even instability in case of a too large switching gain. Fig 2.2 illustrates that in discrete-

time systems, the state moves around the sliding surface in a zigzag manner at the 

sampling frequency. 



 15

 
Figure 2.1. Geometric interpretation of two intersecting switching surfaces 

So far the developed sliding mode has always been associated with discontinuities 

in motion equations. To cope with the sampling frequency limitations of sampled-data 

controllers, Drakunov & Utkin [7] introduced a new concept of “sliding mode” for an 

arbitrary finite-dimensional discrete-time system. The essence of sliding modes in 

dynamic systems is that a motion exists in some manifold of state trajectories, and that 

the time to achieve this motion is finite. 

Derivation of the control law starts with the selection of the Lyapunov 

function, )(σV , and an appropriate form of the derivative of the Lyapunov function, 

)(σV& . 

Selecting the Lyapunov function such that it is positive definite 

2
)( σσσ

T
V =  (2.3)

Hence the derivative of the Lyapunov function is 

σσσ && TV =)(  (2.4)

The derivative of the Lyapunov function is selected to be 

Dσσσ TV −=)(&  (2.5)

 

Figure 2.2. Discrete-time system with discontinuous control 

state trajectory
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here D is a positive definite symmetric matrix of dimension mm× . Hence, the 

derivative of the Lyapunov function is negative definite in order to ensure stability. If 

(2.4) and (2.5) are combined the following result is obtained 

( ) 0=+ Dσσσ &T  (2.6)

 A solution for (2.6) is as follows 

0=+ Dσσ&  (2.7)

The derivative of the sliding function combined with (2.1) leads to following 

( ) )(t
tt

G rr GBuσGfxGσxxσ −
∂
∂+−=

∂
∂+−= &&&&  (2.8)

Rewriting (2.8) to get 

( ))()( tt
t eq

r

eq

uuGBGBuσGfxGσ

GBu

−=−
∂
∂+−=
44 344 21

&&  
(2.9)

If (2.9) is inserted in (2.7) and the result is solved for the control 

( ) DσGBuu 1)( −+= eqt  (2.10)

It can be seen from (2.9) that ueq is difficult to calculate if information about f(x) is not 

available. Using the fact that ueq is a smooth function, then (2.9) can be written as, [4], 

( ) eqeq t uσGBuu ˆ)( 1 =+≅ −− &  (2.11) 

here 

0, →∆∆−=− tt  (2.12)

and eqû is the estimate of the equivalent control. If (2.11) is inserted back into (2.10) an 

approximation of the control is obtained 

( ) ( ) −=
−− ++= tttt σDσGBuu &1)()(  (2.13)

Thus, the term ( ) ( ) −=
− + ttσDσGB &1 is used in updating the control in a recursive 

formula. Note that once on the sliding manifold, )( −tu becomes the same as the 

equivalent control. 

Although (2.13) is an approximation of (2.9) in discrete-time, it can be used to 

push σ to zero such that (2.7) is satisfied and stability is reached. During 

implementation, the control defined by (2.13) is used with a nominal value of B instead 

of its exact value since it is difficult to obtain. When actual implementation is done, a 

tuning term K is introduced before ( ) ( ) −=
− + ttσDσGB &1 such that the control becomes 
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( ) ( ) −=
−− ++= tttt σDσGBKuu &1)()(  (2.14)

and for a general system, K is a positive diagonal matrix. It is possible to rewrite (2.14) 

for discrete-time implementation as follows 

( ) ( )
skTtss kTTk =

− ++=+ σDσGBKuu &1)())1((  (2.15)

here Ts is the sampling time of the controller and the derivative of the sliding surface is 

obtained from the backward difference as shown 

s

ss
s T

TkkTkT ))1(()()( −−≈ σσσ&  (2.16)

Details of the analysis shown above can be found in [5]. 

For a discrete-time system, the discrete sliding mode can be interpreted as that the 

states are only required to be kept on the sliding surface at each sampling instant. 

Between the samples, the states are allowed to deviate from the surface within a 

boundary layer, see Figure 2.3. 

Note that the control defined by (2.15) is continuous unlike the case for 

continuous-time. Thus chattering is no longer a matter of concern. This is the most 

striking contrast between discrete-time sliding mode and continuous-time sliding mode. 

Furthermore, in continuous-time systems with continuous control, the sliding manifold 

of state trajectories can be reached only asymptotically, while in discrete time systems 

with continuous control, sliding motion with state trajectories in some manifold may be 

reached within a finite time interval, Utkin [2]. Estimation of the boundary layer is 

explained in section 2.4.  

 

Figure 2.3. Discrete-time Sliding mode in sampled-data systems 

 

0)( =xσ

state trajectory 
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2.4 Calculation of the Boundary Layer in Discrete-Time Sliding-Mode Control 

After designing the controller, it is necessary to analyze the robustness of the 

controller or, in other words, whether it satisfies the condition defined by (2.7). The 

analyses that will be shown are concerned with a general system affine with control 

such as (2.1).  

Consider the system defined below 

),(),(),( ttt xuxBxfx +=&  (2.17)

as in (2.1), f(x,t) and B(x,t) are assumed to be continuous and bounded. The derivative 

of the sliding surface is given by 

( )
t
tttt

t
t

dt
td rr

∂
∂+−−=

∂
∂+−= )()()()()()( σGBuGfxGσxxGσ

&&&  (2.18)

If instead of u(t) the control defined by (2.13) is used, the following result is obtained 

( ) ( )( )
t
tttt

dt
td

t
r

∂
∂+++−−= −

−− )()()()()( 1 σσDσGBuGBGfxGσ
&&  (2.19)

here sTtt −=− for discrete-time applications with Ts as the sampling time . Further 

simplifications of (2.19) lead to 

−







 +−

∂
∂+−−= −

t

r
dt
d

t
tttt

dt
td σDσσGBuGfxGσ )()()()()(

&  (2.20)

Finally, (2.20) can be written as 

44444 344444 21

&

)(

)()()()(

sT

r
t

t
dt
td

dt
td

dt
td

ξ

σDσfGxGDσσσσ ∆−







∂
∂∆+∆−∆+−−=

−−
 

(2.21)

here 

)()( −−=∆ tt rtr xxx &&& ; )()( −−=∆ tt fff ; )()( −−=∆ tt σσσ ;

t
t

t
t

t ∂
∂−

∂
∂=








∂
∂∆

− )()( σσσ  
(2.22)

Hence, 

)()()(
sTt

dt
td ξ=+ Dσσ  (2.23)
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Since f(t), xr(t) and σ(t) are smooth functions, then ξ(Ts) has order O(Ts). Hence, the 

states will remain within an O(Ts) boundary layer of the sliding surface.  

2.5 Disturbance Observers based on Sliding-Mode Control 

In most systems that are encountered in control engineering, some form of 

disturbance exists. This could include internal nonlinearities, external forces, parameter 

uncertainties, etc. Hence, it is necessary to compensate for the disturbance while using 

closed-loop control in order to improve the robustness of the overall control. Estimation 

of plant disturbances are done with the aid of disturbance observers that are based on the 

so called nominal plant model.  

Consider the linear system with disturbance shown below 

dBuAxx ++= )(t& , nℜ∈x , mℜ∈u  (2.24)

If AAA ∆+= N  and BBB ∆+= N are inserted in (2.24) 

dBuAxuBxAx +∆+∆++= )()( ttNN&  (2.25)

here AN and BN are the nominal state and input matrices while ∆A and ∆B are the 

uncertainties involved in those matrices. The disturbance d is assumed continuous and 

bounded. The analysis hereafter is for the case where it is possible to write the 

disturbance term as dBuAxuB +∆+∆= )()( ttdN . Thus (2.25) can be written as 

)()( tt dNNN uBuBxAx ++=&  (2.26)

The structure of the observer is as follows 

)()(ˆˆ tt cNNN uBuBxAx ++=&  (2.27)

here x̂ is the estimated state vector and uc(t) is the observer control input to force x̂  to 

track x.  If (2.27) is subtracted from (2.26) 

 ( ) ( ) )()(ˆˆ tt cNdNN uBuBxxAxx −+−=− &&  (2.28)

If the sliding manifold is selected to be ( )xxGσ ˆ−=  and condition (2.7) is used 

( ) ( ) 0ˆˆ =−+− xxDGxxG &&  (2.29)

Inserting (2.28) in (2.29) to get 

( ) ( ) 0)()(ˆˆ =−+−+− tt cNdNN uGBuGBxxDGxxGA  (2.30)

Finally, the control input is 
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( ) ( )( )xxDGGAGBuu ˆ)()( 1 −++= −
NNdc tt  (2.31)

It can be seen that if 0→σ  then xx →ˆ and dc uu → . Thus, all that is required is for 

condition (2.7) to be satisfied for the observer. The control defined by (2.14) or (2.15) 

can be used to satisfy condition (2.7). Implementation is depicted in Figure 2.4. In the 

implementation u0 is the uncompensated control input.  

As it can be seen the above control algorithm is simple to implement. The only 

drawback is that for constructing the observer plant parameters must be known. 

Experimental implementation of the above control algorithm to different systems will 

be shown in coming chapters.  

 

Figure 2.4. Disturbance observer implementation 
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3. MODEL OF THE PIEZOELECTRIC ACTUATOR 

3.1 Introduction 

Micromanipulator applications require control actuators that can provide both 

accurate position tracking performance in addition to robustly stable force control. 

These objectives are significantly compromised by the presence of backlash and 

Coulomb friction in the control plant, the effects of which are exaggerated in small 

scales. Since PZT stack actuators are monolithic and have no sliding or rolling parts, 

they exhibit no significant mechanical stiction or backlash. Additionally, a typical PZT 

stack actuator can perform step movements in nanometer resolutions with bandwidths 

on the order of a kilohertz. Consequently, PZT actuators are well suited for use as 

precision microactuators for micropositioning devices. 

An inherent non-linearity in piezoceramic actuators is hysteresis. This hysteresis 

non-linearity is usually 15-20% of the output thereby greatly reducing the performance 

of the actuators. Additionally, many attempts of modeling this behavior have been 

fruitless due to its peculiarities. In [12] and [14] attempts were made to model the 

voltage-to-displacement behavior of PZT actuators using Bond-Graph and Priesach 

models. These models proved effective, however, these models failed to explain the 

physical behavior of the actuators. In [1] and [9] models were made based on the 

physics of the actuators and these models proved to be effective in modeling the 

behavior of these actuators under different excitations. Additionally, they claim that the 

hysteresis behavior exists in the electrical domain of the actuator and is between voltage 

and charge. In [9], a simple differential equation was used to model the voltage-charge 

hysteresis behavior. This model proved simple to implement in real-time applications 

due to the simplicity of the equation representing the hysteresis. In Figure 3.1, the 

actuators used in the experiments are shown. 
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Figure 3.1. Stack actuators used in the experiments 

3.2 Structure of the Piezoelectric Actuator 

Dielectric materials are insulators, thus, there is an electrical relation between 

electrical voltage and electrical charge. Piezoelectric materials are a special type of 

dielectric in the sense that, in piezoelectric materials, an externally applied force induces 

an electrical charge. Conversely, an applied electrical charge induces a force. The 

former effect is known as the piezoelectric effect and was discovered in 1880 by the 

Curies. The latter effect is the inverse piezoelectric effect. The word “piezo” derives 

from the Greek word “piezen,” which means “to push.” The effect was discovered when 

a pushing force or, in other words pressure, was applied to the material. In the 

beginning, both pressure electricity and piezoelectricity were used to describe the same 

phenomenon. Besides the piezoelectric and inverse piezoelectric effect, we have the 

already mentioned electrical relation between voltage and charge, and a mechanical 

relation between force and elongation.  

In naturally occurring piezoelectric materials, such as quartz, the (inverse) 

piezoelectric effect is too small to be of practical use. Man-made piezoelectric 

polycrystalline ceramics are much more suitable for actuator purposes because the 

useful properties, such as maximum elongation, can be influenced by the proper mixture 

of ingredients. A disadvantage of man-made piezoelectric ceramics is that a hysteresis 

effect is encountered between electrical voltage and electrical charge. The piezoelectric 

effect (or the piezo effect for short) and the hysteresis effect play an important role in 

the dynamical behavior of these actuators. 
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   The fundamental component of a PZT stack actuator is a wafer of piezoelectric 

material sandwiched between two electrodes. Prior to fabrication, the wafer is polarized 

uniaxially along its thickness, and thus exhibits significant piezoelectric effect in this 

direction only. A typical PZT stack actuator is formed by assembling several of the 

wafer elements in series mechanically and connecting the electrodes so that the wafers 

are parallel electrically, as illustrated in Figure 3.2. The nominal quasi-static behavior of 

a PZT stack actuator is a steady-state output displacement that is monotonically related 

to the voltage input. 

3.3 Model of the Piezoelectric Actuator 

In this section, a model for PZT actuators that was selected after an extensive 

search of the literature will be presented. This model was selected based on ease of 

implementation and accuracy of estimating the actual behavior of these actuators. 

3.3.1 The Selected Model 

A fairly accurate overall electromechanical model of a PZT actuator is given in [1]. It is 

reproduced in Figure 3.3. Here, the hysteresis and piezoelectric effect are separated. H 

represents the hysteresis effect and uh is the voltage due to this effect. The piezoelectric 

effect is represented by Tem, which is an electromechanical transducer with transformer 

ratio Tem. The capacitance Ce represents the sum of the capacitances of the individual 

PZT wafers, which are electrically in parallel. The total current flowing through the 

circuit is q& . Furthermore, q may be seen as the total charge in the PZT actuator. The 

charge qp is the transduced charge from the mechanical side. The voltage up is due to the 

piezo effect. The total voltage over the PZT actuator is uin, Fp is the transduced force 

from the electrical side, Fext is the externally applied force, and the resulting elongation 

of the PZT actuator is denoted by x. The mechanical relation between Fp and x is 

denoted by M. Note that we have equal electrical and mechanical energy at the ports of 

interaction, i.e. xFqu ppp = . 
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Figure 3.2. Illustration of a PZT stack actuator 

The piezoelectric ceramic has elasticity modulus E, viscosity η, and mass density 

ρ. Furthermore, the geometrical properties of the PZT actuator are length L and cross-

sectional area Ap. Mass mp, stiffness kp, and damping coefficient cp can be calculated 

from the material and geometrical properties as follows: 

ALmp ρ=  (3.3)

L
EA

k p
p =  (3.4)

L
Ac p

η=  (3.5)

Though, it will be safer to experimentally measure those using FRF analysis, since, 

some of the parameters needed above are not easily available.  

 

Figure 3.3. Electromechanical model of the PZT actuator, [1] 
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   The complete electromechanical equations are defined by (3.6) thru (3.11). The 

model can also be described by the block diagram given in Figure 3.4. 

hinp uuu −=  (3.6)

)(qHuh =  (3.7)

ppe quCq +=  (3.8)

xTq emp =  (3.9)

pemp uTF =  (3.10)

extpppp FFxkxcxm −=++ &&&  (3.11)

We must stress that the mechanical part of the actuator is more accurately described by 

a PDE that takes into account the continuous nature of the PZT actuator. However, for 

simplicity and due to the fact that the first natural frequency of the actuator is much 

higher than our allowable bandwidth, (3.11) is a fairly good representation of the 

mechanical behavior. 

3.3.2 Hysteresis Model 

    By definition, a hysteretic effect is dynamic, rate-independent and nonlinear. 

By rate-independent, it is meant that it is time independent. In [1], this effect is modeled 

by a combination of elements that were called elasto-slide elements. The accuracy of the 

model was improved by using larger numbers of those elements, and hence the number 

of parameters involved was large. 

In [9], a differential equation with three parameters is used as a hysteresis model. 

A differential equation is also more attractive when it comes to using this model as a 

basis for controller design. A brief description of this differential equation will be done 

here, but, a more comprehensive discussion may be found in [10]. 

A hysteresis loop is defined as the stationary loop in the input-output plane for a 

quasi-static monotone oscillating input such as a low-frequency sinusoid. The equation 

under consideration is a first-order differential equation that is proposed in [9]. It was 

initially developed to model magnetic hysteresis, but in [10], it has been experimentally 

verified that this differential equation is also suitable for describing electric hysteresis 
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such as that in PZT actuators. The model between the hysteresis effect between uh and q 

is given by  

( ) )()( hhhhh uguqufuq &&& +−=α  (3.12)

where )( huf and )( hug are functions which are used to “shape” the hysteresis loop. In 

[10], it has been proven that, for a sinusoid with offset chu , , the center point of a 

hysteresis loop is given by )( ,chc ufq = . Furthermore, it has been proven that the 

average slope of a hysteresis loop is equal to )( ,chug .  

 
Figure 3.4. Block-Diagram representation of the electromechanical model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. A hysteresis loop 

 

 

inu  
+ 

_ pF xpu  

+ + 

+ 
ppp kscsm ++2

1  emT

eC emT

)(qH

_ 

hu

q

extF

A2

chu ,

cq  

urq  

llq  

ε

)(tan 1
ha−

)(tan 1
hb−  



 27

In theory, PZT actuators show lengthening saturation. In practice, however, we 

stay far away from saturation, i.e., we deal with hysteresis loops that are similar in shape 

to the one in Figure 3.5. Therefore, the functions )( huf and )( hug  may be chosen as  

hhh uauf =)(  (3.13)

hh bug =)(  (3.14)

where ah and bh are constants. 

Using the previously mentioned results, the equations for the center point and the 

average slope of a hysteresis loop are given by 

chhc uaq ,=  (3.15)

Abqq hllur 2⋅=−  (3.16)

where cq and llq  are the upper right- and lower left-hand-side points of a hysteresis loop, 

respectively, and A is the input amplitude. 

In (3.12), (3.13) and (3.14) there are three independent parameters, namely αh, ah 

and bh. This means that there should be three independent characteristic quantities in a 

hysteresis loop. Besides the center point and the average slope in [9], a relation has been 

derived for the hysteresis area for relatively small amplitudes of the sinusoidal input 

(Figure 3.5)  

( ) 3
3
4 Aba hhh αε −=  (3.17)

Having experimentally determined ah and bh from center points and average slopes, the 

parameter αh can then be experimentally determined from hysteresis areas. 

3.3.3 Simulation Results 

The above model was used to estimate the response of the PZT actuator to two 

sinusoidal inputs each having an offset equal to the amplitude of the signal. The 

resulting outputs are depicted in Figure 3.6 and 3.7. It is possible to see that the model is 

able to estimate the residual displacement when the input goes to zero quite nicely. The 

most important task this model has to perform however is the ability to estimate an 

externally applied force.  The parameters used in the simulation are listed in Table 3.1.  
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Table 3.1. Parameters of the PZT model 

Parameter Value Parameter Value 

mp 9.24 × 10-4 kg Ce 2.4 µF 

cp 685 Ns/m ah 5 

kp 8.0 × 106 N/m bh 4.5 

Tem 3.9 N/V αh 1.8 

 

 

Figure 3.6. Response to )sin(4040 tu +=  and corresponding modeling error 

3.4 Open-Loop Control of the Actuator 

As previously stated, the model estimated the behavior of the actuator quite well. 

Conversely, this model should be able to estimate the necessary input to the actual plant 

in order to follow a certain reference. This can be represented in the block diagram of 

Figure 3.8. This technique was applied experimentally to test its capabilities. 

The open-loop results are depicted in the figures below. From the results we see 

that the inverse model works quite well. It must be stressed that the results below are for 

zero external force. In the case of an externally applied force, it must be added to Fp. 



 29

This means that the force has to be known before hand. Thus, this method would prove 

fruitless in the face of an unknown external force. 

 
Figure 3.7. Response to )sin(1515 tu +=  and corresponding modeling error 

 

Figure 3.8. Inverse model of the PZT actuator 

 

 

 

 

 

 

Figure 3.9. Response to )sin(5.75.7 txr +=   
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Figure 3.10. Open-loop tracking error and input voltage for )sin(5.75.7 txr +=   

 

 
Figure 3.11. Response to a varying amplitude sine reference 
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Figure 3.12. Input voltage for a varying amplitude sine reference (contd.) 

 

 
Figure 3.13. Response to a high frequency varying amplitude sine reference 
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4. IMPLEMENTATION OF SMC TO A PIEZOELECTRIC ACTUATOR 

4.1 Introduction 

The use of piezoelectric actuators (PZT) for accurate and stable control of 

manipulator position and/or force is greatly facilitated by model-based control system 

analysis and design. Inherent nonlinearities composed primarily of hysteresis in 

piezoelectric actuators pose as an obstacle to these objectives. In [11], a piezoelectric 

actuator is used as a secondary actuator in a hard disk drive to increase the precision of 

read/write head positioning. The control used is based on charge rather than voltage 

which eliminated the problem of hysteresis. However, charge based control is harder to 

realize due to the difficulties involved in the hardware realization. Hence, techniques 

based on voltage control must compensate for the hysteresis. 

By far, open-loop techniques have not been successful in providing good results 

due to the difficulties involved in modeling the actuator precisely. In [12], open-loop 

control is used, resulting in position errors as much as 100nm. This is clearly not 

acceptable in applications where high precision positioning is required. In [13], 

disturbance compensation based on a hysteresis model is used. However, unmodeled 

disturbances required the addition of a robust controller such as H∞.  

Usage of the hysteresis model for the design of the position control of PZT needs 

high accuracy of modeling and adjustment but it offers advantage since it does not 

require measurement of mechanical coordinates. In this work we aim to design a motion 

controller for PZT having position sensor based on the assumption that the PZT can be 

modeled as a linear lumped parameters (mp, cp, kp) second order electromechanical 

system with voltage as input and position as output coordinates. Furthermore we assume 

that the parameters of the model are constant and have some so-called nominal values 

(mN, cN, kN). A sliding mode observer based disturbance observer is used then in the 

framework of disturbance compensation method. 
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In many applications such as precise assembly, micromachining, or in minimum 

invasive surgery that involve micromotion and/or micromanipulation, force 

measurement and/or force control may be required. In general applications that require 

force control, force sensors are used. But they are constrained by limited detectable 

point and narrow bandwidth due to the natural frequency of the sensor [15]. It is also 

difficult to incorporate force sensors in micromanipulation systems that are required to 

be as compact as possible. Hence, it is more desirable to have force estimation rather 

than direct measurement. Thus, using the disturbance observer concept, a force observer 

is constructed based on the electromechanical model with the inclusion of the hysteresis 

model proposed in [9].   

Force control is accomplished in the sliding-mode control (SMC) framework and 

in this chapter results for the case of force sensor feedback as well as force observer 

feedback are depicted.   

4.2 Design of the Observers 

In this section, the structure of the disturbance observer will be discussed as well 

as an attempt to use the disturbance information to estimate the external force acting on 

the actuator. Theory presented will be backed by actual experimental results to 

demonstrate the effectiveness of the concept. 

4.2.1 Total Disturbance Estimation 

The structure of the observer is based on (3.11). Here we propose that all the plant 

parameter uncertainties, nonlinearities and external disturbances as a single disturbance 

which leads to the following structure 

( )
4444444 34444444 21

&&&&&&

d

NN

F

extheminemNNN FxkxcxmuTuTxkxcxm +⋅∆+⋅∆+⋅∆+−=++  

dinemNNN FuTxkxcxm
N

−=++ &&&  
(4.1)

here Nm , Nc , Nk and 
NemT are the nominal plant parameters. The proposed observer is 

then of the following form 
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uuTxkxcxm inemNNN N
−=++ ˆˆˆ &&&  (4.2)

Here x̂  is the estimated position inu is the plant control input and u is the observer 

control input. It is obvious that if we can force x̂  to track x then uFd = . Let us select 

the sliding manifold as ( )xxCxx ˆˆ −+−= &&σ . Selecting the Lyapunov function as 

2
2σ=Lv  which is clearly positive definite. Selecting the derivative of the Lyapunov 

function as 2σD−  such that it is negative definite. Equating the above results and 

simplifying 

02 =+⇒−== σσσσσ DDvL &&&  (4.3)

Plugging ( )xxCxx ˆˆ −+−= &&σ  in (4.3) and simplify we get 

( ) ( )( ) ( ) 0ˆˆˆ =−+−++− xxCDxxDCxx &&&&&&  (4.4)

Subtracting (4.2) from (4.1) and plug the result into (4.4), we get 

( )[ ]( ) [ ]( )xxCDmkxxDCmcFu NNNNd ˆˆ −−+−+−+= &&  (4.5)

which is the necessary control to ensure sliding mode. From here it is seen that if 

0→σ  then ( ) 0ˆˆ →−+− xxCxx && and 0ˆ →− xx  thus assuring that the estimation error 

is zero, hence, dFu → . In the actual implementation, a discrete form of the sliding 

mode control is used which is given by 








 −
++= −

−
s

kk
kukk T

DKuu )1()(
)()1()(

σσ
σ  (4.6)

here uK is a design parameter which can be tuned to optimize the  controller. The 

observer implementation is best described by the block diagram of Figure 4.1. The 

systems defined by Figure 4.1 are as follows 

dinemNNN FuTxkxbxm −=++ &&&  (4.7)

uuTxkxbxm inemNNN N
−=++ ˆˆˆ &&&  (4.8)

Nem
in T

uuu α+= 0  (4.9)
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Figure 4.1. Observer implementation 
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If we plug (4.10) in (4.7) we get 

( )
d

emem

ememem

emem

em
emNNN F

TT
TTT
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Txkxbxm
N
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
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



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=++
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α
&&&  (4.11)

From here we see that if 1→α  then 

0uTxkxbxm
NemNnN =++ &&&  (4.12)

Thus, the system is compensated and closed loop controller can be designed based on 

this model. Since this model has the same structure as disturbance observer it is easy to 

show that by selecting sliding mode manifold ( ) ( )xxCxx ref
x

ref
x −+−= &&σ  controller 

(4.6) will provide motion ( ) 0=+++ xxxxxxx DCDC εεε &&&  with x
ref xx ε=− . The open-

loop and closed loop behavior of the system with the proposed observer is shown 

below. 

The above concept was applied to the actuator. In all the experiments below, the 

reference position was computed from the compensated model and is given by 

uT
kscsm

x
Nem

NNN
ref ⋅

++
= 2

1  (4.13)

In the results that will be shown below, the observer parameters were: 800=C , 

2000=D , 20=uK  and 1=α . 
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Figure 4.2. Response to 5.7)10sin(5.70 += tu π  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Response to 5.7)100sin(5.70 += tu π with disturbance compensation 
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Figure 4.4. Response to 30)10sin(300 += tu π with disturbance compensation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Response to 30)100sin(300 += tu π with disturbance compensation 
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4.2.2 Force Observer 

From the structures (3.10) and (3.11) defined previously, the mechanical side of 

the actuator can be written as 

extpNNNN FuTxkxcxm −=++ &&&  (4.14)

Note that any parameter uncertainties are neglected with the assumption that the 

nominal plant parameters are as precise as possible. Hence, a disturbance observer 

based on the complete model of the actuator that includes hysteresis estimates the 

external force only. Based on the same principles defined for the total disturbance 

observer an observer based on the non-linear model of the actuator is constructed as 

follows 

forcepNNNN uuTxkxcxm −=++ ˆˆˆ &&&  (4.15)

As before, if x̂  is forced to track x then extforceext FuF ˆ== . Note that up is not measured 

directly, but, is computed from x and uin using equations (3.6) to (3.9). Similar to the 

previous case the controller used will be in the SMC framework. Using the sliding 

manifold ( ) ( )xxCxx estest ˆˆ −+−= &&σ  and since this is a discrete-time application the 

following control is used.  










 −
++= −

−
s

kestkest
kestestestkk T

DKuu )1()(
)()1()(

σσ
σ  (4.16)

The observer implementation is depicted in figure 3.6. The results of the force observer 

are shown below.  

Experiments were carried out with the force observer in an attempt to test its 

capacity of estimating the external forces acting on the system. Figure 4.7a shows the 

measured and estimated force for a step motion shown in Figure 4.7b. The position 

tracking was not the main concern but the concern was to have reasonable force 

estimation. The force estimation depends on the accuracy of the model. Hence, any 

inaccuracies in the model will cause errors in the force estimation. The difficulties in the 

model arise from the hysteresis estimation which has some inaccuracies. The 

inaccuracies obtained are in the order of 1-10%. The force observer parameters were the 

same as the disturbance observer and are: 800=estC , 2000=estD and 20=estK .  
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Figure 4.6. Block-diagram for external force estimation 

 

 

 

 

 

 

 

 

Figure 4.7. Results of the Force Observer Experiments  

4.3 Results of Closed-Loop Control Experiments 

The experimental setup consists of a PSt150/5/60 stack actuator ( 60max =x µm, 

800max =F N, 150max =v Volt) produced by Piezomechanik connected to SVR150/3 

low-voltage, low-power amplifier. The piezoelectric actuator has built-in strain-gages 
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for position measurement. Force measurement is accomplished by the help of a load cell 

that is placed against the actuator as shown in Figure 4.8. Any motion on the part of the 

actuator will exert a force on the load cell which is equal and opposite of the force on 

the actuator. Hence, the force measured by the load cell is nothing but the force acting 

on the actuator. The entire setup is connected DS1103 module hosted in a PC with 

dSpace software Control Desk v.2.0. In Figure 4.9 a simplified structure of the 

experimental setup is shown.   

4.3.1 Position Control 

The disturbance compensation scheme was incorporated with closed-loop control 

algorithm using SMC as depicted by Figure 4.10. As it can be seen from the results in 

Figure 4.11, the use of closed-loop control with disturbance compensation gives good 

results. The results that are shown in Figure 4.11 are for a reference trajectory of the 

form )2sin(1111 txref π+= . 

 

 

 

 

 

 

 

 

 

Figure 4.8. Sketch of the experimental setup 

 

   

 

 
 

 
 
 
 

 
Figure 4.9. Structure of the experimental setup 
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Figure 4.10. Closed-loop control scheme 

In the experiments shown below the controller parameters were: 800=xC , 

2000=xD and 25=xK . 

 

Figure 4.11. Closed-loop response to a 1Hz sinusoidal reference 
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Figure 4.12. 5nm step motion 

 

 

 

 

 

 

 

Figure 4.13. 1nm step motion 

Very small incremental step motions are also possible with this technique. Figure 

4.13 shows that step motions as small as 1nm are possible.  

4.3.2 Force Control 

The force controller is based on SMC framework. Here, the environment was 

modeled as stiffness and damping as follows, [16] 

xBxKF extextext &+=  (4.17)

Here Kext and Bext are the environmental stiffness and damping and are in all cases 

unknown before hand. Let the force control error be defined as extreff FF −=σ and 

sliding mode be established at 0=fσ , such that the solution 0=fσ  is stable. Also 

selecting the Lyapunov function as 22
fLv σ=  and selecting the derivative of the 

Lyapunov function as 2
ffD σ− with 0>fD . Equating the above results and simplifying 

0
0

2 =+⇒−==
≠f

fffffffL DDv
σ

σσσσσ &&&  (4.18)
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Inserting extreff FF −=σ and simplifying further 

( ) 0=−+− extreffextref FFDFF &&  (4.19)

Using (4.1), (4.17) and (4.19) the final form of the equivalent control with ineq uu =  is 

as follows  

( ) d
N

reffref
extN

N
eq F

T
BxxAFDF

BT
mu 1++++= &&  

extfext
N

N
ext BDK

m
cBA −−=  

extf
N

N
ext KD

m
kBB −=  

(4.20)

Finally, the control necessary to insure 0)( =+ ffff D σσσ & when 0≠fσ  is given by 

)sgn( ffeqc Duu σ+=  (4.21)

The transients of the closed-loop control system are defined by Df. As before, for 

discrete-time applications the following control is used 


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Here Kf is a design parameter which can be tuned to optimize the controller and Ts is the 

sampling interval of the discrete-time control. The closed-loop system is best described 

by the block diagram of Figure 4.14. 

 

Figure 4.14. Block-diagram of force control system 

extF̂  

inu0u + 

+ 

Piezoelectric 
Actuator 

Disturbance 
Observer 

Force 
Observer 

xSM 
Controller

refF  

_ 
+ 

Environment
extF



 44

Experiments using both a force sensor and the force observer were conducted. 

The experiments prove that the technique works well. For the results in Figure 4.15, the 

control scheme using a force sensor for feedback was used. However, large noise in the 

sensor measurement prevented the use of higher gains in the controller. Thus, a slow 

rise time for the force controller was generated. Also, using force sensors is not very 

feasible in most applications. Thus, emphasis must be made on the use of force 

estimation techniques.  

The results in Figure 4.16 are for the case when force observer feedback is used. 

The results show that the force observer works quite well. For the case of sensor based 

force control, the following controller parameters were used: 400=fD and 1.0=fK . 

For the case of sensor based force control, the following controller parameters were 

used: 400=fD and 1.0=fK . For the sensorless case 1000=fD and 1=fK .  

 

Figure 4.15. Sensor based force control 

 

 

 

 

 

 

 

 

 

Figure 4.16. Observer based force control 
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5. A DUAL-STAGE SERVO SYSTEM 

5.1 Introduction 

As the industrial need for high speed and high accuracy positioning devices 

increases, a new concept of servo system immerged: the dual-stage servo system, which 

is defined as combination of coarse/fine (or macro/micro) actuation stages for fast and 

precise positioning. In dual-stage systems, the coarse actuator is used for coarse and 

large motions while the fine actuator for fine and small range motions. Usually, the fine 

actuators have the characteristic of low power and small range but the frequency band is 

very high. In coarse actuators, the situation is the reverse. So, by adopting the 

advantages of both actuators for one purpose, a desirable system satisfying the purpose 

can be constructed. 

The conventional actuator (e.g., electrical motor) has the following limitations: 

mechanical resonance at high frequencies and large bearing friction at low speed. 

Especially, the nonlinear friction around zero velocity is the main source of hindering 

the fine positioning. The fine actuator such as piezoelectric actuator is a solution to 

increase the servo bandwidth and positioning resolution, although it is limited in motion 

range and power. 

Many systems exist that incorporate the dual actuation concept. Examples of such 

systems are disk drives [11], macro/micro robotic manipulators [21], and 2-axis linear 

positioning tables [22]. In this work the control of a dc-motor driven ball-screw actuator 

with a piezo actuator attached on the tip will be considered. This is the building block to 

controlling a Stewart-Platform manipulator that is considered as the end result of this 

work. 
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Figure 5.1. CAD model of the dual-stage system 

5.2 Structure of the System 

In this work the dc-motor driven ball-screw actuator with a piezo actuator 

attached at the tip is used to drive a slider as seen in Figure 5.1 and Figure 5.2. Motion 

of the ball-screw is measurable via an encoder attached to the dc-motor and the 

combined motion of the actuator is measured via a linear capacitance based transducer.  

The maximum repeatability of the ball-screw drive is 5µm while that of the piezo-drive 

is 0.1nm. Thus, with proper control it is possible to achieve repeatability in the sub-

nanometer range.  

For the modeling of the system, the ball-screw drive will be modeled as a dc-

motor with a disturbance term that will include the dynamics of the ball-screw, the 

piezo-drive coupling dynamics and friction. The piezo-drive will be modeled as 

described in chapter 2 and the coupling dynamics will be included along with the 

hysteresis and external forces in the disturbance term. The equations of motion for the 

two systems when independent are as follows 

DT TtiKtJ −= )()(θ&&  (5.1)

dinemppp FtuTxkxcxm −=++ )(&&&  (5.2)

Position Transducer 

Linear Slide 

Base 
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Figure 5.2. Anatomy of the dual-stage system 

In (5.1) and (5.2), J is the motor inertia, θ(t) is the angular position of the motor shaft, 

KT is the motor torque constant, i(t) is the current input to the motor, TD is the 

disturbance torque on the motor shaft, mp is the equivalent mass of the piezo-drive, cp is 

the equivalent damping of the piezo-drive, kp is the equivalent stiffness of the piezo-

drive, x is the deflection of the piezo-drive, Tem is the electromechanical transformation 

constant, uin(t) is the voltage input to the piezo-drive and Fd is the disturbance force 

acting on the piezo-drive. The above equations can be written differently in terms of the 

global coordinates of the equivalent masses of each drive q1 and q2 as follows 

),()()()()( 211112 qqftiKtqm
n

Tti
n

Ktq
n
J

mm
DT −=⇒−= &&&&  (5.3)

( ) ( ) ),()( 21212122 qqftuTqqkqqcqm inemppp −=−+−+ &&&&  (5.4)

here n is the rotation-to-linear transformation constant and f1 along with f2 are the 

disturbances that contain the coupling dynamics, external forces and nonlinearities of  

each drive and are, hence, functions of both coordinates. The model of the system is 

depicted in Figure 5.3. The force f1 includes fD and coupling effects due to kp and cp. 

 

Figure 5.3. Model representation of the system 
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It is possible to write (5.4) in terms of the relative motion between mp and mm. 

This will be necessary in the control algorithm that will be shown in the later section. 

Note that the relative motion between mp and mm is 12 qq − and this will be represented 

by z. Hence, equation (5.4) becomes 

),(~)( 212 qqftvTzkzbzm emppp −=++ &&&  (5.5)

here 2
~f contains the dynamics due to q1. The system can be written into state-space form 

to simplify the analysis as follows 

                              211 xqx == &&  
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1 f
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                              43 xzx == &&  
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(5.6)

The task here is to force q2 which is the sum of the states x1 and x3 to track a 

desired reference trajectory. The control algorithm for handling this task will be 

discussed in section 5.4. 

5.3 Results with Single-Stage Servo 

In order to test the capacity of the single-stage, composed of the DC-motor ball-

screw drive, it was necessary to conduct some reference tracking experiments. Various 

types of references were used on the system with the actuation of only a single-stage. 

The controller of the drive was in the SMC framework in discrete-time and the structure 

of the overall control for the single-stage is depicted in Figure 5.4.  

 
Figure 5.4. Single-stage controller scheme 
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Numerous experiments on the actuator were conducted using the simple algorithm 

shown above. The results of those experiments are depicted below. For the experiments 

shown below, the following controller parameters were used:  
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Figure 5.5. Single-stage 0.5mm sigmoid reference tracking 
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Figure 5.6. Single-stage 1mm sigmoid reference tracking 
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Figure 5.7. Single-stage 1.5mm sigmoid reference tracking 

5.4 Proposed Controller 

Control of the dual-stage system is based on a simple algorithm in which each 

stage has independent control. The reference position for the ball-screw drive is the final 

tip position of the piezo-drive. The error of tracking of the ball-screw drive is then sent 

to the piezo-drive as a reference. Thus, whatever discrepancies that exist during the 

reference tracking are compensated by the piezo-drive. This is shown by Figure 5.5. 

 

Figure 5.8. Dual-stage Controller scheme 
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5.5 Results with Dual-Stage Servo 

As in all cases, the proposed control scheme is implemented on an actual dual-

stage system to test its capacity. References used in these experiments are the same as 

those used for the single-stage experiments in order to be able to compare the two 

schemes. The figures shown below verify that the overall tracking performance can be 

greatly enhanced if a secondary microactuator is included at the tip position of the linear 

drive system. 
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Figure 5.9. Dual-stage 0.5mm sigmoid reference tracking 
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Figure 5.10. Dual-stage 1mm sigmoid reference tracking 

Note that due to some noise in the tip position measurement tracking of the piezo-

drive is somehow compromised. 
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Figure 5.11. Dual-stage 1.5mm sigmoid reference tracking 
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Figure 5.12. Dual-stage 1.5mm sigmoid reference tracking (contd.) 

From the above figures it can be concluded that the concept works well. However, 

improvements in the measurement should allow higher resolution tuning as compared to 

that shown above. Due to the non-availability of such sensors, it will not be shown in 

this thesis. 
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6. ANALYSIS OF THE KINEMATICS OF A 6-DOF STEWART-GOUGH 

MANIPULATOR 

6.1 Introduction 

The kinematics of a Stewart-Gough manipulator will be described in this chapter. 

A Stewart-Gough platform is a special type of manipulator that belongs to a class of 

mechanisms known as parallel manipulators. Parallel manipulators are classified as 

planar, spherical, or spatial manipulators in accordance with their motion characteristics. 

As shown in Figure 6.1, a parallel manipulator consists of a moving platform that 

is connected to a fixed base by several limbs or legs. Typically, the number of degrees 

of freedom is equal to the number of legs such that every leg is controlled by one 

actuator and all actuators can be mounted at or near the fixed base. For this reason, 

parallel manipulators are sometimes called platform manipulators. Because the external 

load can be shared by the actuators, parallel manipulators tend to have a large load-

carrying capacity. 

Parallel manipulators can be found in many applications, such as airplane 

simulators, adjustable articulated trusses, mining machines, pointing devices and 

walking machines. Recently, it has been developed as a high-speed, high-precision, 

multi-dof machining center, shown in Figure 6.1. 

The design of parallel manipulators goes back to 1962, when Gough and 

Whitehall devised a six-linear jack system for use as a universal tire-testing machine. 

Stewart (1965) designed a platform manipulator for use as an aircraft simulator in 1965. 

Hunt (1983) made a systematic study of the kinematic structure of parallel manipulators. 

Since then, parallel manipulators have been studied extensively by numerous 

researchers, [23].  
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Figure 6.1. VARIAX® machining center, Giddings and Lewis machine tools  

Most of the 6-dof parallel manipulators studied to date consist of six extensible 

limbs. These parallel manipulators possess the advantages of high stiffness, low inertia 

and large payload capacity. However, they suffer the problems of relatively small 

workspaces and design difficulties. Furthermore, their direct kinematics is a difficult 

problem. Perhaps, the only six-limbed, 6-dof parallel manipulators for which closed-

form direct kinematic solutions have been reported in the literature are special forms of 

the Stewart-Gough platform.    

6.2 Description of the Stewart-Gough Manipulator 

The Stewart-Gough manipulator used in this study is of the symmetrical type. A 

parallel manipulator is said to be symmetrical if it satisfies the following conditions: 

•  The number of limbs is equal to the number of degrees of freedom of the moving 

platform. 

•  The type and number of joints in all the limbs are arranged in an identical pattern.  

•  The number and location of actuated joints in all the limbs are the same. 

Figure 6.2 shows a spatial 6-dof, 6SPS (Spherical-Prismatic-Spherical) symmetric 

Stewart-Gough platform. Six identical limbs connect the moving platform to the fixed 

base by spherical joints at points Bi and Ai, 6,,2,1 K=i  respectively. Each limb consists 

of an upper member and a lower member connected by a prismatic joint. Ball screws or 

hydraulic jacks can be used to vary the lengths of the prismatic joints and therefore to 

control the location of the moving platform. In the case of the Stewart-Gough platform 
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used in this study, serially connected ball screws and piezoelectric-ceramic actuated 

translators are used to vary the length of the limbs, but for simplicity reasons, a single 

actuator will be considered in each limb. 

Note that in Figure 6.2, the attachment points Ai for 1=i  to 6 are sketched in a 

plane on the fixed base. Similarly, Bi for 1=i  to 6 are sketched in a plane on the 

moving platform. There are 14 links connected by 6 prismatic joints and 12 spherical 

joints. Hence the number of degrees of freedom of the mechanism is 

( ) ( ) ( ) 1212361181461 =×++−−=+−−= ∑
i

ifjnF λ  (6.1)

However, there are 6 passive degrees of freedom associated with the six SPS limbs. 

Therefore, the moving platform possesses 6 degrees of freedom. Since the limbs are 

connected to the moving platform and the fixed base by spherical joints, no bending 

moments or twisting torques will transmit to the limbs. The force acting on the limb is 

directed along the longitudinal axis of the limb. Consequently, these limbs can be made 

of hollow cylindrical rods to produce a light-weight, high-stiffness, high-speed 

manipulator. 

6.3 Geometry of the Stewart-Gough Manipulator 

For the purpose of analysis, two Cartesian coordinate systems, frames A(x,y,z) and 

B(u,v,w) as shown in Figure 6.2, are attached to the fixed base and the moving platform.  

The transformation from the moving platform to the fixed base can be described 

by the position vector pr  of the centroid P and the rotation matrix ARB of the moving 

platform. Let ur , vr  and wr  be three unit vectors defined along the u, v and w axis of the 

moving coordinate system; then the rotation matrix can be written as 




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



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Figure 6.2. Spatial 6-dof, 6SPS parallel manipulator 

The elements of the transformation matrix ARB must satisfy the following orthogonal 

conditions: 

1222 =++ zyx uuu  (6.3)

1222 =++ zyx vvv  (6.4)

1222 =++ zyx www  (6.5)

0=++ zzyyxx vuvuvu  (6.6)

0=++ zzyyxx wuwuwu  (6.7)

0=++ zzyyxx wvwvwv  (6.8)

As shown in Figure 6.2, let T
iiii zyx

aaaa ][=r  and T
iiii

B
wvu

bbbb ][=
r

be the 

position vectors of points Ai and Bi in the coordinate frames A and B. A vector-loop 

equation for the ith limb of the manipulator can be written as follows: 

ii
B

B
A

ii abRpBA rrr −+=  (6.9)

The length of the ith limb is obtained by taking the dot product of the vector 

ii BA with itself: 

][][2
ii

B
B

AT
ii

B
B

A
i abRpabRpd rrrrrr −+−+=       for 6,,2,1 K=i  (6.10)

Where di  denotes the length of the ith limb. Expanding (6.10) yields 
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Writing (6.11) six times, once for each 6,,2,1 K=i , yields six equations describing the 

location of the moving platform with respect to the fixed base. Note that i
Bb
r

and iar are 

constant vectors defined by the geometry of the manipulator. 

6.4 Direct Kinematics of the Stewart-Gough Manipulator 

For the direct kinematics problem, the limb lengths di, for 6,,2,1 K=i , are given, 

and the position vector T
zyx pppp ][=r  and the rotation matrix ARB of the moving 

platform are to be found. The position vector contains three scalar unknowns, while the 

rotation matrix contains nine scalar unknowns. However, the nine scalar unknowns in 

ARB are related by the six orthogonal conditions given by (6.3) through (6.8). Without 

losing generality, the following assumptions can be made 

•  The origin O of the fixed frame is located at the center of the spherical joint A1. 

•  The origin P of the moving frame is located at the center of the spherical joint B1. 

Based on the assumptions above, 0111 ===
zyx

aaa  and 0111 ===
wvu

bbb . Hence 

(6.11) for 1=i  reduces to 

2222
1 zyx pppd ++=  (6.12)

For the manipulator considered here, 0==
wz ii ba for 6,,2,1 K=i . Keeping this in mind 

and expanding (6.11) for 6,,3,2 K=i , and then subtracting (6.12) from each of the 

resulting equations yields 

021 =+−−−−−−+ iyiixiiyiixiiyixiii kvbavbaubaubapapabb
vyvxuyuxyxvu

ξξ  (6.13)

where ( ) 22
1

22222 ddbbaak iiiiii vuyx
+−+++=  and the variables ξ1 and ξ2 are defined as 

follows: 

zzyyxx upupup ++=1ξ  (6.14)
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zzyyxx vpvpvp ++=2ξ  (6.15)

 It can be noted that the unit vector wr disappears from (6.13). Hence only three of 

the six orthogonal conditions are needed for the analysis. By considering ξ1 and ξ2 as 

intermediate variables, we have a system of 11 equations in 11 unknowns. The system 

of equations consists (6.3), (6.4), (6.6), (6.12), (6.13) for 6,,3,2 K=i , (6.14), and (6.15). 

The unknowns are px, py, pz, ux, uy, uz, vx, vy, vz, ξ1, and ξ2. Equations (6.13) for 

6,,3,2 K=i  are linear, while the remaining equations are second-degree polynomials. 

In what follows, we derive six polynomial equations in three unknowns: ux, uy and 

vy. First, rewriting (6.3), (6.4), and (6.12) as a group, and (6.6), (6.14), and (6.15) as 

another group, as follows: 

 222 1 yxz uuu −−=  (6.16)

222 1 yxz vvv −−=  (6.17)

222
1

2
yxz ppdp −−=  (6.18)

and 

yyxxzz vuvuvu −−=  (6.19)

yyxxzz upupup −−= 1ξ  (6.20)

yyxxzz vpvpvp −−= 2ξ  (6.21)

Next, we substitute (6.16) through (6.21) into the following six identities: 

( )( ) ( ) 0222 =− zzzz vuvu  (6.22)

( )( ) ( ) 0222 =− zzzz pupu  (6.23)

( )( ) ( ) 0222 =− zzzz vpvp  (6.24)

( )( ) ( )( ) 02 =− zzzzzzz upvppvu  (6.25)

( )( ) ( )( ) 02 =− zzzzzzz vpvuvpu  (6.26)

( )( ) ( )( ) 02 =− zzzzzzz upvuupv  (6.27)

This results in six equations free of the variables uz, vz and pz. 

Equation (6.13), 6,,3,2 K=i , represent five linear equations in eight unknowns. 

Hence it is possible to solve five unknowns in terms of the remaining three. For 

example, it is possible to express px, py, vx, ξ1, and ξ2 in terms of ux, uy, and vy as follows: 
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141312111 eveueue yyx +++=ξ  (6.28)

242322212 eveueue yyx +++=ξ  (6.29)

34333231 eveueuep yyxx +++=  (6.30)

44434241 eveueuep yyxy +++=  (6.31)

54535251 eveueuev yyxx +++=  (6.32)

where jie , ’s are constants that can be found by solving (6.13) for 6,,3,2 K=i . 

Upon substitution of (6.28) through (6.32) into (6.22) through (6.27), obtaining 

six fourth-degree polynomials in three unknowns: ux, uy, and uz. Any of the three 

polynomials can be used to solve for the three unknowns. This system of equations has 

at most 64 solutions. Zhang and Song (1994) applied the Sylvester dialytic method to 

further reduce the six polynomial equations to a 20th degree polynomial in one unknown 

and showed that after back substitution there are at most 40 direct kinematics solutions. 

Closed-form solutions of this manipulator have also been derived by Wen and Liang 

(1994), [23]. 

6.5 Inverse Kinematics of the Stewart-Gough Manipulator 

For the inverse kinematics problem, the position vector pr  and the rotation matrix 
ARB of the frame B with respect to A are given and the limb lengths di, 6,,2,1 K=i , are 

to be found. The solution is very straight forward. Taking the square root of (6.11) to 

obtain 

[ ] [ ] i
T

i
B

B
A

i
T

i
B

B
AT

i
T

ii
BT

i
BT

i abRapbRpaabbppd rrrrrrrrrrrr ][22][2 −−+++=  (6.33)

for 6,,2,1 K=i . For simplicity it is assumed that the center of frame A is at the origin. 

Thus, the position vector of the of the frame B with respect to A is given as  

{ } Tzzyxp 0+=r  (6.34)

where x, y and z are the required displacements of frame B with respect to A while z0 is 

the initial elevation of frame B with respect to A. Similarly, the rotation matrix ARB can 

be written in terms of the required Euler angles φ, θ and ψ of frame B as shown in 

Figure 6.3. 
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Hence, corresponding to each given location of the moving platform, there are 

generally two possible solutions for each limb. However, the negative limb length is 

physically not feasible. When the solution of di becomes a complex number, the 

location of the moving platform is not reachable. 

6.5.1 Simulation Results for the Proposed Manipulator  

The proposed manipulator was constructed on MSC.ADAMSTM dynamics 

simulation program for the purpose of analyzing the kinematics behavior.    

The manipulator used in the simulations is only used for the purpose of verifying 

the inverse kinematics model that will be used in the actual prototype and does not 

necessarily reflect the topology of the final design. The joint locations on frame A with 

respect to A and the joints on frame B with respect to B are tabulated below.   

 
Figure 6.3. MSC.ADAMS CAD model of the proposed manipulator   
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Table 6.1. Manipulator joint coordinates 

Frame A(x,y,z) Frame B(u,v,w) 

Joint Coordinate Joint Coordinate 

A1 (121.2mm, 70mm, 0mm) B1 (110mm, 0mm, 0mm) 

A2 (70mm, -121.2mm, 0mm) B2 (95.3mm, -55mm, 0mm) 

A3 (0mm, -140mm, 0mm) B3 (-55mm, -95.3mm, 0mm) 

A4 (-140mm, 0mm, 0mm) B4 (-95.3mm, -55mm, 0mm ) 

A5 (-121.2mm, 70mm, 0mm) B5 (-55mm, 95.3mm, 0mm) 

A6 (70mm, 121.2mm, 0mm) B6 (0mm, 110mm, 0mm) 

 

The initial elevation of frame B is set to 3000 =z mm. After defining the necessary 

topological parameters of the manipulator it is possible to study its kinematics in 

response to different trajectories of the limbs. Using the inverse kinematics model 

defined previously, limb trajectories are calculated using reference trajectories for the 

centre point of frame B. The first set of reference trajectories for point P are shown in 

Figure 6.4 and Figure 6.5.  

Here, it is required that point P moves 20mm in the x direction while all the other 

directions are forced to be zero. Thus, the required limb elongations for the trajectories 

in Figure 6.4 and 6.5 are calculated and shown in Figure 6.6.  

 

 

 

 

 

 

 

Figure 6.4. First set of reference trajectories for point P 
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Figure 6.5. First set of reference trajectories for point P 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure 6.6. Required limb elongations for the first set of trajectories 
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The above limb elongations are used in the CAD model to verify the inverse 

kinematics model. The result of the CAD model motion compared with reference 

trajectories is shown in Figure 6.7. 

As it can be seen from Figure 6.7, the inverse kinematics model works. The errors 

seen in the CAD model response are associated with problems of the simulation tool 

and are not related to the inverse kinematics model. 

Using a second set of trajectories shown in Figure 6.8, the response of the CAD 

model is studied.  

For this case it is required that point P moves 10mm in the x and y while motion 

in all other directions are forced to be zero. Using the inverse kinematics model, the 

required limb elongations are computed for the required motion of point P. The results 

are shown in Figure 6.9 and Figure 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. CAD model response to the first set of trajectories  
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Figure 6.8. Second set of reference trajectories for point P 

 

Figure 6.9. Limb elongations for the second set of trajectories 
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Figure 6.10. Limb elongations for the second set of trajectories (contd.) 

As it was done for the first case, the limb elongations are used in the CAD model 

to verify the inverse kinematics model. The results compared with the reference 

trajectories of point P are shown in Figure 6.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. CAD model response to the second set of trajectories 
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7. EXPERIMENTS ON AN ACTUAL STEWART PLATFORM 

7.1 Introduction 

A culmination of this research is the implementation of the described algorithms 

to a system of reasonable complexity. The system used is a 6-dof Stewart platform such 

as the one described in the previous chapter. However, in this case the limbs of the 

actuator are dual-actuated. The aim here is to test the effectiveness of macro/micro 

motion actuators on the overall tracking capacity of complicated manipulators such 

Stewart platforms. The experimental Stewart platform was designed and built as a part 

of the research.   

In the experiments, independent joint control will be used since measurement only 

exists for the limbs. Limb trajectories will be generated based on the inverse kinematics 

of the platform as it was shown and simulated in the previous chapter. 

7.2 Structure of the Experimental Stewart Platform 

The experimental Stewart platform used was of the symmetrical 6SPS as was 

described in the previous chapter. The limbs of the actuator are dual-actuated as 

described in chapter 5. The macroactuator is a DC-Ball screw drive produced by PI, 

GmbH that has a maximum stroke of 25mm with maximum repeatability of 5µm. The 

microactuator is a piezo drive with a maximum stroke of 20µm and repeatability as 

good as 0.1nm. The position of the DC-Ball screw is measured via 2024-pulse encoders 

while the tip position of the piezo drive is measured via SLVC (Super Linear Variable 

Capacitor) transducer that has a measuring range of 50mm with a resolution of 1µm. 

The limb of the platform is shown in Figure 7.1. 
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Figure 7.1. Limb of the experimental system 

The control references for the actuators are generated by DSpaceTM DS1103 

controller card with the control routine executed in C-code. A simplified sketch of the 

experimental setup is shown in Figure 7.2. 

 

Figure 7.2. Sketch of the system 

Unfortunately, due to the limitation on the number of DAC (Digital to Analog 

Converter) channels on the DS1103 it will not be possible to demonstrate the dual-

actuation principle for the entire platform. Only the DC-Ball screw drives will be used 

in the platform experiments. The experimental Stewart platform can be seen in Figure 

7.3.  
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Figure 7.3. Experimental Stewart platform 

7.3 Experimental Results 

In this section some of the experimental results on the Stewart platform will be 

shown. The experiments consisted of several types of trajectories for the top plate and 

generation of the limb elongation trajectories in order to satisfy the required plate 

motion. The motion of the plate in one direction is measured via a laser sensor with a 

resolution of 1-4µm. The figures below are for sigmoid references for the px coordinate 

while all other coordinates are maintained at zero.  
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Figure 7.4. 0.2mm reference trajectory for px and measured motion 
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Figure 7.5. Corresponding tracking error for the 0.2mm sigmoid 
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Figure 7.6. Reference limb trajectories for 0.2mm px trajectory 
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Figure 7.7. 0.1mm reference trajectory for px and measured motion  
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Figure 7.8. Reference limb trajectories for 0.1mm px trajectory 
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Figure 7.9. Reference limb trajectories for 0.1mm px trajectory (Contd.)  
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Figure 7.10. 50µm reference trajectory for px and measured motion  

As it can be seen, the tracking deteriorates as the motion trajectory is made 

smaller. However, the limb trajectory tracking remains good even at these small 

displacements. Note that, the plate motion is not controlled but the limb elongations are, 

hence, backlash or other mechanical problems in the system would result in an overall 

discrepancy in the tracking. 
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Figure 7.11. Reference limb trajectories for 50µm px trajectory 
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CONCLUSION 

This thesis presents a control methodology that was successful in solving the 

problems involved in controlling systems with hysteresis and friction. By the proposed 

approach, the desired performance can be specified in terms of the sliding surface which 

is independent from the choice of the control, and a robust, accurate and chattering free 

controller can be obtained based on a second order nominal process model. It was also 

shown that the controllers were as easy to implement and design as well known 

controllers such as PD or PID and implementation did not require modeling or 

identification of either friction or hysteresis or the need for any on-line adaptive 

techniques. To show the strength of the technique, it was experimentally implemented 

on systems of varying complexities that contained either friction or hysteresis or both. 

Experimental results obtained show that, as simple as this technique is, it could produce 

better performance than the relatively more advanced control techniques available in the 

literature. 

Although this thesis does not present any new theoretical concept, it does show 

that relatively complex control problems can be solved using existing technology. This 

work shows that the merging of two well established techniques, namely disturbance 

compensation based on disturbance observers and Sliding Mode control, in the literature 

can produce interesting effects. Disturbance compensation based on disturbance 

observers eliminated the need for modeling or identification of friction or hysteresis and 

thus simplified the implementation. 

As a further extension of this work, it would be interesting to extend the control 

methodology to include resonance suppression in flexible systems such as belt-driven 

systems or flexible robotic manipulators. Also other disturbances such as backlash or 

disturbances that are not smooth or have unbounded derivatives could be investigated. 

Another interesting point that can be addressed is the analytical proof as to why the 

combination of both Sliding Mode control and disturbance compensation manages to 

achieve better experimental results than each technique used separately. This is 
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important since each technique has been proven theoretically to achieve high 

performance. As a final extension, it will also be interesting to eliminate the need for the 

hysteresis model in the estimation of the external force on the PZT and derive an 

observer based on the current and position measurement to calculate the external force. 

This is very useful since current measurement is easy to obtain as opposed to charge. 

Success in this could bring about interesting possibilities.   
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