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ABSTRACT 

 
 
 

Machining processes are very common in manufacturing technology. These 

operations are applied in manufacturing of almost every mechanical part. Because of their 

frequent use, these processes have to be efficient and economical. On the way to lower 

manufacturing costs, there are many parameters that engineers need to consider. 

 

Tool wear is one of the most important considerations in machining operations as it 

affects surface quality and integrity, productivity, cost etc. The most commonly used model 

for tool life analysis is the one proposed by F.W. Taylor about a century ago. Although the 

extended form of this equation includes the effects of the important cutting conditions on 

tool wear, tool life studies have always been performed under stable cutting conditions, and 

the effects of chatter vibrations have never been considered.  

 

This study presents an initial attempt to understand the tool life under vibratory 

cutting conditions. The wear data have been collected in turning and milling operations of 

mild steel and titanium alloy under many different cutting and chatter conditions. The 

results indicate significant reduction in tool life due to chatter as expected. Chatter results 

in serious reduction in tool life about 50% for most of the cases and more than 80% in 

some higher cutting speeds in turning. The same reduction in tool life due to chatter is 

about 30% in milling tests. These results can be useful in evaluating the real cost of chatter 

including the reduced tool life. They can also be useful in justifying the cost of chatter 

suppression and more rigid machining systems. 
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ÖZET 

 
 
 

Talaşlı imalat, üretim teknolojisinde çok sık kullanılan bir yöntemdir. Bu işlemler 

imalat sırasında neredeyse tüm mekanik parçalara uygulanır. Çok yaygın kullanımlarından 

dolayı; talaş kaldırma işleminin verimli ve ekonomik olması gerekmektedir. Üretim 

mühendislerinin daha düşük imalat maliyetleri için göz önünde bulundurması gereken 

birçok parametre vardır. 

 

Takım aşınması, yüzey kalitesine ve doğruluğuna, verimliliğe ve maliyete olan 

etkisinden dolayı; talaşlı imalatta göz önünde bulundurulması gereken en önemli 

kriterlerden birisidir. Takım ömrü analizlerinde en sık kullanılan modelleme, yaklaşık bir 

yüzyıl önce F.W. Taylor tarafından önerilmiştir. Bu denklemin geliştirilmiş şekli, takım 

aşınmasına etki eden birçok parametreyi içermesine rağmen; takım ömrü üzerine yapılan 

çalışmalar daima kararlı (titreşimsiz) kesme koşulları altında gerçekleştirilmiş ve tırlamanın 

etkileri göz önünde bulundurulmamıştır. 

 

Bu çalışmada, takım ömrünü titreşimli kesme koşulları altında anlamak için yapılan 

ilk girişim anlatılmıştır. Takım aşınması verileri, yumuşak çeliğin ve titanyum alaşımının 

tornalanması ve frezelenmesi işlemlerinde birçok farklı kesme ve tırlama koşulları altında 

toplanmıştır. Sonuçlar beklendiği gibi, tırlamadan dolayı takım ömründe belirgin bir düşüşü 

göstermektedir. Tırlama tornalamada, takım ömründe; birçok durumda %50 ve bazı yüksek 

kesme hızlarında %80 gibi ciddi düşüşlere neden olmuştur. Takım ömründe tırlamadan 

dolayı oluşan azalma, frezeleme için %30 civarındadır. Bu sonuçlar, takım ömründeki 

azalmadan dolayı tırlamanın gerçek maliyetini değerlendirmede ve tırlama azaltılmasının 

maliyeti hesabında faydalı olabilir. 
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göstermektedir. Tırlama tornalamada, takım ömründe; birçok durumda %50 ve bazı yüksek 
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CHAPTER 1 

 

INTRODUCTION 

 
 
 

Metal removal is the most commonly used manufacturing method to finalize the 

dimension, quality and shape of the mechanical parts. In many different metal removal 

processes, metal cutting, especially turning and milling are the most popular ones. In 

metal cutting processes, one of the most important and critical parameter is the tool life 

according to the scales of economy. The selection and wear resistance of the cutting tool 

determines the quality of the surface and the total cost.  

 

Different kinds of damages can develop on the tool during the cutting process 

and some of these damages are called as tool wear. The amount of total tool wear and 

time horizon to reach the maximum limit of wear determine the tool life. Tool life is one 

of the critical factors in machining processes affecting cost and productivity. Many 

aspects of tool wear and tool life have been investigated [1,2] in last century since the 

legendary work of F.W. Taylor in 1907 [3]. These investigations have improved the 

understanding of the wear mechanism for different work and tool materials in various 

machining operations. They also established the foundations for improved cutting tools 

and increased productivity. Similar to tool wear, vibrations, particularly self-excited 

chatter vibrations, are very critical in machining processes. One of the conditions that 

accelerates the tool wear is the self-excited (chatter) vibration.  

 

Chatter can be observed almost in every machining process, and it is common in 

turning and milling operations. In many cases, machining is carried out under chatter 

conditions either due to very low dynamic rigidity of the machining system, or in order 

to reduce the cycle time. Tool wear tests, on the other hand, are mainly performed under 

stable cutting conditions which cannot explain the wear behavior under vibratory 

cutting. The purpose of this work is to investigate the effects of vibrations on tool wear. 
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This would be an important information for understanding the wear mechanism in 

dynamic cutting conditions.  

 

In addition, it would be very useful to estimate the cost of chatter due to reduced 

tool life in production operations. The information can also be used in justifying 

additional cost of rigid tooling and machine tools, and implementation of chatter 

suppression methods. 

 

The effect of chatter vibration on tool life is known by experienced machinists 

and production engineers. The theory and mechanism of chatter vibration are commonly 

known but it is still a great and important difficulty in machining operations. In practice, 

it is known how chatter vibration reduces tool life. However there are no data or studies 

quantifying the effect of chatter. In this study, the effects of chatter vibrations on tool 

life in turning and milling are examined. Different cutting conditions are used in turning 

and milling tests to understand the behavior of the tool wear evolution. This is the first 

attempt in this area known to us. 

 

 

1.1 Metal Cutting Theory 

 

 

The basic idea of metal cutting is removing the undesired metal volumes by 

small pieces called chips by using a cutting tool which is harder than the workpiece 

material under a relative motion between the workpiece and the tool. The mechanics of 

the metal cutting processes are generally similar although geometry of the operation can 

be quite different. There are two general models of metal cutting: orthogonal and 

oblique. In orthogonal cutting, the metal is removed by a cutting edge which is 

perpendicular to the direction of tool-workpiece relative motion. The mechanics of 

oblique cutting is more complicated than the orthogonal cutting due to its three 

dimensional nature [4]. 
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The modeling of the cutting process mechanics makes the predictions of the 

important cutting parameters possible. In orthogonal cutting, the cutting operation is 

assumed to be uniform along the cutting edge; therefore it is a two-dimensional plane 

strain deformation process without side spreading of the material [2,1]. Metal cutting 

operation is basically a plastic deformation process. In the cutting region, there are three 

main deformation zones shown in Figure 1.2. The material that is cut shears over the 

primary zone to become a chip as the cutting tool edge moves into the workpiece 

material. The newly created chip moves along the rake face of the tool which is called 

secondary deformation zone. Finally, the contact zone between the flank face of the 

cutting tool and the newly-machined surface is called the tertiary zone. In case of 

oblique cutting, the chip flows on the rake face in a direction which is different than the 

cutting speed direction defined by the chip flow angle. The shear plane, too, has an 

angular orientation to the cutting edge which complicates  the kinematics and mechanic 

analysis of the process [1]. 

 

 
Figure 1.1: Geometry of orthogonal cutting process 
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Figure 1.2: Deformation zones in cutting region 

 

 

1.2 Related Literature Review 

 

 

The cutting tool is one of the most important components of machining process. 

All major advances in machining technology depend on the advances in cutting tool 

materials. The most desired properties of cutting tools are high hardness at high 

temperatures, deformation resistance, toughness, chemical stability, adequate thermal 

properties, high stiffness and low cost. Today, many different cutting tool materials are 

used in industry such as, high speed steels (HSS), cemented carbides, cast carbides, 

coated cemented carbides, sintered cubic boron nitrate, polycrystalline diamond, etc. 

Cutting tools and tool life are vital for production costs. The life of a cutting tool is 

limited by the extend of wear. High temperature, high pressure, high sliding speeds and 

chemical reactions between cutting tool and workpiece material lead to negative 

mechanical and thermal shocks and fatigue on tool [5]. These effects decrease tool life. 

 

The scientific studies about tool life have been started with the state-of-art study 

of F.W. Taylor in 1097 [3]. That was the first systematic tool testing study. He set a 

principle equation which gives the relationship between cutting speed and tool life and 

that equation is still valid. Many researchers [1,2] have investigated different parameters 

and relations of tool wear and tool life. These studies resulted with the extended Taylor 
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tool life equation which contains more parameters to estimate tool life. Trent [6] 

examined various factors that affect wear of cemented tools in machining steel. Trent 

also suggested that the mechanism of crater wear should be different to the mechanism 

of flank wear. Trigger and Chao [7] investigated the crater wear of cemented carbide 

tools. They observed that crater wear to occur at some distance away from tool edge. 

Opitz and Konig [8] investigated the micro mechanisms of wear of carbide tools in 

machining ferrous materials. The found changes in the mechanisms of wear cutting tool 

with increase in cutting speed. Kramer and Suh [9] studied the mechanism controlling 

the crater wear of a single phase carbide cutting tools in high speed machining of steels 

and developed a simple model to describe the wear process. Ham, Hatomi and Thuering 

[10] investigated the machinability of several grades of nodular cast irons extensively to 

evaluate the performance of the carbide and oxide cutting tools [5]. 

 

The theory of chatter vibrations is known for a long time. The first studies [11] 

about self-excited vibrations have been started in the second half of the past century. 

Tlusty and Polacek [12] and Tobias [13] determined the most important source of self-

excitation which is associated with the structural dynamics of the machine tool and the 

feedback between the subsequent cuts on the same cutting surface resulting in 

regeneration of waviness on the cutting surfaces, and thus modulation in the chip 

thickness [12]  

 

Although chatter stability has been studied in detail in last half a century [12-15] 

chatter vibrations still continue to be one of the most important limitations in production 

operations. Shi and Tobias [16] showed that the boundaries of the stability increases as 

the feed rate increases until a nominal value. Important contributions about chatter 

stability came from Budak and Altintas [17]  and, Jensen and Shin [18] in recent years. 

 

Tool wear and tool life are very critical for machining processes. One of the 

main purposes of manufacturing engineers is to reduce tool wear and keep the tool life 

as long as satisfying other requirements. Chatter vibration is a cardinal adverse effect in 

machining and shortens tool life. There is a complex structure between tool wear, tool 

stiffness and chatter. Studies focused on many different aspects. The relationship 

between tool life and self-excited vibration has been investigated before from the view 

of the effect of tool wear on chatter. Tlusty [19] pointed out that the flank wear flat is 
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critical in positive damping in the occurrence of self-excited vibrations. Chiou et al. [20] 

demonstrated that chatter instability is delayed to a greater overhang distance as a result 

of flank wear, and chatter limit increases especially at lower cutting speeds, as the tool 

wear increases. Chiou and Liang [21] demonstrated the effect of tool wear on chatter 

stability in turning. The chatter stability increases as the tool wear flat of the cutting tool 

enlarges. 

 

 Chiou and Liang [22] analyzed the acoustic emission in chatter vibration with 

tool wear effect in turning. Miyaguchi et al. [23] demonstrated that tool life increases as 

the cutting tool stiffness decreases in high speed milling. Clancy and Shin [24] 

developed a chatter prediction model including tool wear effect. They expressed the 

direct proportion between flank wear and stability limit, again. Fofana et al. [25] 

investigated machining stability in turning by using worn tool inserts. Cutting forces 

varying with depth of cut and feed rate and cutting force coefficients are investigated as 

the tool wear progresses and it is demonstrated that tool wear and dynamic instability 

are both contributed by the combined effect of the contact and friction mechanisms 

between workpiece-tool, tool-chip and workpiece-tool-machine tool interactions. 

Kannatey-Asibu and Lu [26] determined the effect of a worn tool on dynamics of the 

cutting process by investigating sound generation during surface turning and the results 

show that as the tool wear increases, the spectral distribution and displacement and 

exciting force shift. 
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1.3 Mechanics of Turning Process 
 

 

Turning is a basic operation of metal cutting and it is the most commonly used 

machining process. Generally, a circular-shaped workpiece is clamped in a chuck and 

rotated. The cutting operation is done by a cutting tool that moves parallel to the central 

axis of the chuck. The cutting tool is fixed rigidly on a tool post. The geometry and the 

cutting forces of turning process are shown in Figure 1.3. The machine tool for the 

turning operations is called the lathe. A lathe and its components are shown in       

Figure 1.4.  

 
Figure 1.3: Geometry of turning process 
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Figure 1.4: A universal lathe 

 

The most important parameters of a turning process are the cutting speed (V), 

the feed rate (f) and the depth of cut. The cutting speed is the linear rate between the 

cutting edge of the tool and the unmachined surface of the workpiece. The feed rate is 

the step distance that the cutting tool moves in the axial direction in every rotation of 

the chuck [3]. 

 

1.4 Mechanics of Milling Process 

 

 

Milling is a cutting process which is more complicated than turning. The cutting 

operation is done by a rotating tool that moves along various axes while the workpiece 

is fixed. More complex parts can be produced by milling operation [27]. The most 

important difference between turning and milling operations is the chip thickness 

generation kinematics. Every cutting tooth on a milling tool follows a trochoidal path so 

the thickness of the cut chip changes from the fist contact between the tooth and the 

material till the end of the cutting sequence of the tooth. This variability is always 

periodical, and can be approximated by a circular motion. 
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Another important difference of milling is the direction of the cutting motion. 

Two different models, down-milling and up-milling, can be used in a peripheral milling 

operation. In down-milling, cutting operation starts from the surface of the workpiece, 

at the point where the chip thickness is the maximum. At the end of the cutting motion 

of the tooth, the chip thickness decreases to zero. This kind of milling operations are 

recommended to prevent machining vibrations, and to obtain better surface finish. In 

up-milling, cutting operation starts from the minimum chip thickness and the chip 

thickness increases till the end of the cutting. That operation is generally used to have 

longer tool life.  

 

 
Figure 1.5: Milling modes 

 

1.5 Tool Wear and Tool Life 

 

 

Selecting the best cutting tool material for a specific application is acute in 

achieving efficient machining operations. The best way to increase productivity is to 

increase cutting speed but this option is limited due to reduced tool life. Higher cutting 

speeds increase the tool wear so tool regrinding or replacement costs, and interruptions 

in the process are increased [1]. The change of shape of the tool from its original shape, 

during cutting, resulting from the gradual loss of tool material is called tool wear [28]. 

 

Cutting tools are exposed to extremely severe rubbing processes. The tools are 

in metal-to-metal contact, between the chip and workpiece, under very high stress levels 

at high temperatures. During the cutting process, cutting tools remove the metal from 

the workpiece to achieve the required shape, dimension and surface finish quality. 

However, tool wear occurs during the cutting sequence, and it results in the failure of 
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the cutting tool. When the tool wear reaches a specific limit , the tool or the removable 

insert has to be replaced with a new one to guarantee the ordinary cutting action [38]. 

Several different wear types occur during the cutting process. The most important types 

are crater wear, flank wear and notch wear. These are shown in Figure 1.6. 

 

 
Figure 1.6: Tool wear parameters 

 

The chip flows away on the rake face of the tool and that motion results in a 

severe friction between the chip and the rake face. So, it leaves a scar on the rake face 

which is parallel to the major cutting edge. That damage on the rake face of the tool is 

called crater wear.  

 

The flank wear land generally develops due to abrasion of the cutting tool edge 

against the machined workpiece surface. Flank wear is measured by the average and 

maximum width of wear land size and denoted as VB and VBmax ,respectively. 

 

The notch wear is a combination of flank and rake face wears which occurs on 

the primary clearance face, adjacent to the depth of cut line where the major cutting 

edge intersects the workpiece surface. It generally accelerates more rapidly than the 

flank wear. 
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Flank wear size is generally used as a the tool life criterion. The development of 

flank wear can be split into three zones in the tool life curve [see Figure 1.7]. A quick 

and rapid wear section at the beginning of the cutting operation, a stable rate 

development on the amount of the wear zone directly proportional to the machining 

time and finally, a high acceleration in the flank wear after reaching the wear limit. The 

cutting time that corresponds to that wear limit is called tool life.  

 

 

Figure 1.7: Taylor’s tool life curves 

 

The scientific studies about tool life were started with the pioneering state-of-

the-art work of F.W. Taylor with the title On the Art of Cutting Metals in 1907 [3]. 

Many researchers studied the issue for many years after that paper. The relation 

between the cutting speed and the tool life was first investigated by Taylor who 

expressed this relation in the following form 

 
'CVT n =                                                                                                                       (1.1)                

              

where V [m/min] is the cutting speed, T [min] is the tool life and C and n are 

experimentally identified constants which depend on work and tool material.  

 

The effects of other cutting conditions, i.e. chip thickness and depth of cut, were 

neglected in the elementary tool life equation. Their effects on the tool life can be 

included in the extended tool life equation [30] 
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CfdVT yxn =                                                                                                              (1.2) 
 
and from that equation: 
 

n
y

n
x

n fdV

CT 1=                                                                                                               (1.3) 

 

where  f [mm/min] is the feed rate, d [mm] is the depth of cut, C, x and y are 

experimentally identified constants similar to the ones in Eq. 1.1. The effect of vibration 

on tool wear has never been considered in the previous studies on tool life, although it is 

common knowledge that the wear rate under dynamic conditions are higher, and thus 

the resulting tool life is usually much shorter than the ones predicted by Eq. 1.1 or 1.2.  

 

The tool wear affects some parameters of the cutting process and vice versa. 

These parameters are cutting forces, surface finish, dimensional accuracy and 

machining vibrations. The tool wear increases the cutting forces. The wear zones on the 

clearance face of the tool further increase the cutting forces due to increased rubbing 

force between tool and the surface of the workpiece. One exception to that is, the crater 

wear in which case the wear may decrease the cutting forces because of the increased 

rake angle due to the crater. The surface finish after the machining process becomes 

poorer as the tool wears out. This is a generalization, and there may be some 

exceptional cases. For example, the surface finish of a cutting tool which is worn very 

little leaves a better surface quality according to a brand new cutting tool. As the initial 

rough edge coming from the manufacturing of the tool is improved due to the wear. 

Flank wear can also influence the original geometry of the cutting tool and thus affects 

the dimensional accuracy of the workpiece [1]. 
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1.6 Chatter Vibration 
 

 

There are several types of vibrations which may arise in machining processes. 

Compared to free and forced vibrations, self excited chatter vibrations are much more 

detrimental to finished surfaces and cutting tools due to their unstable behavior which 

may result in large amplitude relative displacements between the cutter and workpiece. 

Self-excited vibrations, or chatter, develop at one of the natural modes of the cutting 

system including tool, workpiece, machine tool, fixture etc. as a result of dynamic 

interaction between the structure and the cutting process in machining operations. 

 

Under vibrations, the chip thickness becomes modulated which in turn creates 

dynamic cutting forces at a frequency close to one of the natural modes, and further 

excites the system. Under these conditions, if the vibration amplitude does not reduce 

and diminish compared to the amplitude in the previous pass, the amplitude of the 

vibrations grow continuously resulting instability, namely self-excited (chatter) 

vibrations. The fundamental mechanism of chatter has been investigated and analyzed 

starting with Tobias and Tlusty [11,12] for the last 50 years. Since then, many models 

have been developed for analysis of chatter vibration and prediction of chatter stability 

limits for different machining processes [31-33]. 

 

The chatter research has shown that the depth of cut (chip width) is the most 

critical factor affecting the stability of the cutting process [34]. The cutting process is 

more stable when the depth of cut is smaller. Chatter vibration is started by the increase 

of the depth of cut after the chatter limit point (blim), and becomes more pronounced at 

higher depth of cuts. It is very clear that blim is the most important parameter for stability 

in cutting. The value of blim depends on the dynamic characteristics of the machine tool, 

workpiece material, cutting speed and geometry of the tool [27].       
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1.6.1 Chatter Vibrations in Turning 
 
 
 

The dynamics of self-excited vibration in turning is not as complicated as 

milling. There are two main sources of chatter in machining. These are mode coupling 

and regeneration of waviness. Mode coupling occurs due to cutting tool vibrations in 

both, x and y directions which creates a net energy input into the process under certain 

conditions. Regeneration of the waviness is the result of modulated chip thickness due 

to tool vibrations in the successive passes from the same surface location. In almost all 

cutting processes, the tool removes the material on the surface which was left by the 

previous pass, and there will be a waviness on the surface if there is any vibration 

between the cutting tool and the workpiece. That waviness changes the chip thickness in 

the next pass (the next revolution in turning and the next tooth in milling). The cutting 

tool encounters a wavy surface and removes the chip with periodically varying 

thickness which creates wavy surface for the next pass. So the waviness is continuously 

regenerated [27]. 

 

 
Figure 1.8: Chatter model for turning 

 

The chatter process is a close-loop in which force variations are created by the 

vibrations and visa-versa. The cutting force depends on vibrations in two subsequent 

passes defined by the following equation. 
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bhKF f=                                                                                                                     (1.4) 

where Kf  is the cutting force coefficient in the feed direction, b is the width of chip and 

h is the chip thickness. But h is the total value of hm which is the mean chip thickness 

and the difference between the undulation of the surface from the previous pass, Y0, and 

vibrations in the present pass Y 

 

)

                                                                                                (1.5) 

 
( ) tj

m eYYhh ϖ−+= 0

The cutting force has two components, a mean part and a variable part. The 

mean component of the cutting force, Fm, can be neglected if the system is considered 

as linear. So the cutting force equation can be written as follows 

( YYbKF s −= 0                                                                                                           (1.6) 

where (Y0  − Y) is the variation of chip thickness. The dynamic displacements can be 

expressed as 

( )ϖFGY =                                                                                                                    (1.7) 

where G(ω) is the oriented transfer function of the system. G(ω) is the ratio between the 

complex amplitude of the Y component of all the vibrations in the Y direction over the 

complex amplitude of the force and that ratio is a function of the frequency, ω. The sum 

of all the direct transfer functions Gi multiplied by the directional factors ui gives the 

oriented transfer function as 

∑=
i

iiGuG
1

                                                                                                                 (1.8)  

where 

( )βαα −= iiiu coscos                                                                                                 (1.9) 

To eliminate the force component from the equation, Eqs. 1.6 and 1.7 are combined as 

( YYbGKY s −= 0 )                                                                                                       (1.10) 
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After this modification 

( )
G

G
bK

Y
Y s

+
=

1

0                                                                                                          (1.11) 

 

The  vibrations are accepted as long as there is no increase occur from pass to 

pass process, so the magnitudes of |Y0| and |Y| are 

10 =
Y
Y

                                                                                                                        (1.12) 

which indicates marginal stability or chatter stability limit. Combining the Eqs. (1.11) 

and (1.12), the following is obtained  

GG
bK s

=+
1                                                                                                            (1.13) 

where the equality of the absolute values of two complex numbers is expressed. There 

are two parts in this condition  

 
( ) ( )GG ImIm =  

 
which is very clear, and 

( ) ( )GG
bK s

ReRe1
±=+  

where the + sign leads to b= ∞, and the sign − leads 

( )G
bK s

Re21
−=                                                                                                          (1.14) 

where the actual condition for the stability limit is expressed. So the limit of the width 

of chip for a stable cutting in orthogonal turning operations can be written as 

( )min
lim Re2

1
GK

b
s

−
=                                                                                                   (1.15) 
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1.6.2 Chatter Vibrations in Milling 

 

The variable and rotating cutting force and chip thickness direction and discrete 

cutting periods make the chatter theory in milling more complicated. Milling cutters can 

be considered to have two orthogonal degrees of freedom as shown in Figure 1.9 [4]. 

 

 

Figure 1.9: Chatter model for milling 

 

The forces appear during cutting process excite the structure, cutting tool and 

workpiece, and that external coerce causes dynamic vibrations. These vibrations are 

imprinted on the surface of the workpiece. Every tooth removes material from the wavy 

surface left from the previous tooth and that situation leads to modulated chip thickness, 

which can be written as follows     

jtjj
o
j

o
jj fvvvvh

wcwc
φφ sin)()()( +−−−=                                                                 (1.16)          

where φ=Ω.t is the angular position of the cutter measured with respect to the first tooth 

and corresponding to the rotational speed Ω  (rad/sec), vj’s and vj
o’s are the dynamic 

displacements due to cutting tool and workpiece vibrations for the present and previous 

tooth periods and ft is the feed rate per tooth. In Eq. 1.16, c and w indicate cutting tool 

and workpiece, respectively. The static component of the equation is disregarded in the 

stability analysis.  
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Then the dynamic chip thickness can be expressed by                                                                                                           

[ ]jjj yxh φφφ cossin)( ∆+∆=                                                                                    (1.17) 
 
where 

( ) ( )

( ) ( )

o o
c c w w

o o
c c w w

x x x x x

y y y y y

∆ = − − −

∆ = − − −
 

where (xc,yc) and (xw,yw) are the dynamic displacements of the cutting tool and 

workpiece in x and y directions, respectively. Similar to static force analysis, total 

dynamic milling forces on the cutting tool can be obtained using the dynamic chip 

thickness as 

 

1
2

xx xyx

y yx yy

a aF x
aKtF a a y

   ∆  =     ∆       
                                                                                        (1.18)                         

where the directional dynamic milling coefficients are given in [4]. 
 

Considering that the angular position of the parameters depends on angular 

velocity and time, Eq. 1.18 can be expressed as 

{ } [ ]{ }1( ) ( ) ( )
2 tF t aK A t t= ∆                                                                                                                          (1.19) 

 
As the cutting tool rotates, the direction factors vary with time and that is the 

fundamental difference between milling and turning. [A(t)] is periodic at the tooth 

passing frequency ω=NΩ or corresponding tooth period of T=2π/ω. Fourier series 

expansion of  periodic term can be used for solution of the periodic systems. As the 

[A0], directional coefficient, is valid between entry and exit immersion angles of the 

cutting tooth (φst and φex): 

 

[ ] [ ]0
1 ( )

2
ex

st

xx xy

yx yyp

NA A d
φ

φ

α α
φ φ

α αφ π
∫

 
= = 

  
                                                                             (1.20) 
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where 
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                                                                                                        (1.21) 

 
Then, the single frequency solution takes the form in the following as 

[ ] [ ]0det ( ) 0cI G iω +Λ = 

)c w

                                                                                                                              (1.22) 

 
where [I] is the unit matrix, and the oriented transfer function matrix is expressed as 
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                                                                                                    (1.23) 

and the eigenvalue of the equation 1.22 can be regarded as  
 

(14
ci T

t
N K a e ω

π
−Λ = − − )                                                                                                                               (1.24) 

 
The stability limit can easily be found by using the eigenvalue in Eq. 1.24 and 

also the eigenvalue can be solved for a given chatter frequency, wc.  The eigenvalue can 

be computed from Eq. 1.22 numerically. However, the cross transfer functions in       

Eq. 1.22, Gxy and Gyx, must be neglected to make an analytical solution possible 

 

( )2
1 1 0

0

1 4
2

a a a
a

Λ=− ± −                                                                                                                              (1.25) 
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                                                                                                      (1.26) 
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Since the transfer functions are complex, the eigenvalue will has real and 

imaginary parts. The axial depth of cut (a) is a real number. When Λ=ΛR+iΛI and       

e-iωcT=cosωcT-isinωcT are substituted in Eq. 1.25, the imaginary part of the equation 

vanishes  

sin
1 cos

cI

R c

T
T

ωκ
ω

Λ
= =

Λ −
                                                                                                                                    (1.27) 

 
A relation between the chatter frequency and the spindle speed can be obtained 

in order to solve the equations above [33] 

1

2

2 ; tan
60

cT k

n
NT

ω ε π

ε π ψ ψ κ−

= +

= − =

=

                                                                                               (1.28) 

where ε is the phase difference between the inner and outer modulations (ε < 2π), k is 

the largest possible integer corresponding to the number of vibration waves within a 

tooth period, and n is the spindle speed. After the imaginary part in Eq. 1.25 is vanished, 

the stability limit for chatter-free axial depth of cut is obtained as [34] 

( 2
lim

2 1R

t
a

NK )π κΛ
= − +                                                                                                                                      (1.29) 

 

The stability limit and corresponding spindle speed can be determined by the  

Eq. 1.28 and 1.29. The stability lobe diagram [see Figure 1.10] can be obtained if these 

calculations are repeated for a range of chatter frequencies and number of vibration 

waves, k. 
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Figure 1.10: Stability lobe diagram for milling 

 

 

1.7 Scope of the Study 

 

 

Due to its wide use and importance in industry, cutting tools and tool life are 

considered. The main concern of this master thesis is to define the relationship between 

tool life and self-excited vibrations. The study is focused on experimental work due to 

insufficient information in the literature and its conundrum state as analytically. So the 

thesis is based on the cutting tests and their results.    

 

There are many topics which are directly related with the study like tool wear 

and tool life, chatter and its modeling, mechanics of the test processes etc. These issues 

are explained in Chapter 1. 

 

The results are obtained after many hours of cutting tests and their pre-studies. 

Chapter 2 goes into details of the test procedure. The experiments to predict the chatter 

stability limits, frontier tests to find the right cutting conditions, methodology of the 

cutting tests and properties of the equipments which are used during and after the 

experimental work are told in Chapter 2. 
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In chapter 3, the results are presented. Tool wear data for every different cutting 

conditions and parameters, vibration amplitudes, all cutting forces, graphs which are 

related to the results and, detailed inspections of the cutting tools after the tests which 

are obtained during the experimental sequence are analyzed and discussed. 

 

The discussion of the experimental results which are obtained during the cutting 

tests are provided in Chapter 4. The results and their reasons are explained and 

investigated in this chapter. 

 

The conclusions of the study and cutting tests, and future works are presented in 

chapter 5. 
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CHAPTER 2 

 

METHODOLOGY 

 

 

In this study, the effects of self-excited vibrations on tool life have been 

investigated. The tests are applied in a wide-range of conditions in order to have better 

and various data about the characteristic of the wear process under chatter. Tool wear, 

cutting forces, vibration amplitudes and surface roughness are inspected during the 

cutting tests. Many analysis and measurements are also performed before the cutting 

tests.  

 

First of all, the cutting tests are performed in two different machining processes, 

turning and milling. These two are the most common metal cutting operations in 

manufacturing technology, and the data about these processes would be more useful for 

the industry. Different chatter intensities are imposed on the system to see the effect of 

the magnitude of self-excited vibrations in turning. These two vibration magnitudes are 

mild chatter which is undesired and severe chatter which is extremely unacceptable in 

every kind of machining operation. Different cutting speeds are used to clarify the effect 

of speed under dynamic cutting conditions and different tool lengths are used to observe 

the effect of different tool frequencies and stiffness on tool life. And also, some of these 

tests are applied for different workpiece materials in order to clarify the results for 

different materials.  
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2.1 Dynamic Conditions 
 

 

Different depth of cuts over the chatter limit are used in cutting tests. By this 

way, different kinds of chatter vibrations are imposed on the cutting process and the 

outputs lead to understand the effect of different chatter intensities on tool life. The 

minimum chatter limit (bcritical) is the minimum depth of cut which is the intersection 

line between the lower bound of unstable region and the upper bound of stable   

(chatter-free) region. In turning and milling, any depth of cut higher than the minimum 

chatter limit leads to self-excited vibrations. A stability lobe diagram is shown in  

Figure 2.1. 

 

 
Figure 2.1: Stability lobe diagram 

 

The chatter limit depends on many parameters such as, machining parameters 

(cutting speed, feed rate, up or down milling), cutting tool parameters (stiffness, 

frequency, damping ratio, material, geometry), workpiece material etc. A method called 

modal analysis is used to obtain the chatter limit and the stability diagram. Some 

measurements have to be done and then the system parameters must be identified using 

modal analysis. 
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2.1.1 Modal Testing and Analysis 

 

Modal frequencies, mode shapes and system parameters (damping ratio, 

equivalent mass and stiffness) are required to define the dynamics of the machine tools. 

Experimental modal analysis (impact test) is an advanced method that is used to 

measure the response of a machine tool or any other structure. The outputs of the modal 

test are used to identify some of the dynamic properties. Acceleration, displacement or 

velocity sensors can be used to measure the response of the structure and the resulting 

vibrations, while usually an instrumented hammer is used to generate the impulse force. 

 

The mode shapes, natural frequencies and system parameters are determined by 

using the frequency response function (FRF). First of all, the frequency response 

functions are determined by impact test and then they are analyzed. The input (impact 

load) is applied by using the hammer at the different points of the structure. The 

response against this load is measured by an accelerometer at only one point. Testing 

the functional transfer and transactional characteristics of a mechanical structure involve 

mounting the accelerometer at one location of interest and applying the impact to the 

object with the hammer at that point or some other point. The frequency response 

measurement of a structure is shown in Figure 2.2.  

 

 
Figure 2.2: Measurement of transfer function 
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The impact hammer contains a quartz force sensor mounted on the striking tip of 

the hammer head. That quartz force sensor is used to transfer impact force into electrical 

signal for display and analysis. Signals generated by impact hammer and accelerometer 

are extended by the amplifiers. These sensors are commonly used since they are easy to 

use and interface with data recording and acquisition instruments for collection and 

analysis of the data. But the mass of the impact hammer and the size of the 

accelerometer must be selected properly according to the mass and rigidity of the 

structure being excited. 

 

 
Figure 2.3: Real and Imaginary parts of an FRF  
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In Figure 2.3, plots of an FRF are shown. The FRF indicates the dynamic 

characteristics of a structure and indicating the damping ratio and the natural frequency. 

 

Time response of the accelerometer is measured, but the same data must be 

converted into frequency domain. Fast Fourier Transform (FFT) is used to convert the 

time data. Computers can be used to collect to the data, estimate the modal parameters 

and display the results. A portable computer is used in all the steps of the modal 

analysis. All the data is collected by the software CutPro® MalTF and the modal 

analysis is performed by the software CutPro® Modal [4,35]. 

 

2.1.2 Determining Stability Limit Procedure in Turning 

 

Determining the stability limit in turning process is less complex than the 

milling process. The unknown values in the Eq. 1.15  have to be found in order to 

predict the minimum stability limit. These unknowns are Ks and Re(G)min. 

 

Ks is the cutting coefficient in the feed direction which is parallel to the 

workpiece axis. That parameter is a function of the cutting force in the feed direction, 

depth of cut and feed rate and it varies for every material. Several cutting tests are 

applied to obtain an acceptable cutting coefficient for the test material, AISI 1040 steel. 

 

bh
F

K s
s =                                                                                                                        (2.1) 

 

In these cutting tests, the feed rate is increased in a wide range between         

0.08 mm/rev and 0.45 mm/rev. The cutting forces are measured for every feed rate in 

every test. The other cutting parameters are kept constant during the tests. The cutting 

speed is 150 m/min and the depth of cut is 0.45 mm. The following cutting coefficients 

are obtained after the pre-tests. 
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Feed rate 
(mm/rev) 

Kt 
(N/mm2)

Ks 
(N/mm2)

Kr 
(N/mm2)

0.08 3722 2194 1889 
0.11 3232 1717 1616 
0.12 3333 1667 1481 
0.20 3055 1444 1444 
0.24 2851 1250 1453 
0.28 2753 1080 1278 
0.32 2604 951 1222 
0.45 2333 678 1033 

 

 

 

 

 

 

Table 2.1: The cutting coefficients 
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Figure 2.4: Comparison of cutting coefficients 

 

The feed rate for the turning tests are obtained as 0.12 mm/rev. That value will 

be constant and it will be the feed rate for all the turning tests from now on. Re(G)min is 

the other unknown in Eq. 1.15. 

 

 Re(G)min is the completely real response of the equation. The peak to valley 

value at the real part of the function gives the Re(G)min. Modal tests are performed to 

determine that value. The impact tests are done on the tool holder for every different 

clamping length and Re(G)min is observed from the transfer function that is the output of 

the impact test. The natural frequencies of the tool holders with different clamping 

lengths are also determined by the impact tests. In turning, the important direction for 

the analysis is the x-direction in the feed direction and chatter in the z-direction is 

neglected. So, all the analysis are done for the x-direction of the tool holder. The tests 

are carried out under the conditions of two different tool holder lengths, 110 and 135 
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mm in order to determine the effect of the dynamic properties of different tool holder 

lengths on tool wear. 

 

(a) 

 
(b) 

Figure 2.5: TF for the tool lengths 110 mm (a) and 135 mm (b) 

 

Tool length 
(mm) 

Frequency 
(Hz) 

Damping ratio 
(ζ )  

Stiffness  
(N/m) 

Mass 
(kg) 

L=110 948.78  3.1574E-02  1.2742E+07  0.359  
L=135 563.94  2.0087E-02  3.2906E+06  0.262 

Table 2.2: Dynamic properties of tool holder 
    

(mm) L=110 L=135 
Severe Chatter 1 0.75 

Chatter 0.65 0.5 
Chatter limit 0.4 0.25 

Stable 0.3 0.15 

Table 2.3: Chatter limits for two holder lengths 
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2.1.3 Determining Stability Limit Procedure in Milling 

 

The determination of the stability limit in milling is more complicated. The 

spindle speeds in turning are generally about 1000 rpm or less so the lobes in the 

stability diagram are not as clear as the milling stability lobes. Because of that nature of 

the diagram, generally the chatter limit in turning is accepted as a line at lower spindle 

speeds. The stability chart for milling has many undulated lobes. That means there are 

different chatter limits for every cutting speeds. The modal tests to determine the 

parameters are applied by CutPro® MalTF software. The dynamic parameters which are 

obtained from the modal test are shown in Tables 2.4 and 2.5. Similar to the turning 

tests, milling tests are done under the condition of two different tool lengths, 110 and 

120 mm, to see the effect of tool stiffness and dynamic characteristic on tool wear.  

 

Tool length 
(mm) 

Frequency 
(Hz) 

Damping ratio 
(ζ )  

Stiffness  
(N/m) 

Mass 
(kg) 

L=110 730.96  1.4490E-02  1.0484E+07  0.497  
L=120 714.06  1.4538E-02  8.0268E+06  0.399  

                      Table 2.4: Dynamic properties of the test tools in x-direction 

 

Tool length 
(mm) 

Frequency 
(Hz) 

Damping ratio
(ζ )  

Stiffness 
(N/m) 

Mass 
(kg) 

L=110  769.20   1.8731E-02  1.6761E+07  0.717  
L=120  728.93  1.9439E-02 1.2360E+07 0.589  

                      Table 2.5: Dynamic properties of the test tools in y-direction 

 

The modal analysis is performed by CutPro® Modal after the modal test. In 

CutPro® Modal software, some system parameters and information have to be specified. 

These parameters are the cutting tool properties (length, radius, material, geometrical 

angles), workpiece material, machining conditions, and dynamic properties (frequency, 

damping ratio, stiffness). The software analyzes the input data and this procedure results 

with the determination of the stability lobes. The resultant stability diagrams for 

different tool lengths are shown in Figures 2.6 and 2.7 for steel. 
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Figure 2.6: Stability diagram for steel at L=110 mm 

 

 

 

Figure 2.7: Stability diagram for steel at L=120 mm 
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Another modal analysis is performed for titanium after the modal test. The 

chatter limit and the stability lobe depend on workpiece material, too. A change in the 

characteristic of the workpiece material directly affects the stability lobe and other 

chatter parameters. The same modal parameters in Tables 2.4 and 2.5 are used for the 

new stability lobe for titanium because all the parameters except workpiece material are 

the same. The resultant stability diagrams for tool length, 120 mm, for titanium is 

shown in Figures 2.8 (a). The chatter limit (blim) for titanium is 1.45 mm. 

 

 
(a) 

     
       (b)                                                               (c) 

Figure 2.8: Stability diagram for titanium at L=120 mm (a) and 

                 TF for the tool lengths 110 mm (b) and 120 mm (c) 

 32



 

 

 
2.2 Cutting Conditions 

 

 

2.2.1 Cutting Conditions in Turning 

 

Different chatter conditions are used in the tests to demonstrate the effects of 

chatter intensities on tool wear and tool life. Besides dynamic conditions, machining 

parameters are also important and influential on tool wear and tool life in metal 

removing processes in order to define the behavior of wear mechanism under chatter 

conditions at different cutting conditions, different cutting parameters are also applied 

in the tests. The cutting parameters in a standard turning process are cutting speed (V), 

feed rate (h) and depth of cut (b). The feed rate is fixed at 0.12 mm/rev as it is explained 

previously. The depth of cut value varies in every chatter condition and tool holder 

length. The depth of cut values are obtained as 0.3, 0.65 and 1 mm for tool holder length 

110 mm and 0.15, 0.5 and 0.75 mm for tool holder length 135 mm. The depth of cut 

values are for stable condition (S), chatter condition (C) and severe chatter condition 

(SC), respectively.  

 

The cutting speed is probably the most important cutting parameter in a 

machining process. It directly affects the cutting temperature, tool life, surface finish, 

machining time etc. The effect of  the cutting speed on tool life has been known for a 

long time. In turning tests, three cutting speed levels are used in order to examine the 

tool life behavior. There are little differences between the test matrix for the three levels 

of cutting speeds and the experimental cutting speeds. The reason for this difference is 

the manual machine tool. Lathe on which the cutting tests are performed is a universal 

lathe. It is not possible to control the spindle speed at the point that desired because it is 

not a NC machine tool. So the cutting speed cannot be changed while the outer diameter 

of the workpiece becomes smaller. The cutting speed differences between the test 

matrix and the experimental values are smaller than 3%, so the speed variation is 

minimal. The speed matrix for turning tests are shown in Table 2.6. All the tests are 
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applied as dry cutting that means there is no coolant liquid in the cutting process. The 

inserts are clamped to the tool holder with a torque about 0.8 Nm.      

 

Test no 
            

Holder length 
(mm) 

Cutting 
speed level 

(m/min) 

Average 
cutting speed 

(m/min)  

          
Depth of cut 

(mm) 

Chatter 
condition

1 110 170 166 0.3 S 
2 110 110 110 0.3 S 
3 110 50 50 0.3 S 
4 110 170 175 0.65 C 
5 110 110 114 0.65 C 
6 110 50 50 0.65 C 
7 110 170 180 1 SC 
8 110 110 107 1 SC 
9 110 50 52 1 SC 
10 135 170 167 0.15 S 
11 135 110 126 0.15 S 
12 135 50 51 0.15 S 
13 135 170 170 0.5 C 
14 135 110 116 0.5 C 
15 135 50 53 0.5 C 
16 135 170 167 0.75 SC 
17 135 110 108 0.75 SC 
18 135 50 52 0.75 SC 

Table 2.6: Test matrix for turning tests 

 

2.2.2 Cutting Conditions in Milling 

 

Different chatter conditions are applied in the milling tests for the examination 

of the chatter intensities just like in turning. In a milling process, the cutting parameters 

are the cutting speed, feed rate, axial and radial depth of cut. The cutting speeds are 

obtained as 170 and 260 m/min. These speed values equal to 2706 and 4138 rpm, 

respectively. The feed rate is 0.1 mm/tooth and that value is constant for all milling 

tests. The cutting process is a half-immersion slotting. That means the radial depth of 

cut is 10 mm, the half of the cutting tool diameter. The axial depth of cut depends on the 

chatter limit. The radial depth of cuts are obtained for a stable, chatter and severe chatter 

conditions just like the turning tests. The depth of cut values are 1, 1.8 and 2 mm for 

tool length 110 mm, and 0.7, 0.85 and 1 mm for tool length 120 mm. The cutting is a 
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dry cutting process with no coolant. That condition decreases tool life and also 

experimental time.  

 

The metallurgical properties and cutting parameters of titanium are very 

different from steel. Titanium machining is much harder than the machining of any 

other materials. So, the cutting conditions have been modified for titanium tests. The 

cutting speed for titanium tests is decreased to 35 m/min. That speed equals to 557 rpm. 

The feed rate was kept constant for titanium tests at 0.1 mm/rev. Depth of cut values are 

1, 2 and 2.5 mm for stable, chatter and severe chatter conditions, respectively. The 

cutting type is half-immersion slotting again. It is very dangerous to machine titanium 

under dry conditions and because of that reason, the cutting of titanium is performed 

under wet cutting condition. The coolant is a water based coolant. It must be considered 

that existence of coolant in the process decreases cutting temperature and increases tool 

life.    

 

The cutting tool has two teeth but only one insert is used in order to prevent the 

wear difference between two different teeth. The cutting tool is clamped to the holder 

with a torque about 35 Nm for both tool lengths. The cutting matrix for milling tests is 

shown in Table 2.7. 

 

Test no 

       
Tool 

length 
(mm) 

Cutting 
speed 

(m/min)

        
Depth of 
cut (mm)

Chatter 
condition 

1 110 170 1 S 
2 110 260 1 S 
3 110 170 2 C 
4 110 260 1.8 C 
5 120 170 0.7 S 
6 120 260 0.7 S 
7 120 170 1 C 
8 120 260 0.85 C 

 9* 120 35 1 S 
 10* 120 35 2 C 
 11* 120 35 2.5 SC 

Table 2.7: Test matrix for milling tests (*Titanium) 
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2.3 Test Materials and Equipments 
 

 

2.3.1 Workpiece 

 

2.3.1.1 Steel 

 

In both tests, turning and milling, the same material, AISI 1040 steel is used. 

That material is a medium carbon steel as cold drawn and it is very commonly used in 

manufacturing. Typical uses of AISI 1040 steel include machine, plow, and carriage 

bolts, tie wire, cylinder head studs, and machined parts, U-bolts, concrete reinforcing 

rods, forgings, and non-critical springs. The metallurgical properties of the material is 

shown in Table 2.8 and the mechanical properties of the material is shown in Table 2.9. 

The workpiece for the turning tests is a round bar which has 100 mm of diameter and 

500 mm of length. The workpiece for the milling tests is a rectangular block about the 

dimensions 80, 80 and 400 mm. 

 
Component Wt. % 

C 0.37-0.44 
Fe 98.6-99 
Mn 0.6-0.9 
P max 0.04 
S max 0.05 

Table 2.8: Metallurgical properties of AISI 1040 steel 

Hardness, Brinell 149
Hardness, Rockwell 80
Tensile Strength, Ultimate 515 MPa
Tensile Strength, Yield 450 MPa
Modulus of Elasticity 200 Gpa
Bulk Modulus 140 MPa
Shear Modulus 80 GPa
Poisson's Ratio 0.29

Table 2.9: Mechanical properties of AISI 1040 steel 
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2.3.1.2 Titanium 

 

Titanium and its alloys exhibit a unique combination of mechanical and physical 

properties and corrosion resistance which have made them desirable for critical, 

demanding aerospace, industrial, chemical and energy industry service. Titanium alloys 

offer a wide spectrum of strength and combination of strength and fracture toughness. 

The milling of titanium is a more difficult operation than that of turning. The cutter 

mills only part of each revolution, and chips tend to adhere to the teeth during that 

portion of the revolution that each tooth does not cut. On the next contact, when the 

chip is knocked off, the tooth may be damaged. [40]. 

 

In milling tests (T9, T10 and T11), most commonly preferred Ti alloy, TiAl6V4, 

is used. TiAl6V4 is an alpha-beta alloy and it is very popular in aero-engines. The 

metallurgical properties of the material is shown in Table 2.10 and the mechanical 

properties of the material is shown in Table 2.11. The workpiece for the milling tests is 

a rectangular block about the dimensions 35, 104 and 305 mm. 

 

Component Wt. % 
Al 6 
Fe max 0.25 
O max 0.2 
Ti 90 
V 4 

Table 2.10: Metallurgical properties of titanium alloy 

 

Hardness, Brinell 334
Hardness, Rockwell 36
Tensile Strength, Ultimate 900 MPa
Tensile Strength, Yield 830 MPa
Modulus of Elasticity 114 Gpa
Shear Modulus 44 GPa
Poisson's Ratio 0.33

Table 2.11: Mechanical properties of titanium alloy 
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2.3.2 Cutting Tools and Holders 

 

2.3.2.1 Cutting Tools and Holders in Turning 

 

The insert for the turning tests is a ISCAR DCMT 11T304-14 IC20 as shown in 

Figure 2.8. It is a carbide insert with no rake and oblique angles. Normally, that cutting 

tool is not the best fit for that material but it is very critical to have tool wear as soon as 

possible in the test period so that insert is used in the tests.  

 

 
Figure 2.9: The insert for the turning tests 

 

 

 

l 11.6 
d 9.52 
s 3.97 
r 0.8 

∅d1 4.4 

Figure 2.10: Geometrical properties of the turning inserts (in mm) 
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The tool holder for that insert is a ISCAR SDJCR/L 2525M-11 as shown in 

Figure 2.11. It is a screw clamp for that kind of inserts.  

 

 

Figure 2.11: The tool holder for the turning tests 

 

 

 

h 25 
h1 25 
l1 150 
l2 28 
f 32 
f1 0 

Figure 2.12: Geometrical properties of the tool holder (in mm) 

 

 

2.3.2.2 Cutting Tools and Holders in Milling 

 

The insert for the milling tests is a ADKT1622PDSR5LC KC725M as shown in 

Figure 2.13. It is a carbide insert with a relief angle about 150. The insert is PVD coated 

and the coating material contains three coating layers TiN, TiCN and again TiN, 

respectively. An uncoated tool would be better for the milling tests but for this tool 

holder and geometry, uncoated inserts are not available in the market. That insert is 

generally used for end milling operations and it has a T-land for edge strength. 
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BS 2.16 
D1 2.90 
Rε 0.79 
LI 10 
W 6.70 
S 3.50 

Figure 2.13: Geometrical properties of the milling inserts (in mm) 

 

Figure 2.14 shows the tool holder for milling inserts, Kennametal 

20A02R050A20SAD10. It is a two flute milling tool holder for die and mold 

operations. 

 

 

D 20 
D1 20 
L 150.000
L2 50.170 
LS 200.170

Figure 2.14: Geometrical properties of the tool holder (in mm) 

 

 

2.3.3 Machine Tools 

 

In turning tests, a TOS SN50C universal lathe is used. It is powered by a 6.6 kV 

electric motor. The machine tool has a maximum capacity of 250 mm diameter and 

1000 mm workpiece length.    
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Figure 2.15: TOS SN50C universal lathe 

All the milling tests are carried out on a Deckel Maho DMU 50 5-axis 

machining center. The machine has 18 000 rpm maximum spindle speed and relatively 

high torque output for a high speed machine.  

 

 
Figure 2.16: DMU 50 machining center 
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2.3.4 Measurement and DAQ Equipments 

 

Vibration and force data are collected by different sensors and transferred to a 

portable computer by a data acquisition (DAQ) system. The DAQ system components 

for taking measurements are shielded cables which carry over signals by preventing 

against electrical noise, a BNC board which collects all signals from different sources or 

cables, and a DAQ card which transfers the signals from the BNC board to the 

computer. The data, which are transferred to the computer, are displayed by a software 

called Labview. 

 

The cutting forces are recorded during all machining tests by a Kistler 9257BA 

force dynamometer. In turning tests, the tool holder is settled on a fixture and that 

fixture is bolted on the force dynamometer as shown in Figure 2.17 (a). In milling tests, 

the workpiece block is bolted on the force dynamometer which is clamped by a vice as 

shown in Figures 2.17 (b). The cutting forces are measured continuously in all tests in 

order to determine the effects of tool wear and chatter on cutting forces. The 

dynamometer is used to gather the force signals which are amplified and recorded using 

a custom written LabView program on a laptop computer as shown in Figure 2.17 (c).   

 

 

 
(a) 
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(b) 

 
(c) 

Figure 2.17: Cutting force measurement 

 

The vibration data are collected by a Keyence LK 031 laser displacement sensor 

during the turning tests. The laser sensor is placed on a sliding fixture as shown on the 

right hand side of Figure 2.17 (a). The sensor has a resolution about 1µm. 
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Tool wear is measured by using a Nikon MM 40 video microscope shown in 

Figure 2.18. The rake and flank faces of the inserts are inspected during the cutting tests 

ever so often. The photos of worn tools are also taken during the wear measurements.  

 

The worn tools are inspected in detail by a LEO Supra 35VP scanning electron 

microscope (SEM) as shown in Figure 2.19. It is able to see the metallurgical details of 

the wear zone by SEM inspections. The magnifying rate for SEM inspections varies 

between 50 and 10500 times greater than the original size.   

 

 
             Figure 2.18: Microscope for tool wear measurements 
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Figure 2.19: SEM for detailed inspections 

 

 

2.4 Summary 

 

The test methodology is told in chapter 2. Different cutting parameters and 

chatter conditions are applied during the machining tests in order to examine effects of 

various chatter intensities and parameters on tool wear. Two different workpiece 

materials are used in milling tests in order to see the behavior of chatter conditions for 

different materials. The analysis and measurements before the cutting tests, test 

matrixes, data collection and measurements during the tests, the materials and 

equipments used during all the thesis procedure are also explained. 

 

 

 

 

 45



 
 
 
 

CHAPTER 3 
 

EXPERIMENTAL RESULTS 

 
 
 

Different data have been collected through measurements done before, during 

and after the cutting tests. Cutting forces, vibration amplitudes, tool wear and surface 

roughness were measured and analyzed. Turning  and milling test methodologies were 

explained in the previous chapter. In this chapter, the results of these measurements are 

analyzed and discussed.  

 

 

3.1 Turning Tests 

 

The total machining time in turning tests is more than 700 minutes and total 

cutting distance is 60.2 km. Cutting forces, vibration amplitudes, tool wear and surface 

finish are measured.  

 

 

3.1.1 Tool Wear 

 

The tool wear is measured several times throughout the total life of the tool. The 

time interval between two tool wear measurements varies between 2 and 11 minutes 

depending on the wear rate. The notch wear was considered in the measurements in 

order to reduce test time since it progresses much faster than the flank wear. Maximum 

wear land of 0.2 mm is used as the tool life criteria. Note that maximum allowable wear 

depends on the application, i.e. higher wear can be tolerated in roughing operations 

whereas much less wear is allowed in finishing due to surface quality issues. 
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In the tests, the chatter condition is obtained using a depth of cut which is very 

close to the chatter limit for that case. The severe chatter condition is obtained by 

further increasing the depth of cut more than 50% of the chatter limit as shown in   

Table 2.6.  

 

Test no Chatter 
condition

Wear 
time 
(min) 

Cutting 
distance 

(m) 

Vibration 
amplitude 

(mm) 
1 S 7 1164 0 
2 S 25.5 2815 0 
3 S 73.3 3677 0 
4 C 1.6 280 0.007 
5 C 10.4 1187 0.022 
6 C 63 1750 0.012 
7 SC 2.8 1800 0.011 
8 SC 10 3531 0.027 
9 SC 23 146 0.015 
10 S 19 3171 0 
11 S 44 5542 0 
12 S 73 2693 0 
13 C 2.2 373 0.007 
14 C 7.2 835 0.009 
15 C 55 2915 0.009 
16 SC 2 334 0.016 
17 SC 4 434 0.023 
18 SC 29.5 1527 0.020 

Table 3.1: Result of turning tests 

 

The wear data collected in the tests are given in Table 3.1. The data are drawn in 

different forms to demonstrate the dynamic effects on tool wear better. Figure 3.1 shows 

the progress of the tool wear with cutting time for shorter holder length of 110 mm and 

for cutting speeds of 170, 110 and 50 m/min. In each of the graphs, 3 curves are shown 

corresponding to stable, chatter and severe chatter conditions. The same data are 

presented for 135 mm holder length in Figure 3.2. 
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Figure 3.1: Tool wear vs. cutting time for different chatter 

             conditions and cutting speeds (L=110 mm) 

 

 48



0

0,1

0,2

0,3

0,4

0 10 20 30 4
Time (min)

Fl
an

k 
w

ea
r (

m
m

0

)

170 S 170 C 170 SC

 
(a) 

 

0

0,1

0,2

0,3

0,4

0 10 20 30 40 5
Time (min)

Fl
an

k 
w

ea
r (

m
m

0

)

110 S 110 C 110 SC

 
(b) 

 

0
0,05
0,1

0,15
0,2

0,25
0,3

0 30 60 90 120
Time (min)

Fl
an

k 
w

ea
r (

m
m

)

50 S 50 C 50 SC

 
(c) 

 
Figure 3.2: Tool wear vs. cutting time for different chatter 

              conditions and cutting speeds (L=135 mm) 
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The tool wear development graphs for two tool holder lengths in different 

cutting speeds, 50, 110 and 170 m/min, and different vibration conditions, stable, 

chatter and severe chatter, are shown in Figures 3.1 and 3.2. These figures show that the 

effect of chatter on tool wear becomes more predominant for higher speeds. At higher 

speeds, the tool life is reduced by several times. Also, for lower stiffness case      

(L=135 mm), the reduction in the tool life due to chatter is much higher. Shorter tool 

length increases the tool life even at stable conditions. The results are compiled in the 

following figures to demonstrate these effects better. 

 

Figure 3.3 shows the tool life chart for shorter tool length for chatter and severe 

chatter conditions. Tool life criteria of 0.2 mm flank wear has been used to develop 

these charts. It can be seen that the tool life decreases as the chatter severity increases. 

The same chart is given for L=135 mm in Figure 3.4 where similar effects are seen. 

 

1,5

1,7

1,9

2,1

2,3

2 2,5 3 3,5 4
Distance  (LogS)

Sp
ee

d 
(L

og
V

)

Chatter Severe Chatter

 
Figure 3.3: Cutting distance vs. speed for L=110 mm 
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Figure 3.4: Cutting distance vs. speed for L=135 mm 

 

 50



Figure 3.5 shows the effect of holder length on tool life for severe chatter 

conditions. It can be concluded from these results that the tool life is strongly affected 

by the holder length, i.e. stiffness and chatter frequency. 

 

1,5

1,7

1,9

2,1

2,3

2,5 3 3,5
Distance (logS)

Sp
ee

d 
(lo

gV
)

110-Severe chatter 135-Severe chatter

 

Figure 3.5: Cutting distance vs. speed for different holder  

   length for severe chatter conditions 

 

The Taylor tool life parameters in Eq. 1.1 can be determined for stable and 

chatter conditions from the cutting time vs. speed charts. These are given in Figures 3.6 

and 3.7 for short and long holder lengths, respectively. These charts demonstrate the 

effect of the chatter on tool life clearly. The identified tool wear parameters are given in 

Table 3.2. 
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Figure 3.6: Cutting time vs. speed for L=110 mm 
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Figure 3.7: Cutting time vs. speed for L=135 mm 

 
 

  L=110 
mm   L=135 

mm  

 S C SC S C SC 
C 2,678 2,344 2,499 3 2,363 2,323 
n 0,533 0,354 0,5257 0,6 0,365 0,427 

Table 3.2: C and n values identified from wear data in turning tests 

 

 
Figure 3.8: Tool life in different dynamic conditions and cutting speeds 
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The test results are summarized in Figure 3.8. This figure shows that the tool life 

is reduced up to and more than 50% due to chatter. This represents a significant increase 

in tool cost due to vibrations in cutting. The behaviors of the same cutting speeds at 

different tool lengths are similar. The tool life becomes similar at high vibration 

amplitudes with the increase of severity of chatter. 

 

     
(a) (b) 

  Figure 3.9: Worn tools after T5 (a) and T7 (b) 

 

Figure 3.9 (a) and 3.9 (b) show the effect of chatter severity on tool wear. These 

are the inserts of  T5 under chatter and T7 under severe chatter at the same cutting speed 

(V=110 m/min) and tool holder length (L=110 mm) in turning. The length of crater 

wear in the horizontal direction is 1,12 mm for T5 insert and 1,65 mm for the T7 insert. 

The severe chatter damages the rake face of the tool 50% more than chatter condition. 

The depth of crater wear is very much at severe chatter condition. Chippings are 

observed under severe chatter. The cutting tool material is broken by micro pieces and 

that damages the cutting edge of the tool. Chipping of the edge leads to shorter tool life 

and poor surface finish. 

 

 53



 
(a) 

 
(b) 

 
(c) 

Figure 3.10: Worn tools after T13 (a), T14 (b) and T15 (c) 

 

Figure 3.10 shows the effect of cutting speed on tool wear under chatter 

condition in turning. The cutting speed is V=170 m/min and total machining time is 5 

minutes for T13. The cutting speed is V=110 m/min and total machining time is 12 

minutes for T14. The cutting speed is V=50 m/min and total machining time is 60 

minutes for T15. The flank wear of T13 after 5 minutes is 360 µm. That is 35% more 
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than the flank wear of T14 (265 µm) and 70% more than the flank wear of T15        

(210 µm). The effect of cutting speed on the total wear of the tool is significant.   

 

 
(a) 

 
(b) 

Figure 3.11: SEM view of T9 (a) and T1 (b) 

The SEM views of T9 under severe chatter condition and T1 under stable are 

shown in Figure 3.11. The cutting speeds and the tool lengths are the same for both 

inserts. The wear on the nose radius and the notch is clearly shown in Figure 3.11 (b).  

The wear characteristic is regular for stable cutting and there is no extra deformation on 

the nose radius after 24 minutes. Figure 3.11 (a) shows the wear characteristic under 
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severe chatter condition. The chipping on the cutting edge is obvious and local 

exfoliations of the cutting tool material exist on the flank face of the tool. The reason for 

these local extreme deformations can be the impacts of the tool under chatter vibration. 

The intensity of vibration amplitude is also distinctive on that kind of wear.   

 

3.1.2 Vibration Amplitude 

 
The vibration amplitudes are measured during the cutting tests using a laser 

displacement sensor. The peak amplitude varies from 5 µm to 25 µm depending on the 

severity of the chatter and cutting speed as shown in Figures 3.1 and 3.12. The figure 

also shows that the chatter amplitudes are higher for longer and less stiff holder. 

 

 
Figure 3.12: Amplitude variation by chatter condition and cutting speed 

 
The effect of the chatter amplitude on tool life is shown in Figure 3.12. As it can 

be seen from this figure, too, the tool life is reduced significantly with the increasing 

vibration amplitude at all cutting speeds. However, as mentioned before the reduction at 

higher speeds are more which cannot be seen in Figure 3.13 clearly due to scaling. 
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Figure 3.13: Effect of chatter amplitude on tool life 

 

 

3.1.3 Cutting Forces 

 

The cutting forces are increased due to vibrations as expected. The increase of 

cutting forces in chatter condition reaches up to 2 times more than the cutting forces in 

stable condition and the increase of cutting forces in severe chatter condition reaches up 

to 9 times more than the cutting forces in stable condition. The cutting forces are 

increased as cutting proceeds. That increase in cutting force is related to the increase of 

the friction coefficient and enlargement of the wear zone during the process. The cutting 

forces can increase up to 50% of the starting cutting force in some cases. That increase 

in cutting forces is pronounced in chatter conditions.  
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(a) 

 
(b) 

 

 
(c) 

Figure 3.14: Fx (a), Fy (b) and Fz (c) values at different chatter conditions for L=110 mm 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3.15: Fx (a), Fy (b) and Fz (c) values at different chatter conditions for L=120 mm 
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The cutting forces for different chatter conditions are shown in Figures 3.14 and 

3.15. The increase of all cutting force components with the severity of chatter is 

obvious. The view of the software which collects the cutting force data is shown in 

Figure 3.16. 

 

 
Figure 3.16: Turning forces for T14 

 

3.1.4 Surface Roughness 

 

One of the ways to recognize chatter is the chatter marks on the cut surface. 

Chatter vibrations leave a wavy surface behind. The main reason for this poor surface 

finish is the vibration of the tool while cutting. These vibrations lead undulations on the 

tool path. The surface finish is measured for tests in experiments. The surface finish 

qualities (Ra) after T2, T5 and T8 are 2.85, 4.6 and 5.1 µm, respectively. It is clear that 

the severe chatter results in surface quality nearly two times worse than the stable 

cutting. The surface finish reports of the tests are shown in Figure 3.17. The scales for 

Figure 3.14 are 5 µm per box in vertical and 100 µm per box in horizontal directions. 
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(a) 

 
(b) 

 
(c) 

Figure 3.17: Surface roughness reports for T2, T5 and T8 

 

3.1.5 Summary of Turning Tests 

 
The observations of turning tests bring some conclusions. Chatter results in 

significant reduction on tool life about 50% for most of the cases and more than 80 % in 

some high speed cases as shown in Figures 3.1 and 3.2. And also the effects of chatter 

on tool life are more significant at higher cutting speeds. Figures 3.1 (a) and 3.2 (b) are 

examples for this situation. Vibration amplitude has direct influence on tool life. Higher 

vibration amplitude means lower the tool life. The benchmark of Table 3.1 and     

Figure 3.8 shows the effect of vibration amplitude. That effect is more significant for 

longer tools. The rigidity of the cutting system has strong influence on tool life. Less 

rigid tool holder results in higher tool life at stable conditions in turning tests. When 

depth of cut is increased beyond the chatter limit, the increase of the vibration amplitude 

is much higher for less rigid tool holding system resulting in higher reduction in tool life 

as shown in Figure 3.8 and Table 3.1. 
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3.2 Milling Tests 
 

 

The milling tests are done in order to see the results of the turning tests are the 

same or not in different machining applications. Two different cutting speeds (170 and 

260 m/min) are used to see the effect of speed in the process and two different tool 

lengths are used to clarify the effect of tool rigidity on tool life. Contrary to turning 

tests, two different workpiece materials are used in milling tests in order to see the 

behavior of different metals and whether material type affects the results of chatter 

vibration on tool life. So, steel (AISI 1040) and titanium (TiAl6V4) are used as 

workpiece materials in milling tests. The cutting direction is down-milling and the 

cutting type is half-immersion. The axial depth of cut in every test varies according to 

the results of the modal analysis. These results depend on the tool length, workpiece 

material and cutting speed.  

 

The total machining time in milling tests is more than 500 minutes and total 

machined material is near to 20 kg. Cutting forces and tool wear are measured and the 

worn tools are examined in detail.  

 

3.2.1 Tool Wear 

 

The tool wear is measured for many times throughout the total cutting time of 

the tool. The time interval between two tool wear measurements varies between 1,5 and 

12 minutes. The flank wear is examined during the measurements and maximum wear 

land of 0.2 mm is used as the tool life criteria.  

 

The graphs of development of the tool wear while machining of steel for 

different cutting speeds, 170 and 260 m/min, and two tool holder lengths, 110 and 120 

mm, are shown in Figure 3.18 and 3.19. All of these tests are done for two different 

cutting conditions, stable and chatter.  
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Figure 3.18: Tool wear vs. cutting time for stable and chatter 

                conditions and cutting speeds for L=110 mm 
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Figure 3.19: Tool wear vs. cutting time for stable and chatter 

                conditions and cutting speeds for L=120 mm 

 

The wear data collected while the cutting tests are shown in Table 3.3. The 

results are drawn in different forms to demonstrate the dynamic effects on chatter in a 

better way. Figure 3.18 shows the progress of the tool wear with cutting time for shorter 

holder length of 110 mm and for cutting speeds of 170 and 260 m/min. In both of two 

graphs, two curves are shown corresponding to stable and chatter conditions. The same 

results are presented for 120 mm holder length in Figure 3.19.  
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Test no 
Chatter 

condition
Tool life 

(min) 
1 S 49 
2 S 30 
3 C 30 
4 C 16 
5 S 56 
6 S 33 
7 C 41 
8 C 27 
9* S 46 
10* C 31 
11* SC 15 

Table 3.3: Results of milling tests (* for titanium) 

 

The graphs show that chatter has a dominant effect on tool wear in milling. The 

rate of the tool wear increases under chatter conditions compared to stable cutting. The 

effect of chatter on tool life is pronounced but it becomes less descent for higher speeds. 

That means the effect of chatter at higher cutting speeds is not as much as the effect of 

chatter at lower speeds.  

 

The reduction in tool life due to chatter is much higher for the low stiffer cases 

(L=120 mm). That means, the tool life in presence of chatter with a longer tool 

improves a little according to a shorter tool. This results show the effect of tool rigidity 

on tool life. The reason for that effect of tool stiffness on tool life can be explained by 

the mechanism of tool wear. The elasticity of the tool increases as the length of it 

increases. That means the tool becomes less stiffer when it is long and it becomes more 

tolerant to any force or impact against it. The less stiffer cutting tool, the more ability to 

compassionate the poundings of the cutting edge and the impacts of the cutting flute 

when it is entering into the workpiece material. A cutting tool with higher stiffness 

would be tougher against the forces and impacts during the interaction with the 

workpiece material and it would be more fragile. The stiffer tool could cause more 

microscopic chippings on the cutting edge, thus early tool wear.  
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The tool life reduction at lower cutting speed (V=170 m/min) for shorter tool 

due to chatter is about 39% when the same value is 27% for the longer tool. The 

reduction in tool life at higher cutting speed (V=260 m/min) for the shorter tool due to 

chatter is nearly 47% when the same value is 19% for the longer tool. At higher cutting 

speed, the reduction in tool life that depends on the rigidity of the tool increases.  
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(b) 

Figure 3.20: Comparison of stable (a) and chatter (b) conditions  

                                        for different tool lengths 
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The development of the flank wear, for different cutting speeds and tool 

rigidities for both stable and chatter conditions, is shown in Figure 3.20. The tool wear 

rates at stable condition are similar for both tool lengths until 0.05 mm flank wear. That 

time corresponds to first 12 minutes of cutting operation. Similar effect is seen for 

chatter condition, too. The wear rates at chatter condition for all conditions are the same 

until 0.04 mm flank wear. That corresponds to machining time about 5 minutes. 

 

 
Figure 3.21: Tool life for different chatter conditions 

 

The test results for machining steel are summarized in Figure 3.21. This graph 

shows that the tool life is reduced up to 47% and in average 32% due to chatter. This 

result leads a major increase in tool wear and tool cost due to chatter in milling.  
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Figure 3.22: Cutting time vs. speed for L=110 mm 
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Figure 3.23: Cutting time vs. speed for L=120 mm 

 

Figures 3.22 and 3.23 demonstrate the logarithmic tool life curves. The negative 

inverse of the slope of these curves is the exponent n in Taylor tool life equation. If 

these two graphs are compared, it can be seen that the variation in tool life at stable 

condition for two different tool lengths is more regular and the slopes are very similar to 

each other. The same result is not valid for chatter condition because the variation 

between tool life at chatter condition for different tool rigidities is much higher and 

irregular. That difference of chatter condition is more obvious at higher cutting speeds.    

 
  L=110 mm L=120 mm 
  S C S C 
C 3.6942 3.2289 3.635 3.8708 
n 0.866 0.675 0.803 1.017 

                 Table 3.4: C and n values identified from wear data in milling tests 

 

The graph of development of the tool wear while machining titanium for one 

cutting speeds, 35 m/min, and one tool holder lengths, 120 mm, is shown in Figure 3.25. 

All of titanium tests are done for three different cutting conditions, stable, chatter and 

severe chatter. 
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 (a)                                                                    (b) 

Figure 24: Worn tools after T6 and T8 

 

The effects of chatter vibrations on tool life in milling are shown in Figure 3.24. 

These two inserts wear out under the same cutting parameters (L=120 mm and     

V=260 m/min). Figure 3.24 (a) is the insert of T6 after 38 minutes and Figure 3.24 (b) is 

the insert of T8 after 38 minutes. The crater wear zone and depth of the crater wear 

under chatter vibration are obviously greater than the results of stable cutting condition.  
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Figure 3.25: Tool wear vs. cutting time for stable, chatter and severe  

                chatter conditions and cutting speeds for titanium 

 

Figure 3.25 clearly shows that chatter has a significant effect on tool wear in 

milling for titanium, too. The rate of the tool wear increases under chatter condition 

compared to stable cutting, and under severe chatter condition compared to both, stable 
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and chatter cutting. The tool life is reduced up to 33% under chatter and 67% due to 

severe chatter. The reduction in tool life is vital under both chatter severities. 

 

 
Figure 3.26: Tool life for different chatter conditions for steel and titanium 

 
 

 
3.2.2 Cutting Forces 

 

The cutting forces are measured in every direction for many times throughout 

the total cutting time of the tool. The time interval between two cutting force 

measurements varies between 4 and 23 minutes. That time interval depends on the 

cutting speed and chatter condition. 

 

All the cutting forces increase during the cutting process due to wear. The 

contact area on tool enlarges as the tool wears and that leads to the increase of cutting 

forces. Another reason can be the deviation in the coefficient of friction as the tool 

wears. The cutting force in the feed direction, Fx, is analyzed in comparison. The cutting 

forces at higher speeds are less than the forces at lower speeds. The behavior of cutting 

forces against cutting speed is not always the same and it depends on the material, 

machining process and many other parameters. The reason for the increase in cutting 

forces can be the increase of the cutting temperature at higher speeds.  
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The cutting force difference between stable and chatter conditions is evident. 

The feed force difference between two dynamic conditions for lower cutting speed 

(V=170 m/min) is nearly 60% for high rigid tool (L=110 mm) as shown in            

Figure 3.27 (a) and 40% for less rigid tool (L=120 mm) as shown in Figure 3.28 (a). 

 

The cutting forces and their development by the cutting time for stable and 

chatter conditions and different tool lengths are shown in Figures 3.27 and 3.28. 
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(b) 

Figure 3.27: Peak cutting forces for V=170 m/min (a)  

              and V=260 m/min (b) for L=110 mm 
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The cutting force difference between stable and chatter conditions decreases at 

higher speeds due to the general decrease at all forces. Plus, the differences between 

two cutting conditions are very small for the tangential forces, Fz and  they could be 

neglected. 
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(b) 

Figure 3.28: Peak cutting forces for V=170 m/min (a)  

              and V=260 m/min (b) for L=120 mm 
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The same cutting force behaviors can be observed for the longer tool, too. There 

is not much difference between Fy and Fz forces in stable and chatter conditions for both 

cutting speeds. There is nearly no difference for higher cutting speeds for L=120 mm as 

shown in Figure 3.28 (b).   

 

The chatter frequencies are determined by using a microphone setup. The chatter 

frequency for L=120 mm is about 631 Hz. The frequency of the tool is 725 Hz and 

chatter frequency is generally higher than the modal frequency. But in some milling 

cases, lower chatter frequencies can be encountered as well. The chatter frequency and 

the sound data are shown in Figure 3.29.  

 

 
Figure 3.29: Chatter frequency for L=120 mm 

 

The output of the data acquisition software which collects the milling force data 

is shown in Figure 3.30. The sampling rate for these measurements is 10000 points per 

second. 
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(a) 

 

 
(b) 

Figure 3.30: Milling forces for T6 (a) and T8 (b) at first minute  
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Distance (m) Time (min) Fx (N) Fy (N) Fz (N) 
       
V=170 m/min, Stable    

0 0 527.2 102.2 78.1 
6.4 23.67 610.4 117.2 127 
12.8 47.33 771.5 200.2 175.8 
14.4 53.25 844.7 229.5 195.4 

       
V=260 m/min, Stable     

0 0 523.7 78.1 107.4 
2.8 6.76 600.6 78.2 127 
6.4 15.44 649.4 88 136.7 
12.8 30.94 747 102.5 166 
15.6 37.7 786.1 102.5 175.8 

       
V=170 m/min, Chatter     

0 0 830 190.4 117.2 
3.52 13.02 898 229.6 126.9 
7.04 26.03 1011 341.8 136.8 
8.4 31.06 1030.2 361.4 137 
11.2 41.42 1137.8 395.2 156.3 

       
V=260 m/min, Chatter     

0 0 634.8 112.3 97.6 
3.04 7.35 772.5 141.6 117.2 
6.4 15.47 800.8 166 136.7 
8.8 21.27 874 180.6 156.3 

Table 3.5: Detailed milling forces for steel at L=110 mm 

 

Tables 3.5 and 3.6 show the cutting force data of steel for all cutting conditions 

(different tool lengths, cutting speeds and chatter conditions) in detail. Cutting time,  

cutting distance of the measured force and three cutting forces (Fx for feed force, Fy for 

radial force and Fz for tangential force) are given. The general decrease in cutting forces 

as cutting speed increases and the effect of chatter on cutting forces can be seen in 

Tables 3.5 and 3.6, too. 
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Distance (m) Time (min) Fx (N) Fy (N) Fz (N) 
       
V=170 m/min, Stable    

0 0 254 68.4 97.6 
5.6 20.71 268.6 78.1 97.6 
11.6 42.9 298 102.6 136.8 
14.8 54.73 341.8 136.7 156.2 
18 66.56 459 190.5 185.4 
       

V=260 m/min, Stable     
0 0 229.5 48.8 78.1 

6.4 23.66 239.3 53.7 87.9 
9.6 35.5 253.9 58.6 107.5 
12.8 47.34 356.4 68.4 136.7 
16 59.17 380.8 83 156.2 
       

V=170 m/min, Chatter     
0 0 351.4 122 97.6 

3.2 11.83 361.3 122.1 97.7 
6.4 23.67 385.7 141.6 117.2 
9.6 35.5 473.6 175.8 127 
12.8 47.34 517.5 185.5 146.5 

       
V=260 m/min, Chatter     

0 0 253.9 53.7 78.1 
6.4 23.66 273.4 63.5 87.9 
9.6 35.5 297.9 73.2 107.4 
12.8 47.34 371.1 78.2 127 
16 59.17 454 102.6 156.2 

Table 3.6: Detailed milling forces for steel at L=120 mm 

 

The cutting force data are presented in Table 3.7 for titanium tests. It is easily 

seen that the chatter vibrations generally increase cutting forces. This result is more 

obvious in the feed force (Fx). The increase of cutting forces is directly proportional 

with the severity of chatter vibration. The chatter (C) condition increases Fx about max. 

79% and the severe chatter (SC) condition increases Fx about max. 128% according to 

the stable (S) condition. 
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(c) 

Figure 3.31: Peak cutting forces, Fx (a), Fy (b) and Fz (c),  

                                             of titanium tests for L=120 mm 
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(a) 

 
(b) 

Figure 3.32: Milling forces for T9 (a) and T11 (b) at first minute for titanium 
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Distance (m) Time (min) Fx (N) Fy (N) Fz (N) 
       
Stable    

0 0 371 215 156 
0.83 16 368 308 156 
1.66 32 396 249 176 
2.39 46 430 317 176 

       
Chatter      

0 0 664 386 146 
0.21 4 674 376 147 
1.25 24 840 552 137 
1.87 36 898 586 147 

       
Severe chatter      

0 0 849 434 137 
0.31 6 860 474 156 
0.62 12 1040 654 186 
0.83 16 1235 762 254 

Table 3.7: Detailed milling forces for titanium   

 
 
3.2.3 Summary of Milling Tests 

 

It is clearly seen in the milling tests that chatter vibration increases tool wear. 

The tool life decreases about 30% to 50% under chatter conditions in milling tests of 

AISI 1040 steel. Similar effect of chatter condition can be observed in titanium tests, 

too. The tool life is reduced up to 33% under chatter and 67% due to severe chatter in 

milling tests of titanium. The reduction in tool life is significant under both, chatter and 

severe chatter conditions. The cutting forces are affected by chatter, too. The feed force 

while cutting steel, increases about 40% to 60% under chatter as shown in             

Figure 3.27 (a) and 3.28 (a) . The feed force increases under chatter and severe chatter 

vibrations up to 130% while cutting titanium.  
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CHAPTER 4 

 

DISCUSSION 

 

 

The results of turning and milling tests with different workpiece materials and 

under different cutting conditions are presented in chapter 3. The tool wear, vibration 

amplitude and force data which obtained from the cutting tests are given and 

demonstrated as figures and tables. This chapter is a paraphrase of chapter 3. The 

reasons of the results of turning and milling tests are explained and discussed. 

 

 

4.1 Turning 

 

 

4.1.1   Effect of Cutting Speed 

 

Different cutting speeds are used in the tests to see the effect of speed on tool 

life and other parameters. Three different cutting speeds, 170, 110 and 50 m/min, are 

used in turning tests. Table 3.1 clearly gives the comparison of the cutting speed and 

tool life. This table shows that the tool life is reduced more than 40% and up to 65% for 

stable cutting condition, about 85% for chatter condition and, more than 60% and up to 

90% for severe chatter condition when the cutting speed is increased up to 110 m/min 

and 170 m/min, respectively. Doubling of cutting speed, 50 m/min, leads an increase in 

tool life about 70% in average. Tripling of cutting speed, 50 m/min, reduces tool life 

about %88 in average. Figures 3.3 and 3.4 support that conclusion. These results show 

that tool wear rate is directly proportional to the cutting speed. It is clear that effect of 

cutting speed is very vital on tool life. Higher cutting speeds mean less production time 

but it also brings extra cost for tooling and longer setup time. 

 

 80



The main reason of the reduction of the tool life due to the increase of cutting 

speed is temperature. It is generally known that cutting temperature increases as the 

cutting speed increases. Trent et al. [2] showed that the surface temperature of the 

cutting insert while cutting of very low carbon steel at 91 m/min is about 650 0C and the 

temperature of the surface of the insert is about 900 0C at 213 m/min. Another 

parameter that increases cutting temperature in turning is the mechanics of turning 

operations. Turning is a continuous cutting and there is always a contact between the 

tool edge and the workpiece material as the cutting proceeds.  The increase in cutting 

temperature leads faster tool wear and failure.  

 

The tool wear rate under vibration depends on the cutting speed, too. There is 

not much difference between tool life curves of chatter condition and severe chatter 

conditions at higher cutting speeds (V=170 m/min). The difference between two chatter 

conditions becomes clear as the cutting speed decreases. And also, higher cutting speeds 

increase the effect of chatter vibrations on tool life. 

 

The tool life data in Figures 3.1 and 3.2 give important clues about the effect of 

cutting speed. The tool wear rate increases at higher cutting speeds. That is acceptable 

because of the decrease in tool life in the same condition. The effects of chatter 

vibrations are also more significant at higher cutting speeds. 

 

4.1.2   Effect of Chatter 

 

The main purpose of this study is to understand the effect of chatter vibrations 

on tool life so different severities of chatter are applied in turning. Turning tests are 

done under three dynamic conditions: stable, chatter and severe chatter. The tests results 

show that chatter vibrations have substantial negative effects on tool life. Tool wear 

data and the reduction in tool life due to chatter are given in Table 3.1. This table shows 

that the tool life is reduced about 60-80%. The decrease in tool life for severe chatter is 

much more. Tool life reduces about 60-70% for shorter tool holder and 60-90% for 

longer tool holder under severe chatter. 
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The effect of chatter also depends on the cutting speed. Figures 3.1 and 3.2 show 

that higher cutting speeds make chatter vibrations more effective on tool life. But the 

effects of chatter and severe chatter conditions on tool life are nearly the same for 

higher cutting speeds (V=170 m/min) and the wear rates are very similar as shown in 

Figure 3.6. The difference between the effects of chatter and severe chatter on tool life 

appears especially lower cutting speeds (V=50 m/min). The effects of chatter vibrations 

on tool life also depend on the tool rigidity. Less stiffer tool holders set off the effect of 

chatter vibration. Comparison of Figures 3.6 and 3.7 clarifies that result. 

 

4.1.3   Effect of Vibration Amplitude 

 

Vibration amplitudes in the range of 5 µm to 25 µm are measured in the turning 

tests. Figure 3.12 shows the amplitudes in chatter and severe chatter conditions. The 

slopes of lines for the same tool holder lengths are similar. The amplitude variation for 

less rigid tool holder is much higher than the variation of the more rigid tool holder. 

That results show that variation rate of the amplitudes under different chatter conditions 

depends on tool stiffness. The stiffer tool means less variation in vibration amplitudes 

between chatter and severe chatter.  

 

Figure 3.13 shows the effects of the chatter vibration amplitudes on tool life. 

The most significant variation in both, tool life and vibration amplitude, is observed at 

the test with the parameters, L=135 mm and V=50 m/min. 

 

4.1.4   Effect of Tool Length 

 

The variation of length changes the stiffness of the tool holder. It is seen in the 

turning tests that the tool holder length affects tool life under chatter vibrations. That 

effect is dominant for severe chatter conditions. The cutting distances under severe 

chatter decrease about 2% for V=50 m/min, 135% for V=110 m/min and 13% for 

V=170 m/min when tool holder length is increased from 110 mm to 135 mm according 

to Figure 3.5. That means tool life decreases when the rigidity of tool decreases under 

chatter conditions. The less rigidity of the tool means higher vibration amplitudes under 

chatter vibration in turning. Higher amplitudes create impacts of the cutting edge to the 

surface of the workpiece and that situation accelerates tool wear.  
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The results of the effects of tool rigidity on tool life are not the same under 

stable conditions. The tool life of the less stiff tool holder is longer than the tool life of 

the stiffer one. That results can lead us to a conclusion. The effect of the tool holder 

length on tool life depends on the dynamic condition of cutting process. If there is 

chatter in the process then the tool life decreases as the tool holder length increases, due 

to existence of vibration in turning.  

 

 

4.2 Milling 

 

 

4.2.1   The Effect of Cutting Speed 

 

Two different cutting speeds are used in the milling tests to observe the effect of 

cutting speed on tool life. Various cutting speeds, 35, 170, 260 m/min, are used in 

milling tests for steel and titanium. Table 3.3 shows tool life for all milling tests. The 

tool life is reduced about 40% for stable conditions and up to 46% for chatter conditions 

when the cutting speed is increased from 170 m/min up to 260 m/min. The cutting 

speed has a vital effect on tool life in milling, too. Figures, 3.18, 3.19 and 3.20 clearly 

show that effect. The tool wear rates for both cutting speeds and both chatter conditions 

are very similar in the early stages of wear development. 

 

The increase in the cutting zone temperature due to the increase in cutting speed 

is the main reason for the decrease on tool life, again. The mechanics of milling process 

is different from turning and it is a discontinuous cutting process. That means there are 

short time spaces between every revolution of the cutting tool. That time spaces are 

much longer when cutting speed is smaller. So, that situation creates extra time for the 

cutting tool to cool down. 

 

The cutting forces are very important to manufacturing engineers in machining. 

They are always desired to be smaller. The cutting forces decrease as the cutting speed 

increases in milling tests of both, steel and titanium. There can be several reasons for 

that. The specific cutting energy decreases as the cutting speed increases, so the 

reduction in specific cutting energy leads a diminishing in cutting forces. Another 
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reason can be the effect of cutting zone temperature. As the cutting speed increases, the 

temperature increases, too. That high temperature reduces the shear strength. Less shear 

strength in the flow zone leads to an increase of seizure region and that results easier 

chip flow mechanism. That effect decreases the cutting forces [1].  

 

4.2.2   Effect of Chatter 

 

Milling tests for AISI 1040 steel are done under two dynamic cutting conditions, 

stable and chatter. Milling tests for titanium are done under three dynamic conditions, 

stable, chatter and severe chatter. Table 3.3 shows the tool life for different chatter 

conditions. The tool life decreases about 40-50% for high rigid tool and 20-30% for low 

rigid tool due to chatter in steel tests. The reduction on tool life is about 35% for chatter 

condition and 70% for severe chatter condition in titanium tests. The results of different 

two materials clear that mild chatter usually decreases tool life about 30-40%. That 

decrease in tool life is very vital for machining requirements and production costs. 

 

 The effect of chatter condition can be seen in Figure 3.26. The general slope of 

the decrease in tool life is regular and similar. This generalization shows that the effects 

of chatter vibrations on tool life have a mechanism and they are not random or irregular. 

 

 The cutting forces under chatter vibration are more than the cutting forces under 

stable condition. That difference between the feed force components of two cutting 

conditions reaches up to 60% for machining of steel. That difference is more in 

machining of titanium. The difference between stable and chatter feed forces is 80% for 

chatter condition and more than 100% for severe chatter condition. There can be several 

reason for the increase of cutting forces under chatter vibration. The cutting edge of the 

tool is not static while chatter and it vibrates. That vibration leads the cutting edge to 

impact to the workpiece material. These impacts can create additional forces on tool and 

cutting edge, and cause micro chipping on the cutting edge of the insert. It is commonly 

known that worn cutting tools increase cutting forces. In addition, as the tool wears, the 

area of contact is increased and that leads to an increase in the cutting forces. Also, due 

to wear the coefficient of friction is increased which results in higher cutting force 

produced during the machining. 
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4.2.3   Effect of Tool Length 

 

 The length of the cutting tool outside of the tool holder has also an effect on tool 

life in milling. The stiffness and rigidity of the tool increase as the length of it 

decreases. The effects of chatter vibrations on tool life for less stiff tool are not as much 

as the effects of chatter on tool life for high stiff tool. That means longer cutting tool 

provides longer tool life. That situation is valid for both, stable and chatter conditions in 

milling. Tool life with usage of longer cutting tool improves about 15%. That increase 

on tool life cannot be disregarded. The tool life improves under chatter condition in 

milling, too. But it is important to notice that, the improvement of tool life under chatter 

in milling depends on the severity of chatter vibrations. Higher tool length causes more 

chatter for the same depth of cut and the severity of chatter would start to decrease tool 

life after a specific length and tool lengths above that specific point would decrease tool 

life. So, total amount of increase on the tool life by the variation of the tool length under 

chatter conditions cannot be related to cutting tool stiffness.  

 

  Tool life decreases more in the tests with less stiff tools. The effect of tool 

stiffness on tool life can be related to tool wear. The body of the tool becomes more 

elastic when it is longer. That elasticity and low stiffness bring a permissive structure to 

the cutting tool, so the cutting edge of the tool behaves just like a ductile material. Less 

stiff cutting tool edge is more tolerant to the forces and impacts while cutting metal. The 

stiffness of the cutting tool prevents the cutting edge against micro chippings and deep 

impacts. That conservation makes tool life longer. 

 

4.2.4   Wear Effects for Different Materials 

 

 Two different workpiece materials were used in milling tests. These are mild 

steel, AISI 1040, which is commonly used in general manufacturing and titanium alloy, 

TiAl6V4, which is one of the main demands of aerospace industry. These materials are 

especially selected, so the results and the data of this study can be useful in 

manufacturing. It is not easy to compare steel and titanium after cutting tests due to the 

different cutting conditions and parameters. Titanium is machined at V=35 m/min in 

milling tests due to the machining requirements and this speed is 1/5 of the minimum 

cutting speed for steel. Also, the titanium tests are done under wet cutting conditions 
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which increases tool life. But it is clear that chatter has similar effects on tool life for 

titanium, too. After both, steel and titanium tests, it is clear that chatter decreases tool 

life about 30-40%. Titanium tests support that conclusion.  

  

 There are also some relationships between the results of two materials. The 

cutting forces show some similarities in Figures 3.27 and 3.31. The force differences 

between chatter condition and stable condition are generally increase as the cutting 

proceeds. The cutting forces in titanium tests are relatively higher than steel tests in 

some conditions. The benchmark of Figures 3.28 and 3.31 shows that in some cases, 

cutting forces of titanium under stable conditions are higher than the cutting forces of 

steel under chatter conditions for the same tool length. The main reason for that is the 

material characteristic of titanium. 
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CHAPTER 5 

 

CONCLUSIONS 

 

 

The aim of our investigation is to understand the influence of chatter instability 

on tool life with combining different cutting parameters, cutting processes and tool 

rigidities. Vibration amplitudes and corresponding cutting forces in three directions are 

measured during the cutting test. Tool wear development is observed at varying time 

intervals and VB=0.2 mm is considered as criterion of tool life to shorten the 

experimental time.  

 

 Based on the results obtained from the cutting tests, some conclusions are cited 

herewith: 

 

• Chatter vibrations lead a vital reduction in tool life about 50% for most of the 

cases and more than 80 % in some cases (higher cutting speeds) in turning tests. 

Tool life decreases about 30-50% under chatter and 70% under severe chatter 

conditions in milling. 

 

• The effects of chatter on tool life are more pronounced at higher cutting speeds 

in turning.  

 

• Vibration amplitude has direct influence on tool life. Higher the vibration 

amplitude, lower the tool life is. The vibration amplitudes are increased in    

low-rigid-tool as expected. The difference between variation of amplitudes when 

high-rigid and low-rigid tools are compared, is much higher at higher cutting 

speeds in turning.   
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• Chatter results in surface finish nearly two times worse than stable cutting. That 

poor surface finish and deviations in the dimensional accuracy will cause 

additional operations which will bring extra cost to manufacturing. 

 

• The rigidity of the cutting system has strong influence on tool life. At stable 

cutting conditions less rigid tool holder results in higher tool life in turning. The 

tool life increases as the tool rigidity decreases. The reduction in tool life due to 

tool rigidity increases at higher cutting speed 

 

• There are significant cutting force differences between stable and chatter 

conditions. Fx difference between these conditions is about 60% for the tool with 

high rigidity and 40% for the tool with less rigidity in milling. 

 

• The development of the tool wear under chatter is faster than stable condition. 

But the effect of chatter intensity is less significant at higher speeds in milling. 

 

 

As a future work, these tests would have performed for different cutting 

parameters and conditions. The parameters which decisively influence the test results 

like cutting speed, feed rate, cutting tool material and geometry, workpiece material, 

cutting direction and type, and cutting conditions (dry or wet cutting, 3-axis or 5-axis 

machining), etc. could be tried with many different combinations. The results which are 

obtained from these long tests will be used to create a database which could be the basis 

for a commercial software. That software can be integrated into CAD/CAM systems to 

develop the optimum machining parameters for industrial applications.  
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